JPH10167861A - Antioxidation treatment of carbon material reinforced carbon fiber - Google Patents

Antioxidation treatment of carbon material reinforced carbon fiber

Info

Publication number
JPH10167861A
JPH10167861A JP35323796A JP35323796A JPH10167861A JP H10167861 A JPH10167861 A JP H10167861A JP 35323796 A JP35323796 A JP 35323796A JP 35323796 A JP35323796 A JP 35323796A JP H10167861 A JPH10167861 A JP H10167861A
Authority
JP
Japan
Prior art keywords
sic
temperature
carbon material
coating
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35323796A
Other languages
Japanese (ja)
Inventor
Yuji Ushijima
裕次 牛嶋
Hidenori Daitoku
秀徳 大徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP35323796A priority Critical patent/JPH10167861A/en
Publication of JPH10167861A publication Critical patent/JPH10167861A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon material which shows excellent oxidation resistance in a rapid high temp. oxidative atmosphere under low pressure by forming a SiC coating film on a carbon material reinforced a SiC coated carbon fiber by combining CVD precipitation coating with heat treatment. SOLUTION: A carbon fiber reinforced carbon material is used as a base body. (1) A SiC coating layer is formed by bringing SiO2 gas into contact with the surface of the base body by conversion method. (2) A mixed gas of halogenated org. silicon and hydrogen, or a mixture of silicon halide, hydrocarbon and hydrogen is used to deposit SiC to 50 to 100μm thickness by CVD method by heating at 1100 to 1550 deg.C. Then the carbon material is cooled to room temp., heat treated at the same temp. as the film forming temp. in an inert atmosphere for >=1 hours and then cooled. After this procedure is carried out at least once, SiC is further applied by CVD method and the carbon material is cooled to room temp. and then heat treated at 1600 to 1900 deg.C for >=1 hours in an inert gas atmosphere. (3) The carbon material is impregnated with a glass precursor soln. containing at least one of Si, Al, B and Zr, dried and heated at 500 to 1000 deg.C to form a vitreous film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低圧下において急
速に加熱される苛酷な高温酸化性雰囲気中で優れた酸化
抵抗性を示す炭素繊維強化炭素材(以下「C/C材」と
いう。)の耐酸化処理法に関する。
The present invention relates to a carbon fiber reinforced carbon material (hereinafter referred to as "C / C material") which exhibits excellent oxidation resistance in a severe high-temperature oxidizing atmosphere which is rapidly heated under low pressure. The present invention relates to an oxidation resistant treatment method.

【0002】[0002]

【従来の技術】C/C材は、卓越した比強度、比弾性率
を有する上に優れた耐熱性および化学的安定性を備えて
いるため、航空宇宙用をはじめ多くの分野で構造材料と
して有用されているが、易酸化性という炭素材固有の材
質的な欠点があり、これが汎用性を阻害する最大のネッ
クとなっている。このため、C/C材の表面に耐酸化性
の被覆層を形成して耐酸化性を向上させる試みが従来か
ら種々検討されており、例えばZrO2 、Al2 3
SiC、Si3 4 等のセラミックス系物質を被覆処理
する方法が提案されている。しかし、SiC被覆層を除
いては使用時の熱サイクルで被覆界面に層間剥離や亀裂
が生じ、耐酸化性能を十分に付与することができない。
2. Description of the Related Art C / C materials have excellent specific strength and specific elastic modulus, as well as excellent heat resistance and chemical stability. Therefore, they are used as structural materials in many fields including aerospace. Although useful, it has a material defect inherent in carbon materials such as easy oxidizability, which is the biggest bottleneck in versatility. For this reason, various attempts to improve the oxidation resistance by forming an oxidation-resistant coating layer on the surface of the C / C material have been conventionally studied. For example, ZrO 2 , Al 2 O 3 ,
A method of coating a ceramic material such as SiC or Si 3 N 4 has been proposed. However, except for the SiC coating layer, delamination and cracks occur at the coating interface in a thermal cycle during use, and the oxidation resistance cannot be sufficiently imparted.

【0003】C/C基材の表面にSiC被覆層を形成す
る方法としては、気相反応により生成するSiCを直接
沈着させるCVD法(化学的気相蒸着法)と、基材の炭
素を反応源に利用して珪素成分と反応させることにより
SiCに転化させるコンバージョン法が知られている。
このうち、CVD法により形成したSiC被覆層は基材
との界面が明確に分離している関係で、熱衝撃を与える
と相互の熱膨張差により層間剥離が起こり易く、高温雰
囲気下における十分な耐酸化性を発揮することができな
い。この欠点を解消して熱膨張率の差を緩和するため
に、炭素/炭素複合材料の表面に気相熱分解により炭素
を沈積被覆し、続いてこの表面に気相熱分解によりセラ
ミックスを沈積被覆させる耐酸化性を有する炭素繊維強
化複合材料の製造法(特開平2−111681号公報)が提案
されている。
[0003] As a method of forming a SiC coating layer on the surface of a C / C substrate, a CVD method (chemical vapor deposition method) in which SiC generated by a gas phase reaction is directly deposited and a carbon of the substrate are reacted. There is known a conversion method of converting SiC by reacting with a silicon component by using it as a source.
Among them, the SiC coating layer formed by the CVD method has a clear separation at the interface with the base material. When a thermal shock is applied, delamination easily occurs due to a difference in thermal expansion between the SiC coating layers. It cannot exhibit oxidation resistance. In order to overcome this drawback and reduce the difference in the coefficient of thermal expansion, carbon is deposited on the surface of the carbon / carbon composite material by vapor phase pyrolysis, and then the ceramic is deposited on this surface by vapor phase pyrolysis. A method for producing a carbon fiber reinforced composite material having oxidation resistance has been proposed (JP-A-2-111681).

