JP2003192459A - Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon - Google Patents

Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon

Info

Publication number
JP2003192459A
JP2003192459A JP2001395767A JP2001395767A JP2003192459A JP 2003192459 A JP2003192459 A JP 2003192459A JP 2001395767 A JP2001395767 A JP 2001395767A JP 2001395767 A JP2001395767 A JP 2001395767A JP 2003192459 A JP2003192459 A JP 2003192459A
Authority
JP
Japan
Prior art keywords
carbon
fiber reinforced
composite material
carbon fiber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001395767A
Other languages
Japanese (ja)
Inventor
Keiichi Hirata
平田恵一
Katsuyoshi Hatakeyama
畠山克良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2001395767A priority Critical patent/JP2003192459A/en
Publication of JP2003192459A publication Critical patent/JP2003192459A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method which achieves low-cost production of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon which has excellent corrosion resistance and gas-sealing property. <P>SOLUTION: This production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon features that carbon fiber reinforced carbon composite material is impregnated with resin or pitch which turns to optically isotropic carbon by burning, is cured or is made infusible and is burned and, thereafter, hydrocarbon gas is flown as raw material gas and hydrogen gas is flown as carrier gas thereinto and the carbon fiber reinforced carbon composition material is coated with thermal decomposition carbon at a temperature of 1200-2000°C under the reduced pressure. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、熱分解炭素被覆炭素繊維強化炭
素複合材料の製造方法に関し、より詳しくは熱分解炭素
を被覆する前に、炭素繊維強化炭素複合材料に、焼成に
より光学的に等方性の炭素となる樹脂またはピッチを含
浸し、硬化、焼成した後、原料ガスである炭化水素ガス
とキヤリアガスである水素ガスを流入することにより耐
蝕性に優れた熱分解炭素被覆炭素繊維強化炭素複合材料
を安価に得ることができる製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a pyrolytic carbon-coated carbon fiber reinforced carbon composite material, and more particularly, to a carbon fiber reinforced carbon composite material which is optically isotropic by firing before being coated with the pyrolytic carbon. Carbon fiber reinforced carbon composite with excellent corrosion resistance by impregnating a resin or pitch that becomes a water-soluble carbon, hardening and firing, and then introducing a hydrocarbon gas as a raw material gas and a hydrogen gas as a carrier gas The present invention relates to a manufacturing method by which materials can be obtained at low cost.

【0002】[0002]

【従来の技術】熱分解炭素は、通常の炭素材料の持つ耐
熱性、低反応性、耐薬品性等に優れるばかりでなく、結
晶性が高く、熱伝導性の良好な優れた材料である。
2. Description of the Related Art Pyrolytic carbon is not only excellent in heat resistance, low reactivity and chemical resistance of ordinary carbon materials, but also high in crystallinity and excellent in thermal conductivity.

【0003】更に、熱分解炭素はガス透過性が著しく低
い材料のため、各種のガスのシ−ル性に優れた効果を発
揮する。
Further, since pyrolytic carbon is a material having extremely low gas permeability, it exerts an excellent effect on the sealing property of various gases.

【0004】このため、通常多孔質である炭素材料の表
面に熱分解炭素を被覆することにより、炭素材料へのガ
スの侵入を抑制できるので、熱分解炭素被覆炭素材料の
ガスシ−ル性に着目した用途への使用が期待されてい
る。
Therefore, by coating the surface of the carbon material, which is usually porous, with pyrolytic carbon, it is possible to suppress the invasion of gas into the carbon material. Therefore, pay attention to the gas sealing property of the carbon material coated with pyrolytic carbon. It is expected to be used for such purposes.

【0005】特に近年、シリコン単結晶引き上げ装置
(CZ炉)におけるルツボやヒ−タ−等の各種の部材に
おける優れた効果が期待されている。
Particularly, in recent years, excellent effects have been expected on various members such as crucibles and heaters in a silicon single crystal pulling apparatus (CZ furnace).

【0006】即ち、CZ炉においては揮発性の一酸化シ
リコン(SiOガス)が多量に発生する。このSiOは
多孔質である炭素材料内に侵入し、炭素材料を珪化す
る。その結果、炭素材料は劣化、消耗するため、この炭
素材料を用いたルツボやヒ−タ−等は、寿命が非常に短
くなる問題がある。
That is, a large amount of volatile silicon monoxide (SiO gas) is generated in the CZ furnace. This SiO penetrates into the porous carbon material and silicifies the carbon material. As a result, since the carbon material deteriorates and is consumed, there is a problem that the crucible, the heater and the like using this carbon material have a very short life.

【0007】そこで、多孔質の炭素材料の表面にガスシ
−ル性に優れた熱分解炭素の皮膜を被覆すると、炭素材
料へのSiOの侵入を抑制でき、炭素材料とSiOの反
応の進行を表面のみにとどめ、炭素材料の内部の珪化に
よる劣化や消耗を有効に防ぐことができる。このような
熱分解炭素被覆炭素材料を用いたルツボやヒ−タ−は、
その寿命を大幅に延長できるメリットがある。
Therefore, by coating the surface of the porous carbon material with a film of pyrolytic carbon having an excellent gas sealing property, the penetration of SiO into the carbon material can be suppressed, and the progress of the reaction between the carbon material and SiO can be prevented. However, it is possible to effectively prevent deterioration and consumption due to silicidation inside the carbon material. Crucibles and heaters using such pyrolytic carbon-coated carbon material,
There is a merit that the life can be greatly extended.

【0008】しかしながら、熱分解炭素被覆炭素材料の
基材として、一般の炭素材料、黒鉛材料は、脆弱材料で
あり、割損等の不具合が発生し易い。このため、熱分解
炭素を被覆してガスシ−ル性、耐蝕性を高めても、割損
等により寿命延長の効果が少なくなる問題がある。
However, as the base material of the pyrolytic carbon-coated carbon material, general carbon materials and graphite materials are brittle materials, and defects such as fracture are likely to occur. Therefore, even if the pyrolytic carbon is coated to improve the gas sealability and the corrosion resistance, there is a problem that the effect of extending the life is reduced due to cracking or the like.

【0009】上記のような問題を解決するために、一般
の炭素材料、黒鉛材料に替えて炭素繊維強化炭素複合材
料(C/C)が既に使用されている。C/Cは高温強度
に優れ、割損等のトラブルもほとんど発生しない。
In order to solve the above problems, carbon fiber reinforced carbon composite materials (C / C) have already been used in place of general carbon materials and graphite materials. C / C is excellent in high temperature strength and hardly causes troubles such as fracture.

【0010】このようにC/Cは優れた炭素材料である
が、多孔質の材料である点は同様で、しかもそのポア径
が、一般の炭素材料に比べて大きいため、熱分解炭素を
被覆した場合、その被覆効果が十分にならない欠点があ
る。
As described above, C / C is an excellent carbon material, but is similar in that it is a porous material, and its pore diameter is larger than that of a general carbon material, so that it is coated with pyrolytic carbon. In that case, there is a drawback that the coating effect is not sufficient.

【0011】上記のような欠点を克服するために、例え
ば、特開平10−59795号には、熱分解炭素の沈積
速度を著しく遅くし、C/Cのポア内を熱分解炭素で充
填する方法が記載されている。しかし、この方法では、
熱分解炭素の沈積速度が著しく遅いため、最終的に得ら
れるC/Cのコストが非常に高価になる欠点がある。さ
らに、熱分解炭素はSiOと反応し易い炭素に分類され
るので、CZ炉用の部材等の用途では、耐蝕性の効果が
十分にならない。このように、従来の技術では、熱分解
炭素被覆の効果を十分にして、安価にC/Cを製造する
ことは困難である。
In order to overcome the above-mentioned drawbacks, for example, in Japanese Patent Laid-Open No. 10-59795, a method of significantly slowing the deposition rate of pyrolytic carbon and filling the pores of C / C with pyrolytic carbon is disclosed. Is listed. But with this method,
Since the deposition rate of pyrolytic carbon is remarkably slow, the C / C finally obtained is very expensive. Further, since pyrolytic carbon is classified into carbon that easily reacts with SiO, the effect of corrosion resistance is not sufficient in applications such as CZ furnace members. As described above, according to the conventional technique, it is difficult to produce C / C at a low cost by sufficiently enhancing the effect of the pyrolytic carbon coating.

【0012】[0012]

【発明の課題】上記のような状況に鑑み、本発明者は、
耐蝕性、ガスシ−ル性に優れた熱分解炭素被覆炭素繊維
強化炭素複合材料を安価に製造できる方法を提供する。
In view of the above situation, the present inventor has
Provided is a method for inexpensively producing a pyrolytic carbon-coated carbon fiber reinforced carbon composite material having excellent corrosion resistance and gas sealability.

【0013】[0013]

【課題解決の手段】上記のような課題を解決するため
に、本発明者は、鋭意検討した結果、以下の(1)〜
(3)に着眼して本発明を完成した。 (1)熱硬化性樹脂等の焼成により得られる光学的等方
性炭素は光学的に異方性の炭素よりもSiOと反応しに
くい。 (2)熱硬化樹脂等による炭素繊維強化炭素複合材料の
ポアの充填は比較的安価で容易に可能である。 (3)熱硬化樹脂等でポア内を充填した炭素繊維強化炭
素複合材料の表面を熱分解炭素で被覆すると、ガスシ−
ル性、耐蝕性に優れた効果を発揮する。
In order to solve the above problems, the inventor of the present invention has made extensive studies, and as a result, the following (1) to
The present invention was completed focusing on (3). (1) Optically isotropic carbon obtained by firing a thermosetting resin or the like is less likely to react with SiO than optically anisotropic carbon. (2) The filling of the pores of the carbon fiber reinforced carbon composite material with a thermosetting resin or the like is relatively inexpensive and easy. (3) When the surface of the carbon fiber reinforced carbon composite material whose pores are filled with a thermosetting resin or the like is coated with pyrolytic carbon, a gas sheet
It has excellent resistance and corrosion resistance.

【0014】即ち、本発明は、炭素繊維強化炭素複合材
料に焼成により光学的に等方性の炭素となる樹脂または
ピッチを含浸し、硬化または不融化して焼成した後に、
減圧下、1200〜2000℃で、原料ガスとして炭化
水素ガス、キャリア−ガスとして水素ガスを流入し、熱
分解炭素を被覆する熱分解炭素被覆炭素繊維強化炭素複
合材の製造方法である。以下に本発明を詳細に説明す
る。
That is, according to the present invention, a carbon fiber-reinforced carbon composite material is impregnated with a resin or pitch which becomes carbon which is optically isotropic by firing, and after curing or infusibilizing and firing,
It is a method for producing a pyrolytic carbon-coated carbon fiber reinforced carbon composite material, in which a hydrocarbon gas as a raw material gas and a hydrogen gas as a carrier gas are introduced at 1200 to 2000 ° C. under reduced pressure to coat pyrolytic carbon. The present invention will be described in detail below.

【0015】まず、基材となる炭素繊維強化炭素複合材
料(C/C)は、原料となる炭素繊維の種類、炭素繊維
を結合する樹脂の種類、製造方法、緻密化材等に関わら
ず、ほぼすべてのC/Cを使用できる。
First, the carbon fiber reinforced carbon composite material (C / C) as the base material is irrespective of the type of carbon fiber as a raw material, the type of resin binding the carbon fiber, the manufacturing method, the densifying material, etc. Almost any C / C can be used.

【0016】C/Cは一般に多孔性で多数のポアを有
し、かつそのポア径の大きい材料である。そこで、本発
明では、C/Cに熱分解炭素を被覆する前に、含浸材を
含浸して、ポアを充填することを特徴としている。
C / C is generally porous and has a large number of pores and has a large pore diameter. Therefore, the present invention is characterized by impregnating the impregnating material and filling the pores before the C / C is coated with the pyrolytic carbon.

【0017】含浸材は、焼成により光学的に等方性の炭
素となる樹脂またはピッチを使用する。光学的に異方性
の材料よりも等方性の材料の方が、SiOと反応しにく
い等、耐蝕性に優れた効果を発揮する。樹脂では、フェ
ノ−ル樹脂、フラン樹脂等の熱硬化性樹脂が、焼成によ
り光学的に等方性の炭素を生成でき好適である。ピッチ
では、不融化等により固相炭化し、光学的に等方性の炭
素を生成するものであれば使用できる。
As the impregnating material, a resin or pitch which becomes an optically isotropic carbon by firing is used. An isotropic material exhibits an effect of excellent corrosion resistance, such as being less likely to react with SiO, than an optically anisotropic material. As the resin, a thermosetting resin such as a phenol resin or a furan resin is preferable because it can form an optically isotropic carbon by firing. Any pitch can be used as long as it is solidified by infusibilization to produce optically isotropic carbon.

【0018】含浸材の含浸量は、C/Cの焼成後の重量
増加量が含浸前に比べて3%以上になるようにする。重
量増加量が3%未満では、C/Cのポアへの樹脂または
ピッチの充填量が不十分となり、耐蝕性が向上しない。
The impregnating amount of the impregnating material is such that the weight increase amount after C / C firing is 3% or more as compared with that before impregnation. If the amount of weight increase is less than 3%, the amount of resin or pitch filled in the C / C pores will be insufficient, and the corrosion resistance will not improve.

【0019】含浸後は、硬化または不融化し、焼成す
る。樹脂を含浸した場合は、100〜250℃で加熱し
て硬化する。またピッチが含浸材の場合は、ピッチが後
の焼成の工程で軟化、溶融しないように、通常、空気
中、250〜350℃で不融化をする。硬化、不融化後
は焼成するが、焼成の温度は特に限定されず、通常80
0℃以上で十分である。
After the impregnation, it is hardened or made infusible and then baked. When impregnated with a resin, it is cured by heating at 100 to 250 ° C. When the pitch is an impregnated material, it is usually infusibilized at 250 to 350 ° C. in air so that the pitch does not soften and melt in the subsequent firing step. After curing and infusibilization, firing is performed, but the firing temperature is not particularly limited and is usually 80
A temperature of 0 ° C or higher is sufficient.

【0020】本発明では、上記のように、C/Cに熱分
解炭素を被覆する前に、含浸材を含浸し、硬化または不
融化して、焼成することが特徴だが、焼成後にC/Cを
製品形状に加工し、純化処理することが好ましい。純化
処理は、通常ハロゲンガス雰囲気中、1500℃以上で
熱処理をする。
As described above, the present invention is characterized in that the C / C is impregnated with an impregnating material, cured or infusibilized, and fired before coating C / C with C / C after firing. Is preferably processed into a product shape and purified. The purification treatment is usually a heat treatment at 1500 ° C. or higher in a halogen gas atmosphere.

【0021】上記のように加工、純化した炭素材料に熱
分解炭素を被覆する。被覆には、原料ガスにメタン、エ
タン、プロパン、ブタン等から選ばれる炭化水素ガスを
使用し、キャリアガスとして水素ガスを使用する。
The carbon material processed and purified as described above is coated with pyrolytic carbon. For coating, a hydrocarbon gas selected from methane, ethane, propane, butane, etc. is used as a source gas, and hydrogen gas is used as a carrier gas.

【0022】被覆の条件は、減圧下において1200℃
〜2000℃で、より好ましくは1300℃〜1700
℃で熱処理するものとする。熱処理の温度が1200℃
未満では、熱分解炭素の皮膜が多孔質化し、ガスシ−ル
性が不良となり、2000℃を超えると、熱分解炭素の
結晶性が向上し、SiOとの反応が進行しやすくなり、
いずれも好ましくない。
The coating conditions are 1200 ° C. under reduced pressure.
~ 2000 ° C, more preferably 1300 ° C-1700
It shall be heat treated at ° C. Heat treatment temperature is 1200 ℃
If it is less than 200 ° C., the film of pyrolytic carbon becomes porous and the gas sealability becomes poor.
Neither is preferable.

【0023】以上のような方法により、耐蝕性、ガスシ
−ル性に優れた熱分解炭素被覆炭素繊維強化炭素複合材
料を安価に製造することができる。
By the method as described above, a pyrolytic carbon-coated carbon fiber reinforced carbon composite material excellent in corrosion resistance and gas sealability can be manufactured at low cost.

【0024】[0024]

【発明の効果】本発明によれば、ガスシ−ル性、耐蝕性
にすぐれた熱分解炭素被覆炭素繊維強化炭素複合材料を
安価に製造することができる。特にシリコン単結晶引き
上げ装置のルツボ等に優れた効果を発揮する熱分解炭素
被覆炭素繊維強化炭素複合材料を安価に提供でき工業上
有用なものである。
According to the present invention, a pyrolytic carbon-coated carbon fiber reinforced carbon composite material excellent in gas sealability and corrosion resistance can be manufactured at low cost. In particular, a pyrolytic carbon-coated carbon fiber reinforced carbon composite material that exhibits excellent effects in a crucible of a silicon single crystal pulling apparatus can be provided at low cost and is industrially useful.

【0025】[0025]

【実施例および比較例】[Examples and Comparative Examples]

【実施例1】直径800mm、高さ500mmの炭素繊
維強化炭素複合材料(製品名:CCM−190C 日本
カ−ボン(株)製)にメタノ−ルで希釈した市販のフェ
ノ−ル樹脂を含浸し、200℃で硬化した後、窒素雰囲
気中1000℃で焼成した。焼成後の重量増加量は含浸
前に比べて4.5%であった。これをルツボ形状に最終
加工した後、塩化水素雰囲気中、2000℃で熱処理
し、高純度の炭素繊維強化炭素複合材製ルツボを得た。
このルツボに、1500℃、減圧100torrにおい
て、プロパンを2L/min,水素ガスを30L/mi
nで流入し、熱分解炭素を被覆した炭素繊維強化炭素複
合材製ルツボを得た次に得られたルツボから50×10
0mmのサイズの試料を切り出し、これを温度1500
℃、10時間、30torr,アルゴンガス気流中で一
酸化珪素と反応させ、その断面を偏光顕微鏡で観察し
た。生成した珪化層の厚みは20μmであった。
Example 1 A carbon fiber reinforced carbon composite material (product name: CCM-190C manufactured by Nippon Carbon Co., Ltd.) having a diameter of 800 mm and a height of 500 mm was impregnated with a commercially available phenol resin diluted with methanol. After hardening at 200 ° C., it was baked at 1000 ° C. in a nitrogen atmosphere. The amount of increase in weight after firing was 4.5% compared to that before impregnation. After this was finally processed into a crucible shape, it was heat-treated at 2000 ° C. in a hydrogen chloride atmosphere to obtain a high-purity carbon fiber-reinforced carbon composite crucible.
Propane 2 L / min and hydrogen gas 30 L / mi were added to the crucible at 1500 ° C. under a reduced pressure of 100 torr.
n was obtained and a pyrolysis carbon-coated carbon fiber-reinforced carbon composite crucible was obtained.
A sample with a size of 0 mm is cut out and the temperature is set to 1500.
The reaction was performed with silicon monoxide at 30 ° C. for 10 hours at 30 torr in an argon gas stream, and the cross section was observed with a polarizing microscope. The thickness of the generated silicidation layer was 20 μm.

【0026】[0026]

【比較例1】実施例1においてフェノ−ル樹脂の含浸を
行わないこと以外はすべて実施例1と同様に実施して熱
分解炭素を被覆した炭素繊維強化炭素複合材製ルツボを
得た。このルツボから実施例1と同様のサイズの試料を
切り出し、これを、実施例1と同様の条件で、一酸化珪
素と反応させ、生成した珪化層の厚みを測定した。その
結果、珪化層の厚みは平均30μmであったが、一部に
100μmの珪化層の部分が認めれれた。
Comparative Example 1 A crucible made of a carbon fiber reinforced carbon composite material coated with pyrolytic carbon was obtained in the same manner as in Example 1 except that the phenol resin was not impregnated. A sample of the same size as in Example 1 was cut out from this crucible, and this was reacted with silicon monoxide under the same conditions as in Example 1 to measure the thickness of the silicified layer formed. As a result, the thickness of the silicified layer was 30 μm on average, but a part of the silicified layer of 100 μm was recognized.

【0027】[0027]

【比較例2】実施例1において熱分解炭素の沈積温度を
1100℃とする以外は、すべて実施例1と同様にして
熱分解炭素で被覆した炭素繊維強化炭素複合材製ルツボ
を得た。このルツボから実施例1と同様のサイズの試料
を切り出し、実施例1と同様の条件で一酸化珪素と反応
させ生成した珪化層の厚みを測定した結果、珪化層の厚
みは90μmであった。
Comparative Example 2 A crucible made of a carbon fiber reinforced carbon composite material coated with pyrolytic carbon was obtained in the same manner as in Example 1 except that the deposition temperature of pyrolytic carbon was set to 1100 ° C. A sample having the same size as in Example 1 was cut out from this crucible, and the thickness of the silicified layer produced by reacting with silicon monoxide under the same conditions as in Example 1 was measured. As a result, the thickness of the silicified layer was 90 μm.

【0028】[0028]

【比較例3】実施例1に於ける熱分解炭素の沈積温度を
2200℃とする以外はすべて実施例1と同様にして、
熱分解炭素で被覆した炭素繊維強化炭素複合材料を得
た。このルツボから実施例1と同様のサイズの試料を切
り出し、実施例1と同様の条件で一酸化珪素と反応させ
生成した珪化層の厚みを測定した結果、珪化層の厚み
は、50μmであった。
[Comparative Example 3] The same procedure as in Example 1 was repeated except that the deposition temperature of pyrolytic carbon in Example 1 was set to 2200 ° C.
A carbon fiber reinforced carbon composite material coated with pyrolytic carbon was obtained. A sample of the same size as in Example 1 was cut out from this crucible, and the thickness of the silicified layer formed by reacting with silicon monoxide under the same conditions as in Example 1 was measured. As a result, the thickness of the silicified layer was 50 μm. .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化炭素複合材料に、焼成に
より光学的に等方性の炭素となる樹脂またはピッチを含
浸し、硬化または不融化して焼成した後、減圧下、12
00〜2000℃で原料ガスとして炭化水素ガスを、キ
ャリア−ガスとして水素ガスを流入させ、熱分解炭素を
被覆することを特徴とする熱分解炭素被覆炭素繊維強化
炭素複合材料の製造方法。
1. A carbon fiber-reinforced carbon composite material is impregnated with a resin or pitch which becomes an optically isotropic carbon by firing, and is cured or infusibilized and fired, and then under reduced pressure.
A method for producing a pyrolytic carbon-coated carbon fiber reinforced carbon composite material, which comprises flowing a hydrocarbon gas as a raw material gas and a hydrogen gas as a carrier gas at 00 to 2000 ° C. to coat the pyrolytic carbon.
【請求項2】 請求項1において樹脂またはピッチの
含浸量を、炭素繊維強化炭素複合材料の焼成後の重量増
加量が含浸前に比べて3%以上になるようにすることを
特徴とする熱分解炭素被覆炭素繊維強化炭素複合材料の
製造方法。
2. The heat according to claim 1, wherein an impregnated amount of the resin or pitch is set such that a weight increase amount of the carbon fiber reinforced carbon composite material after firing is 3% or more as compared with that before impregnation. A method for producing a decomposed carbon-coated carbon fiber reinforced carbon composite material.
【請求項3】 請求項1または請求項2において、焼
成後に、炭素繊維強化炭素複合材料を製品形状に加工
し、熱分解炭素を被覆する前に、ハロゲンガス雰囲気
中、1500℃以上で熱処理し、純化することを特徴と
する熱分解炭素被覆炭素繊維強化炭素複合材料の製造方
法。
3. The carbon fiber reinforced carbon composite material according to claim 1 or 2, after being fired, processed into a product shape, and heat-treated at a temperature of 1500 ° C. or higher in a halogen gas atmosphere before coating with pyrolytic carbon. A method for producing a pyrolytic carbon-coated carbon fiber reinforced carbon composite material, which comprises purifying.
JP2001395767A 2001-12-27 2001-12-27 Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon Withdrawn JP2003192459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001395767A JP2003192459A (en) 2001-12-27 2001-12-27 Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001395767A JP2003192459A (en) 2001-12-27 2001-12-27 Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon

Publications (1)

Publication Number Publication Date
JP2003192459A true JP2003192459A (en) 2003-07-09

Family

ID=27602058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001395767A Withdrawn JP2003192459A (en) 2001-12-27 2001-12-27 Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon

Country Status (1)

Country Link
JP (1) JP2003192459A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096659A (en) * 2004-09-28 2006-04-13 General Electric Co <Ge> Method for manufacturing high performance ceramic matrix composite material at low cost
JP2014084264A (en) * 2012-10-26 2014-05-12 Shin Etsu Chem Co Ltd Member for silicon oxide production device, silicon oxide production device and method of forming coat
CN115894039A (en) * 2022-10-25 2023-04-04 西北工业大学 Special-shaped carbon fiber reinforced composite material component with partitioned modification and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096659A (en) * 2004-09-28 2006-04-13 General Electric Co <Ge> Method for manufacturing high performance ceramic matrix composite material at low cost
JP2014084264A (en) * 2012-10-26 2014-05-12 Shin Etsu Chem Co Ltd Member for silicon oxide production device, silicon oxide production device and method of forming coat
CN115894039A (en) * 2022-10-25 2023-04-04 西北工业大学 Special-shaped carbon fiber reinforced composite material component with partitioned modification and preparation method thereof
CN115894039B (en) * 2022-10-25 2023-11-21 西北工业大学 Partition modified special-shaped carbon fiber reinforced composite material member and preparation method thereof

Similar Documents

Publication Publication Date Title
CN1189430C (en) Composite carbonaceous heat insualtor and its prepn.
CN108385208B (en) B-Si doped asphalt-based carbon fiber and preparation method thereof
JP2001519319A (en) High thermal conductivity carbon / carbon honeycomb structure
JPH1059795A (en) Carbon fiber reinforced carbon composite material crucible for pulling up semiconductor single crystal
JP2002145693A (en) C/c crucible for pulling up single crystal and its manufacturing method
CN106087112B (en) A kind of preparation method of continuous SiC fiber of the surface with carbon-coating
JP2003192459A (en) Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon
JP4925084B2 (en) Synthesis of silicon carbide (SiC) thin films using silicon-based mixed polymer materials
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JPH1017382A (en) Production of silicon carbide formed body
JPH10172738A (en) Glass like carbon heating element
JP2023006364A (en) C/C COMPOSITE AND Si SINGLE CRYSTAL PULLING-UP FURNACE COMPONENT
JP2006131451A (en) Crucible for drawing-up single crystal and its manufacturing method
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
CN107338508B (en) Method for synthesizing ultralong solid carbon fiber by autocatalysis chemical vapor deposition
WO2024121901A1 (en) C/C COMPOSITE, AND MEMBER FOR Si SINGLE CRYSTAL PULLING-UP FURNACE
KR101684600B1 (en) Manufacturing method for silicon carbide fiber and silicon carbide fiber thereof
JP2000239079A (en) Carbon material having denified surface
JPH09295889A (en) Seed chuck of apparatus for pulling up semiconductor single crystal
JP4589472B2 (en) Method for producing carbon fiber reinforced carbon material with reduced reactivity with silicon
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JP2002173392A (en) C/c member for single crystal pulling device
JP3461415B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH0769763A (en) Anti-oxidation treatment of carbon fiber-reinforced carbon material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301