JP3193762B2 - Oxidation resistant treatment of carbon fiber reinforced carbon material - Google Patents

Oxidation resistant treatment of carbon fiber reinforced carbon material

Info

Publication number
JP3193762B2
JP3193762B2 JP06905792A JP6905792A JP3193762B2 JP 3193762 B2 JP3193762 B2 JP 3193762B2 JP 06905792 A JP06905792 A JP 06905792A JP 6905792 A JP6905792 A JP 6905792A JP 3193762 B2 JP3193762 B2 JP 3193762B2
Authority
JP
Japan
Prior art keywords
sic
mosi
coating
layer
layer coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06905792A
Other languages
Japanese (ja)
Other versions
JPH05229886A (en
Inventor
俊哉 瀬高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP06905792A priority Critical patent/JP3193762B2/en
Publication of JPH05229886A publication Critical patent/JPH05229886A/en
Application granted granted Critical
Publication of JP3193762B2 publication Critical patent/JP3193762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、苛酷な高温酸化雰囲気
下において優れた酸化抵抗性を発揮する炭素繊維強化炭
素材(以下「C/C材」という。)の耐酸化処理法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation-resistant method for a carbon fiber reinforced carbon material (hereinafter referred to as "C / C material") exhibiting excellent oxidation resistance in a severe high-temperature oxidizing atmosphere.

【0002】[0002]

【従来の技術】C/C材は、1000℃以上の高温域におい
ても優れた比強度、比弾性率を発揮するうえ、熱膨張率
が小さい等の特異な材質特性を有しているため、航空・
宇宙材料としての適用が考えられている。ところが、こ
の材料には易酸化性という炭素材固有の材質的な欠点が
あり、大気中では 500℃付近から酸化を受けて材質特性
が急激に減退するため、高温大気中での使用は極く短時
間で済む用途を除いて不可能であった。このため、C/
C材の表面に耐熱耐食性の各種セラミックス系物質によ
る耐酸化性被覆を施して改質化する試みが従来から盛ん
におこなわれているが、炭素材料との結合性がよいSi
Cが最も好適な被覆材料とされている。
2. Description of the Related Art C / C materials exhibit excellent specific strength and specific elasticity even in a high temperature range of 1000 ° C. or higher, and have unique material characteristics such as a small coefficient of thermal expansion. Aviation /
Application as space material is considered. However, this material has an inherent property of carbon material, which is easily oxidizable, and is oxidized in the atmosphere at around 500 ° C, and its material properties rapidly decrease. It was not possible except in applications that required only a short time. For this reason, C /
Attempts have been made actively to modify the surface of the C material by applying an oxidation-resistant coating with various heat-resistant and corrosion-resistant ceramic-based materials to modify the material.
C is the most preferred coating material.

【0003】通常、炭素材料の表面にSiCの被覆を施
す方法としては、気相反応により生成するSiCを直接
沈着させるCVD法(化学的気相蒸着法)が一般的な被
覆手段とされている。このCVD法では緻密な耐酸化皮
膜を形成することは可能であるが、被覆工程で基材とな
る炭素材料を1000℃以上まで加熱しなければならない関
係で冷却時に被覆層が剥離したり亀裂を生じたりする現
象が発生し易い。これらの現象は、基材炭素と被覆Si
Cの熱膨張差が大きいために最大歪みが追随できないこ
とに起因するものである。したがって、基材炭素の熱膨
張率をSiCと同等に調整することにより解決すること
ができるが、C/C材の場合には材質の熱膨張率が複合
強化材となる炭素繊維の熱膨張率に拘束されるため自由
に調整することができない。このような理由で、C/C
材を基材としたときにはCVD法で正常なSiC被覆層
を形成することは極めて困難である。
Usually, as a method of coating SiC on the surface of a carbon material, a CVD method (chemical vapor deposition method) in which SiC generated by a gas phase reaction is directly deposited is used as a general coating method. . Although it is possible to form a dense oxidation-resistant film by this CVD method, the coating layer peels off or cracks during cooling because the carbon material used as the base material must be heated to 1000 ° C or more in the coating process. Phenomena are likely to occur. These phenomena are caused by the base carbon and the coated Si
This is due to the fact that the difference in thermal expansion of C is so large that the maximum strain cannot follow. Therefore, the problem can be solved by adjusting the thermal expansion coefficient of the base carbon to be equal to that of SiC. However, in the case of the C / C material, the thermal expansion coefficient of the material is the thermal expansion coefficient of the carbon fiber as the composite reinforcing material. Can not be adjusted freely. For this reason, C / C
When a material is used as a base material, it is extremely difficult to form a normal SiC coating layer by the CVD method.

【0004】これに対し、基材の炭素を反応源に利用し
てSi成分と反応させることによりSiCに転化させる
コンバージョン法は、基材の表層部が連続組織としてS
iC層を形成する傾斜機能材質となるため、C/C材を
被覆基材としてもSiC被覆層にCVD法にみられるよ
うな界面剥離を生じることはない。しかしながら、コン
バージョン法においては、形成されるSiC被覆層がC
VD法に比べて緻密性に劣るうえ、反応時、被覆層に微
細なクラックが発生する問題がある。
On the other hand, in a conversion method in which carbon of a base material is used as a reaction source and reacted with a Si component to convert the Si component into SiC, the surface layer of the base material has a continuous structure of S
Since the material becomes a functionally graded material for forming the iC layer, even if the C / C material is used as a coating substrate, the SiC coating layer does not undergo interface peeling as seen in the CVD method. However, in the conversion method, the formed SiC coating layer is C
In addition to the inferior compactness as compared with the VD method, there is a problem that fine cracks occur in the coating layer during the reaction.

【0005】このような問題を解消するための技術につ
いては本出願人により多くの開発がなされているが、こ
のうち本発明者はコンバージョン法で形成したSiC被
覆層の上に外層として二珪化モリブデンの耐酸化皮膜を
形成するC/C材の耐酸化処理法を開発し、既に特願平
3−25644 号として提案した。
The present applicant has developed many techniques for solving such a problem. Among them, the present inventor has found that molybdenum disilicide as an outer layer is formed on an SiC coating layer formed by a conversion method. An oxidation-resistant treatment method for a C / C material that forms an oxidation-resistant film has been developed and has already been proposed as Japanese Patent Application No. 3-25644.

【0006】[0006]

【発明が解決しようとする課題】特願平3−25644 号に
よる耐酸化処理法の構成は、炭素繊維強化炭素材の基材
面に、SiOガスを接触させてコンバージョン法により
SiC被覆層を形成する内層被覆工程と、粒状二珪化モ
リブデンと珪素含有結合材を含む水性スラリーを塗布し
たのち加熱して多孔質のMoSi2 被覆層を形成する外
層被覆工程を施すことを特徴とし、その2層被覆構造に
よって高い酸化抵抗性を付与するものである。しかし、
その後の評価研究において、MoSi2 の外層は電気炉
内での静的条件下では優れた耐酸化性を示すが、プラズ
マ照射のような苛酷な動的酸化条件下では被覆層が飛散
してしまって、十分な耐酸化性が発揮されないことが判
明した。
The oxidation-resistant treatment method disclosed in Japanese Patent Application No. 3-25644 consists of forming a SiC coating layer on a substrate surface of a carbon fiber reinforced carbon material by contacting SiO gas with a conversion method. And an outer layer coating step of applying a water-based slurry containing particulate molybdenum disilicide and a silicon-containing binder and then heating to form a porous MoSi 2 coating layer. High oxidation resistance is imparted by the structure. But,
In subsequent evaluation studies, the outer layer of MoSi 2 showed excellent oxidation resistance under static conditions in an electric furnace, but the coating layer scattered under severe dynamic oxidation conditions such as plasma irradiation. It was found that sufficient oxidation resistance was not exhibited.

【0007】本発明者は引き続き原因解明と被覆改善に
関する研究を重ねた結果、先願技術において動的酸化条
件下でMoSi2 外層が飛散する原因は、二珪化モリブ
デンと珪素含有結合材を含む水性スラリーを塗布したの
ち 300℃程度に加熱する方法で形成したMoSi2 外層
とSiC内層との不十分な密着性にあり、両層の密着性
を動的酸化条件に耐える水準まで高めるためには、塗布
形成したMoSi2 層を一旦溶融して下地のSiC層組
織に拡散させてSiC−MoSi2 の中間複合層を介在
させることが極めて効果的であることを解明した。
The present inventor has continued research on the cause elucidation and coating improvement. As a result, in the prior art, the cause of the scattering of the outer layer of MoSi 2 under the dynamic oxidation condition is that the molybdenum disilicide and the aqueous solution containing the silicon-containing binder are contained. There is insufficient adhesion between the MoSi 2 outer layer and the SiC inner layer formed by applying the slurry and then heating to about 300 ° C. In order to increase the adhesion between both layers to a level that can withstand dynamic oxidation conditions, It has been clarified that it is extremely effective to once melt the applied MoSi 2 layer and diffuse it into the underlying SiC layer structure to interpose the intermediate composite layer of SiC—MoSi 2 .

【0008】本発明は上記の知見に基づいて開発された
もので、その目的は先願技術(特願平3−25644 号) を
改良してプラズマ照射のような苛酷な動的酸化条件にお
いても安定した高耐酸化性を付与することができるC/
C材の耐酸化処理法を提供することにある。
The present invention has been developed on the basis of the above findings, and its object is to improve the prior application (Japanese Patent Application No. Hei 3-25644) to improve even under severe dynamic oxidation conditions such as plasma irradiation. C / which can provide stable high oxidation resistance
An object of the present invention is to provide an oxidation-resistant treatment method for C material.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるC/C材の耐酸化処理法は、炭素繊維
強化炭素材の基材面に、SiOガスを接触させてコンバ
ージョン法によりSiC被覆層を形成する内層被覆工程
と、粒状二珪化モリブデンと有機系結合材を含む水性ス
ラリーを塗布したのち不活性雰囲気下で2000℃以上の高
温に加熱することによりMoSi2 として融解し、内層
のSiC被覆組織内に拡散させてSiC−MoSi2
複合膜を形成する中間層被覆工程と、ついで中間層被覆
工程と同一の水性スラリーを塗布したのち不活性雰囲気
下で2000℃までの温度に加熱して多孔質のMoSi2
膜を形成する外層被覆工程とからなることを構成上の特
徴とする。
According to the present invention, there is provided an oxidation-resistant treatment method for a C / C material according to the present invention. An inner layer coating step of forming a SiC coating layer by applying, an aqueous slurry containing granular molybdenum disilicide and an organic binder is applied, and then heated to a high temperature of 2000 ° C. or more under an inert atmosphere to melt as MoSi 2 , An intermediate layer coating step of diffusing into the inner layer SiC coating structure to form a composite film of SiC-MoSi 2 , and then applying the same aqueous slurry as the intermediate layer coating step, followed by a temperature of up to 2000 ° C. in an inert atmosphere. And an outer layer coating step of forming a porous MoSi 2 film by heating the film.

【0010】C/C基材を構成する炭素繊維には、ポリ
アクリロニトリル系、レーヨン系、ピッチ系など各種原
料から製造された平織、朱子織、綾織などの織布を一次
元または多次元方向に配向した繊維体、フェルト、トウ
が使用され、マトリックス樹脂としてはフェノール系、
フラン系など高炭化性の液状熱硬化性樹脂、タールピッ
チのような熱可塑性物質が用いられる。炭素繊維は、含
浸、塗布などの手段によりマトリックス樹脂で十分に濡
らしたのち半硬化してプリプレグを形成し、ついで積層
加圧成形する。成形体は加熱して樹脂成分を完全に硬化
し、引き続き常法に従って焼成炭化または更に黒鉛化し
てC/C基材を得る。また、用途によってはマトリック
ス樹脂の含浸、硬化、炭化の処理を反復したり、CVD
法を用いてメタン、プロパン等を原料とする熱分解炭素
を沈着させて組織の緻密化を図ることもできる。
The carbon fibers constituting the C / C base material include woven fabrics such as plain weave, satin weave and twill weave made of various materials such as polyacrylonitrile, rayon and pitch materials in one-dimensional or multi-dimensional directions. Oriented fiber bodies, felts and tows are used.
A highly carbonized liquid thermosetting resin such as furan or a thermoplastic substance such as tar pitch is used. The carbon fiber is sufficiently wetted with a matrix resin by means of impregnation, coating, or the like, then semi-cured to form a prepreg, and then laminated and pressed. The molded body is heated to completely cure the resin component, and subsequently calcined or carbonized or graphitized in a conventional manner to obtain a C / C base material. Depending on the application, the process of impregnation, curing, and carbonization of the matrix resin may be repeated,
The structure can be densified by depositing pyrolytic carbon using methane, propane, or the like as a raw material by using the method.

【0011】C/C基材には、まず基材面にSiOガス
を接触させてコンバージョン法によりSiC被膜を形成
するための内層被覆が施される。この内層被覆工程は、
SiO2 粉末をSiもしくはC粉末と混合して密閉加熱
系に入れ、系内にC/C基材をセットして1700〜2000℃
の温度に加熱する方法によりおこなわれる。加熱により
SiO2 はSiまたはC成分で還元され、反応生成した
SiOガスがC/C材を構成する炭素組織と界面反応し
て表層部をSiCに転化する。該被覆処理により、C/
C基材の表層部が外面に向かうに従って次第にSiCが
密になる傾斜機能組織の多結晶質SiC被膜が形成され
る。形成するSiC被膜の適切な膜厚は100〜300 μm
の範囲で、100 μm 未満では耐酸化性が不十分になるこ
とがあり、また 300μm を越えると急激な熱サイクル負
荷時に被膜剥離が発生するようになる。
The C / C substrate is first coated with an inner layer for forming a SiC film by a conversion method by bringing a SiO gas into contact with the substrate surface. This inner layer coating step
Put SiO 2 powder in a closed heating system is mixed with Si or C powder, sets C / C substrate to the system by 1700-2000 ° C.
Is carried out by heating to a temperature of By heating, SiO 2 is reduced by Si or C components, and the SiO gas generated by the reaction undergoes an interfacial reaction with the carbon structure constituting the C / C material to convert the surface layer into SiC. By the coating treatment, C /
A polycrystalline SiC film having a functionally graded structure in which SiC gradually becomes denser as the surface layer portion of the C base material moves toward the outer surface is formed. Suitable thickness of SiC film to be formed is 100 to 300 μm
If the thickness is less than 100 μm, the oxidation resistance may be insufficient, and if it exceeds 300 μm, the coating may peel off during a rapid thermal cycle load.

【0012】中間層被覆工程は、内層被覆工程で形成し
たSiC被覆層に連続組織状態のSiC−MoSi2
合膜を形成する段階で、粒状二珪化モリブデンと有機系
結合材を含むスラリーを塗布したのち、不活性雰囲気下
で2000℃以上の高温に加熱してMoSi2 として融解
し、これをSiC被覆組織内に拡散させてSiC−Mo
Si2 の複合膜を形成する工程でおこなわれる。二珪化
モリブデンは粒径20μm以下の微粉末を用い、例えば珪
酸ナトリウム、珪酸エチル、コロイド状シリカのような
珪素含有結合材と共に水に分散させて水性スラリーを形
成する。該水性スラリーは、配合組成を制御することに
より粘度を 500〜2000cpに調整することが望ましい。塗
布はドクターブレード法、ヘラ塗り、刷毛塗り、スプレ
ー噴射などを用いておこない、全表面が均一に被覆され
るまで十分に処理する。塗布後のC/C基材は乾燥した
のち不活性雰囲気下で2000℃以上の温度域、好ましくは
2050〜2150℃の温度範囲に加熱することにより一旦Mo
Si2 として融解し、この状態で加熱を継続して融解し
たMoSi2 を内層のSiC被覆層組織に拡散させてS
iC−MoSi2 の複合膜に転化させる。
In the intermediate layer coating step, a slurry containing granular molybdenum disilicide and an organic binder is applied at the stage of forming a SiC-MoSi 2 composite film having a continuous structure on the SiC coating layer formed in the inner layer coating step. Thereafter, the mixture is heated to a high temperature of 2000 ° C. or more in an inert atmosphere to melt as MoSi 2 , which is diffused into the SiC coating structure to form SiC-Mo.
This is performed in the step of forming a composite film of Si 2 . Molybdenum disilicide uses a fine powder having a particle size of 20 μm or less and is dispersed in water together with a silicon-containing binder such as sodium silicate, ethyl silicate and colloidal silica to form an aqueous slurry. It is desirable to adjust the viscosity of the aqueous slurry to 500 to 2000 cp by controlling the composition. The coating is performed using a doctor blade method, a spatula coating, a brush coating, a spray injection, and the like, and is sufficiently processed until the entire surface is uniformly coated. The C / C substrate after application is dried and then dried under an inert atmosphere in a temperature range of 2000 ° C. or higher, preferably
Once heated to the temperature range of 2050-2150 ° C, Mo
The molten MoSi 2 is melted as Si 2 , and heating is continued in this state to diffuse the melted MoSi 2 into the inner SiC coating layer structure to form S 2.
It is converted into a composite film of iC-MoSi 2 .

【0013】ついで、SiC−MoSi2 複合層の上面
に外層被覆層として多孔質のMoSi2 皮膜を形成す
る。この外層被覆工程は、前記の中間層被覆工程で用い
たと同組成の粒状二珪化モリブデンと有機系結合材を含
む水性スラリーを塗布し、不活性雰囲気下で2000℃まで
の温度域、好適には1500〜1600℃の温度範囲に加熱して
部分的に焼結した多孔質のMoSi2 膜として形成す
る。この工程では、二珪化モリブデン粉末を形成するM
oSi2 皮膜が多孔質組織となる粒度に配合調整し、膜
厚が50〜200 μm の範囲になるように形成する。膜厚が
50μm 未満であると耐酸化性被膜としての十分な機能が
発揮されず、200 μm を越えると熱応力に対する緩和機
能が低下して層間剥離が発生し易くなる。したがって、
1回の塗布操作で前記範囲の膜厚が得られない場合に
は、塗布操作を反復して膜厚を調整することが好ましい
対応となる。
Next, a porous MoSi 2 film is formed on the upper surface of the SiC—MoSi 2 composite layer as an outer coating layer. In this outer layer coating step, an aqueous slurry containing the same composition of granular molybdenum disilicide and an organic binder having the same composition as that used in the above-mentioned intermediate layer coating step is applied, and a temperature range up to 2000 ° C. under an inert atmosphere, preferably It is formed as a porous MoSi 2 film partially heated by heating to a temperature range of 1500 to 1600 ° C. In this step, M is used to form molybdenum disilicide powder.
The oSi 2 film is blended and adjusted to have a particle size of a porous structure, and is formed so that the film thickness is in the range of 50 to 200 μm. Film thickness
When the thickness is less than 50 μm, a sufficient function as an oxidation-resistant coating is not exhibited. When the thickness exceeds 200 μm, the function of relaxing thermal stress is reduced and delamination is liable to occur. Therefore,
When the film thickness in the above range cannot be obtained by one coating operation, it is preferable to repeat the coating operation to adjust the film thickness.

【0014】本発明の基本構成は上記工程による3層被
覆構造であるが、この構成に加えて外層被覆面にSiO
2 ガラス膜を被覆する最外層被覆工程を施すことにより
一層耐酸化性を向上させることができる。この最外層被
覆工程は、テトラエトキシシラン(Si(OC2H5)4)を塩酸と
水の混合溶液により予めpH1〜3に調整して加水分解
するゾル−ゲル法によりゾル化し、生成したSiO2
駆体に外層被覆処理まで施したC/C基材を浸漬して必
要により減圧処理したのち 400℃以上の温度に加熱する
ことによりおこなわれる。
The basic structure of the present invention is a three-layer coating structure by the above-described steps.
By performing the outermost layer coating step of coating the two glass films, the oxidation resistance can be further improved. In this outermost layer coating step, tetraethoxysilane (Si (OC 2 H 5 ) 4 ) is converted into a sol by a sol-gel method in which the pH is adjusted to pH 1 to 3 in advance with a mixed solution of hydrochloric acid and water to hydrolyze, and the resulting SiO 2 is formed. (2 ) This is carried out by immersing the C / C substrate subjected to the outer layer coating treatment in the precursor, subjecting the precursor to a reduced pressure treatment if necessary, and then heating the precursor to a temperature of 400 ° C. or higher.

【0015】[0015]

【作用】本発明の耐酸化処理法によれば、内層被覆工程
でC/C基材の表面にコンバージョン法による多結晶質
のSiC被覆層が形成される。このSiC被覆層は比較
的緻密で密着性の高い傾斜機能組織を有しており、容易
に界面剥離することはない。中間層被覆工程で形成され
るSiC−MoSi2 複合膜は、形成時の溶融・拡散作
用を介して内層のSiC組織に連続する傾斜機能組織と
して極めて強固に結合し、外層のMoSi2 層との密着
性を高めるために機能する。ついで外層として被覆され
るMoSi2 層は、中間層中のMoSi2 組織と焼結し
て密着性よく結合するため動的酸化条件に耐える強固な
被覆層として形成される。また、外層MoSi2 皮膜は
粉末相互が部分的に焼結した多孔質構造を呈しているか
ら、内層SiCとの熱膨張差から生じる界面の熱応力を
巧みに緩和して亀裂等の発生を阻止するとともに、高温
酸化雰囲気に曝された際にはMoSi2 がSiO2 ガラ
スに転化し、表層面を均一な保護被膜として被覆する。
さらに、最外層被覆としてSiO2 ガラス膜を形成した
場合には耐酸化性能が一層向上する。
According to the oxidation-resistant treatment method of the present invention, a polycrystalline SiC coating layer is formed on the surface of the C / C substrate by the conversion method in the inner layer coating step. This SiC coating layer has a relatively dense and functionally gradient functional structure, and does not easily peel off at the interface. The SiC-MoSi 2 composite film formed in the intermediate layer coating step is extremely strongly bonded as a functionally graded structure continuous to the inner layer SiC structure through the melting / diffusion action at the time of formation, and is combined with the outer layer MoSi 2 layer. Functions to enhance adhesion. Next, the MoSi 2 layer coated as the outer layer is formed as a strong coating layer that withstands dynamic oxidation conditions because it sinters and bonds well with the MoSi 2 structure in the intermediate layer. In addition, since the outer layer MoSi 2 film has a porous structure in which the powders are partially sintered, the thermal stress at the interface caused by the difference in thermal expansion with the inner layer SiC is skillfully alleviated to prevent the occurrence of cracks and the like. At the same time, when exposed to a high-temperature oxidizing atmosphere, MoSi 2 is converted into SiO 2 glass and covers the surface layer as a uniform protective film.
Further, when a SiO 2 glass film is formed as the outermost layer coating, the oxidation resistance is further improved.

【0016】このような作用を介してプラズマ照射のよ
うな過酷かつ動的な高温酸化条件においても極めて安定
した高耐酸化性能が付与される。
Through such an action, extremely stable high oxidation resistance is provided even under severe and dynamic high-temperature oxidation conditions such as plasma irradiation.

【0017】[0017]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0018】実施例1 (1) C/C基材の作製 ポリアクリロニトリル系高強度高弾性タイプの平織炭素
繊維布にフェノール樹脂初期縮合物〔大日本インキ工業
(株)製〕をマトリックスとして十分に塗布し、48時間
風乾してプリプレグシートを作成した。このプリプレグ
シートを積層してモールドに入れ、加熱温度110 ℃、適
用圧力20kg/cm2の条件で複合成形した。ついで、複合成
形体を250 ℃の温度に加熱して完全に硬化したのち、窒
素雰囲気に保持された焼成炉に移し、5℃/hr の昇温速
度で2000℃まで上昇し5時間保持して焼成炭化した。こ
のようにして、炭素繊維の体積含有率(Vf)65%、見掛比
重1.65g/ccのC/C基材を作製した。
Example 1 (1) Preparation of C / C base material A polyacrylonitrile-based high-strength, high-elasticity type plain woven carbon fiber cloth was sufficiently coated with a phenol resin precondensate (manufactured by Dainippon Ink Industries, Ltd.) as a matrix. It was applied and air-dried for 48 hours to prepare a prepreg sheet. The prepreg sheets were laminated and placed in a mold, and composite-molded under the conditions of a heating temperature of 110 ° C. and an applied pressure of 20 kg / cm 2 . Next, after heating the composite molded body to a temperature of 250 ° C. to completely cure it, the composite molded body is transferred to a firing furnace maintained in a nitrogen atmosphere, raised to 2000 ° C. at a rate of 5 ° C./hr, and held for 5 hours. Fired and carbonized. Thus, a C / C base material having a carbon fiber volume content (Vf) of 65% and an apparent specific gravity of 1.65 g / cc was produced.

【0019】(2) 内層被覆工程 SiO2 粉末とSi粉末をモル比2:1の配合比率にな
るように混合し、混合粉末を黒鉛ルツボに入れ上部にC
/C基材をセットした。この黒鉛ルツボを電気炉内に移
し、内部をArガスで十分に置換したのち50℃/hr の速
度で1900℃まで昇温し、2時間保持してC/C基材の表
層部に傾斜機能を有する多結晶質のSiC被覆層を形成
した。形成されたSiC被覆層の厚さは約 200μm であ
ったが、その表面に幅10μm 程度の亀裂が所々に発生し
ていることが認められた。
(2) Inner Layer Coating Step The SiO 2 powder and the Si powder are mixed at a molar ratio of 2: 1 and the mixed powder is put into a graphite crucible and C
/ C substrate was set. The graphite crucible was transferred into an electric furnace, and the inside was sufficiently replaced with Ar gas. Then, the temperature was raised to 1900 ° C. at a rate of 50 ° C./hr and held for 2 hours to provide a tilting function to the surface layer of the C / C base material. Was formed. Although the thickness of the formed SiC coating layer was about 200 μm, it was recognized that cracks having a width of about 10 μm were generated on the surface thereof.

【0020】(3) 中間層被覆工程 粒径6〜12μm の粒分と粒径2〜5μm の粒分を等量配
合した二珪化モリブデン82重量%に、有機珪素系バイン
ダー〔第一工業製薬(株)製、セモラTB-72 〕1.5 重量
%および水16.5重量%を加えてよく撹拌混合し、粘度10
00cpの粘稠性スラリーを調製した。この水性スラリー
を、内層被覆処理されたC/C基材の表面に均一に塗布
し、室温で2時間風乾した。ついで、アルゴンガス雰囲
気に保持された加熱炉に入れ、2050℃で30分間加熱処理
を施した。この処理により、塗布物は一旦MoSi2
して融解し、そのまま内層のSiC被覆組織内に拡散し
てSiC−MoSi2 複合膜に転化した。SiC被覆組
織内へのMoSi2 の拡散深さは80〜90μm 程度であ
り、この部分はSiC−MoSi2 組成の傾斜機能組織
を呈するものであった。
(3) Intermediate layer coating step An organic silicon-based binder [Daiichi Kogyo Seiyaku Co., Ltd.] Co., Ltd., Semora TB-72] 1.5% by weight and 16.5% by weight of water were added and mixed well with stirring to obtain a
A viscous slurry of 00 cp was prepared. This aqueous slurry was uniformly applied to the surface of the C / C substrate having been subjected to the inner layer coating treatment, and air-dried at room temperature for 2 hours. Then, it was placed in a heating furnace maintained in an argon gas atmosphere and subjected to a heat treatment at 2050 ° C. for 30 minutes. By this treatment, the coating material was once melted as MoSi 2 , diffused into the SiC coating structure of the inner layer as it was, and converted into a SiC—MoSi 2 composite film. The diffusion depth of MoSi 2 into the SiC coating structure was about 80 to 90 μm, and this portion exhibited a functionally graded structure of SiC—MoSi 2 composition.

【0021】(4) 外層被覆工程 中間層被覆処理を施したSiC−MoSi2 複合膜の上
面に中間層被覆工程で用いた水性スラリーを均一に塗布
し、室温で2時間風乾した。ついで、アルゴンガス雰囲
気に保持された加熱炉に入れ、1500℃で30分間加熱処理
をおこなった。形成されたMoSi2 膜は粉末相互が部
分的に焼結した多孔質組織を有しており、平均膜厚は13
0 μm であった。
(4) Outer Layer Coating Step The aqueous slurry used in the intermediate layer coating step was uniformly applied to the upper surface of the SiC-MoSi 2 composite film subjected to the intermediate layer coating treatment, and air-dried at room temperature for 2 hours. Then, it was placed in a heating furnace maintained in an argon gas atmosphere and subjected to a heat treatment at 1500 ° C. for 30 minutes. The formed MoSi 2 film has a porous structure in which the powders are partially sintered, and the average film thickness is 13
It was 0 μm.

【0022】(5) 耐酸化性の評価 上記の被覆処理を施したC/C基材に、大気中でプラズ
マフレーム(基材表面温度1900℃) を6分間照射するサ
イクルを5回反復して素材の重量変化を測定する方法で
動的酸化条件による耐酸化性の評価をおこなった。その
結果を、サイクル毎の重量変化率として表1に示した。
(5) Evaluation of Oxidation Resistance A cycle in which the C / C substrate subjected to the above coating treatment is irradiated with a plasma flame (substrate surface temperature: 1900 ° C.) for 6 minutes in the air is repeated five times. Oxidation resistance was evaluated under dynamic oxidation conditions by measuring the weight change of the material. The results are shown in Table 1 as the weight change rate for each cycle.