【0004】一方、コンバージョン法による場合には基
材の表層部が連続組織としてSiC層を形成する傾斜機
能材質となるために界面剥離を生じることがないが、C
VD法に比較して組織の緻密性が劣る上、SiCに転化
させる反応時に被覆層に微少なクラックが発生する問題
がある。このような問題点の解消を図るために、本出願
人はC/C基材面にSiOガスを接触させてコンバージ
ョン法により第1のSiC被覆層を形成する第1被覆工
程と、次いでCVD法によりハロゲン化有機珪素化合物
を還元熱分解してアモルファス質のSiCを析出沈着さ
せる第2被覆工程とを順次に施す耐酸化処理法(特開平
4−12078 号公報)、更にこれを改良して第2被覆工程
をハロゲン化有機珪素化合物を基材組織に間欠的に充填
して還元熱分解させるパルスCVI法によってSiCを
析出沈着させる耐酸化処理法(特開平4−42878 号公
報)を提案した。
On the other hand, in the case of the conversion method, since the surface layer of the base material is made of a functionally graded material forming a SiC layer as a continuous structure, no interface separation occurs.
Compared with the VD method, there is a problem that the structure is inferior in density and that a minute crack is generated in the coating layer during the reaction for converting to SiC. In order to solve such a problem, the applicant of the present invention has a first coating step of forming a first SiC coating layer by a conversion method by bringing an SiO gas into contact with a C / C substrate surface, and then a CVD method. And a second coating step for sequentially depositing and depositing amorphous SiC by reducing and pyrolyzing the halogenated organosilicon compound (JP-A-4-12078). (2) An oxidation-resistant treatment method in which SiC is deposited and deposited by a pulse CVI method in which a substrate structure is intermittently filled with a halogenated organosilicon compound in a substrate structure and reduced and thermally decomposed (JP-A-4-42878) has been proposed.

【0005】しかしながら、このような方法により形成
した第2被覆層のSiCにも微少な亀裂が発生してお
り、より高度の耐酸化性を付与するためにはこの亀裂を
目詰めする必要が認められた。そこで、本出願人はC/
C基材面に傾斜機能を有する多結晶質のSiC被膜から
なる第1被覆層、アモルファス質または微細多結晶質の
SiC被膜からなる第2被覆層、およびB2 3 −Si
2 ガラス被膜の第3被覆層が積層形成されてなる耐酸
化性炭素繊維強化炭素材を開発した(特開平4−243989
号公報)。
However, micro cracks are also generated in the SiC of the second coating layer formed by such a method, and it is necessary to plug these cracks in order to provide higher oxidation resistance. Was done. Therefore, the present applicant has
A first coating layer made of a polycrystalline SiC coating having a gradient function on the surface of the C base material, a second coating layer made of an amorphous or fine polycrystalline SiC coating, and B 2 O 3 —Si
Oxidation-resistant carbon fiber reinforced carbon material with a third coating layer of O 2 glass coating laminated thereon was developed (Japanese Patent Laid-Open No. 4-243989).
No.).

【0006】更に、本出願人は、前記の特開平4−24
3989号公報の発明を改良して、C/C基材面にコン
バージョン法によってSiC被膜を形成する第1被覆工
程、ハロゲン化有機珪素化合物と水素との混合ガスを用
いてパルスCVI法によりアモルファス質のSiC被膜
を形成する第1段階操作と1200〜1400℃の加熱
温度で微細多結晶質のSiC被膜を形成する第2段階操
作を順次に施す第2被覆工程、ついでB(OC1227
3 およびSi(OC2 5 4 をアルコキシド法により
加水分解・重合させたガラス前駆体液を真空含浸してB
2 3 −SiO2 ガラス被膜からなる表面層を形成する
第3被覆工程からなる耐酸化性C/C複合材の製造方法
を開発した(特開平6−48872 号公報)。
[0006] Further, the present applicant has disclosed the above-mentioned Japanese Patent Application Laid-Open No.
No. 3989, the first coating step of forming a SiC film on a C / C substrate surface by a conversion method, and an amorphous material formed by a pulse CVI method using a mixed gas of a halogenated organosilicon compound and hydrogen. A second step of sequentially performing a first step operation of forming a SiC film of No. 1 and a second step operation of forming a fine polycrystalline SiC film at a heating temperature of 1200 to 1400 ° C., and then B (OC 12 H 27 )
3 and Si (OC 2 H 5 ) 4 are hydrolyzed and polymerized by the alkoxide method, and a glass precursor solution is vacuum impregnated with B.
A method for producing an oxidation-resistant C / C composite material comprising a third coating step of forming a surface layer made of a 2 O 3 —SiO 2 glass coating was developed (Japanese Patent Laid-Open No. 6-48872).

【0007】[0007]

【発明が解決しようとする課題】前記の特開平4−24
3989号公報および特開平6−48872号公報の発
明によれば、苛酷な高温酸化性の雰囲気においても充分
安定な耐酸化性能を発揮するが、その後の詳細な耐酸化
性のテスト結果によって、例えば宇宙往還機のノーズキ
ャップ等の裏面側を想定して実施される高温、低圧下に
おける耐酸化性テスト(低圧揮散試験)において耐エロ
ージョン性が充分でないことが判明した。特に第2被覆
層として形成するSiC被膜の結晶状態が耐エロージョ
ン性に大きな影響を与えることが判明した。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 4-24 / 1990.
According to the inventions of JP-A-3989 and JP-A-6-48872, sufficiently stable oxidation resistance is exhibited even in a severe high-temperature oxidizing atmosphere. In the oxidation resistance test (low-pressure volatilization test) under high temperature and low pressure conducted on the assumption of the back side of the nose cap etc. of the spacecraft, it was found that the erosion resistance was not sufficient. In particular, it has been found that the crystal state of the SiC coating formed as the second coating layer has a great effect on the erosion resistance.

【0008】そこで、本出願人はC/C基材の表面にS
iOガスを接触させてコンバージョン法によりSiC被
覆層を形成する第1被覆工程、ハロゲン化有機珪素化合
物と水素あるいはハロゲン化珪素と炭化水素および水素
との混合ガスを用いてCVD法により1400〜150
0℃の温度に加熱してSiCを析出被覆する第1段階操
作と不活性雰囲気中で1600〜1900℃の温度に加
熱処理する第2段階操作とを施す第2被覆工程、次いで
Si、Al、B、Zrの少なくとも一種を含有する金属
アルコキシドを加水分解して得られるガラス前駆体溶液
を含浸したのち500〜1000℃の温度で加熱処理し
てガラス質被膜を形成する第3被覆工程とからなるC/
C材の耐酸化処理法(特願平8−20438 号)を提案し
た。
Therefore, the applicant of the present invention has proposed that S / C
a first coating step of forming a SiC coating layer by a conversion method by contacting an iO gas, and using a mixed gas of a halogenated organosilicon compound and hydrogen or a silicon halide, a hydrocarbon and hydrogen by a CVD method to form a 1400 to 150
A second coating step of performing a first-stage operation of heating to a temperature of 0 ° C. to deposit and coat SiC and a second-stage operation of performing a heat treatment at a temperature of 1600 to 1900 ° C. in an inert atmosphere; A third coating step of impregnating a glass precursor solution obtained by hydrolyzing a metal alkoxide containing at least one of B and Zr, followed by heat treatment at a temperature of 500 to 1000 ° C. to form a vitreous coating. C /
An oxidation-resistant treatment method for C material (Japanese Patent Application No. 8-20438) was proposed.

【0009】この特願平8−20438号の方法によれ
ば、第2被覆工程で析出被覆したSiC被膜の結晶欠陥
や結晶不整が是正されて高結晶化が図られるので、高
温、低圧下における低圧揮散試験でも高度の耐エロージ
ョン性を備える耐酸化処理を施すことが可能となる。
According to the method of Japanese Patent Application No. 8-20438, crystal defects and crystal irregularities of the SiC film deposited and coated in the second coating step are corrected, and high crystallization is achieved. Oxidation treatment with high erosion resistance can be performed even in the low pressure volatilization test.

【0010】しかしながら、その後の研究によりCVD
反応によるSiC被覆層が厚くなると、残留応力の除去
が不充分となって残留応力が蓄積するために、C/C基
材面から剥離する現象が生じ易く、特に膜厚が100μ
m を越えると著しくなることが判明した。
However, subsequent studies have shown that CVD
When the SiC coating layer is thickened by the reaction, the residual stress is insufficiently removed and the residual stress accumulates, so that a phenomenon of peeling off from the C / C substrate surface easily occurs.
It was found that it became remarkable above m.

【0011】本発明は、上記知見に基づいて完成したも
のであり、その目的は低圧下において急速に加熱される
苛酷な高温酸化性雰囲気に曝されても基材との剥離がな
く、耐エロージョン性に優れたC/C材の耐酸化処理法
を提供することにある。
The present invention has been completed on the basis of the above findings, and has as its object to be free from peeling from a substrate even when exposed to a severe high-temperature oxidizing atmosphere rapidly heated under a low pressure, and to have an erosion resistance. An object of the present invention is to provide a method for an oxidation-resistant treatment of a C / C material having excellent properties.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による炭素繊維強化炭素材の耐酸化処理方法
は、炭素繊維強化炭素材を基材とし、該基材の表面にS
iOガスを接触させてコンバージョン法によりSiC被
覆層を形成する第1被覆工程、ハロゲン化有機珪素化合
物と水素あるいはハロゲン化珪素と炭化水素および水素
との混合ガスを用いてCVD法により1100〜155
0℃の温度に加熱してSiCを析出被覆する第2被覆工
程、Si、Al、B、Zrの少なくとも一種を含有する
金属アルコキシドを加水分解して得られるガラス前駆体
溶液を含浸して乾燥したのち500〜1000℃の温度
で加熱処理してガラス質被膜を形成する第3被覆工程、
とからなる炭素繊維強化炭素材の耐酸化処理方法におい
て、第2被覆工程のCVD法により1100〜1550
℃の温度に加熱して形成するSiC被膜の膜厚を50〜
100μm に成膜したのち室温に冷却し、次いで不活性
雰囲気中で該CVD反応による成膜温度と同一温度で1
時間以上加熱処理し再び室温に冷却する、CVD法Si
C析出−熱処理操作を少なくとも1回行った後、上記C
VD反応によりSiCを析出被覆し、次いで室温に冷却
したのち最終的に不活性雰囲気中1600〜1900℃
の温度に1時間以上加熱処理することを構成上の特徴と
する。
According to the present invention, there is provided an oxidation-resistant treatment method for a carbon fiber reinforced carbon material, which comprises the steps of:
a first coating step of forming an SiC coating layer by a conversion method by bringing an iO gas into contact therewith; 1100 to 155 by a CVD method using a mixed gas of a halogenated organosilicon compound and hydrogen or a mixed gas of a silicon halide, a hydrocarbon and hydrogen.
A second coating step of heating to a temperature of 0 ° C. to deposit and coat SiC, impregnating and drying a glass precursor solution obtained by hydrolyzing a metal alkoxide containing at least one of Si, Al, B and Zr. A third coating step of forming a glassy film by heat treatment at a temperature of 500 to 1000 ° C .;
A carbon fiber reinforced carbon material having an oxidation resistance of 1100 to 1550 by the CVD method in the second coating step.
The thickness of the SiC film formed by heating to a temperature of
After forming a film to a thickness of 100 μm, the film is cooled to room temperature, and then heated in an inert atmosphere at the same temperature as the film forming temperature by the CVD reaction.
Heat treatment for more than an hour and cool to room temperature again, CVD Si
After performing at least one C precipitation-heat treatment operation,
SiC is deposited and coated by the VD reaction and then cooled to room temperature, and finally in an inert atmosphere at 1600 to 1900 ° C.
The structure is characterized in that a heat treatment is performed at a temperature of 1 hour or more.

【0013】[0013]

【発明の実施の形態】本発明の基材となるC/C材は、
炭素繊維の織布、フェルト、トウなどの強化繊維に炭化
残留率の高いマトリックス樹脂液を含浸または塗布して
プリプレグを形成し、これを積層成形したのち硬化およ
び焼成炭化処理する常用の方法により製造される。強化
材となる炭素繊維にはポリアクリロニトリル系、レーヨ
ン系、ピッチ系など各種のものが用いられ、またマトリ
ックス樹脂としてはフェノール系、フラン系その他炭化
性の良好な液状熱硬化性樹脂類が使用される。製造され
たC/C材には、必要に応じてマトリックス樹脂液を含
浸、硬化、炭化する処理を反復して組織の緻密化を図る
こともできる。
BEST MODE FOR CARRYING OUT THE INVENTION The C / C material serving as the base material of the present invention is:
A prepreg is formed by impregnating or applying a matrix resin solution with a high carbonization residual rate to carbon fiber woven fabric, felt, tow, and other reinforcing fibers, and the prepreg is formed by lamination, then cured and fired and carbonized. Is done. Various kinds of carbon fibers such as polyacrylonitrile, rayon and pitch are used as the reinforcing carbon fiber, and phenol, furan and other liquid thermosetting resins with good carbonization are used as the matrix resin. You. The produced C / C material can be densified by repeating the process of impregnating, hardening, and carbonizing the matrix resin liquid as necessary.

【0014】コンバージョン法によりSiC被覆層を形
成する第1被覆工程は、SiO2 粉末をSiまたはC粉
末と混合して密閉加熱系に収納し、系内にC/C材をセ
ットもしくは埋没して加熱反応させる方法により行われ
る。この条件としては、SiO2 に対するSiまたはC
の配合量を重量比で2:1、加熱温度を1800〜20
00℃に設定し、系内を還元または中性雰囲気に保持す
ることが好ましい。加熱時、SiO2 はSiまたはC成
分により加熱還元されてSiOガスを生成し、このSi
OガスがC/C材の炭素組織と反応して表層部をSiC
が界面で連続的に濃度変化する傾斜機能組織の被覆層に
転化させる。この第1被覆工程で形成されるSiC被覆
層は、第2被覆工程で形成するCVD法によるSiC被
覆層とC/C基材との熱応力緩和層として機能し、また
拡散層であるのでC/C基材の強度低下を極力避けるた
めに、SiC被覆層の膜厚は50〜100μm の範囲に
設定することが好ましい。
In a first coating step of forming a SiC coating layer by a conversion method, SiO 2 powder is mixed with Si or C powder, stored in a closed heating system, and a C / C material is set or buried in the system. The reaction is performed by a heating reaction. The conditions include Si or C for SiO 2 .
In a weight ratio of 2: 1, and a heating temperature of 1800 to 20
It is preferable that the temperature is set to 00 ° C. and the inside of the system is kept in a reducing or neutral atmosphere. During heating, SiO 2 is reduced by heating with Si or C components to generate SiO gas,
O gas reacts with the carbon structure of the C / C material to form a surface layer of SiC.
Converts into a functionally graded coating layer whose concentration changes continuously at the interface. The SiC coating layer formed in the first coating step functions as a thermal stress relieving layer between the SiC coating layer formed in the second coating step by the CVD method and the C / C base material. The thickness of the SiC coating layer is preferably set in the range of 50 to 100 μm in order to minimize a decrease in the strength of the / C base material.

【0015】第2被覆工程は、上記第1被覆工程で形成
したSiC被覆層の上にCVD法によりSiCを析出被
覆するもので、ハロゲン化有機珪素化合物と水素あるい
はハロゲン化珪素と炭化水素および水素との混合ガスを
石英反応室内で温度1100〜1550℃に加熱されて
いるC/C材にガス状態で連続的に接触させることによ
りSiCが析出被覆される。ハロゲン化有機珪素化合物
としてはトリクロロメチルシラン(CH3SiCl3)が好適に用
いられ、またハロゲン化珪素としてはテトラクロルシラ
ン、トリクロールメチルシランなどが、炭化水素にはメ
タン、エタンなどが用いられる。これらの原料は適宜な
割合で混合し、混合ガスをC/C材が加熱されている反
応室に供給してCVD反応によりSiCが析出被覆され
る。加熱温度が1100℃未満では成膜速度が遅いため
実用的でなく、1550℃を越えると粒成長やウイスカ
ー生成を伴うため均質な被膜が形成されにくくなる。
In the second coating step, SiC is deposited and deposited on the SiC coating layer formed in the first coating step by CVD, and the halogenated organic silicon compound and hydrogen or the silicon halide and hydrocarbon and hydrogen are deposited. By continuously contacting the mixed gas with the C / C material heated to a temperature of 1100 to 1550 ° C. in a gas state in the quartz reaction chamber, SiC is deposited and coated. Trichloromethylsilane (CH 3 SiCl 3 ) is preferably used as the halogenated organosilicon compound, and tetrachlorosilane, trichlormethylsilane and the like are used as the silicon halide, and methane and ethane are used as the hydrocarbon. . These raw materials are mixed at an appropriate ratio, and the mixed gas is supplied to a reaction chamber in which the C / C material is heated, and SiC is deposited and coated by a CVD reaction. If the heating temperature is lower than 1100 ° C., the film forming rate is low, which is not practical. If the heating temperature is higher than 1550 ° C., grain growth and whisker formation are involved, so that it is difficult to form a uniform film.

【0016】本発明は、第2被覆工程において析出被覆
するSiCの膜厚が厚くならない内に、すなわち膜厚が
50〜100μm に成膜された段階でCVD反応を中断
して室温に冷却したのち、不活性雰囲気中で加熱してC
VD反応による成膜温度と同一温度に1時間以上保持し
再び室温に冷却する熱処理操作を施すものである。この
CVD法SiC析出−熱処理操作において、CVD反応
で析出したSiC被覆層は室温に冷却される過程でクラ
ックが発生してCVD反応時に蓄積された残留応力が放
出される。このSiC被覆層は、次いで行う熱処理操作
の加熱処理時にクラックが閉じ、再び室温に冷却する過
程で微細なクラックとなって更に残留応力の放出が行わ
れる。このCVD法SiC析出−熱処理操作によりCV
D反応時に蓄積した残留応力は効率よく放出され、効果
的に応力緩和することができる。CVD反応によるSi
C析出−熱処理する操作は、所定厚さの被覆層が形成さ
れる迄少なくとも1回行うことが必要であり、その後上
記CVD反応によりSiCを析出被覆し、室温に冷却し
たのち最終的に不活性雰囲気中で1600〜1900℃
の温度に1時間以上加熱処理して、SiC被覆層が形成
される。
According to the present invention, the CVD reaction is interrupted and cooled to room temperature before the film thickness of SiC deposited and coated in the second coating step is increased, that is, when the film is formed to a thickness of 50 to 100 μm. Heating in an inert atmosphere
This is a heat treatment operation in which the film is kept at the same temperature as the film formation temperature by the VD reaction for 1 hour or more and cooled to room temperature again. In this CVD SiC deposition-heat treatment operation, the SiC coating layer deposited by the CVD reaction cracks in the course of being cooled to room temperature, and the residual stress accumulated during the CVD reaction is released. The cracks in the SiC coating layer are closed at the time of the heat treatment in the subsequent heat treatment operation, and become fine cracks in the process of cooling to room temperature again, and the residual stress is further released. This CVD SiC deposition-heat treatment operation results in CV
The residual stress accumulated during the D reaction is efficiently released, and the stress can be effectively relaxed. Si by CVD reaction
It is necessary to carry out the operation of C deposition-heat treatment at least once until a coating layer of a predetermined thickness is formed. Thereafter, SiC is deposited and coated by the above-mentioned CVD reaction, cooled to room temperature, and finally inertized. 1600-1900 ° C in atmosphere
Is heated for 1 hour or more to form a SiC coating layer.

【0017】SiC析出被覆−熱処理操作において、1
回のCVD反応で成膜する膜厚を50〜100μm の範
囲に設定する理由は、膜厚が50μm 未満では処理効率
が悪く、一方100μm を越えると残留応力の放出が充
分でないためである。このCVD反応によるSiC被覆
層の形成は少なくとも1回行うが、第2被覆工程で被覆
するSiCの合計の膜厚は100μm 以上であることが
好ましい。このCVD法SiC析出−熱処理操作を施す
ことにより、SiCの結晶性を変化させることなく、熱
履歴を与えることで成膜中の残留応力を効果的に除去す
ることができる。また、最終的な加熱処理温度を160
0〜1900℃の範囲とするのは1600℃未満では残
留応力の放出が不充分であるとともにSiCの結晶欠陥
や結晶不整の是正が充分でなく、1900℃を越えると
SiCの材質劣化が生じるためである。なお、好ましく
は1700〜1800℃の温度範囲に設定される。この
ようにして、CVD反応により蓄積された残留応力を効
果的に放出することが可能となり、またSiC被膜の高
結晶化を図ることができる。更に、SiのC/C基材へ
の拡散浸透が促進されて、基材との密着性の向上が図ら
れる。
SiC Precipitation Coating-In the heat treatment operation, 1
The reason why the film thickness formed by one CVD reaction is set in the range of 50 to 100 μm is that if the film thickness is less than 50 μm, the processing efficiency is poor, while if it exceeds 100 μm, the release of residual stress is not sufficient. The formation of the SiC coating layer by the CVD reaction is performed at least once, but the total thickness of the SiC coated in the second coating step is preferably 100 μm or more. By performing the CVD SiC deposition-heat treatment operation, the residual stress during film formation can be effectively removed by giving a thermal history without changing the crystallinity of SiC. In addition, the final heat treatment temperature is 160
The reason for setting the temperature in the range of 0 to 1900 ° C. is that if the temperature is lower than 1600 ° C., the release of residual stress is insufficient and the correction of crystal defects and crystal irregularities of SiC is not sufficient. It is. Preferably, the temperature is set in the range of 1700 to 1800 ° C. Thus, the residual stress accumulated by the CVD reaction can be effectively released, and the SiC film can be highly crystallized. Further, the diffusion and penetration of Si into the C / C substrate are promoted, and the adhesion to the substrate is improved.

【0018】この第2被覆工程により、CVD反応時に
C/C基材に蓄積される内部応力は効率よく放出される
ので残留応力が緩和され、更にSiのC/C基材への拡
散が促されて基材との密着性が向上するのでSiC被覆
層の剥離が防止され、また加熱処理によるSiCの結晶
構造の是正も進むために高温、低圧下における耐エロー
ジョン性も向上させることが可能となる。
In the second coating step, the internal stress accumulated in the C / C base during the CVD reaction is efficiently released, so that the residual stress is reduced, and the diffusion of Si into the C / C base is promoted. This improves the adhesion to the substrate, thereby preventing the SiC coating layer from peeling off, and improving the erosion resistance at high temperatures and low pressures by improving the crystal structure of SiC by heat treatment. Become.

【0019】第3被覆工程は、このようにして第2被覆
工程の処理を施したC/C基材表面のSiC被覆層の上
にガラス質被膜を形成被覆する工程である。ガラス質被
膜の組成はSiO2 、Al2 3 、B2 3 、ZrO2
などの単体または複合体が好ましく、Si、Al、B、
Zrの少なくとも一種を含有する金属アルコキシドを加
水分解してガラス前駆体溶液を作成し、この液にC/C
基材を浸漬あるいは塗布などの方法により含浸し、乾燥
したのち500〜1000℃の温度で熱処理する方法に
よりガラス質被膜が形成される。ガラス前駆体溶液は、
Si(OC2 5)4 、B(OC4 9)3 、Zr(OC4
9)4 などの金属アルコキシドにアルコールを加えて撹
拌混合した溶液中に水を滴下して加水分解するアルコキ
シド法により調製される。このようにして形成されたガ
ラス質被膜は、第2被覆工程で形成したSiC被覆層に
発生した微細なクラックを充填、目詰めして全面をシー
ルし、酸化性雰囲気下において外気を遮断し、拡散侵入
する酸素のバリアとして機能する。
The third coating step is a step of forming and coating a vitreous coating on the SiC coating layer on the surface of the C / C substrate which has been subjected to the treatment of the second coating step in this way. The composition of the vitreous coating is SiO 2 , Al 2 O 3 , B 2 O 3 , ZrO 2
Or a simple compound such as Si, Al, B,
A glass precursor solution is prepared by hydrolyzing a metal alkoxide containing at least one of Zr, and C / C
A vitreous film is formed by a method of impregnating a substrate by dipping or coating, drying, and then heat-treating the substrate at a temperature of 500 to 1000 ° C. The glass precursor solution is
Si (OC 2 H 5 ) 4 , B (OC 4 H 9 ) 3 , Zr (OC 4
It is prepared by an alkoxide method in which water is added dropwise to a solution obtained by adding an alcohol to a metal alkoxide such as H 9 ) 4 and stirring and mixing the mixture, followed by hydrolysis. The vitreous coating thus formed is filled and filled with fine cracks generated in the SiC coating layer formed in the second coating step, and the entire surface is sealed, and the outside air is shut off under an oxidizing atmosphere. Functions as a barrier for oxygen that diffuses and enters.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0021】実施例1 (1) C/C基材の作製 ポリアクリルニトリル系高強度高弾性タイプの平織炭素
繊維織布にフェノール樹脂初期縮合物〔大日本インキ化
学工業(株)製〕をマトリックス樹脂として充分に塗布
し、48時間風乾してプリプレグシートを作成した。こ
のプリプレグシートを14枚積層してモールドに入れ加
熱温度110℃、圧力20kg/cm2の条件で複合成形し
た。次いで、成形体を250℃の温度に加熱してマトリ
ックス樹脂を完全に硬化したのち、窒素ガス雰囲気に保
持された焼成炉内に移し5℃/hr の昇温速度で2000
℃まで昇温し、その温度に5時間保持して焼成炭化し
た。このようにして、炭素繊維の体積含有率(Vf)65
%、見掛比重1.65g/ccのC/C基材を作製した。
Example 1 (1) Preparation of C / C substrate A polyacrylonitrile-based high-strength and high-elasticity type plain woven carbon fiber woven fabric was matrixed with a phenol resin precondensate (manufactured by Dainippon Ink and Chemicals, Inc.). It was sufficiently applied as a resin and air-dried for 48 hours to prepare a prepreg sheet. Fourteen of these prepreg sheets were stacked and placed in a mold to form a composite under the conditions of a heating temperature of 110 ° C. and a pressure of 20 kg / cm 2 . Next, after the molded body was heated to a temperature of 250 ° C. to completely cure the matrix resin, it was transferred into a firing furnace maintained in a nitrogen gas atmosphere, and was heated at a temperature rising rate of 5 ° C./hr to 2000 ° C.
The temperature was raised to ℃, and the temperature was maintained for 5 hours to carry out calcining and carbonization. Thus, the carbon fiber volume content (Vf) 65
%, And a C / C substrate having an apparent specific gravity of 1.65 g / cc was prepared.

【0022】(2) 第1被覆工程 SiO2 粉末とSi粉末を2:1(重量比)の配合比率
になるように混合し、混合粉末を黒鉛坩堝に入れて上部
にC/C材(縦横50mm、厚さ5mm)をセットした。こ
の黒鉛坩堝を電気炉内に移し、内部をアルゴンガスで充
分に置換したのち、50℃/hr の速度で1850℃まで
昇温させ、1時間保持してC/C基材の表層部に傾斜機
能を有する多結晶質SiC被覆層を形成した。形成され
たSiC被覆層の厚さは約50μm であったが、この表
面には巾数μm 程度の微細な亀裂が発生しているのが認
められた。
(2) First coating step The SiO 2 powder and the Si powder are mixed in a mixing ratio of 2: 1 (weight ratio), and the mixed powder is put into a graphite crucible and a C / C material (vertical and horizontal) 50 mm and a thickness of 5 mm). The graphite crucible was transferred into an electric furnace, and the inside was sufficiently replaced with argon gas. Then, the temperature was raised to 1850 ° C. at a rate of 50 ° C./hr, and the temperature was maintained for 1 hour to incline the surface layer of the C / C base material. A polycrystalline SiC coating layer having a function was formed. Although the thickness of the formed SiC coating layer was about 50 μm, it was recognized that fine cracks having a width of about several μm were generated on this surface.

【0023】(3) 第2被覆工程 第1被覆工程のコンバージョン法によりSiC被覆層を
形成したC/C材をCVD装置の反応管内にセットし、
管内をアルゴンガスで十分に置換したのち高周波誘導加
熱によりC/C材の温度を1300℃に昇温した。次い
で、トリクロロメチルシラン(CH3SiCl3)とH2 の混合ガ
ス(モル比 CH3SiCl3 /H2=1:20)を導入して、CVD
反応により第1被覆工程で形成したSiC被覆層の上に
多結晶質SiCを70μm の厚さに析出被覆したのち、
原料ガスの導入を停止してCVD反応を中断し室温まで
冷却した。次いで、反応管内をアルゴンガス雰囲気に置
換して1300℃の温度で1時間加熱処理したのち室温
に冷却した。このようにしてCVD法SiC析出−熱処
理操作を2回行ったのち、上記のCVD反応によりSi
Cを析出被覆し、次いで室温に冷却した後、最終的にア
ルゴンガス雰囲気中で1800℃の温度に1時間加熱処
理して、膜厚140μm のSiCを析出被覆した。
(3) Second coating step A C / C material having a SiC coating layer formed by the conversion method in the first coating step is set in a reaction tube of a CVD apparatus.
After sufficiently replacing the inside of the tube with argon gas, the temperature of the C / C material was raised to 1300 ° C. by high-frequency induction heating. Then, a mixed gas of trichloromethylsilane (CH 3 SiCl 3 ) and H 2 (molar ratio CH 3 SiCl 3 / H 2 = 1: 20) is introduced, and CVD is performed.
After depositing and coating polycrystalline SiC to a thickness of 70 μm on the SiC coating layer formed in the first coating step by the reaction,
The introduction of the raw material gas was stopped to interrupt the CVD reaction, and the system was cooled to room temperature. Next, the inside of the reaction tube was replaced with an argon gas atmosphere, heat-treated at a temperature of 1300 ° C. for 1 hour, and then cooled to room temperature. After performing the CVD SiC deposition-heat treatment operation twice in this manner, the SiC is deposited by the above-described CVD reaction.
After C was deposited and then cooled to room temperature, it was finally heated in an argon gas atmosphere at a temperature of 1800 ° C. for 1 hour to deposit and coat 140 μm-thick SiC.

【0024】(4) 第3被覆工程 Si(OC2 5)4 とエタノールをモル比2:1になる
量比で配合し、70℃の温度で還流撹拌を行った混合溶
液中に、前記Si(OC2 5)4 1モルに対し25モル
量の水と0.2モル量のNH4 OHの混合水溶液を滴加
し(pH:12.0) 、撹拌して約0.2μm の球状SiO2
粒子が均一に分散するサスペンジョンを調製した。この
サスペンジョンに第2被覆工程の処理を施したC/C材
を浸漬して15分間減圧含浸を行った。次いで、風乾
後、前記サスペンジョンを塗布、風乾する操作を3回繰
り返したのち、100℃の温度で乾燥してSiO2 微粒
子からなる中間層を形成した。このC/C材をB(OC
4 9)3 溶液中に投入し15分間減圧含浸を行ったの
ち、一昼夜風乾して空気中の水分で加水分解し、100
℃の温度で乾燥後、更に500℃の温度で15分間加熱
処理を行いB2 3 ガラス質の被膜を形成した。
(4) Third coating step Si (OC 2 H 5 ) 4 and ethanol were mixed in a molar ratio of 2: 1 and the mixture was refluxed and stirred at a temperature of 70 ° C. A mixed aqueous solution of 25 moles of water and 0.2 moles of NH 4 OH was added dropwise to 1 mole of Si (OC 2 H 5 ) 4 (pH: 12.0), and the mixture was stirred to form a spherical SiO 2 of about 0.2 μm. A suspension in which two fine particles were uniformly dispersed was prepared. The C / C material treated in the second coating step was immersed in the suspension and impregnated under reduced pressure for 15 minutes. Next, after air-drying, the operation of applying the suspension and air-drying was repeated three times, and then dried at a temperature of 100 ° C. to form an intermediate layer composed of SiO 2 fine particles. This C / C material is B (OC
4 H 9 ) 3 solution, impregnated under reduced pressure for 15 minutes, air-dried all day and night, and hydrolyzed with water in the air.
After drying at ° C. of temperature, to form a further 500 ° C. deeds for 15 minutes heat treatment at a temperature B 2 O 3 glassy coating.

【0025】次いで、Si(OC2 5)4 とエタノール
をモル比1:4.5になる量比で配合し、室温で還流撹
拌を行った混合溶液中に前記Si(OC2 5)4 1モル
に対し2.5モル量の水と0.03モル量のHClの混
合水溶液を滴加しながら撹拌して(pH:3.0)、SiO2
ラス前駆体溶液を調製した。このガラス前駆体溶液中に
2 3 ガラス質の被膜を形成したC/C材を投入して
15分間減圧含浸を行ったのち100℃で乾燥した。こ
のC/C材を再度B(OC4 9)3 溶液中に投入して1
5分間減圧含浸を行い、一昼夜風乾して空気中の水分で
加水分解した。次いで、100℃の温度で乾燥し、更に
アルゴンガス雰囲気で800℃の温度で60分間熱処理
してB2 3 −SiO2 ガラス質被膜を形成した。
[0025] Then, Si (OC 2 H 5) 4 and ethanol in a molar ratio of 1: included in an amount ratio of 4.5, the mixed solution which had been stirred under reflux at room temperature Si (OC 2 H 5) 4 A mixed aqueous solution of 2.5 mol of water and 0.03 mol of HCl per 1 mol was added dropwise and stirred (pH: 3.0) to prepare a SiO 2 glass precursor solution. A C / C material on which a B 2 O 3 vitreous film was formed was put into the glass precursor solution, impregnated under reduced pressure for 15 minutes, and then dried at 100 ° C. This C / C material was again charged into the B (OC 4 H 9 ) 3 solution and
Impregnation under reduced pressure was performed for 5 minutes, air-dried all day and night, and hydrolyzed with moisture in the air. Next, it was dried at a temperature of 100 ° C. and further heat-treated at a temperature of 800 ° C. for 60 minutes in an argon gas atmosphere to form a B 2 O 3 —SiO 2 glassy film.

【0026】(5) 耐酸化性試験 上記の耐酸化処理を施したC/C材について低圧揮散試
験装置を用いて、下記の方法により耐酸化性試験を行っ
た。低圧揮散試験装置内を1000パスカル(Pa)に減圧
し、クセノンランプを発光させた光を集光してC/C材
表面に照射して1700℃の温度に昇温させ、その状態
で1100秒間照射したのち、SiC被覆層の剥離状
況、C/C材の重量減少量およびSiC被覆層の膜厚減
少量を測定した。
(5) Oxidation resistance test An oxidation resistance test was carried out on the C / C material subjected to the above-mentioned oxidation treatment by using a low-pressure volatilization test apparatus by the following method. The pressure in the low-pressure volatilization test apparatus was reduced to 1000 Pascal (Pa), the light emitted by the xenon lamp was condensed, and irradiated to the surface of the C / C material, and the temperature was raised to 1700 ° C., and the state was maintained for 1100 seconds. After the irradiation, the peeling state of the SiC coating layer, the weight reduction of the C / C material, and the thickness reduction of the SiC coating layer were measured.

【0027】実施例2〜9、比較例1〜7 第2被覆工程におけるCVD法によるSiCの析出温度
ならびに被膜の膜厚、およびアルゴンガス雰囲気中での
熱処理操作の有無および処理温度などの条件を変えてC
VD法SiC析出−熱処理操作を行い、この操作の反復
回数を変えて被覆処理し、また最終的な加熱処理温度を
変えて行ったほかは、実施例1と同一の方法ならびに条
件により第1被覆工程および第3被覆工程の処理を行っ
た。これらのC/C材について実施例1と同一の方法で
耐酸化性試験を実施した。
Examples 2 to 9, Comparative Examples 1 to 7 Conditions such as the deposition temperature of SiC by CVD in the second coating step, the thickness of the coating, the presence or absence of a heat treatment in an argon gas atmosphere, and the processing temperature. Change to C
The first coating was performed in the same manner and under the same conditions as in Example 1 except that the VD method SiC deposition-heat treatment was performed, the coating was performed by changing the number of repetitions of this operation, and the final heat treatment temperature was changed. The process of the process and the 3rd coating process was performed. An oxidation resistance test was performed on these C / C materials in the same manner as in Example 1.

【0028】得られた結果について、第2被覆工程の被
覆処理条件を表1に、耐酸化性試験の結果を表2にそれ
ぞれ示した。
With respect to the obtained results, the coating treatment conditions in the second coating step are shown in Table 1, and the results of the oxidation resistance test are shown in Table 2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表1、表2の結果から、本発明の条件を適
用して耐酸化処理を施した実施例のC/C材は、本発明
の条件を外れる比較例1〜7のC/C材に比べて高温、
低圧下における耐酸化性能が優れ、また残留応力が効果
的に放出されるために基材との密着性が高く、苛酷な酸
化性雰囲気中に曝されても剥離し難いことが判る。ま
た、CVD法によるSiCを析出被覆後、熱処理操作を
することなく最終加熱処理した比較例2〜4では耐酸化
性能および基材との密着性が更に劣ることが判明する。
From the results of Tables 1 and 2, the C / C materials of the examples subjected to the oxidation-resistant treatment by applying the conditions of the present invention were the C / C of Comparative Examples 1 to 7 which did not satisfy the conditions of the present invention. High temperature compared to the material,
It can be seen that it has excellent oxidation resistance under low pressure, and has high adhesion to the substrate because the residual stress is effectively released, and it is difficult to peel off even when exposed to a severe oxidizing atmosphere. Further, in Comparative Examples 2 to 4 in which the final heat treatment was performed without performing a heat treatment operation after the SiC was deposited and coated by the CVD method, it was found that the oxidation resistance and the adhesion to the substrate were further inferior.

【0032】[0032]

【発明の効果】以上のとおり、本発明の耐酸化処理法に
よれば、第1被覆工程のコンバージョン法で形成した傾
斜機能組織のSiC被覆層の上に、第2被覆工程として
CVD法によりSiC被膜を50〜100μm に成膜し
たのち室温に冷却し、次いで不活性雰囲気中で該CVD
反応による成膜温度と同一温度で加熱処理し、再び室温
に冷却するCVD法SiC析出−熱処理操作を少なくと
も1回行った後、CVD反応によりSiCを析出被覆し
室温に冷却したのち最終的に不活性雰囲気中で1600
〜1900℃の温度で熱処理し、第3被覆工程としてガ
ラス質被膜を形成することにより、CVD反応時に蓄積
した残留応力の放出が円滑に行われてSiC被膜の密着
性が向上し、また結晶構造の是正が進行して、高温、低
圧下の苛酷な酸化性雰囲気中においても剥離することが
なく、優れた耐酸化性能を付与することができる。した
がって、宇宙空間において高温、低圧という過酷な条件
に曝される構造部材の耐酸化処理法として極めて有用で
ある。
As described above, according to the oxidation-resistant treatment method of the present invention, the SiC coating layer of the functionally graded structure formed by the conversion method in the first coating step is formed on the SiC coating layer by the CVD method as the second coating step. After forming the film to a thickness of 50 to 100 μm, the film is cooled to room temperature, and then the CVD is performed in an inert atmosphere.
After performing at least one CVD SiC deposition-heat treatment operation of heating at the same temperature as the film formation temperature by the reaction and cooling to room temperature again, SiC is deposited and coated by the CVD reaction, and after cooling to room temperature, it is finally unreacted. 1600 in an active atmosphere
By performing a heat treatment at a temperature of about 1900 ° C. and forming a vitreous film as a third coating step, the residual stress accumulated during the CVD reaction is smoothly released, thereby improving the adhesion of the SiC film and improving the crystal structure. , And exfoliation does not occur even in a severe oxidizing atmosphere under high temperature and low pressure, and excellent oxidation resistance can be imparted. Therefore, it is extremely useful as an oxidation-resistant treatment method for structural members exposed to severe conditions of high temperature and low pressure in outer space.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化炭素材を基材とし、該基材
の表面にSiOガスを接触させてコンバージョン法によ
りSiC被覆層を形成する第1被覆工程、ハロゲン化有
機珪素化合物と水素あるいはハロゲン化珪素と炭化水素
および水素との混合ガスを用いてCVD法により110
0〜1550℃の温度に加熱してSiCを析出被覆する
第2被覆工程、Si、Al、B、Zrの少なくとも一種
を含有する金属アルコキシドを加水分解して得られるガ
ラス前駆体溶液を含浸して乾燥したのち500〜100
0℃の温度で加熱処理してガラス質被膜を形成する第3
被覆工程、とからなる炭素繊維強化炭素材の耐酸化処理
方法において、第2被覆工程のCVD法により1100
〜1550℃の温度に加熱して形成するSiC被膜の膜
厚を50〜100μm に成膜したのち室温に冷却し、次
いで不活性雰囲気中で該CVD反応による成膜温度と同
一温度で1時間以上加熱処理し再び室温に冷却する、C
VD法SiC析出−熱処理操作を少なくとも1回行った
後、上記CVD反応によりSiCを析出被覆し、次いで
室温に冷却したのち最終的に不活性雰囲気中1600〜
1900℃の温度に1時間以上加熱処理することを特徴
とする炭素繊維強化炭素材の耐酸化処理方法。
1. A first coating step in which a carbon fiber reinforced carbon material is used as a base material and an SiO gas is brought into contact with the surface of the base material to form a SiC coating layer by a conversion method. 110 by a CVD method using a mixed gas of silicon carbide, hydrocarbon and hydrogen.
A second coating step of heating to a temperature of 0 to 1550 ° C. to deposit and coat SiC, and impregnating a glass precursor solution obtained by hydrolyzing a metal alkoxide containing at least one of Si, Al, B and Zr. 500-100 after drying
3rd heat treatment at a temperature of 0 ° C. to form a vitreous film
A coating step, wherein the carbon fiber reinforced carbon material is subjected to the oxidation-resistant treatment by the CVD method in the second coating step.
The SiC film formed by heating to a temperature of 151550 ° C. is formed to a thickness of 50 to 100 μm, then cooled to room temperature, and then at least one hour at the same temperature as the film forming temperature by the CVD reaction in an inert atmosphere. Heat treated and cooled to room temperature again, C
After performing the VD method SiC deposition-heat treatment operation at least once, the SiC is deposited and coated by the above-described CVD reaction, and then cooled to room temperature, and finally is placed in an inert atmosphere at 1600 to 1600.
A heat treatment method for a carbon fiber reinforced carbon material, wherein the heat treatment is performed at a temperature of 1900 ° C. for 1 hour or more.
【請求項2】 第2被覆工程で析出被覆するSiCの膜
厚が100μm 以上である、請求項1記載の炭素繊維強
化炭素材の耐酸化処理方法。
2. The method according to claim 1, wherein the thickness of the SiC deposited and coated in the second coating step is 100 μm or more.
JP35323796A 1996-12-16 1996-12-16 Antioxidation treatment of carbon material reinforced carbon fiber Pending JPH10167861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35323796A JPH10167861A (en) 1996-12-16 1996-12-16 Antioxidation treatment of carbon material reinforced carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35323796A JPH10167861A (en) 1996-12-16 1996-12-16 Antioxidation treatment of carbon material reinforced carbon fiber

Publications (1)

Publication Number Publication Date
JPH10167861A true JPH10167861A (en) 1998-06-23

Family

ID=18429489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35323796A Pending JPH10167861A (en) 1996-12-16 1996-12-16 Antioxidation treatment of carbon material reinforced carbon fiber

Country Status (1)

Country Link
JP (1) JPH10167861A (en)

Similar Documents

Publication Publication Date Title
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JPH06345572A (en) Oxidation resistant coating layer of c/c composite material
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH10167861A (en) Antioxidation treatment of carbon material reinforced carbon fiber
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3461415B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH1059789A (en) Antioxidant treatment of carbon fiber reinforced carbon material
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JP4218853B2 (en) Carbonaceous crucible for pulling single crystal and method for producing the same
JP3818606B2 (en) Carbon fiber reinforced carbon composite
JPH09255443A (en) Oxidation-resistant treatment of carbon fiber-reinforced carbon composite material
JPH07126089A (en) Production of oxidation-resistance c/c composite material
JPH07309677A (en) Oxidation-resistant c/c composite material and its production
JPH06345570A (en) Productiom of oxidation resistant c/c composite material
JPH06247782A (en) Production of oxidation resistant c/c composite material
JPH0826859A (en) Oxidation-resistant c/c composite material and method for producing the same
JPH0570228A (en) Production of oxidation-resistant c/c composite material
JPH05148018A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material