JPH07309677A - Oxidation-resistant c/c composite material and its production - Google Patents

Oxidation-resistant c/c composite material and its production

Info

Publication number
JPH07309677A
JPH07309677A JP6120719A JP12071994A JPH07309677A JP H07309677 A JPH07309677 A JP H07309677A JP 6120719 A JP6120719 A JP 6120719A JP 12071994 A JP12071994 A JP 12071994A JP H07309677 A JPH07309677 A JP H07309677A
Authority
JP
Japan
Prior art keywords
coating
coating layer
sio
composite material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6120719A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shiotani
善弘 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP6120719A priority Critical patent/JPH07309677A/en
Publication of JPH07309677A publication Critical patent/JPH07309677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide an oxidation/resistant C/C composite material (carbon fiber reinforced carbon composite material) showing excellent oxidation resistance in a high temp. oxidizing atmosphere, and to provide its production method. CONSTITUTION:This composite material has such a laminated structure that a first coating layer of SiC having a functionally gradient structure, second coating layer of SiO2 fine particles, third coating layer of Al2O3, and fourth coating layer of Al2O3-SiO2 glass are successively formed on a C/C base body. Th first coating layer is formed by the conversion method to bring SiO2 gas into contact with the surface. The second coating layer is formed by impregnating the base body in vacuum with a soln. obtd. from Si(OC2H5)4 by the alkoxide method and then heat treating the layer. The third layer is formed by gas phase deposition according to the pulse CVI method. The fourth layer is formed by impregnating the base body in vacuum with a soln. obtd. by hydrolysis of a mixture soln. of Si(OC2H5)4 and aluminum salt according to the alkoxide method and then heat treating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温酸化性雰囲気下に
おいて高度の酸化抵抗性の被覆組織を有する耐酸化性C
/C複合材(「炭素繊維強化炭素複合材」、以下同じ)
とその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to an oxidation resistant C having a coating structure having a high degree of oxidation resistance in a high temperature oxidizing atmosphere.
/ C composite material ("carbon fiber reinforced carbon composite material", same below)
And its manufacturing method.

【0002】[0002]

【従来の技術】C/C複合材は、1000℃を越える温度域
においても高度の比強度、比弾性率を維持し、かつ低い
熱膨張率を示す等の特異は材質特性を有することから、
航空宇宙用の部材をはじめ多くの分野で構造材料として
有用されている。ところが、 500℃程度の大気雰囲気下
で酸化が進行するという炭素材固有の材質的な欠点があ
るため、高温大気中での使用は極く短時間の条件を除い
て不可能である。このため、C/C複合材の表面に耐酸
化性の被覆を施して改質化する試みが従来から盛んにお
こなわれている。
2. Description of the Related Art C / C composite materials have peculiar material properties such as maintaining a high specific strength and a specific elastic modulus even in a temperature range exceeding 1000 ° C. and exhibiting a low coefficient of thermal expansion.
It is useful as a structural material in many fields including aerospace parts. However, because of the inherent material drawback of carbon materials such that oxidation proceeds in the atmosphere of about 500 ° C, use in the high temperature atmosphere is impossible except for a very short time. For this reason, there have been many attempts to modify the surface of the C / C composite material by coating it with an oxidation resistant coating.

【0003】このうち、最も一般的な耐酸化処理とされ
ているのはCVD(化学的気相蒸着)によりセラミック
ス被膜層を形成する方法で、SiCを被覆化する処理が
代表的な技術として知られている。CVD法によればC
/C複合基材面に緻密なSiC被膜を形成することがで
きるが、熱変動によりSiC被膜が層間剥離したり、層
界面にクラックが発生する等の現象が多発し易い。この
現象は、C/C複合基材とSiC被膜層との熱膨張差が
大きいため最大歪みが追随できないことに起因するもの
であるため、C/C複合基材面をSiCの熱膨張率に近
似させるように改質させれば軽減化させることができ
る。このような観点から、C/C複合基材面に気相熱分
解法により熱分解炭素層を形成し、ついでCVDまたは
CVI法でSiCを被覆する方法(特開平2−111681号
公報) が提案されているが、十分な効果は期待できな
い。
Of these, the most general oxidation resistance treatment is a method of forming a ceramic coating layer by CVD (chemical vapor deposition), and the treatment of coating SiC is known as a typical technique. Has been. C according to the CVD method
Although a dense SiC coating can be formed on the / C composite substrate surface, phenomena such as delamination of the SiC coating due to thermal fluctuation and cracking at the layer interface are likely to occur. This phenomenon is caused by the fact that the maximum strain cannot follow because the difference in thermal expansion between the C / C composite base material and the SiC coating layer is large. Therefore, the C / C composite base material surface has a coefficient of thermal expansion of SiC. If it is modified so as to approximate it, it can be reduced. From this point of view, a method of forming a pyrolytic carbon layer on the surface of a C / C composite substrate by a vapor phase pyrolysis method and then coating SiC by CVD or CVI method (JP-A-2-111681) is proposed. However, a sufficient effect cannot be expected.

【0004】これに対し、C/C複合基材の炭素を反応
源に利用してSi成分と反応させることによりSiCに
転化させるコンバージョン法は、基材の表層部が連続組
織としてSiC層を形成する傾斜機能材質となるため界
面剥離を生じることはない。しかし、CVD法に比べて
緻密性に劣るうえ、反応時、被覆層に微小なクラックが
発生して耐酸化性が低下する問題がある。
On the other hand, in the conversion method in which carbon of the C / C composite base material is used as a reaction source to react with the Si component to be converted into SiC, the surface layer portion of the base material forms a SiC layer as a continuous structure. Since it is a functionally graded material that does not cause interfacial peeling. However, in addition to being less dense than the CVD method, there are problems that minute cracks are generated in the coating layer during the reaction and the oxidation resistance is reduced.

【0005】前記問題の解消を図るため、本出願人はC
/C複合基材面にコンバージョン法で形成したSiC被
覆層に、さらにSiO2 微粒被覆層を介してSiO2
23 等のガラス被覆層を形成する耐酸化性C/C材
とその製造方法を既に開発した(特開平4−42883 号公
報)。しかしながら、この方法では最外層のB2 3
SiO2 のガラス被覆層が 900℃程度で軟化するため、
1000℃以上の高温に曝した場合には蒸気圧も上昇して経
時的に耐酸化性能が低下することが判明した。
In order to solve the above-mentioned problems, the present applicant has adopted C
/ C in SiC coating layer formed by the conversion method in the composite substrate surface, SiO 2 further through the SiO 2 fine coating layer,
An oxidation resistant C / C material for forming a glass coating layer such as B 2 O 3 and a manufacturing method thereof have already been developed (JP-A-4-42883). However, in this method, the outermost layer of B 2 O 3
Since the SiO 2 glass coating layer softens at about 900 ° C,
It was found that when exposed to high temperatures of 1000 ° C or higher, the vapor pressure also increased and the oxidation resistance performance deteriorated over time.

【0006】そのため、本出願人はこの先願技術に改良
を加え、1000℃を越える高温大気中においても長期に亘
り安定した耐酸化性を発揮することができる被覆組織の
耐酸化性C/C複合材として、傾斜機能を有する多結晶
質のSiC被膜からなる第1被覆層、アモルファス質ま
たは微細多結晶質SiC被膜からなる第2被覆層および
2 3 −SiO2 ガラス被膜からなる第3被覆層を積
層形成した耐酸化性C/C複合材(特開平4−243989号
公報)、および傾斜機能を有する多結晶質のSiC被膜
からなる内層、SiO2 微粒子被膜からなる中間層、A
2 3 −SiO2 もしくはB2 3 −Al2 3 −S
iO2 のガラス被膜からなる外層が積層被覆された耐酸
化性C/C複合材(特開平5−43366 号公報)を提案し
ている。
[0006] Therefore, the present applicant has improved this prior application technique, and can exhibit stable oxidation resistance for a long period of time even in a high temperature atmosphere exceeding 1000 ° C. As a material, a first coating layer made of a polycrystalline SiC coating having a gradient function, a second coating layer made of an amorphous or fine polycrystalline SiC coating, and a third coating made of a B 2 O 3 —SiO 2 glass coating. Oxidation-resistant C / C composite material in which layers are laminated (JP-A-4-243989), an inner layer made of a polycrystalline SiC film having a gradient function, an intermediate layer made of a SiO 2 fine particle film, A
l 2 O 3 -SiO 2 or B 2 O 3 -Al 2 O 3 -S
An oxidation-resistant C / C composite material (Japanese Patent Laid-Open No. 5-43366) in which an outer layer made of a glass film of iO 2 is laminated and coated is proposed.

【0007】[0007]

【発明が解決しようとする課題】これらの先願技術によ
れば、1000℃を越える高温大気中においても長期に亘り
安定した耐酸化性を発揮することができる。しかしなが
ら、1700℃を越える過酷な高温酸化雰囲気においては、
クラックを封止しているガラスの蒸発やSiC被膜の酸
化により生じたSiO2 の昇華によるSiC被膜の消耗
が起こり、さらにSiC被膜層のクラックから内部に進
入する酸素により基材が酸化損耗する問題がある。
According to these prior application techniques, stable oxidation resistance can be exhibited for a long period of time even in a high temperature atmosphere exceeding 1000 ° C. However, in a severe high temperature oxidizing atmosphere exceeding 1700 ° C,
The problem that the SiC film is consumed by evaporation of the glass that seals the cracks and the sublimation of SiO 2 caused by the oxidation of the SiC film, and the oxygen is introduced into the inside of the SiC film layer through the cracks, and the base material is oxidized and worn. There is.

【0008】近時、C/C複合材に対する耐酸化性の要
求はますます高度化しており、1700℃を越える過酷な酸
化性雰囲気中においても安定した耐酸化性能を有するC
/C複合材の開発が大きな開発課題となっている。本発
明者はこの課題について研究を続けた結果、SiC被膜
の外層としてAl2 3 の被覆層を安定に形成すると、
1900℃付近の高温域でも十分な耐酸化性を付与できるこ
とを見出した。
Recently, the demand for oxidation resistance of C / C composite materials has become more and more advanced, and C which has stable oxidation resistance performance even in a severe oxidizing atmosphere exceeding 1700 ° C.
The development of the / C composite material has become a major development issue. As a result of continuing research on this problem, the present inventor found that a stable Al 2 O 3 coating layer was formed as an outer layer of the SiC coating.
It has been found that sufficient oxidation resistance can be imparted even in a high temperature region around 1900 ° C.

【0009】本発明はこの知見に基づいて開発されたも
ので、その目的は、1700℃を越える過酷な高温酸化性雰
囲気においても長期に亘り安定した耐酸化性を発揮する
ことができる被覆組織の耐酸化性C/C複合材およびそ
の工業的な製造方法を提供することにある。
The present invention was developed based on this finding, and its purpose is to provide a coating structure capable of exhibiting stable oxidation resistance for a long period of time even in a severe high temperature oxidizing atmosphere exceeding 1700 ° C. An object is to provide an oxidation resistant C / C composite material and an industrial manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明により提供される耐酸化性C/C複合材は、
C/C複合基材の表面に、傾斜機能組織の多結晶質Si
C被膜からなる第1被覆層、SiO2 微粒子被膜からな
る第2被覆層、Al2 3 被膜からなる第3被覆層、お
よびAl2 3 −SiO2 のガラス質被膜からなる第4
被覆層が順次積層形成されてなることを構成上の特徴と
する。
The oxidation resistant C / C composite material provided by the present invention for achieving the above object comprises:
Polycrystalline Si with functionally graded structure on the surface of C / C composite substrate
A first coating layer made of a C coating, a second coating layer made of a SiO 2 fine particle coating, a third coating layer made of an Al 2 O 3 coating, and a fourth coating made of a glassy coating of Al 2 O 3 —SiO 2 .
The structural feature is that the coating layers are sequentially laminated.

【0011】基材となるC/C複合材は、炭素繊維の織
布、フエルト、トウなどにマトリックス樹脂液を含浸ま
たは塗布してプリプレグを形成し、これを積層成形した
のち焼成炭化処理する常用の方法で製造されたものが使
用され、特に材料の製造履歴や材質組織等の限定はな
い。なお、必要に応じてマトリックス樹脂液を含浸、硬
化、炭化する処理を反復して組織の緻密化が図られる。
The C / C composite material used as the base material is a carbon fiber woven cloth, felt, tow or the like impregnated or coated with a matrix resin liquid to form a prepreg, which is laminated and molded, and then subjected to firing and carbonization treatment. The material manufactured by the method is used, and there is no particular limitation on the manufacturing history of the material, the material structure, and the like. If necessary, the process of impregnating with the matrix resin liquid, hardening, and carbonization is repeated to densify the structure.

【0012】C/C複合基材面を直接被覆するSiC被
膜からなる第1被覆層は、基材表層部が外面に向かうに
従って次第にSiCの組織化が進む傾斜機能構造の多結
晶質SiC被膜であり、好適なSiC被覆層の膜厚は50
〜300 μm である。第2被覆層を形成するSiO2 微粒
子被膜は、第1被覆層を形成するSiC被膜組織の微細
なクラックや空隙(ピンホール)を充填封止するととも
に第3被覆層として形成されるAl2 3 被膜との密着
性を高めるために機能し、適切なSiO2 被覆量は0.5
〜3.0 mg/cm2である。また、Al2 3 被膜からなる第
3被覆層は、1700℃以上の高温におけるC/C基材とS
iC被覆層の酸化を防ぐために機能するものであり、好
ましい膜厚は25〜200 μm である。Al2 3 −SiO
2 のガラス質被膜により構成される第4被覆層は、第3
被覆層のAl2 3 被膜中のクラックや空隙を充填封止
して、最終的に外面を無孔構造にして大気とC/C複合
基材を完全に遮断するバリア層となるもので、望ましい
被覆量は0.5 〜3.0 mg/cm2である。
The first coating layer consisting of a SiC coating that directly coats the surface of the C / C composite substrate is a polycrystalline SiC coating having a functionally graded structure in which the SiC is gradually organized as the surface layer of the substrate goes to the outer surface. And the preferred SiC coating thickness is 50
~ 300 μm. The SiO 2 fine particle coating forming the second coating layer fills and seals fine cracks and voids (pinholes) in the SiC coating structure forming the first coating layer and is formed as Al 2 O formed as the third coating layer. 3 Functions to enhance adhesion with the coating, and the appropriate SiO 2 coating amount is 0.5
~ 3.0 mg / cm 2 . The third coating layer made of an Al 2 O 3 coating has a C / C base material and S at a high temperature of 1700 ° C. or higher.
It functions to prevent the oxidation of the iC coating layer, and the preferable film thickness is 25 to 200 μm. Al 2 O 3 -SiO
The fourth coating layer composed of the vitreous coating of 2 is the third
It is a barrier layer that fills and seals cracks and voids in the Al 2 O 3 coating of the coating layer and finally makes the outer surface a non-porous structure to completely block the atmosphere and the C / C composite substrate. The preferred coverage is 0.5-3.0 mg / cm 2 .

【0013】上記の積層組織構造を備える耐酸化性C/
C複合材の製造するための本発明による方法は、炭素繊
維をマトリックス樹脂とともに複合成形し硬化および焼
成炭化処理して得られる炭素繊維強化炭素複合材を基材
とし、該基材の表面にSiOガスを接触させてコンバー
ジョン法によりSiC被膜を形成する第1被覆工程、S
i(OC2 5)4 のアルコール溶液を酸性領域で加水分
解するアルコキシド法により得られるSiO2 の微粒子
サスペンジョンを真空含浸してSiO2 微粒子被膜を形
成する第2被覆工程、AlCl3 またはアルミニウム有
機化合物をパルスCVI法により気相析出させてAl2
3 被膜を形成する第3被覆工程、およびSi(OC2
5)4 とアルミニウム塩の水溶液にアルコールを加えた
混合溶液を酸性領域で加水分解するアルコキシド法で得
られるAl2 3 −SiO2 ガラス前駆体溶液を真空含
浸してAl2 3 −SiO2 のガラス質被膜を形成する
第4被覆工程を順次に施し、ついで 500℃以上の温度で
加熱処理することを構成上の特徴とする。
Oxidation resistance C / having the above-mentioned laminated structure structure
The method according to the present invention for producing a C composite material is based on a carbon fiber reinforced carbon composite material obtained by subjecting a carbon fiber to a composite molding together with a matrix resin, curing and firing carbonization treatment, and SiO 2 on the surface of the base material. First coating step of forming a SiC coating by a conversion method by contacting gas, S
Second coating step of forming a SiO 2 fine particle coating by vacuum impregnation of a fine particle suspension of SiO 2 obtained by an alkoxide method of hydrolyzing an alcohol solution of i (OC 2 H 5 ) 4 in an acidic region, AlCl 3 or aluminum organic The compound was vapor-phase deposited by the pulse CVI method to form Al 2
Third coating step of forming an O 3 coating, and Si (OC 2
H 5) 4 and Al 2 O 3 -SiO 2 glass precursor solution mixed solution solution was added an alcohol to aluminum salts obtained in hydrolyzed alkoxide process in the acidic region by vacuum impregnation of Al 2 O 3 -SiO The constitutional feature is that the fourth coating step for forming the vitreous coating of No. 2 is sequentially performed, and then heat treatment is performed at a temperature of 500 ° C. or higher.

【0014】C/C複合基材を構成する炭素繊維には、
ポリアクリロニトリル系、レーヨン系、ピッチ系など各
種原料から製造された平織、綾織などの織布、フェルト
あるいはトウが使用され、マトリックス樹脂としてはフ
ェノール系、フラン系その他炭化性の良好な液状熱硬化
性樹脂が用いられる。炭素繊維は、浸漬、含浸、塗布な
どの手段を用いマトリックス樹脂液で十分に濡らしたの
ち半硬化してプリプレグを形成し、ついで積層加圧成形
する。成形体は加熱して樹脂成分を完全に硬化し、引き
続き焼成炭化処理または更に黒鉛化してC/C複合基材
を得る。このC/C複合基材には、必要に応じてマトリ
ックス樹脂を含浸、硬化、炭化する処理を反復して組織
の緻密化が図られる。
The carbon fibers constituting the C / C composite substrate include
Woven fabric such as plain weave, twill weave, felt or tow manufactured from various raw materials such as polyacrylonitrile type, rayon type, pitch type, etc., and felt or tow are used, and the matrix resin is phenol type, furan type, etc. Resin is used. The carbon fiber is sufficiently wetted with the matrix resin liquid by means of dipping, impregnation, coating, etc., and then semi-cured to form a prepreg, and then laminated and pressure-molded. The molded body is heated to completely cure the resin component, and subsequently subjected to firing carbonization treatment or further graphitization to obtain a C / C composite substrate. The C / C composite substrate is subjected to a process of impregnating with a matrix resin, curing, and carbonizing, if necessary, to densify the structure.

【0015】上記のC/C複合基材にコンバージョンに
よる多結晶質SiC被膜を形成する第1被覆工程は、S
iO2 粉末をSiまたはC粉末と混合して密閉加熱系に
収納し、系内にC/C複合基材をセットもしくは埋設し
て加熱反応させる方法でおこなわれる。この際の条件
は、SiO2 :SiまたはCのモル比を2:1とし、加
熱温度を1800〜2000℃の範囲に設定し、系内を還元また
は中性雰囲気とすることが好ましい。加熱時、SiO2
はSiまたはC成分により加熱還元されてSiOガスを
生成し、このSiOガスがC/C複合基材の炭素組織と
反応して表層部を傾斜機能構造のSiC被膜層に転化さ
せる。
The first coating step for forming a polycrystalline SiC coating by conversion on the C / C composite substrate is S
The iO 2 powder is mixed with Si or C powder, housed in a closed heating system, and a C / C composite substrate is set or embedded in the system to carry out a heating reaction. In this case, it is preferable that the molar ratio of SiO 2 : Si or C is 2: 1, the heating temperature is set in the range of 1800 to 2000 ° C., and the system is reduced or neutralized. When heated, SiO 2
Is heated and reduced by the Si or C component to generate SiO gas, and this SiO gas reacts with the carbon structure of the C / C composite substrate to convert the surface layer portion into a SiC coating layer having a functionally gradient structure.

【0016】第2被覆工程で使用されるSiO2 の微粒
子サスペンジョンは、Si(OC25)4 とエタノー
ル、メタノールなどのアルコール類を混合して環流下で
加熱撹拌し、ついでSi(OC2 5)4 に水および酸を
加えて酸性とした状態で加熱撹拌して加水分解するアル
コキシド法によって作製される。この際の酸性領域は、
pH 1〜2 の範囲に調整することが好適である。このよ
うにして調製されたサスペンジョンは、 0.2〜1.2 μm
のSiO2 球状微粒子が均一に分散した懸濁状態を呈す
る。SiO2 微粒子被膜からなる第2被覆層は、第1被
覆工程後のC/C複合基材を前記のSiO2 微粒子サス
ペンジョンに浸漬し、真空含浸したのち乾燥する工程に
より形成される。更に、必要によりSiO2 微粒子サス
ペンジョンを塗布、乾燥する処理を付加することもでき
る。
The fine particle suspension of SiO 2 used in the second coating step is prepared by mixing Si (OC 2 H 5 ) 4 and alcohols such as ethanol and methanol and heating and stirring under reflux, and then Si (OC 2 H 5 ) It is prepared by an alkoxide method in which water and an acid are added to H 5 ) 4 and the mixture is heated and stirred to be hydrolyzed. The acidic region at this time is
It is preferable to adjust the pH within the range of 1-2. The suspension prepared in this way is 0.2-1.2 μm
The SiO 2 spherical fine particles of 3) are in a uniformly dispersed state. The second coating layer composed of the SiO 2 fine particle coating is formed by a step of immersing the C / C composite substrate after the first coating step in the above-mentioned SiO 2 fine particle suspension, impregnating in vacuum and then drying. Further, if necessary, a treatment of applying and drying the SiO 2 fine particle suspension may be added.

【0017】第3被覆工程におけるAl2 3 被膜の形
成は、第1および第2被覆層を形成したC/C複合基材
をCVI装置の反応室にセットし、AlCl3 と酸素の
混合ガスまたは、アルミニウムトリイソプロポキシド、
トリメチルアルミニウム、トリエチルアルミニウムなど
のアルミニウム有機化合物のガスを導入して熱分解によ
りAl2 3 を気相析出させる操作を短周期で間欠的に
反復するパルスCVI法により行われる。
The formation of the Al 2 O 3 coating in the third coating step is carried out by setting the C / C composite base material on which the first and second coating layers have been formed in the reaction chamber of the CVI device and mixing the mixed gas of AlCl 3 and oxygen. Or aluminum triisopropoxide,
This is performed by a pulse CVI method in which a gas of an aluminum organic compound such as trimethylaluminum or triethylaluminum is introduced and Al 2 O 3 is vapor-deposited by thermal decomposition, which is intermittently repeated in a short cycle.

【0018】第4被覆工程に用いるAl2 3 −SiO
2 系のガラス前駆体溶液は、硝酸アルミニウム、塩化ア
ルミニウム、硫酸アルミニウム、塩基性酢酸アルミニウ
ム、アルミニウムホルモアセテート、アルミニウムアセ
チルアセトネートなどのアルミニウム塩とSi(OC2
5)4 にメタノール、エタノール、プロパノール、ブタ
ノール、エチレングリコールなどのアルコールおよび水
を加えた混合溶液を酸性領域で加水分解、重合させるア
ルコキシド法によって調製される。第4被覆工程は、こ
のガラス前駆体溶液に前記第3被覆工程後のC/C複合
基材を浸漬し、真空含浸したのち乾燥し、ついで500 ℃
以上の温度域で加熱処理するプロセスによりAl2 3
−SiO2 被膜層を形成する。
Al 2 O 3 --SiO used in the fourth coating step
The 2 type glass precursor solution includes aluminum salts such as aluminum nitrate, aluminum chloride, aluminum sulfate, basic aluminum acetate, aluminum formoacetate, and aluminum acetylacetonate, and Si (OC 2
It is prepared by an alkoxide method of hydrolyzing and polymerizing a mixed solution obtained by adding alcohol such as methanol, ethanol, propanol, butanol, and ethylene glycol to H 5 ) 4 and water in an acidic region. In the fourth coating step, the C / C composite substrate after the third coating step is dipped in the glass precursor solution, vacuum impregnated and dried, and then 500 ° C.
By the heat treatment process in the above temperature range, Al 2 O 3
Forming an -SiO 2 coating layer.

【0019】[0019]

【作用】本発明において、傾斜機能組織の多結晶質Si
C被膜からなる第1被覆層は、C/C複合基材の表面に
緻密で密着性の高い膜として形成される。第2被覆層と
して形成されるSiO2 微粒子被膜は、前記第1被覆層
のクラックや空隙(ピンホール)などを充填封止すると
ともに、第1被覆層のSiC被膜と第3被覆工程で形成
されるAl2 3 被膜とが密着して強固な被覆層を形成
するための媒介として機能する。Al2 3 被膜からな
る第3被覆層は、1700℃以上の高温におけるC/C基材
とSiC被覆層の酸化を防ぐために機能し、また、第4
被覆層は、Al2 3 −SiO2 のガラス質被膜が第3
被覆層のAl2 3 被膜中のクラックや空隙(ピンホー
ル)を充填封止して、最終的に外面を無孔構造にして大
気とC/C複合基材を完全に遮断するバリア層として機
能する。
In the present invention, polycrystalline Si having a functionally graded structure is used.
The first coating layer composed of the C coating is formed as a dense and highly adhesive film on the surface of the C / C composite substrate. The SiO 2 fine particle coating formed as the second coating layer fills and seals cracks and voids (pinholes) of the first coating layer, and is formed by the SiC coating of the first coating layer and the third coating step. It functions as an intermediary for forming a strong coating layer by closely adhering to the Al 2 O 3 coating. The third coating layer consisting of an Al 2 O 3 coating functions to prevent oxidation of the C / C base material and the SiC coating layer at a high temperature of 1700 ° C. or higher, and
The coating layer is a glassy coating of Al 2 O 3 —SiO 2 third.
As a barrier layer that fills and seals cracks and voids (pinholes) in the Al 2 O 3 coating of the coating layer and finally makes the outer surface a non-porous structure and completely blocks the atmosphere and the C / C composite substrate Function.

【0020】このようにして第3、第4被覆層として積
層形成されたAl2 3 被膜およびAl2 3 −SiO
2 のガラス質被膜により1700℃以上の高温、例えば1900
℃の大気雰囲気においても十分に耐える高度の耐酸化性
能が付与される。
The Al 2 O 3 coating and the Al 2 O 3 --SiO layered as the third and fourth coating layers in this way are formed.
High temperature of 1700 ℃ or more, such as 1900 due to the glassy coating of 2
A high degree of oxidation resistance that sufficiently withstands even in an air atmosphere of ° C is imparted.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.

【0022】実施例 (1) C/C複合基材の作製 ポリアクリロニトリル系高弾性タイプの平織炭素繊維布
をフェノール樹脂初期縮合物からなるマトリックス樹脂
液に浸漬して含浸処理したのち、14枚積層してモール
ドに入れ、加熱温度 110℃、適用圧力20kg/cm2の条件で
複合成形した。ついで、成形体を 250℃の温度に加熱し
て完全に硬化したのち、N2 雰囲気に保持された焼成炉
に移し、5℃/hr の昇温速度で2000℃まで上昇し5時間
保持して焼成炭化した。得られたC/C材にフェノール
樹脂液を真空加圧下に含浸し、前記と同様の2000℃焼成
処理を3回反復して二次元配向型のC/C複合基材を作
製した。
Example (1) Preparation of C / C composite substrate A polyacrylonitrile-based high-elasticity type plain woven carbon fiber cloth was immersed in a matrix resin solution containing a phenol resin initial condensation product for impregnation treatment, and then 14 sheets were laminated. Then, it was put into a mold and subjected to composite molding under the conditions of a heating temperature of 110 ° C. and an applied pressure of 20 kg / cm 2 . Then, the molded body is heated to a temperature of 250 ° C. to be completely hardened, then transferred to a firing furnace kept in an N 2 atmosphere, heated to 2000 ° C. at a heating rate of 5 ° C./hr, and held for 5 hours. Carbonized by firing. The obtained C / C material was impregnated with a phenol resin solution under a vacuum pressure, and the same 2000 ° C. firing treatment was repeated three times to produce a two-dimensional orientation type C / C composite substrate.

【0023】(2) 第1被覆工程 SiO2 粉末とSi粉末をモル比2:1の配合比率にな
るように混合し、混合粉末を黒鉛ルツボに入れ上部にC
/C複合基材( 幅30mm、長さ50mm、厚さ5mm)をセットし
て黒鉛蓋を被せた。この黒鉛ルツボを電気炉に移し、内
外をArガス雰囲気に保持しながら50℃/hr の昇温速度
で加熱し、1850℃の温度に2時間保持してC/C複合基
材の表層部に傾斜機能を有する厚さ 100μm のSiC被
膜からなる第1被覆層を形成した。なお、SiC被膜の
表面には幅10μm 程の亀裂が所々に発生していることが
認められた。
(2) First coating step SiO 2 powder and Si powder are mixed in a molar ratio of 2: 1 and the mixed powder is put in a graphite crucible and C is added on top.
A / C composite substrate (width 30 mm, length 50 mm, thickness 5 mm) was set and covered with a graphite lid. This graphite crucible was transferred to an electric furnace and heated at a temperature rising rate of 50 ° C / hr while maintaining the inside and outside in an Ar gas atmosphere, and kept at a temperature of 1850 ° C for 2 hours to form a surface layer on the C / C composite substrate. A first coating layer composed of a 100 μm thick SiC coating having a gradient function was formed. It was confirmed that cracks with a width of about 10 μm were generated in places on the surface of the SiC coating.

【0024】(3) 第2被覆工程 第1被覆層を形成したC/C複合基材を真空デシケータ
に入れ、真空ポンプで1Torr以下に減圧したのち、Si
(OC2 5)4 1モルに対し7モルのエタノールを加
え、11モルの水と0.03モルのHClを混合してpH 1.5
で加水分解、重合させて調製したSiO2 微粒子のサス
ペンジョンを注入した。C/C複合基材が完全に浸漬す
るまで注入して1時間保持したのち、C/C複合基材を
デシケータから取り出し、大気雰囲気の電気炉に移して
10℃/minの昇温速度で500 ℃まで加熱し、30分間保持し
てSiO2 微粒子被膜を形成した。この操作により、全
面に1.5mg/cm2 のSiO2 が被覆された。
(3) Second coating step The C / C composite substrate on which the first coating layer was formed was placed in a vacuum desiccator, and the pressure was reduced to 1 Torr or less by a vacuum pump.
7 mol of ethanol was added to 1 mol of (OC 2 H 5 ) 4 , and 11 mol of water and 0.03 mol of HCl were mixed to adjust the pH to 1.5.
Then, a suspension of SiO 2 fine particles prepared by hydrolysis and polymerization was injected. After injecting until the C / C composite base material is completely immersed and holding it for 1 hour, the C / C composite base material is taken out of the desiccator and transferred to an electric furnace in the air atmosphere.
The film was heated to 500 ° C. at a temperature rising rate of 10 ° C./min and held for 30 minutes to form a SiO 2 fine particle film. By this operation, the entire surface was covered with 1.5 mg / cm 2 of SiO 2 .

【0025】(4) 第3被覆工程 第2被覆層を形成したC/C複合基材をパルスCVI装
置の石英反応管内にセットし、管内をArガスで十分に
置換したのち、高周波誘導加熱によりC/C複合基材の
温度を1100℃に上昇した。次いで、真空ポンプにより反
応管内を2秒で2Torr以下に減圧し、直ちにAlCl3
と酸素の混合ガス(Alとして5容量%)をArをキャ
リアガスとして1秒間で720Torr になるように導入し1
秒間保持した。この管内減圧、反応ガス導入および保持
の操作を3000回繰り返し、厚さ100 μm の緻密なAl2
3 被膜を被覆した。
(4) Third coating step The C / C composite substrate on which the second coating layer was formed was set in a quartz reaction tube of a pulse CVI device, and the inside of the tube was sufficiently replaced with Ar gas, followed by high frequency induction heating. The temperature of the C / C composite substrate was raised to 1100 ° C. Then, the pressure inside the reaction tube was reduced to 2 Torr or less in 2 seconds by a vacuum pump, and immediately AlCl 3 was added.
A mixed gas of oxygen and oxygen (5% by volume as Al) was introduced with Ar as a carrier gas so as to be 720 Torr in 1 second.
Hold for a second. The operation of decompressing the inside of the tube, introducing the reaction gas, and holding the same was repeated 3000 times, and 100 μm thick dense Al 2
An O 3 coating was applied.

【0026】(5) 第4被覆工程 第3被覆層を形成したC/C複合基材を真空デシケータ
に入れ、真空ポンプで1Torr以下に減圧したのち、Al
2 3 /SiO2 のモル比が1.0になるようにオルソ
ケイ酸エチルと硝酸アルミニウムを混合し、さらにエチ
レングリコールと水を加えた水溶液にHClを加えてp
H 1.5に調整して加水分解、重合させたAl2 3 −S
iO2 ガラス前駆体溶液を注入した。C/C複合基材が
完全に浸漬するまで注入し、1時間保持したのち、C/
C複合基材を取り出し、大気雰囲気の電気炉中で 500℃
の温度に30分間保持してAl2 3 −SiO2 のガラス
質被膜を形成した。この操作により全面に1.0mg/cm2
Al2 3 −SiO2 ガラス被膜が形成された。
(5) Fourth coating step The C / C composite substrate on which the third coating layer was formed was placed in a vacuum desiccator, and the pressure was reduced to 1 Torr or less by a vacuum pump.
Ethyl orthosilicate and aluminum nitrate were mixed so that the molar ratio of 2 O 3 / SiO 2 was 1.0, and HCl was added to the aqueous solution containing ethylene glycol and water to add p.
Hydrolyzed and polymerized Al 2 O 3 -S adjusted to H 1.5
The iO 2 glass precursor solution was injected. Inject until the C / C composite substrate is completely immersed, hold for 1 hour, then
Take out the C composite substrate and put it in an electric furnace in the air at 500 ℃
The temperature was maintained for 30 minutes to form a glassy coating of Al 2 O 3 —SiO 2 . By this operation, a 1.0 mg / cm 2 Al 2 O 3 —SiO 2 glass film was formed on the entire surface.

【0027】(5) 耐酸化性の評価 上記の4段階被覆を施したC/C複合基材を大気雰囲気
下においてArガスを用いてプラズマ照射試験を行っ
た。照射試験は、10分間照射したのち常温に冷却する
操作を5回繰り返し、C/C複合基材の酸化消耗による
重量減少率を測定し、その結果を表1に示した。なお、
プラズマ照射の条件はプラズマ直径5mm、照射ノズルか
ら基材までの距離は10mmに設定し、照射面の温度を放
射温度計により測定した値は1900℃であった。
(5) Evaluation of Oxidation Resistance A plasma irradiation test was performed on the C / C composite base material coated with the above-described four-stage coating under Ar atmosphere using Ar gas. In the irradiation test, the operation of irradiating for 10 minutes and then cooling to room temperature was repeated 5 times, and the weight loss rate due to oxidative consumption of the C / C composite substrate was measured. The results are shown in Table 1. In addition,
The plasma irradiation conditions were such that the plasma diameter was 5 mm, the distance from the irradiation nozzle to the substrate was 10 mm, and the temperature of the irradiation surface was 1900 ° C. measured by a radiation thermometer.

【0028】比較例1 実施例の第1被覆層のみを形成したC/C複合基材につ
いて、実施例と同一条件による耐酸化性の評価を行い、
その結果を表1に併載した。
Comparative Example 1 With respect to the C / C composite substrate on which only the first coating layer of Example was formed, the oxidation resistance was evaluated under the same conditions as in Example,
The results are also shown in Table 1.

【0029】比較例2 特開平4−42883 号公報に記載の方法と同一の方法によ
り膜厚 150μm のSiC被覆層、SiO2 微粒被覆層、
2 3 −SiO2 のガラス被覆層を順次に形成したC
/C複合基材について、実施例と同一条件による耐酸化
性の評価を行い、その結果を表1に併載した。
Comparative Example 2 A SiC coating layer having a film thickness of 150 μm, a SiO 2 fine particle coating layer, and a method similar to those described in JP-A-4-42883,
C in which glass coating layers of B 2 O 3 —SiO 2 were sequentially formed
The / C composite substrate was evaluated for oxidation resistance under the same conditions as in the examples, and the results are also shown in Table 1.

【0030】比較例3 特開平4−243989号公報に記載の方法と同一の方法によ
り膜厚 150μm のSiC被覆層、パルスCVI法により
膜厚80μm のSiC被覆層、およびB2 3 −SiO2
のガラス被覆層を順次に形成したC/C複合基材につい
て、実施例1と同一条件による耐酸化性の評価を行い、
その結果を表1に併載した。
Comparative Example 3 A SiC coating layer having a thickness of 150 μm, a SiC coating layer having a thickness of 80 μm by the pulse CVI method, and B 2 O 3 —SiO 2 by the same method as that described in Japanese Patent Laid-Open No. 4-243989.
For the C / C composite substrate in which the glass coating layer of 1 was sequentially formed, the oxidation resistance was evaluated under the same conditions as in Example 1,
The results are also shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】表1の結果から、本発明の実施例による被
覆C/C複合基材は、1900℃の高温大気中においても高
度の耐酸化性を示すが、比較例1、2においては耐酸化
被覆層がプラズマにより貫通されており、また比較例3
では酸化による重量減少率が大きいことが認められた。
From the results shown in Table 1, the coated C / C composite substrates according to the examples of the present invention show a high degree of oxidation resistance even in a high temperature atmosphere of 1900 ° C., but in Comparative Examples 1 and 2, oxidation resistance is high. The coating layer is penetrated by plasma, and Comparative Example 3
It was confirmed that the weight reduction rate due to oxidation was large.

【0033】[0033]

【発明の効果】以上のとおり、本発明によれば表面に傾
斜機能を有する多結晶質SiC被覆層、SiO2 微粒子
被覆層、Al2 3 被覆層、Al2 3 −SiO2 ガラ
ス被覆層が順次に積層、一体に形成された高度の耐酸化
性を備えるC/C複合基材を提供することが可能とな
る。したがって、1700℃を越える高温酸化雰囲気の過酷
な条件に晒される構造部材として極めて有用である。
As described above, according to the present invention, a polycrystalline SiC coating layer having a gradient function on the surface, a SiO 2 fine particle coating layer, an Al 2 O 3 coating layer, an Al 2 O 3 —SiO 2 glass coating layer. It is possible to provide a C / C composite base material having a high degree of oxidation resistance, which is sequentially laminated and integrally formed. Therefore, it is extremely useful as a structural member exposed to the severe conditions of a high temperature oxidizing atmosphere exceeding 1700 ° C.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 41/89 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C04B 41/89 K

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化炭素複合基材の表面に、傾
斜機能組織の多結晶質SiC被膜からなる第1被覆層、
SiO2 微粒子被膜からなる第2被覆層、Al2 3
膜からなる第3被覆層、およびAl2 3 −SiO2
ガラス質被膜からなる第4被覆層が順次積層形成されて
なることを特徴とする耐酸化性C/C複合材。
1. A first coating layer comprising a polycrystalline SiC coating having a functionally graded structure on the surface of a carbon fiber reinforced carbon composite substrate,
A second coating layer made of a SiO 2 fine particle coating, a third coating layer made of an Al 2 O 3 coating, and a fourth coating layer made of a glassy coating of Al 2 O 3 —SiO 2 are sequentially laminated. Characteristic oxidation resistant C / C composite material.
【請求項2】 炭素繊維をマトリックス樹脂とともに複
合成形し硬化および焼成炭化処理して得られる炭素繊維
強化炭素複合材を基材とし、該基材の表面にSiOガス
を接触させてコンバージョン法によりSiC被膜を形成
する第1被覆工程、Si(OC2 5)4 のアルコール溶
液を酸性領域で加水分解するアルコキシド法により得ら
れるSiO2 の微粒子サスペンジョンを真空含浸してS
iO2微粒子被膜を形成する第2被覆工程、AlCl3
またはアルミニウム有機化合物をパルスCVI法により
気相析出させてAl2 3 被膜を形成する第3被覆工
程、およびSi(OC2 5)4 とアルミニウム塩の水溶
液にアルコールを加えた混合溶液を酸性領域で加水分解
するアルコキシド法で得られるAl2 3 −SiO2
ラス前駆体溶液を真空含浸してAl2 3 −SiO2
ガラス質被膜を形成する第4被覆工程を順次に施し、つ
いで 500℃以上の温度で加熱処理することを特徴とする
耐酸化性C/C複合材の製造方法。
2. A carbon fiber-reinforced carbon composite material obtained by subjecting a carbon fiber to a composite molding together with a matrix resin, curing and firing carbonization as a base material, and contacting SiO gas on the surface of the base material to obtain SiC by a conversion method. In the first coating step for forming a coating, a fine particle suspension of SiO 2 obtained by an alkoxide method of hydrolyzing an alcohol solution of Si (OC 2 H 5 ) 4 in an acidic region is vacuum impregnated with S
Second coating step for forming iO 2 fine particle coating, AlCl 3
Alternatively, a third coating step in which an aluminum organic compound is vapor-phase deposited by a pulse CVI method to form an Al 2 O 3 coating, and a mixed solution obtained by adding alcohol to an aqueous solution of Si (OC 2 H 5 ) 4 and an aluminum salt is acidified. sequentially applying a fourth coating step of forming a glassy coating of Al 2 O 3 -SiO 2 and Al 2 O 3 -SiO 2 glass precursor solution obtained in hydrolyzed alkoxide process in the region by vacuum impregnation, followed A method for producing an oxidation resistant C / C composite material, which comprises performing heat treatment at a temperature of 500 ° C. or higher.
JP6120719A 1994-05-10 1994-05-10 Oxidation-resistant c/c composite material and its production Pending JPH07309677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6120719A JPH07309677A (en) 1994-05-10 1994-05-10 Oxidation-resistant c/c composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6120719A JPH07309677A (en) 1994-05-10 1994-05-10 Oxidation-resistant c/c composite material and its production

Publications (1)

Publication Number Publication Date
JPH07309677A true JPH07309677A (en) 1995-11-28

Family

ID=14793311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6120719A Pending JPH07309677A (en) 1994-05-10 1994-05-10 Oxidation-resistant c/c composite material and its production

Country Status (1)

Country Link
JP (1) JPH07309677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942379A (en) * 2012-11-14 2013-02-27 陕西科技大学 Preparation method of Y4Si3O12 crystal whisker toughening Y4Si3O12 composite coatings
CN113354432A (en) * 2021-06-25 2021-09-07 上海大学 Composite material with carbon matrix combined with silicon-boron-carbon-nitrogen matrix and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942379A (en) * 2012-11-14 2013-02-27 陕西科技大学 Preparation method of Y4Si3O12 crystal whisker toughening Y4Si3O12 composite coatings
CN113354432A (en) * 2021-06-25 2021-09-07 上海大学 Composite material with carbon matrix combined with silicon-boron-carbon-nitrogen matrix and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JP3749268B2 (en) C / C composite oxidation resistant coating layer
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JPH07309677A (en) Oxidation-resistant c/c composite material and its production
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH07126089A (en) Production of oxidation-resistance c/c composite material
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH0570228A (en) Production of oxidation-resistant c/c composite material
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP3198157B2 (en) Method for producing oxidation resistant C / C composite
JPH0791137B2 (en) Oxidation resistant carbon fiber reinforced carbon material
JPH0794354B2 (en) Oxidation resistant C / C material and manufacturing method thereof
JPH06247782A (en) Production of oxidation resistant c/c composite material
JPH0826859A (en) Oxidation-resistant c/c composite material and method for producing the same
JP3461415B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH09255443A (en) Oxidation-resistant treatment of carbon fiber-reinforced carbon composite material
JPH05148018A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JPH0442878A (en) Method for antioxidizing treatment of carbon-fiber reinforced carbon material
JPH10167861A (en) Antioxidation treatment of carbon material reinforced carbon fiber
JP3038493B2 (en) Method for producing oxidation resistant C / C material
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP3818606B2 (en) Carbon fiber reinforced carbon composite