【0023】実施例2 実施例1の工程で得られた3層被覆構造のC/C材の上
面に、次の工程によりSiO2 ガラス膜の最外層被覆を
施した。テトラエトキシシラン(Si(OC2H5)4)〔東芝シリ
コーン(株)製〕とエタノールの混合溶液(モル比1:
7)に塩酸水溶液をpH3.0 になるように添加し、常温
で1時間撹拌して加水分解をおこなってSiO2 ガラス
前駆体を作成した。このガラス前駆体中に実施例1の処
理を施したC/C基材を浸漬し、1時間減圧含浸したの
ち1昼夜室温で乾燥した。乾燥後、500 ℃の温度で10分
間加熱してSiO2 ガラス膜に転化させた。このように
して4層の被覆処理を施したC/C基材につき、実施例
1と同様にしてプラズマフレームによる耐酸化試験をお
こない、結果を表1に併載した。
Example 2 The outermost layer of a SiO 2 glass film was coated on the upper surface of the C / C material having the three-layer coating structure obtained in the process of Example 1 by the following process. A mixed solution of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) [manufactured by Toshiba Silicone Co., Ltd.] and ethanol (molar ratio 1:
To 7), an aqueous hydrochloric acid solution was added so as to have a pH of 3.0, and the mixture was stirred at room temperature for 1 hour to carry out hydrolysis to prepare a SiO 2 glass precursor. The C / C substrate treated in Example 1 was immersed in the glass precursor, impregnated for 1 hour under reduced pressure, and dried at room temperature for 24 hours. After drying, it was heated at a temperature of 500 ° C. for 10 minutes to be converted into a SiO 2 glass film. With respect to the C / C substrate having been subjected to the coating treatment of four layers in this manner, an oxidation resistance test was performed using a plasma flame in the same manner as in Example 1, and the results are shown in Table 1.

【0024】比較例1 実施例1と同一の内層被覆工程を用いて、コンバージョ
ン法による膜厚 200μm のSiC層を形成した。つい
で、粒径37μm 以下の二珪化モリブデン粉末60重量%、
珪酸ナトリウム11重量%、水29重量%を十分に撹拌混合
して調製した粘度1500cpのスラリーを均一に塗布し、室
温で2時間風乾したのち、100 ℃/hr の昇温速度で 300
℃まで加熱して30分間保持した。形成されたMoSi2
被覆層の膜厚は80μm であった。このようにして2段階
の被覆処理を施したC/C材につき実施例1と同様にし
てプラズマフレームによる耐酸化試験をおこない、結果
を表1に併せて示した。
Comparative Example 1 Using the same inner layer coating process as in Example 1, a 200 μm-thick SiC layer was formed by a conversion method. Then, 60% by weight of molybdenum disilicide powder having a particle size of 37 μm or less,
A slurry having a viscosity of 1500 cp prepared by sufficiently stirring and mixing 11% by weight of sodium silicate and 29% by weight of water is uniformly applied, air-dried at room temperature for 2 hours, and then heated at a rate of 100 ° C./hr at a heating rate of 300 ° C./hr.
C. and kept for 30 minutes. MoSi 2 formed
The thickness of the coating layer was 80 μm. An oxidation resistance test using a plasma flame was performed on the C / C material subjected to the two-step coating process in the same manner as in Example 1 and the results are shown in Table 1.

【0025】比較例2 実施例1と同一の内層被覆工程を用いて、コンバージョ
ン法による膜厚 200μm のSiC層を形成した。ついで
実施例2と同一条件によりSiO2 ガラス膜を被覆形成
した。このようにして2段階の被覆処理を施したC/C
材につき実施例1と同様にしてプラズマフレームによる
耐酸化試験をおこない、結果を表1に併載した。
Comparative Example 2 Using the same inner layer coating process as in Example 1, a 200 μm-thick SiC layer was formed by a conversion method. Then, a SiO 2 glass film was formed under the same conditions as in Example 2. C / C subjected to two-step coating process in this way
The material was subjected to an oxidation resistance test using a plasma frame in the same manner as in Example 1, and the results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】表1の結果から、 本発明の実施例による
C/C基材は外層のMoSi2 がSiO2 ガラスに転化
する過程で若干に重量増加を伴うが、表面温度が1900℃
に達するプラズマフレームを5サイクル反復しても酸化
による重量減少は極めて少ない。これに対し、比較例に
おいては1〜2サイクルの照射で酸化消耗が急速に進行
し、材料に孔が貫通する現象が認められた。
From the results shown in Table 1, it is found that the C / C substrate according to the embodiment of the present invention has a slight weight increase in the process of converting the outer layer of MoSi 2 into SiO 2 glass, but the surface temperature is 1900 ° C.
The weight loss due to oxidation is extremely small even if the plasma flame reaching the temperature of 5 is repeated for 5 cycles. On the other hand, in the comparative example, a phenomenon was observed in which oxidation was rapidly accelerated by irradiation for 1 to 2 cycles, and holes penetrated the material.

【0028】[0028]

【発明の効果】以上のとおり、本発明によればC/C基
材の表面に内層として傾斜機能構造を有する多結晶質の
SiC被覆層、中間層としてMoSi2 の融解・拡散に
よる傾斜機能構造のSiC−MoSi2 複合層、外層と
してMoSi2 を一部焼結させたMoSi2 層、更に必
要に応じてSiO2 ガラス膜の最外層を順次に被覆形成
することにより、プラズマ照射のような苛酷な動的酸化
条件に耐える高耐酸化処理を施すことができる。したが
って、高温酸化雰囲気の過酷な条件に晒される構造部材
用途に適用して安定性能の確保、耐久寿命の延長化など
の効果が発揮される。
As described above, according to the present invention, a polycrystalline SiC coating layer having a functionally graded structure as an inner layer on the surface of a C / C substrate, and a functionally graded structure by melting and diffusion of MoSi 2 as an intermediate layer. By sequentially forming a SiC-MoSi 2 composite layer, an MoSi 2 layer obtained by partially sintering MoSi 2 as an outer layer, and an outermost layer of a SiO 2 glass film as necessary, severe conditions such as plasma irradiation can be obtained. A high oxidation resistance treatment that can withstand various dynamic oxidation conditions can be performed. Therefore, the present invention is applied to structural members that are exposed to severe conditions in a high-temperature oxidizing atmosphere, and exhibits effects such as securing stable performance and extending the durable life.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素繊維強化炭素材の基材面に、SiO
ガスを接触させてコンバージョン法によりSiC被覆層
を形成する内層被覆工程と、粒状二珪化モリブデンと有
機系結合材を含む水性スラリーを塗布したのち不活性雰
囲気下で2000℃以上の高温に加熱することによりMoS
2 として融解し、内層のSiC被覆組織内に拡散させ
てSiC−MoSi2 の複合膜を形成する中間層被覆工
程と、ついで中間層被覆工程と同一の水性スラリーを塗
布したのち不活性雰囲気下で2000℃までの温度に加熱し
て多孔質のMoSi2 皮膜を形成する外層被覆工程とか
らなることを特徴とする炭素繊維強化炭素材の耐酸化処
理法。
1. The method according to claim 1, wherein the substrate surface of the carbon fiber reinforced carbon material is made of SiO
An inner layer coating step of forming a SiC coating layer by a conversion method by contacting a gas, and applying an aqueous slurry containing particulate molybdenum disilicide and an organic binder, followed by heating to a high temperature of 2000 ° C or higher in an inert atmosphere. MoS by
an intermediate layer coating step of melting as i 2 and diffusing into the inner layer SiC coating structure to form a composite film of SiC—MoSi 2 , and then applying the same aqueous slurry as in the intermediate layer coating step and then under an inert atmosphere An outer layer coating step of forming a porous MoSi 2 film by heating to a temperature of up to 2000 ° C. in an oxidation-resistant treatment method of carbon fiber reinforced carbon material.
【請求項2】 外層被覆面に、テトラエトキシシランを
加水分解重合して得られるSiO2 ガラス前駆体を含浸
させたのち加熱してSiO2 ガラス膜を形成する最外層
被覆工程を施す請求項1記載の炭素繊維強化炭素材の耐
酸化処理法。
2. An outermost layer coating step of impregnating an outer layer coating surface with an SiO 2 glass precursor obtained by hydrolytic polymerization of tetraethoxysilane and then heating to form a SiO 2 glass film. An oxidation-resistant treatment method for the carbon fiber-reinforced carbon material described in the above.
JP06905792A 1992-02-17 1992-02-17 Oxidation resistant treatment of carbon fiber reinforced carbon material Expired - Fee Related JP3193762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06905792A JP3193762B2 (en) 1992-02-17 1992-02-17 Oxidation resistant treatment of carbon fiber reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06905792A JP3193762B2 (en) 1992-02-17 1992-02-17 Oxidation resistant treatment of carbon fiber reinforced carbon material

Publications (2)

Publication Number Publication Date
JPH05229886A JPH05229886A (en) 1993-09-07
JP3193762B2 true JP3193762B2 (en) 2001-07-30

Family

ID=13391565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06905792A Expired - Fee Related JP3193762B2 (en) 1992-02-17 1992-02-17 Oxidation resistant treatment of carbon fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JP3193762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102330047B1 (en) 2017-08-25 2021-11-23 신-융 린 Water electrolysis device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170167276A1 (en) * 2015-12-09 2017-06-15 General Electric Company Article for high temperature service
US11066339B2 (en) 2017-06-08 2021-07-20 General Electric Company Article for high temperature service
CN112225577A (en) * 2020-10-22 2021-01-15 湖南金博碳素股份有限公司 Carbon/carbon composite material and preparation method and application thereof
CN114716266A (en) * 2021-12-13 2022-07-08 中国电子科技集团公司第五十三研究所 Stable multi-element composite antioxidant coating for C/C brake disc and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102330047B1 (en) 2017-08-25 2021-11-23 신-융 린 Water electrolysis device

Also Published As

Publication number Publication date
JPH05229886A (en) 1993-09-07

Similar Documents

Publication Publication Date Title
JPH0543364A (en) Oxidation-resistant corbon fiber-reinforced carbon composite material and its production
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3749268B2 (en) C / C composite oxidation resistant coating layer
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP3461424B2 (en) Method for producing oxidation resistant C / C composite
JP3198157B2 (en) Method for producing oxidation resistant C / C composite
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JPH0826859A (en) Oxidation-resistant c/c composite material and method for producing the same
JP3818606B2 (en) Carbon fiber reinforced carbon composite
JPH0570228A (en) Production of oxidation-resistant c/c composite material
JPH0794354B2 (en) Oxidation resistant C / C material and manufacturing method thereof
JP2024032606A (en) Method for manufacturing silicon carbide composite
JPH1029881A (en) Production of oxidation resistant c/c composite material
JPH08169786A (en) Production of oxidation resistant carbon fiber reinforced carbon composite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees