JP3853035B2 - Oxidation resistant C / C composite and method for producing the same - Google Patents

Oxidation resistant C / C composite and method for producing the same Download PDF

Info

Publication number
JP3853035B2
JP3853035B2 JP23027697A JP23027697A JP3853035B2 JP 3853035 B2 JP3853035 B2 JP 3853035B2 JP 23027697 A JP23027697 A JP 23027697A JP 23027697 A JP23027697 A JP 23027697A JP 3853035 B2 JP3853035 B2 JP 3853035B2
Authority
JP
Japan
Prior art keywords
composite
sic
oxidation
coating layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23027697A
Other languages
Japanese (ja)
Other versions
JPH1160357A (en
Inventor
敏孝 大橋
義雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP23027697A priority Critical patent/JP3853035B2/en
Publication of JPH1160357A publication Critical patent/JPH1160357A/en
Application granted granted Critical
Publication of JP3853035B2 publication Critical patent/JP3853035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another

Description

【0001】
【発明の属する技術分野】
本発明は、コンバージョン法によりC/C複合基材(炭素繊維強化炭素複合基材)の表層部に傾斜機能組織のSiC被覆層を安定強固に形成した、高い材質強度と優れた耐酸化性能を備えた、耐酸化性C/C複合材及びその製造方法に関する。
【0002】
【従来の技術】
C/C複合材は、卓越した比強度、比弾性率を有するうえに1000℃を越える高温域において優れた耐熱性および化学的安定性を備えているため、航空宇宙用をはじめ高温過酷な条件で使用される構造材料として有用されている。しかしながら、C/C複合材には大気中において500℃付近から材質酸化を受けるという炭素材固有の欠点があり、これがC/C複合材の応用途を制限する最大の障害となっている。このため、C/C複合材の表面に酸化抵抗性の大きな被覆層を形成して耐酸化性を改善する試みが盛んに行われており、例えばSiC、Si3 4 、ZrO2 、Al2 3 等の耐熱セラミックス系物質によって被覆処理する方法が数多く開発されている。このうち、SiCの被覆化が技術性及び経済性の面で優れており、最も好適な工業化手段として実用されている。
【0003】
C/C複合材の表面にSiCの被覆層を形成する代表的な方法として、気相反応により生成するSiCを直接沈着させるCVD法(化学的気相蒸着法)と、C/C複合材の炭素を反応源に利用してSiOガスと反応させることによりSiCに転化させるコンバージョン法が知られている。しかしながら、これらの方法によって形成されるSiC被覆層にはそれぞれに長所と短所がある。すなわち前者のCVD法により形成されるSiC被覆層は、緻密性には優れているものの、基材との界面が明確に分離している関係で熱衝撃を与えると相互の熱膨張率の差によって層間剥離現象が起こり易い欠点がある。この層間剥離現象は、主にC/C複合基材とSiC被覆層との熱膨張係数の差が大きく、最大歪みが追随できないことに起因して発生するため、C/C複合基材面をSiCの熱膨張率に近似するように改質すれば軽減化させることができる。このような観点から、C/C複合基材面に気相熱分解法により熱分解炭素層を形成し、次いでCVD又はCVI法でSiCを被覆する方法(特開平2−111681号公報)が提案されているが、操作の煩雑性に見合う程の充分な高温酸化抵抗性は期待できない。
【0004】
これに対し、後者のコンバージョン法は珪素源と炭素源を加熱反応させて生成するSiOガスとC/C複合材を構成する炭素組織を反応させ、C/C複合材の表層部の表面から内部にかけて漸次SiC化する機構に基づくものであるため、形成される炭化珪素層はSiC化の度合が材質内部に向うに従って漸次減少する連続的な傾斜機能組織を呈する。したがって、CVD法により形成される炭化珪素層のような層間がなく、熱衝撃を受けても層間界面剥離を生じることがない利点がある。しかし、その反面、表層部における炭化珪素層の緻密度合が低下して、充分な耐酸化性を付与できない欠点がある。
【0005】
このため、C/C複合基材の表面に予めコンバージョン法によりSiC層を形成し、これをベース被覆層としてその上に各種の被覆層を形成して耐酸化性能を向上させる試みが提案されている。例えば、本出願人はC/C複合基材の表面にSiC被覆層、SiO2 微粒被覆層、SiO2 ガラス被覆層またはB2 3 ガラス被覆層もしくはB2 3 ・SiO2 ガラス被覆層が3層状に積層被覆された構造の耐酸化性C/C材とその製造方法(特開平4−42883 号公報)を開発し、更に、特開平4−187583号公報、特開平4−243989号公報、特開平4−243990号公報、特開平4−43366 号公報、特開平5−70228 号公報、特開平5−229886号公報、特開平5−330961号公報、特開平6−48872 号公報、特開平6−144967号公報、特開平6−247782号公報などの改良技術を開発、提案している。
【0006】
これらの多層被覆手段によればC/C複合材の耐酸化性能を効果的に向上させることが可能となるが、ベース被覆層を構成するコンバージョン法によるSiC化には、本質的にC/C複合基材そのものの材質強度を損ねる問題がある。すなわち、コンバージョン法による被覆過程においては、SiOガスはC/C基材の表面から組織内部まで浸透拡散しながらC/C基材組織をSiCに転化していくが、C/C基材に存在する気孔や亀裂に沿ってSiOガスは比較的深い基材組織にまで浸透拡散し易い。そのためC/C複合材の表面ばかりではなく、比較的深い内部組織までSiC化が進行して基材組織、とくにSiC化し易いマトリックス炭素部分及び炭素繊維/マトリックス炭素の界面部分等が優先的に珪化されて鋸状や島状にSiC化され易く、その結果、基材組織全体を脆弱化する現象が生じる。この傾向はC/C基材の形状が大型化したり、複雑化するとより一層著しくなる。
【0007】
このように、C/C複合基材の表面にコンバージョン法によりSiC被覆層を形成する場合、生成するSiC被覆層を均一、緻密化して基材の内部組織がSiC化する現象を抑制することが材質強度を確保する上で必要である。かかる観点から、本出願人は炭素繊維をマトリックス樹脂とともに複合成形し硬化した炭素繊維複合樹脂成形体の外周面に、ポリイミド系樹脂フィルムを展着した状態で焼成炭化し、得られたC/C複合基材を珪素源と炭材の混合粉末を加熱反応させて生成するSiOガスと非酸化性雰囲気中1600〜2000℃の温度域で接触させ、C/C複合基材の表面にコンバージョン法によるSiC被覆層を形成する方法(特開平8−169786号公報)やC/C複合基材の表層部に易黒鉛化性炭素の被膜層を形成したのちコンバージョン法によりSiC被覆層を形成する耐酸化性C/C複合材の製造方法(特願平8−346730号)を開発した。
【0008】
これらの方法によれば、炭素繊維強化樹脂成形体の段階で外周面に介在するポリイミド系樹脂フィルムが炭化して生成した薄膜の緻密カーボン層、あるいは、C/C複合基材の表層部に石炭系ピッチや石油系ピッチ等が炭化して形成した易黒鉛化性炭素の被膜層によりC/C複合基材の表層部のみが緻密なSiC被膜層に転化されて、C/C複合基材の組織内部にSiOガスが浸透拡散する現象を抑制することができ、材質強度の低下を抑止するとともに優れた耐酸化性能を付与することが可能となる。
【0009】
【発明が解決しようとする課題】
しかしながら、C/C複合材の優れた材質特性を損なわずに高度の耐酸化性能を付与するために、本発明者等は更に研究を進めた結果、上記の特開平8−169786号公報及び特願平8−346730号の技術では、SiOガスが内部組織に拡散浸透するのを防止することが充分でなく、特に三次元炭素繊維プリフォームを用いたC/C複合材(3D−C/C複合材)の場合にはZ軸方向の繊維の界面あるいは周辺に存在する空隙等が珪化反応によりSiC化され易く、内部組織の脆弱化を充分に抑止することが困難となる問題があることを解明した。
【0010】
本発明者等は、SiOガスのC/C複合基材内部への局所的侵入の機構について更に研究を進めた結果、C/C複合基材の表面状態を緻密化するとともに表面を研磨して平滑化し、その上に炭素質粉末とガラス状炭素からなる複合構造の炭素質被膜を被着することにより緻密なSiC被膜が形成され、また内部組織のSiC化に伴う材質強度の低下を大幅に防止できることを見出した。
【0011】
本発明は上記の知見に基づいて完成したもので、その目的は内部組織のSiC化による材質強度の低下を招くことなく、コンバージョン法によりC/C複合基材の表層部に緻密なSiC被覆層を安定強固に形成した材質強度及び耐酸化性に優れた耐酸化性C/C複合材及びその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成するための本発明による耐酸化性C/C複合材は、表面が研磨処理されたC/C複合基材に被着した炭素質粉末と熱硬化性樹脂の炭化物とからなる厚さ1〜30μm の炭素質被膜を傾斜機能組織のSiC被膜に転化した被覆組織構造が形成されてなることを構成上の特徴とする。
【0013】
また、本発明による耐酸化性C/C複合材の製造方法は、炭素繊維をマトリックス樹脂とともに複合成形し、硬化および焼成炭化したC/C複合基材の表面を研磨処理した後、炭素質粉末と熱硬化性樹脂液との混合物を被覆して非酸化性雰囲気中800℃以上の温度で焼成炭化して厚さ1〜30μm の炭素質被膜を被着し、次いで珪素源と炭素源の混合粉末を加熱反応させて生成するSiOガスと非酸化性雰囲気中1600〜2000℃の温度域で接触させ、C/C複合基材の表面をコンバージョン法により傾斜機能組織のSiC被膜に転化することを構成上の特徴とする。
【0014】
【発明の実施の形態】
C/C複合材の強化材となる炭素繊維には、ポリアクリロニトリル系、レーヨン系、ピッチ系など各種原料から製造された平織、朱子織、綾織などの織布を一次元または多次元方向に配向した繊維体、フェルト、トウ等が使用され、マトリックス樹脂としてはフェノール系、フラン系など高炭化性の液状熱硬化性樹脂、あるいはタールピッチのような熱可塑性物質が用いられる。炭素繊維は、浸漬、塗布などの手段によりマトリックス樹脂を充分に含浸したのち半硬化してプリプレグを形成し、ついで積層加圧して複合成形したのち加熱して樹脂成分を完全に硬化し、常法に従い非酸化性雰囲気下で1000〜2000℃の温度に加熱して焼成炭化することによりC/C複合基材が作製される。C/C複合基材の密度は高いことが好ましく、例えば嵩密度は1.60g/cm3 以上であることが望ましいが、所望の嵩密度より低い場合には必要に応じてマトリックス樹脂を含浸、硬化、焼成炭化してマトリックス炭素による緻密化処理を反復して、C/C複合基材表層部の組織の緻密化を図る。嵩密度が低く、1.60g/cm3 未満の場合には炭素質被膜では充填しきれないマクロポアーが残留するので、SiOガスの侵入がマクロポアーを介して起きる。また嵩密度が1.60g/cm3 以上ではマクロポアーは大きく減少するものの、ミクロポアーがあるので炭素質被膜による充填が必要となる。
【0015】
このようにして得られたC/C複合基材の表層部には緻密な炭素層が形成される反面微細なクラック等が生じ易く、SiOガスの侵入を充分に阻止することが困難となる。また、緻密化処理を反復しても表層部のみが緻密化されて基材の内部組織の空隙、ポア、クラック等は残留したままとなる。したがって、このままの状態でコンバージョン法によりSiC化を図るとC/C複合基材の内部組織の空隙、ポア、クラック等の周辺部がSiOガスにより局部的にSiCに転化し、材質強度の低下を招くこととなる。そこで、本発明においてはC/C複合基材の表層部に形成した緻密層の一部を研磨処理により除去する。研磨処理は、例えば研磨紙やショットブラスト等により基材に損傷を与えないようにしながら表層部を除去し、平滑化する。研磨量はC/C複合基材の大きさ、構造、緻密層の厚さ等により異なるが、通常50〜500μm 程度行えばよく、また研磨処理による表面粗さはRmax 50μm 以下に平滑化することが望ましい。
【0016】
本発明の耐酸化性C/C複合材は、このようにして表面が研磨処理されたC/C複合基材表面に炭素質被膜が被着され、この被着した炭素質被膜をコンバージョン法により傾斜機能組織のSiC被膜に転化した被覆組織構造が形成された点に特徴がある。
【0017】
この炭素質被膜は炭素質粉末と熱硬化性樹脂の炭化物とから構成される。炭素質粉末には黒鉛粉末、コークス粉末、カーボンブラック等が用いられ、熱硬化性樹脂としてはフェノール系やフラン系等の高炭化率の熱硬化性樹脂が用いられる。炭素質被膜は、これらの炭素質粉末が熱硬化性樹脂の炭化物であるガラス状炭素中に分散した複合構造からなり、C/C複合基材の表層部に強固に被着している。
【0018】
このように、炭素質粉末とガラス状炭素の複合構造から構成される炭素質被膜は、複合炭素による高強度と気体不透過性に優れ、また炭化時における収縮が小さいのでC/C複合基材の表層部に存在する微細クラックや空隙を目詰めするとともにC/C複合基材面に強固に被着するので、SiOガスの侵入が効果的に阻止される。この場合、C/C複合基材表面の平滑性が劣り凹凸が存在すると、被着された炭素質被膜の膜厚にばらつきが生じてクラックが発生し易くなるために研磨処理により平滑化処理される。被着する炭素質被膜の厚さは1〜30μm の範囲に設定する。膜厚が1μm 未満であるとSiOガスの侵入を阻止する効果が小さく、30μm を越えると炭素質被膜にクラックが生じ易くC/C複合基材から剥離し易くなるためである。なお、膜厚のばらつきは±10μm 以内に抑えることが望ましい。
【0019】
本発明の耐酸化性C/C複合材は、C/C複合基材の表層部に被着した炭素質被膜を傾斜機能組織のSiC被膜に転化した被覆組織構造が形成されたものであり、炭素質被膜が転化したSiC被膜とC/C複合基材表層部の炭素分が転化したSiC層とがC/C複合基材の表層部において緻密強固に結合し、また連続した傾斜機能組織のSiC被膜として一体的に形成されている。この被覆組織構造によりSiOガスはC/C複合基材内部への浸透、拡散が阻止されるので、C/C複合基材の内部組織のSiC化及びSiC化の不均一性を効果的に抑制することができ、材質強度の低下を防止することが可能となる。
【0020】
更に、このSiC被膜をベース被覆層としてその上にSiO2 、Al2 3 、B2 3 、ZrO2 の単体または複合体からなるガラス質被膜を積層形成した場合には、ガラス質被膜によるガス遮断効果により耐酸化性能を一層向上することができる。
【0021】
本発明の耐酸化性C/C複合材は下記の方法により製造することができる。先ず、上記の方法により作製されたC/C複合基材の表面を研磨処理して平滑化する。研磨処理は研磨紙による研磨やショットブラスト等の適宜な手段が用いられ、研磨する範囲はC/C複合基材表層部の緻密化度合や組織構造によるが概ね50〜500μm 程度研磨すればよい。この研磨処理により表面は平滑化されるので、炭素質被膜を強固に被着させることができ、表面粗さとしてRmax 50μm 以下に平滑化することが望ましい。
【0022】
研磨処理されたC/C複合基材は、黒鉛粉末、コークス粉末、カーボンブラック等の炭素質粉末(望ましくは平均粒径5μm 以下)とフェノール系、フラン系等の熱硬化性樹脂液とを混合した混合液中に浸漬、あるいは混合液を塗布する等の方法により被覆して、非酸化性雰囲気中800℃以上の温度、好ましくは800〜2000℃の温度範囲で熱処理して焼成炭化することにより、炭素質粉末とガラス状炭素との複合構造からなる炭素質被膜が形成され、C/C複合基材面に強固に被着される。なお、炭素質被膜は1〜30μm の厚さに被着することが好ましく、必要に応じて被着処理は繰り返し行われる。炭素質被膜の膜厚が1μm 未満であると、次工程のコンバージョン法によりSiC被膜に転化する際に、C/C複合基材内部にSiOガスの侵入を阻止する効果が小さく、一方30μm を越えると炭素質被膜にクラックが生じ易く、C/C複合基材から剥離し易くなるためである。なお、膜厚のばらつきは±10μm 以内に抑えることが望ましい。
【0023】
炭素質被膜を被着したC/C複合基材は、次いでコンバージョン法により基材表面にSiC被膜が形成被覆される。SiOガスを発生させる珪素源としては、石英、珪石、珪砂等のSiO2 含有物質を粒径10〜500μm に粉砕したものが用いられ、また炭素源には粒径10〜500μm のコークス、ピッチ、黒鉛、カーボンブラック等の炭素質粉末が使用される。珪素源と炭素源との配合組成は、各材料粉末の表面積を考慮して決定されるが、通常、SiO2 :Cの重量比率が1:1〜5:1の範囲になるように配合される。配合物はV型ブレンダーなどの混合装置で十分に混合し、均一な混合物としたのち、黒鉛のような高耐熱性材料で構成された反応容器に入れる。
【0024】
上記の反応容器を密閉加熱炉内に設置し、C/C複合基材を反応容器内の珪素源と炭素源との混合粉末中に埋没するか反応容器の近傍にセットした状態で系内を還元または中性の非酸化性雰囲気に保持しながら1600〜2000℃の温度に加熱処理する。処理過程で、珪素源と炭素源の加熱還元反応により発生したSiOガスは、C/C複合基材の表層面と接触しながらSiCに転化するが、C/C複合基材の表層部に被着された均一、緻密で強固な炭素質被膜によりSiOガスはC/C複合基材の表層部のみを傾斜機能組織のSiC被膜に転化して、内部に拡散浸透する現象が効果的に阻止される。
【0025】
したがって、C/C複合基材の内部組織の空隙、ポア、クラック等の周辺部の炭素がSiOガスにより局部的にSiCに転化したり、C/C複合基材の内部組織における炭素繊維部とマトリックス炭素部との界面部がSiOガスにより局部的にSiCに転化する現象が抑制され、C/C複合基材の内部組織がSiC化される現象が阻止される。このようにして、C/C複合基材表層部の均一、緻密な炭素質被膜が転化したSiC層とC/C複合基材表層部が転化したSiC層とが緊密に連続した傾斜機能組織のSiC被膜が一体的に形成され、高度の耐酸化性が付与されるとともに、C/C複合基材の内部組織におけるSiC化ならびにSiC化の不均一性を低減することができ、材質強度の低下を抑制することが可能となる。
【0026】
このようにして、表面を傾斜機能組織のSiC被膜に転化したC/C複合基材は、このSiC被膜をベース被覆層としてその上にSiO2 、Al2 3 、B2 3 、ZrO2 の単体または複合体からなるガラス質被膜を積層形成することにより更に高度の耐酸化性能を付与することができる。ガラス質被膜は、例えば、Si、Al、B、Zrの少なくとも一種を含有するSi(OC2 5)4 、B(OC4 9)3 、Zr(OC4 9)4 等の金属アルコキシドにアルコールを加えて撹拌混合した溶液中に水を滴下して加水分解するアルコキシド法によりガラス前駆体溶液を作成し、SiC被膜を被覆したC/C複合基材をガラス前駆体溶液中に浸漬あるいは溶液を塗布する等の方法により含浸し、乾燥したのち500〜1000℃の温度で加熱処理する方法により形成することができる。
【0027】
【実施例】
以下、本発明の実施例を比較例と対比して具体的に説明する。
【0028】
実施例1
ポリアクリロニトリル系の炭素繊維〔東レ(株)製T900〕を体積含有率60%になるように三次元方向に織り込んだ三次元炭素繊維プリフォームを作成し、プリフォームにフェノール樹脂初期縮合物〔住友デュレズ(株)製 PR940〕を真空下で含浸した。この樹脂含浸炭素繊維プリフォームを電気オーブンに入れて、170℃の温度で加熱硬化して炭素繊維樹脂複合体を作製した。この複合体を窒素ガス雰囲気に保持した焼成炉に入れ、20℃/hrの昇温速度で1000℃に加熱して焼成炭化した。更にフルフリルアルコール初期縮合物を含浸し、再び焼成炉に移して50℃/hrの昇温速度で1000℃まで加熱して緻密化処理した。この緻密化処理を5回繰り返して行い、又3回目の緻密化処理後に上下両面をサンドペーパーにより研磨して、表層部を各200μm 削除した。次いで、焼成炉中で70℃/hrの昇温速度で2000℃に加熱して、縦横250mm、厚さ4mmのC/C複合基材を作製した。ただし引張試験片は、あらかじめ試験片形状に加工した。このC/C複合材の嵩密度をアルキメデス法により測定した。なお、以下の実施例、比較例においてもこのC/C複合基材の嵩密度をアルキメデス法により測定した。
【0029】
黒鉛粉末(平均粒子径 0.3μm)とフェノール樹脂初期縮合物〔住友デュレズ(株)製 PR940〕とを重量比で1:1の割合で混合し、三本ロールで充分に混練して黒鉛粉末とフェノール樹脂液との混合液を調製した。この混合液を上記C/C複合基材面に塗布して、電気オーブン中で170℃の温度で加熱硬化した後、窒素雰囲気中100℃/hrの昇温速度で2000℃の温度に加熱して焼成炭化し、C/C複合基材面に厚さ20μm の炭素質被膜を被着した。
【0030】
この炭素質被膜を被着したC/C複合基材を気孔率90%、気孔径10μm 、厚さ10mmの黒鉛繊維フェルトで被包し、珪素源として平均粒子径280μm の石英粉末と、炭素源として平均粒子径90μm のコークス粉末を3:1の重量比で混合した混合粉末を黒鉛繊維フェルトの上下に配置した状態で黒鉛容器に入れた。黒鉛容器を窒素ガス雰囲気に保持された加熱炉に移し50℃/hrの昇温速度で1850℃の温度に加熱し、30分間加熱反応させてコンバージョン法により、C/C複合基材の表面を傾斜機能組織のSiC被膜に転化した。
【0031】
このようにして製造したSiC被膜を形成したC/C複合材について、次の方法により引張強度、SiC被覆層の厚さ及び内部組織のSiC化された深さを測定し、また耐酸化性の評価を行って、その結果を表1に示した。
▲1▼引張強度:
厚さ2mm、長さ160mmの試料より掴み部分を長さ40mm、幅25.4mmとし、ゲージ部を長さ40mm、幅12.7mmのダンベル形状に加工して、引張強度測定用試験片とした。この試験片にクロスヘッド速度1.3mm/min で引張荷重を加え、破壊荷重を測定した。
▲2▼SiC被膜層の厚さ等:
SiCを被覆したC/C複合材の一部をダイヤモンドカッターで切断した断面をSEMで観察して、SiC被膜層の厚さ、ならびにC/C複合材の内部組織におけるSiC化された最大深さを測定した。
▲3▼耐酸化性試験:
SiCを被覆したC/C複合材を電気炉に入れて、大気雰囲気下に1400℃の温度に30分間保持した時の重量減少率を測定した。
【0032】
実施例2
Si (OC2 5)4 とエタノールをモル比1:12の割合で配合し、70℃の温度で還流撹拌したのち、Si (OC2 5)4 1モルに対して25モルの水と0.2モルのNH4 OHの混合液を撹拌しながら滴下し(pH12.0)、引き続き撹拌を継続して約0.2μm のSiO2 球状微粒子が均一に分散するサスペンジョンを作成し、このサスペンジョン中に前記実施例1で作製した炭化珪素被覆C/C材を浸漬して、15分間160Torrの圧力下に含浸処理を行った後、風乾した。次に、Si (OC2 5)4 とエタノールをモル比1:4.5の割合で配合し、室温で還流撹拌したのち、Si (OC2 5)4 1モルに対し2.5モルの水と0.03モルのHClの混合液を撹拌しながら滴下して(pH 3.0)、SiO2 ガラス前駆体溶液を調製した。このガラス前駆体溶液に、前記SiO2 微粒子層を形成したC/C複合材を浸漬し、160Torrの圧力下に15分間含浸処理したのち風乾し、その後500℃の温度で10分間加熱して、SiO2 のガラス質被膜(厚さ 5μm )を形成した。
【0033】
このようにして製造した実施例1のC/C複合材のSiC被膜の上にSiO2 のガラス質被膜を形成したC/C複合材について、実施例1と同一の方法により引張強度、SiC被膜層の厚さ及び内部組織のSiC化された深さを測定し、また耐酸化性試験を行って、その結果を表1に併載した。
【0034】
実施例3〜4
ポリアクリロニトリル系の平織炭素繊維布〔東レ(株)製T300〕にフェノール樹脂初期縮合物〔住友デュレズ(株)製 PR940〕をエタノールに溶解した溶液(濃度30Wt%)を塗布し、48時間風乾してプリプレグシートを作製した。このプリプレグシート16枚を積層してモールドに入れ、圧力20Kg/cm2 、温度150℃の条件で熱圧プレスして成形した。この成形体を170℃に加熱して硬化したのち、窒素ガス雰囲気に保持した焼成炉に入れ、20℃/hrの昇温速度で1000℃に加熱して焼成炭化した。更にフルフリルアルコール初期縮合物を含浸し、再び焼成炉に移して50℃/hrの昇温速度で1000℃まで加熱して緻密化処理した。この緻密化処理を5回繰り返して行い、又3回目の緻密化処理後に上下両面をサンドペーパーにより研磨して、表層部を各200μm 研削削除した。次いで、焼成炉中で70℃/hrの昇温速度で2000℃に加熱して、縦横250mm、厚さ4mmのC/C複合基材を作製した。
【0035】
このC/C複合基材に、黒鉛粉末(平均粒子径0.3μm)とフェノール樹脂初期縮合物〔住友デュレズ(株)製 PR940〕とを重量比で1:1の割合で混合し、三本ロールで充分に混練して調製した黒鉛粉末とフェノール樹脂液との混合液を異なる厚さに塗布した。次いで、電気オーブン中で170℃の温度で加熱硬化した後、窒素雰囲気中100℃/hrの昇温速度で2000℃の温度に加熱して焼成炭化し、C/C複合基材面に異なる膜厚で炭素質被膜を被着した。
【0036】
この炭素質被膜を被着したC/C複合基材を、実施例1と同一の方法により基材の表面を傾斜機能組織のSiC被膜に転化した。得られたSiC被膜を形成したC/C複合材について、実施例1と同一の方法により引張強度、SiC被膜層の厚さ及び内部組織のSiC化された深さを測定し、また耐酸化性試験を行ってその結果を表1に併載した。
【0037】
実施例5
緻密化処理を3回繰り返したほかは、全て実施例1と同一の方法によりC/C複合基材を作製し、その表面を傾斜機能組織のSiC被膜に転化した。得られたSiC被膜を形成したC/C複合材について、実施例1と同一の方法により引張強度、SiC被膜層の厚さ及び内部組織のSiC化された深さを測定し、また耐酸化性試験を行ってその結果を表1に併載した。
【0038】
比較例1〜2
実施例1と同一の方法により作製した炭素繊維樹脂複合体を、実施例1と同一の条件で焼成炭化及び緻密化処理した。得られたC/C複合基材に実施例1と同一の方法で調製した黒鉛粉末とフェノール樹脂液との混合液を異なる膜厚で塗布し、実施例1と同一の方法で焼成炭化して厚さ0.5μm および40μm の炭素質被膜を被着し、実施例1と同一の方法でコンバージョン法によりC/C複合基材の表面を傾斜機能組織のSiC被膜に転化した。このようにして製造したSiC被膜を形成したC/C複合材について、実施例1と同一の方法により引張強度、SiC被膜層の厚さ及び内部組織のSiC化された深さを測定しまた耐酸化性試験を行って、その結果を表1に併載した。
【0039】
比較例3
実施例1と同一の方法により作製した炭素繊維樹脂複合体を、実施例1と同一の条件で焼成炭化及び緻密化処理した。得られたC/C複合基材を研磨処理及び炭素質被膜を被着することなく、実施例1と同一の方法でコンバージョン法によりC/C複合基材の表面を傾斜機能組織のSiC被膜に転化した。このようにして製造したSiC被膜を形成したC/C複合材について、実施例1と同一の方法により引張強度、SiC被膜層の厚さ及び内部組織のSiC化された深さを測定しまた耐酸化性試験を行って、その結果を表1に併載した。
【0040】
比較例4
ポリアクリロニトリル系の炭素繊維〔東レ(株)製T900〕を体積含有率60%になるように三次元方向に織り込んだ三次元炭素繊維プリフォームを作成し、プリフォームにフェノール樹脂初期縮合物〔住友デュレズ(株)製 PR940〕を真空下で含浸した。この樹脂含浸炭素繊維プリフォームを電気オーブンに入れて、170℃の温度で加熱硬化して炭素繊維樹脂複合体を作製した。この複合体を窒素ガス雰囲気に保持した焼成炉に入れ、20℃/hrの昇温速度で1000℃に加熱して焼成炭化した。更にフルフリルアルコール初期縮合物を含浸し、再び焼成炉に移して50℃/hrの昇温速度で1000℃まで加熱して緻密化処理した。この緻密化処理を5回繰り返して行った後、焼成炉中で70℃/hrの昇温速度で2000℃に加熱して、縦横250mm、厚さ4mmのC/C複合基材を作製した。
【0041】
このC/C複合基材を加圧容器に入れて、10Torrの減圧下で脱気処理したのち、220℃の温度で加熱溶融した石炭ピッチ中に浸漬し、5Kg/cm2 の圧力を加えて10分間加圧含浸した。このようにして表層部に石炭ピッチを含浸したC/C複合基材を窒素ガス雰囲気に保持した焼成炉に移し、50℃/hrの昇温速度で2000℃まで加熱処理して易黒鉛化性炭素の被膜層を形成した。このC/C複合基材を実施例1と同一の方法でコンバージョン法によりC/C複合基材の表面を傾斜機能組織のSiC被膜に転化した。このようにして製造したSiC被膜を形成したC/C複合材について、実施例1と同一の方法により引張強度、SiC被膜層の厚さ及び内部組織のSiC化された深さを測定し、また耐酸化性試験を行って、その結果を表1に併載した。
【0042】
比較例5
緻密化処理を3回繰り返して行い、研磨処理をせずに、実施例3、4と同一の方法によりC/C複合基材を作製し、このC/C複合基材を研磨処理することなく、フェノール樹脂初期縮合物〔住友デュレズ(株)製 PR940〕のみを塗布した。次いで、電気オーブン中で170℃の温度で加熱硬化した後、窒素雰囲気中100℃/hrの昇温速度で2000℃の温度に加熱して焼成炭化し、C/C複合基材面に厚さ25μm のガラス状カーボン被膜を被着した。このガラス状カーボン被膜を被着したC/C複合基材を、実施例1と同一の方法により基材の表面を傾斜機能組織のSiC被膜に転化し、得られたSiC被膜を形成したC/C複合材について実施例1と同一の方法により引張強度、SiC被膜層の厚さ及び内部組織のSiC化された深さを測定し、また耐酸化性試験を行ってその結果を表1に併載した。
【0043】
【表1】

Figure 0003853035
【0044】
表1の結果から、実施例の耐酸化性C/C複合材はC/C複合基材面に緻密、強固で均一なSiC被膜が形成されて、内部組織がSiC化される現象が効果的に抑制されるので、引張強度が高く、酸化消耗による重量減少率も少ないことが判る。また酸化試験後のSiC被膜も剥離等の異常が認められず、安定である。特に、実施例1、2から明らかなように三次元織の炭素繊維クロスを用いたC/C複合材(3D−C/C複合材)の場合にも引張強度が高く、更にSiC被膜層の上にSiO2 のガラス質被覆層を積層形成した実施例2では耐酸化性能が一層向上することが認められる。これに対して、炭素質被膜の膜厚が薄い比較例1ではSiOガスの侵入が充分に抑止できないために耐酸化性や強度が劣り、また膜厚が厚い比較例2では炭素質被膜にクラックが発生するために耐酸化性や強度が劣る上にSiC被膜の剥離が生じている。炭素質被膜を被着しない比較例3では耐酸化性や強度が一層低位に有り、また石炭ピッチを炭化した易黒鉛化炭素の被膜層を被着した比較例4でも強度及び耐酸化性が低く、ガラス状カーボン被膜を形成被着した比較例5では被膜の収縮によりクラックが生じて、SiC被膜の侵入防止効果が充分でなく、強度低下、耐酸化性低下となっている。
【0045】
【発明の効果】
以上のとおり、本発明の耐酸化性C/C複合材によれば表面を研磨して平滑化したC/C複合基材に被着した炭素質粉末とガラス状炭素の複合構造からなる炭素質被膜を傾斜機能組織のSiC被膜に転化した被覆組織構造により、C/C複合基材の内部組織のSiC化が効果的に阻止されてC/C複合材の材質強度の低下が防止されるとともにC/C複合基材に緻密、強固で均一に形成されたSiC被膜層により優れた耐酸化性能を付与することが可能となる。更にガラス質被膜を積層形成することにより耐酸化性を一層向上することができる。また、本発明の耐酸化性C/C複合材の製造方法によれば、上記の材質強度が高く、耐酸化性に優れたC/C複合材を容易に製造することができる。したがって、本発明は材質強度ならびに耐酸化性能に優れた耐酸化性C/C複合材及びその製造方法として極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention has a high material strength and excellent oxidation resistance performance, in which a SiC coating layer having a functionally graded structure is stably and firmly formed on a surface layer portion of a C / C composite substrate (carbon fiber reinforced carbon composite substrate) by a conversion method. The present invention relates to an oxidation-resistant C / C composite material and a method for producing the same.
[0002]
[Prior art]
C / C composites have excellent specific strength and specific modulus, and have excellent heat resistance and chemical stability at high temperatures exceeding 1000 ° C. It is useful as a structural material used in. However, the C / C composite material has a defect inherent to the carbon material that is subject to material oxidation from around 500 ° C. in the atmosphere, and this is the biggest obstacle that limits the application of the C / C composite material. For this reason, many attempts have been made to improve the oxidation resistance by forming a coating layer having a high oxidation resistance on the surface of the C / C composite material. For example, SiC, Si Three N Four , ZrO 2 , Al 2 O Three Many methods have been developed for coating with a heat-resistant ceramic material such as the above. Among these, the coating of SiC is excellent in terms of technical properties and economy, and is practically used as the most suitable industrialization means.
[0003]
As a typical method of forming a SiC coating layer on the surface of a C / C composite material, a CVD method (chemical vapor deposition method) in which SiC generated by a gas phase reaction is directly deposited, and a C / C composite material A conversion method is known in which carbon is used as a reaction source to react with SiO gas to convert it into SiC. However, each of the SiC coating layers formed by these methods has advantages and disadvantages. That is, although the SiC coating layer formed by the former CVD method is excellent in denseness, if a thermal shock is applied in a relationship where the interface with the substrate is clearly separated, the difference in the coefficient of thermal expansion between the two There is a drawback that the delamination phenomenon tends to occur. This delamination phenomenon occurs mainly because the difference in thermal expansion coefficient between the C / C composite substrate and the SiC coating layer is large and the maximum strain cannot follow. It can be reduced if it is modified to approximate the thermal expansion coefficient of SiC. From such a viewpoint, a method of forming a pyrolytic carbon layer on the C / C composite substrate surface by vapor phase pyrolysis and then coating SiC by CVD or CVI (Japanese Patent Laid-Open No. 2-111681) is proposed. However, sufficient high-temperature oxidation resistance that meets the operational complexity cannot be expected.
[0004]
On the other hand, in the latter conversion method, the SiO gas generated by heating and reacting the silicon source and the carbon source reacts with the carbon structure constituting the C / C composite material, and the inside of the surface layer portion of the C / C composite material is reacted. Therefore, the formed silicon carbide layer exhibits a continuous functional gradient structure in which the degree of SiC conversion gradually decreases toward the inside of the material. Accordingly, there is no interlayer such as a silicon carbide layer formed by the CVD method, and there is an advantage that interlayer interface peeling does not occur even when subjected to thermal shock. However, on the other hand, there is a disadvantage that the density of the silicon carbide layer in the surface layer portion is lowered and sufficient oxidation resistance cannot be imparted.
[0005]
For this reason, there has been proposed an attempt to improve the oxidation resistance performance by forming a SiC layer on the surface of the C / C composite base material in advance by a conversion method and using this as a base coating layer to form various coating layers thereon. Yes. For example, the applicant of the present invention has a SiC coating layer, SiO on the surface of a C / C composite substrate. 2 Fine grain coating layer, SiO 2 Glass coating layer or B 2 O Three Glass coating layer or B 2 O Three ・ SiO 2 An oxidation resistant C / C material having a structure in which a glass coating layer is laminated in three layers and a manufacturing method thereof (Japanese Patent Laid-Open No. 4-42883) have been developed. -243989, JP-A-4-243990, JP-A-4-43366, JP-A-5-70228, JP-A-5-229886, JP-A-5-330961, JP-A-6-48872 No. 6, JP-A-6-144967, JP-A-6-247782, etc. have been developed and proposed.
[0006]
Although these multilayer coating means can effectively improve the oxidation resistance performance of the C / C composite material, the conversion to SiC by the conversion method constituting the base coating layer is essentially a C / C. There is a problem that the material strength of the composite substrate itself is impaired. In other words, in the coating process using the conversion method, the SiO gas permeates and diffuses from the surface of the C / C base material to the inside of the tissue to convert the C / C base material structure to SiC, but exists in the C / C base material. The SiO gas easily permeates and diffuses into a relatively deep substrate structure along the pores and cracks. Therefore, not only the surface of the C / C composite material but also SiC formation progresses to a relatively deep internal structure, and the base material structure, particularly the matrix carbon portion that is easily converted to SiC and the carbon fiber / matrix carbon interface portion, etc. are preferentially silicified. As a result, SiC is easily formed into a saw shape or an island shape, and as a result, a phenomenon of weakening the entire base material structure occurs. This tendency becomes more prominent when the shape of the C / C base material becomes larger or complicated.
[0007]
Thus, when a SiC coating layer is formed on the surface of a C / C composite substrate by a conversion method, the generated SiC coating layer is made uniform and dense to suppress the phenomenon that the internal structure of the substrate becomes SiC. Necessary for securing material strength. From this point of view, the present applicant has calcined and carbonized a carbon fiber composite resin molded body obtained by composite molding and curing of carbon fiber with a matrix resin in a state where a polyimide resin film is spread on the outer peripheral surface. The composite substrate is brought into contact with SiO gas produced by heating and reacting a mixed powder of a silicon source and a carbonaceous material in a non-oxidizing atmosphere at a temperature range of 1600 to 2000 ° C., and the surface of the C / C composite substrate is converted by the conversion method. Oxidation resistance in which a SiC coating layer is formed by a conversion method after forming a coating layer of graphitizable carbon on the surface layer of a C / C composite substrate (Japanese Patent Laid-Open No. 8-169786) or a method of forming a SiC coating layer Has developed a method for producing a conductive C / C composite (Japanese Patent Application No. 8-346730).
[0008]
According to these methods, a thin carbon layer formed by carbonization of a polyimide resin film interposed on the outer peripheral surface at the stage of a carbon fiber reinforced resin molded body, or coal on the surface layer portion of a C / C composite substrate Only the surface layer portion of the C / C composite substrate is converted into a dense SiC coating layer by the graphitizable carbon coating layer formed by carbonization of the system pitch, petroleum pitch, etc., and the C / C composite substrate The phenomenon in which SiO gas permeates and diffuses inside the tissue can be suppressed, and it is possible to suppress a decrease in material strength and to provide excellent oxidation resistance.
[0009]
[Problems to be solved by the invention]
However, as a result of further research conducted by the present inventors in order to impart a high level of oxidation resistance without impairing the excellent material properties of the C / C composite material, the above-mentioned JP-A-8-169786 and the patent In the technique of No. 8-346730, it is not sufficient to prevent the SiO gas from diffusing and penetrating into the internal structure, and in particular, a C / C composite material using a three-dimensional carbon fiber preform (3D-C / C In the case of a composite material), there is a problem that voids or the like existing at the interface or the periphery of the fiber in the Z-axis direction are easily converted to SiC by the silicidation reaction, and it is difficult to sufficiently suppress the weakening of the internal structure. Elucidated.
[0010]
As a result of further research on the mechanism of local penetration of SiO gas into the C / C composite substrate, the present inventors have refined the surface state of the C / C composite substrate and polished the surface. A smooth SiC coating is formed by applying a carbonaceous coating with a composite structure consisting of carbonaceous powder and glassy carbon on top of it, and a dense SiC coating is formed. I found out that it can be prevented.
[0011]
The present invention has been completed on the basis of the above knowledge, and its purpose is to provide a dense SiC coating layer on the surface layer portion of the C / C composite base material by a conversion method without causing a decrease in material strength due to the formation of SiC in the internal structure. It is an object to provide an oxidation-resistant C / C composite material having excellent strength and oxidation resistance, and a method for producing the same.
[0012]
[Means for Solving the Problems]
The oxidation-resistant C / C composite material according to the present invention for achieving the above object comprises a carbonaceous powder deposited on a C / C composite substrate whose surface is polished and a carbide of a thermosetting resin. A structural feature is that a coating structure is formed by converting a carbonaceous film having a thickness of 1 to 30 μm into a SiC film having a functionally graded structure.
[0013]
Also, the method for producing an oxidation resistant C / C composite material according to the present invention comprises: carbon fiber is composite-molded with a matrix resin, and the surface of the cured and fired carbonized C / C composite substrate is polished, and then carbonaceous powder And a mixture of a thermosetting resin liquid, calcined at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere to deposit a carbonaceous film having a thickness of 1 to 30 μm, and then a mixture of a silicon source and a carbon source Contacting the SiO gas produced by heating the powder with SiO gas in a non-oxidizing atmosphere at a temperature range of 1600 to 2000 ° C., and converting the surface of the C / C composite base material into a SiC film having a functionally gradient structure by a conversion method. This is a structural feature.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Carbon fibers used as reinforcements for C / C composites are oriented in one-dimensional or multi-dimensional directions, such as plain weave, satin weave and twill weave manufactured from various materials such as polyacrylonitrile, rayon and pitch. A fibrous body, felt, tow, etc. are used, and as the matrix resin, a highly carbonized liquid thermosetting resin such as phenol or furan, or a thermoplastic material such as tar pitch is used. Carbon fiber is fully impregnated with matrix resin by means of dipping, coating, etc., then semi-cured to form a prepreg, then laminated and pressed to form a composite, and then heated to completely cure the resin component. Thus, a C / C composite substrate is produced by heating to carbonization at 1000 to 2000 ° C. in a non-oxidizing atmosphere. The density of the C / C composite substrate is preferably high. For example, the bulk density is 1.60 g / cm. Three Although it is desirable that the density be lower than the desired bulk density, the surface of the C / C composite base material is repeatedly impregnated with matrix resin, cured, calcined and carbonized as necessary, and repeatedly densified with matrix carbon. To improve the organization of the department. Low bulk density, 1.60 g / cm Three If it is less than that, macropores that cannot be filled with the carbonaceous film remain, so that the penetration of SiO gas occurs through the macropores. The bulk density is 1.60 g / cm Three Although the macropores are greatly reduced as described above, since there are micropores, filling with a carbonaceous film is necessary.
[0015]
On the surface layer portion of the C / C composite substrate thus obtained, a dense carbon layer is formed, but fine cracks and the like are likely to occur, and it is difficult to sufficiently prevent the invasion of SiO gas. Even if the densification treatment is repeated, only the surface layer portion is densified, and voids, pores, cracks, etc. in the internal structure of the substrate remain. Therefore, if SiC is converted by the conversion method in this state, the peripheral part of voids, pores, cracks, etc. in the internal structure of the C / C composite base material is locally converted to SiC by SiO gas, and the material strength is reduced. Will be invited. Therefore, in the present invention, a part of the dense layer formed on the surface layer portion of the C / C composite substrate is removed by polishing treatment. In the polishing treatment, for example, the surface layer portion is removed and smoothed without damaging the base material by polishing paper, shot blasting, or the like. The polishing amount varies depending on the size, structure, dense layer thickness, etc. of the C / C composite base material, but it is usually about 50 to 500 μm, and the surface roughness by polishing should be smoothed to Rmax 50 μm or less. Is desirable.
[0016]
In the oxidation-resistant C / C composite material of the present invention, a carbonaceous film is deposited on the surface of the C / C composite substrate whose surface has been polished in this way, and this deposited carbonaceous film is converted by a conversion method. It is characterized in that a coating structure converted into a SiC film having a functionally gradient structure is formed.
[0017]
This carbonaceous film is composed of carbonaceous powder and a carbide of a thermosetting resin. As the carbonaceous powder, graphite powder, coke powder, carbon black or the like is used, and as the thermosetting resin, a thermosetting resin having a high carbonization rate such as phenol or furan is used. The carbonaceous film has a composite structure in which these carbonaceous powders are dispersed in glassy carbon that is a carbide of a thermosetting resin, and is firmly attached to the surface layer portion of the C / C composite substrate.
[0018]
Thus, the carbonaceous film composed of a composite structure of carbonaceous powder and glassy carbon is excellent in high strength and gas impermeability due to the composite carbon, and since the shrinkage during carbonization is small, the C / C composite base material Since the fine cracks and voids existing in the surface layer portion are clogged and firmly adhered to the C / C composite substrate surface, the penetration of SiO gas is effectively prevented. In this case, if the surface of the C / C composite substrate is inferior in smoothness and unevenness is present, the film thickness of the deposited carbonaceous film varies, and cracks are likely to occur. The The thickness of the carbonaceous film to be deposited is set in the range of 1 to 30 μm. This is because if the film thickness is less than 1 μm, the effect of preventing the invasion of SiO gas is small, and if it exceeds 30 μm, the carbonaceous film is liable to crack and peel from the C / C composite substrate. In addition, it is desirable to suppress variations in film thickness within ± 10 μm.
[0019]
The oxidation-resistant C / C composite material of the present invention has a structure in which a coating structure is formed by converting a carbonaceous film deposited on the surface layer portion of a C / C composite substrate into a SiC film having a functionally graded structure. The SiC film in which the carbonaceous film is converted and the SiC layer in which the carbon content of the C / C composite substrate surface layer is converted are bonded tightly and firmly in the surface layer portion of the C / C composite substrate, and the continuous gradient functional structure It is integrally formed as a SiC film. This coating structure prevents SiO gas from penetrating and diffusing into the C / C composite substrate, effectively suppressing the non-uniformity of SiC and SiC in the internal structure of the C / C composite substrate. It is possible to prevent the material strength from being lowered.
[0020]
Further, this SiC coating is used as a base coating layer on which SiO 2 is coated. 2 , Al 2 O Three , B 2 O Three , ZrO 2 When a glassy film made of a simple substance or a composite is laminated and formed, the oxidation resistance can be further improved by the gas barrier effect of the glassy film.
[0021]
The oxidation resistant C / C composite of the present invention can be produced by the following method. First, the surface of the C / C composite substrate produced by the above method is polished and smoothed. For the polishing treatment, an appropriate means such as polishing with abrasive paper or shot blasting is used, and the polishing range may be approximately 50 to 500 μm depending on the degree of densification of the surface layer portion of the C / C composite base material and the structure. Since the surface is smoothed by this polishing treatment, the carbonaceous film can be firmly applied, and it is desirable to smooth the surface to Rmax 50 μm or less.
[0022]
The polished C / C composite base material is a mixture of graphite powder, coke powder, carbon black or other carbonaceous powder (preferably having an average particle size of 5 μm or less) and a phenolic or furanic thermosetting resin liquid. By immersing in the mixed liquid or coating by a method such as applying the mixed liquid, and heat-treating in a non-oxidizing atmosphere at a temperature of 800 ° C. or higher, preferably 800 to 2000 ° C. A carbonaceous film having a composite structure of carbonaceous powder and glassy carbon is formed, and is firmly attached to the C / C composite substrate surface. The carbonaceous film is preferably deposited to a thickness of 1 to 30 μm, and the deposition process is repeated as necessary. When the film thickness of the carbonaceous film is less than 1 μm, the effect of preventing the penetration of SiO gas into the C / C composite base material is small when it is converted into the SiC film by the conversion method in the next step, whereas it exceeds 30 μm. This is because cracks are likely to occur in the carbonaceous film, and it is easy to peel from the C / C composite substrate. In addition, it is desirable to suppress the variation in film thickness within ± 10 μm.
[0023]
Next, the C / C composite base material coated with the carbonaceous film is coated with a SiC film formed on the surface of the base material by a conversion method. Examples of the silicon source that generates SiO gas include SiO, quartz, silica, and silica sand. 2 A material obtained by pulverizing the contained material to a particle size of 10 to 500 μm is used, and a carbonaceous powder such as coke, pitch, graphite, or carbon black having a particle size of 10 to 500 μm is used as the carbon source. The composition of the silicon source and the carbon source is determined in consideration of the surface area of each material powder. 2 : C is blended so that the weight ratio of C is in the range of 1: 1 to 5: 1. The blend is thoroughly mixed with a mixing device such as a V-type blender to make a uniform mixture, and then put into a reaction vessel composed of a high heat resistant material such as graphite.
[0024]
The above reaction vessel is installed in a closed heating furnace, and the C / C composite substrate is buried in the mixed powder of the silicon source and carbon source in the reaction vessel or set in the vicinity of the reaction vessel. Heat treatment is performed at a temperature of 1600 to 2000 ° C. while maintaining a reducing or neutral non-oxidizing atmosphere. During the treatment process, the SiO gas generated by the heat reduction reaction of the silicon source and the carbon source is converted to SiC while in contact with the surface layer surface of the C / C composite substrate, but the surface layer portion of the C / C composite substrate is covered. The uniform, dense and strong carbonaceous coating is applied to effectively prevent the phenomenon of diffusion and penetration of SiO gas by converting only the surface layer portion of the C / C composite base material into a SiC coating having a functionally graded structure. The
[0025]
Therefore, carbon in the peripheral part such as voids, pores, cracks, etc. in the internal structure of the C / C composite base material is locally converted to SiC by SiO gas, or the carbon fiber part in the internal structure of the C / C composite base material The phenomenon that the interface portion with the matrix carbon portion is locally converted to SiC by the SiO gas is suppressed, and the phenomenon that the internal structure of the C / C composite substrate is converted to SiC is prevented. Thus, the gradient functional structure in which the SiC layer in which the uniform and dense carbonaceous film of the C / C composite substrate surface layer portion is converted and the SiC layer in which the C / C composite substrate surface layer portion is converted is closely connected is formed. The SiC film is formed integrally, providing high oxidation resistance, and reducing the non-uniformity of SiC conversion and SiC conversion in the internal structure of the C / C composite substrate, resulting in reduced material strength Can be suppressed.
[0026]
In this way, the C / C composite base material whose surface is converted to a SiC coating having a functionally graded structure is obtained by using the SiC coating as a base coating layer and a SiO coating thereon. 2 , Al 2 O Three , B 2 O Three , ZrO 2 A higher level of oxidation resistance can be imparted by laminating and forming a glassy film composed of a simple substance or a composite of the above. The glassy film is, for example, Si (OC containing at least one of Si, Al, B, and Zr. 2 H Five ) Four , B (OC Four H 9 ) Three , Zr (OC Four H 9 ) Four A glass precursor solution is prepared by an alkoxide method in which alcohol is added to a metal alkoxide such as alcohol and mixed with stirring to hydrolyze it, and a C / C composite substrate coated with a SiC coating is prepared as a glass precursor solution. It can be formed by a method of impregnating by a method such as dipping or applying a solution therein and drying, followed by heat treatment at a temperature of 500 to 1000 ° C.
[0027]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
[0028]
Example 1
A three-dimensional carbon fiber preform was prepared by weaving polyacrylonitrile-based carbon fiber [T900 manufactured by Toray Industries, Inc.] in a three-dimensional direction so that the volume content was 60%. Durez Co., Ltd. PR940] was impregnated under vacuum. This resin-impregnated carbon fiber preform was put in an electric oven and heat-cured at a temperature of 170 ° C. to prepare a carbon fiber resin composite. This composite was placed in a firing furnace maintained in a nitrogen gas atmosphere, and heated to 1000 ° C. at a rate of temperature increase of 20 ° C./hr for firing and carbonization. Further, it was impregnated with an initial condensate of furfuryl alcohol, transferred again to a baking furnace, and heated to 1000 ° C. at a temperature increase rate of 50 ° C./hr for densification treatment. This densification treatment was repeated 5 times, and after the third densification treatment, the upper and lower surfaces were polished with sandpaper to remove 200 μm of the surface layer portion. Subsequently, it heated at 2000 degreeC with the temperature increase rate of 70 degreeC / hr in the baking furnace, and produced the C / C composite base material of length and width 250mm and thickness 4mm. However, the tensile test piece was processed into a test piece shape in advance. The bulk density of the C / C composite material was measured by Archimedes method. In the following examples and comparative examples, the bulk density of the C / C composite substrate was also measured by the Archimedes method.
[0029]
Graphite powder (average particle size 0.3 μm) and phenol resin initial condensate (PR940 manufactured by Sumitomo Durez Co., Ltd.) are mixed at a weight ratio of 1: 1, and sufficiently mixed with three rolls to obtain graphite powder. A mixed solution with a phenol resin solution was prepared. This mixed solution is applied to the surface of the C / C composite substrate and cured by heating in an electric oven at a temperature of 170 ° C., and then heated to a temperature of 2000 ° C. at a temperature increase rate of 100 ° C./hr in a nitrogen atmosphere. The carbonized film having a thickness of 20 μm was deposited on the surface of the C / C composite substrate.
[0030]
The C / C composite substrate coated with this carbonaceous film is encapsulated with graphite fiber felt having a porosity of 90%, a pore diameter of 10 μm and a thickness of 10 mm, and a quartz powder having an average particle diameter of 280 μm as a silicon source, and a carbon source A mixed powder prepared by mixing coke powder having an average particle diameter of 90 μm at a weight ratio of 3: 1 was placed in a graphite container in a state of being placed above and below the graphite fiber felt. The graphite container is transferred to a heating furnace held in a nitrogen gas atmosphere, heated to a temperature of 1850 ° C. at a temperature rising rate of 50 ° C./hr, heated for 30 minutes, and the surface of the C / C composite substrate is formed by a conversion method. It was converted into a SiC film having a functionally gradient structure.
[0031]
With respect to the C / C composite material with the SiC film thus produced, the tensile strength, the thickness of the SiC coating layer, and the SiC depth of the internal structure were measured by the following methods. Evaluation was performed and the results are shown in Table 1.
(1) Tensile strength:
From the sample with a thickness of 2 mm and a length of 160 mm, the gripping part is 40 mm long and 25.4 mm wide, and the gauge part is processed into a dumbbell shape having a length of 40 mm and a width of 12.7 mm to obtain a test piece for measuring tensile strength. . A tensile load was applied to the test piece at a crosshead speed of 1.3 mm / min, and the breaking load was measured.
(2) SiC coating layer thickness, etc .:
A cross-section of a part of the C / C composite coated with SiC was cut with a diamond cutter, and the thickness of the SiC coating layer as well as the maximum SiC depth in the internal structure of the C / C composite were observed by SEM. Was measured.
(3) Oxidation resistance test:
The weight reduction rate was measured when the C / C composite material coated with SiC was put in an electric furnace and kept at a temperature of 1400 ° C. for 30 minutes in an air atmosphere.
[0032]
Example 2
Si (OC 2 H Five ) Four And ethanol are mixed at a molar ratio of 1:12, stirred at reflux at a temperature of 70 ° C., and then Si (OC 2 H Five ) Four 25 moles of water and 0.2 moles of NH per mole Four The mixture of OH was added dropwise with stirring (pH 12.0), and stirring was continued to obtain about 0.2 μm SiO 2. 2 A suspension in which spherical fine particles are uniformly dispersed is prepared, and the silicon carbide-coated C / C material prepared in Example 1 is immersed in the suspension and impregnated at a pressure of 160 Torr for 15 minutes, and then air-dried. did. Next, Si (OC 2 H Five ) Four And ethanol are mixed at a molar ratio of 1: 4.5 and stirred at reflux at room temperature, and then Si (OC 2 H Five ) Four A mixture of 2.5 mol of water and 0.03 mol of HCl is added dropwise with stirring (pH 3.0) to 1 mol of SiO 2. 2 A glass precursor solution was prepared. In this glass precursor solution, the SiO 2 The C / C composite material on which the fine particle layer is formed is immersed, impregnated for 15 minutes under a pressure of 160 Torr, then air-dried, and then heated at a temperature of 500 ° C. for 10 minutes to form SiO 2 A glassy coating (thickness 5 μm) was formed.
[0033]
The SiO film on the SiC film of the C / C composite material of Example 1 manufactured in this way was used. 2 The C / C composite material with the glassy coating was measured for the tensile strength, the thickness of the SiC coating layer, and the depth of SiC in the internal structure by the same method as in Example 1, and the oxidation resistance test The results are also shown in Table 1.
[0034]
Examples 3-4
A solution (concentration 30 Wt%) of a phenol resin initial condensate [PR940 made by Sumitomo Durez Co., Ltd.] dissolved in ethanol was applied to a polyacrylonitrile plain woven carbon fiber cloth [T300 made by Toray Industries, Inc.] and air-dried for 48 hours. Thus, a prepreg sheet was prepared. Sixteen prepreg sheets are stacked and placed in a mold, and the pressure is 20 kg / cm. 2 Then, it was molded by hot-pressing at a temperature of 150 ° C. The molded body was cured by heating to 170 ° C., and then placed in a firing furnace maintained in a nitrogen gas atmosphere, and heated to 1000 ° C. at a rate of temperature increase of 20 ° C./hr for firing carbonization. Further, it was impregnated with an initial condensate of furfuryl alcohol, transferred again to a baking furnace, and heated to 1000 ° C. at a temperature increase rate of 50 ° C./hr for densification treatment. This densification treatment was repeated 5 times, and after the third densification treatment, the upper and lower surfaces were polished with sandpaper, and the surface layer portion was ground and removed by 200 μm. Subsequently, it heated at 2000 degreeC with the temperature increase rate of 70 degreeC / hr in the baking furnace, and produced the C / C composite base material of length and width 250mm and thickness 4mm.
[0035]
This C / C composite substrate was mixed with graphite powder (average particle size 0.3 μm) and phenol resin initial condensate (PR940 manufactured by Sumitomo Durez Co., Ltd.) at a weight ratio of 1: 1. Mixtures of graphite powder prepared by sufficiently kneading with a roll and a phenol resin liquid were applied to different thicknesses. Next, after heat-curing at a temperature of 170 ° C. in an electric oven, it is heated and calcined at a temperature of 2000 ° C. at a temperature increase rate of 100 ° C./hr in a nitrogen atmosphere, and a different film is formed on the C / C composite substrate surface. A carbonaceous film was applied in thickness.
[0036]
The C / C composite base material coated with the carbonaceous film was converted to a SiC film having a functionally graded surface by the same method as in Example 1. For the C / C composite material on which the obtained SiC film was formed, the tensile strength, the thickness of the SiC film layer, and the depth of the internal structure converted to SiC were measured by the same method as in Example 1, and the oxidation resistance The test was conducted and the results are shown in Table 1.
[0037]
Example 5
A C / C composite base material was produced by the same method as in Example 1 except that the densification treatment was repeated three times, and the surface thereof was converted into a SiC film having a functionally gradient structure. For the C / C composite material on which the obtained SiC film was formed, the tensile strength, the thickness of the SiC film layer, and the depth of the internal structure converted to SiC were measured by the same method as in Example 1, and the oxidation resistance The test was conducted and the results are shown in Table 1.
[0038]
Comparative Examples 1-2
The carbon fiber resin composite produced by the same method as in Example 1 was subjected to firing carbonization and densification treatment under the same conditions as in Example 1. A mixed liquid of graphite powder and phenol resin liquid prepared by the same method as in Example 1 was applied to the obtained C / C composite substrate with different film thicknesses, and calcined and carbonized by the same method as in Example 1. A carbonaceous film having a thickness of 0.5 μm and 40 μm was applied, and the surface of the C / C composite substrate was converted into a SiC film having a functionally graded structure by the conversion method in the same manner as in Example 1. For the C / C composite material with the SiC coating thus produced, the tensile strength, the thickness of the SiC coating layer, and the SiC depth of the internal structure were measured by the same method as in Example 1, and the acid resistance The test was performed and the results are shown in Table 1.
[0039]
Comparative Example 3
The carbon fiber resin composite produced by the same method as in Example 1 was subjected to firing carbonization and densification treatment under the same conditions as in Example 1. The surface of the C / C composite substrate was converted into a SiC film having a functionally graded structure by a conversion method in the same manner as in Example 1 without subjecting the obtained C / C composite substrate to a polishing treatment and a carbonaceous coating. Converted. For the C / C composite material with the SiC coating thus produced, the tensile strength, the thickness of the SiC coating layer, and the SiC depth of the internal structure were measured by the same method as in Example 1, and the acid resistance The test was performed and the results are shown in Table 1.
[0040]
Comparative Example 4
Created a three-dimensional carbon fiber preform in which polyacrylonitrile-based carbon fiber [T900 manufactured by Toray Industries, Inc.] was woven in a three-dimensional direction so as to have a volume content of 60%, and the phenol resin initial condensate [Sumitomo] Durez Co., Ltd. PR940] was impregnated under vacuum. This resin-impregnated carbon fiber preform was put in an electric oven and heat-cured at a temperature of 170 ° C. to prepare a carbon fiber resin composite. This composite was placed in a firing furnace maintained in a nitrogen gas atmosphere, and heated to 1000 ° C. at a rate of temperature increase of 20 ° C./hr for firing and carbonization. Further, it was impregnated with an initial condensate of furfuryl alcohol, transferred again to a baking furnace, and heated to 1000 ° C. at a temperature increase rate of 50 ° C./hr for densification treatment. This densification treatment was repeated 5 times, and then heated to 2000 ° C. at a temperature increase rate of 70 ° C./hr in a baking furnace to prepare a C / C composite substrate having a length and width of 250 mm and a thickness of 4 mm.
[0041]
This C / C composite substrate was put in a pressure vessel, degassed under a reduced pressure of 10 Torr, then immersed in a coal pitch heated and melted at a temperature of 220 ° C., and 5 kg / cm. 2 And pressure impregnation for 10 minutes. In this way, the C / C composite base material impregnated with coal pitch in the surface layer portion is transferred to a firing furnace maintained in a nitrogen gas atmosphere, and heat-treated up to 2000 ° C. at a temperature rising rate of 50 ° C./hr to easily graphitize. A carbon coating layer was formed. The surface of the C / C composite substrate was converted into a SiC film having a functionally gradient structure by the conversion method in the same manner as in Example 1 for this C / C composite substrate. With respect to the C / C composite material with the SiC coating thus produced, the tensile strength, the thickness of the SiC coating layer, and the SiC depth of the internal structure were measured by the same method as in Example 1. An oxidation resistance test was conducted and the results are shown in Table 1.
[0042]
Comparative Example 5
The densification process was repeated three times, and without performing the polishing process, a C / C composite substrate was prepared by the same method as in Examples 3 and 4, and this C / C composite substrate was not polished. Only the phenol resin initial condensate [PR940, manufactured by Sumitomo Durez Co., Ltd.] was applied. Next, after heat-curing at a temperature of 170 ° C. in an electric oven, the carbon is fired and carbonized by heating at a temperature increase rate of 100 ° C./hr in a nitrogen atmosphere to a thickness of C / C composite substrate. A 25 μm glassy carbon coating was applied. The C / C composite base material coated with the glassy carbon film was converted into a SiC film having a functionally graded structure by converting the surface of the base material into a SiC film having the gradient functional structure by the same method as in Example 1. For the C composite material, the tensile strength, the thickness of the SiC coating layer, and the depth of the internal structure made of SiC were measured by the same method as in Example 1, and the oxidation resistance test was conducted. The results are also shown in Table 1. did.
[0043]
[Table 1]
Figure 0003853035
[0044]
From the results in Table 1, the oxidation-resistant C / C composite material of the example is effective in forming a dense, strong and uniform SiC film on the surface of the C / C composite base material and converting the internal structure to SiC. Therefore, it can be seen that the tensile strength is high and the rate of weight reduction due to oxidation consumption is small. Also, the SiC film after the oxidation test is stable with no abnormality such as peeling. In particular, as is clear from Examples 1 and 2, the tensile strength is high even in the case of a C / C composite material (3D-C / C composite material) using a three-dimensional woven carbon fiber cloth. SiO on 2 In Example 2 in which the glassy coating layers were laminated, it was observed that the oxidation resistance was further improved. On the other hand, in Comparative Example 1 in which the film thickness of the carbonaceous film is thin, since the penetration of SiO gas cannot be sufficiently suppressed, the oxidation resistance and strength are inferior. In Comparative Example 2 in which the film thickness is thick, the carbonaceous film is cracked. Therefore, the oxidation resistance and strength are inferior, and the SiC film is peeled off. In Comparative Example 3 in which no carbonaceous coating is applied, the oxidation resistance and strength are lower, and in Comparative Example 4 in which a coating layer of graphitizable carbon obtained by carbonizing coal pitch is applied, the strength and oxidation resistance are low. In Comparative Example 5 in which the glassy carbon film was formed and deposited, cracks were generated due to the shrinkage of the film, and the effect of preventing the SiC film from entering was insufficient, resulting in a decrease in strength and a decrease in oxidation resistance.
[0045]
【The invention's effect】
As described above, according to the oxidation-resistant C / C composite material of the present invention, the carbonaceous material composed of a composite structure of carbonaceous powder and glassy carbon deposited on a C / C composite substrate whose surface has been polished and smoothed. The coating structure converted from a functionally graded SiC coating effectively prevents the internal structure of the C / C composite base material from being converted to SiC and prevents the material strength of the C / C composite material from being lowered. Excellent oxidation resistance can be imparted to the C / C composite substrate by a dense, strong and uniformly formed SiC coating layer. Furthermore, oxidation resistance can be further improved by laminating and forming a glassy coating. Moreover, according to the manufacturing method of the oxidation resistant C / C composite material of the present invention, the C / C composite material having high material strength and excellent oxidation resistance can be easily manufactured. Therefore, the present invention is extremely useful as an oxidation resistant C / C composite material excellent in material strength and oxidation resistance and a method for producing the same.

Claims (7)

表面が研磨処理により表層部が50〜500μm研磨除去および表面粗さR max が50μm以下に平滑化されたC/C複合基材に被着した炭素質粉末と熱硬化性樹脂の炭化物とからなる厚さ1〜30μmの炭素質被膜を傾斜機能組織のSiC被膜に転化した被覆組織構造が形成されてなることを特徴とする耐酸化性C/C複合材。The surface is composed of a carbonaceous powder and a carbide of a thermosetting resin deposited on a C / C composite base material having a surface layer polished by 50 to 500 μm by polishing and smoothed to a surface roughness R max of 50 μm or less. An oxidation-resistant C / C composite material, wherein a coating structure is formed by converting a carbonaceous film having a thickness of 1 to 30 µm into a SiC film having a functionally gradient structure. C/C複合基材がマトリックス炭素により嵩密度が1.60g/cm3 以上に緻密化処理されたものである、請求項1記載の耐酸化性C/C複合材。The oxidation-resistant C / C composite material according to claim 1, wherein the C / C composite base material is densified with a matrix carbon to a bulk density of 1.60 g / cm 3 or more. 傾斜機能組織のSiC被膜をベース被覆層とし、該ベース被覆層の上にSiO2 、Al2 3 、B2 3 、ZrO2 の単体または複合体からなるガラス質被膜が積層形成されてなる、請求項1又は2記載の耐酸化性C/C複合材。A SiC coating having a functionally graded structure is used as a base coating layer, and a glassy coating made of a simple substance or a composite of SiO 2 , Al 2 O 3 , B 2 O 3 , and ZrO 2 is laminated on the base coating layer. The oxidation-resistant C / C composite material according to claim 1 or 2. 炭素繊維をマトリックス樹脂とともに複合成形し、硬化および焼成炭化したC/C複合基材の表層部を50〜500μm研磨除去および表面粗さR max が50μm以下に平滑化する研磨処理した後、炭素質粉末と熱硬化性樹脂液との混合物を被覆して非酸化性雰囲気中800℃以上の温度で焼成炭化して厚さ1〜30μmの炭素質被膜を被着し、次いで珪素源と炭素源の混合粉末を加熱反応させて生成するSiOガスと非酸化性雰囲気中1600〜2000℃の温度域で接触させ、C/C複合基材の表面をコンバージョン法により傾斜機能組織のSiC被膜に転化することを特徴とする耐酸化性C/C複合材の製造方法。After carbon fiber is composite-molded with a matrix resin, the surface layer of the cured and baked carbonized C / C composite base material is polished and smoothed to 50 to 500 μm and the surface roughness R max is smoothed to 50 μm or less. A mixture of powder and thermosetting resin liquid is coated, calcined and carbonized at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere, and a carbonaceous film having a thickness of 1 to 30 μm is applied. Contact with SiO gas produced by heating the mixed powder in a non-oxidizing atmosphere at a temperature range of 1600 to 2000 ° C., and converting the surface of the C / C composite base material into a SiC film having a functionally gradient structure by a conversion method. A method for producing an oxidation-resistant C / C composite material. 炭素繊維をマトリックス樹脂とともに複合成形し、硬化および焼成炭化したC/C複合基材に、マトリックス樹脂を含浸し、硬化、焼成炭化する処理を複数回繰り返して嵩密度が1.60g/cm3 以上に緻密化する、請求項4記載の耐酸化性C/C複合材の製造方法。A bulk density of 1.60 g / cm 3 or more is obtained by repeatedly impregnating a matrix resin into a C / C composite base material obtained by composite molding of carbon fiber with a matrix resin, curing and firing carbonization, and then curing and firing carbonization multiple times. The method for producing an oxidation resistant C / C composite according to claim 4, wherein the oxidation resistant C / C composite is densified. C/C複合基材の表面に形成した傾斜機能組織のSiC被膜をベース被覆層とし、該ベース被覆層の上にSiO2 、Al2 3 、B2 3 、ZrO2 の単体または複合体からなるガラス質被膜層を積層形成する、請求項4又は5記載の耐酸化性C/C複合材の製造方法。A SiC coating having a functionally graded structure formed on the surface of a C / C composite substrate is used as a base coating layer, and a single or composite of SiO 2 , Al 2 O 3 , B 2 O 3 , and ZrO 2 is formed on the base coating layer. The method for producing an oxidation-resistant C / C composite material according to claim 4 or 5, wherein a glassy coating layer comprising: C/C複合基材の表面に形成した傾斜機能組織のSiC被膜をベース被覆層とし、該ベース被覆層にSi、Al、B、Zrの少なくとも一種を含む金属アルコキシドを加水分解して得られるガラス前駆体溶液を含浸し、次いで熱処理してSiO2 、Al2 3 、B2 3 、ZrO2 の単体または複合体からなるガラス質被膜層を積層形成する、請求項6記載の耐酸化性C/C複合材の製造方法。Glass obtained by hydrolyzing a metal alkoxide containing at least one of Si, Al, B, and Zr in the base coating layer using a SiC coating having a functionally graded structure formed on the surface of a C / C composite substrate as a base coating layer The oxidation resistance according to claim 6, wherein the precursor solution is impregnated and then heat treated to form a glassy coating layer composed of a simple substance or a composite of SiO 2 , Al 2 O 3 , B 2 O 3 and ZrO 2 . A method for producing a C / C composite material.
JP23027697A 1997-08-12 1997-08-12 Oxidation resistant C / C composite and method for producing the same Expired - Fee Related JP3853035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23027697A JP3853035B2 (en) 1997-08-12 1997-08-12 Oxidation resistant C / C composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23027697A JP3853035B2 (en) 1997-08-12 1997-08-12 Oxidation resistant C / C composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1160357A JPH1160357A (en) 1999-03-02
JP3853035B2 true JP3853035B2 (en) 2006-12-06

Family

ID=16905273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23027697A Expired - Fee Related JP3853035B2 (en) 1997-08-12 1997-08-12 Oxidation resistant C / C composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3853035B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145445A (en) * 2013-03-21 2013-06-12 清华大学 Preparation method for surface microstructure capable of improving oxidization resistance and ablation resistance of material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942379B (en) * 2012-11-14 2013-12-25 陕西科技大学 Preparation method of Y4Si3O12 crystal whisker toughening Y4Si3O12 composite coatings
CN104446666B (en) * 2014-11-11 2016-04-27 西北工业大学 A kind of restorative procedure of ceramic matric composite thermal damage crackle
CN112573943B (en) * 2020-12-09 2022-08-09 江西信达航科新材料科技有限公司 High-temperature-resistant composite coating and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145445A (en) * 2013-03-21 2013-06-12 清华大学 Preparation method for surface microstructure capable of improving oxidization resistance and ablation resistance of material
CN103145445B (en) * 2013-03-21 2014-07-02 清华大学 Preparation method for surface microstructure capable of improving oxidization resistance and ablation resistance of material

Also Published As

Publication number Publication date
JPH1160357A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
US8268393B2 (en) Method of fabricating a friction part out of carbon/carbon composite material
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3749268B2 (en) C / C composite oxidation resistant coating layer
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3461424B2 (en) Method for producing oxidation resistant C / C composite
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3853058B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH08169786A (en) Production of oxidation resistant carbon fiber reinforced carbon composite material
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JP3494533B2 (en) Method for producing oxidation resistant C / C composite
JP4152580B2 (en) Method for manufacturing and repairing C / C crucible for pulling Si single crystal
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof
JPH0826859A (en) Oxidation-resistant c/c composite material and method for producing the same
JPH06144968A (en) Production of oxidation resistant c/c composite material
JPH0570228A (en) Production of oxidation-resistant c/c composite material
JP3198157B2 (en) Method for producing oxidation resistant C / C composite
JPH0798703B2 (en) Method for producing heat resistant oxidation resistant carbon fiber reinforced carbon composite material
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees