JPH03260109A - Gas phase grown carbon fiber-mixed organic fiber - Google Patents

Gas phase grown carbon fiber-mixed organic fiber

Info

Publication number
JPH03260109A
JPH03260109A JP2051809A JP5180990A JPH03260109A JP H03260109 A JPH03260109 A JP H03260109A JP 2051809 A JP2051809 A JP 2051809A JP 5180990 A JP5180990 A JP 5180990A JP H03260109 A JPH03260109 A JP H03260109A
Authority
JP
Japan
Prior art keywords
fiber
grown carbon
diameter
whiskers
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2051809A
Other languages
Japanese (ja)
Inventor
Munehiro Ishioka
宗浩 石岡
Toshihiko Okada
敏彦 岡田
Kenji Matsubara
健次 松原
Hiroshi Takeda
弘 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2051809A priority Critical patent/JPH03260109A/en
Publication of JPH03260109A publication Critical patent/JPH03260109A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject fiber having high strength, high elastic modulus and low thermal shrinkability, readily and homogeneously dispersed in a matrix such as mortar and employed in FRP by compounding gas phase-grown carbon whiskers each having a length/diameter ratio within a specific range and a diameter of <= a specified valve. CONSTITUTION:The objective fiber contains 1.5-80wt.%, preferably 2-50wt.%, of gaseous phase-grown carbon whiskers each having a length/diameter ratio of 10-5000, preferably 50-3000, and a diameter of <=5mum, the whiskers being drawn preferably at least 1.15 times and being arranged toward the axis of the fiber, and has preferably a diameter of 15-500mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化プラスチック、繊維強化セメント等に
利用しうる気相成長カーボンウィスカー混入有機繊維に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to organic fibers mixed with vapor-grown carbon whiskers that can be used in fiber-reinforced plastics, fiber-reinforced cement, and the like.

〔従来の技術] 有機繊維中に無機物の繊維を混入して紡糸し繊維化する
ことは既に知られている。例えば特公昭52−3060
8号公報には、有機繊維中に長さ/直径の比がlO〜1
000でかつ直径が20μ以下である繊維状無機物質が
3〜40重量%含まれ、該繊維状無機物質が少なくとも
2倍の延伸によって該有機繊維の軸方向にほぼ配向して
いるものが開示されている。
[Prior Art] It is already known to mix inorganic fibers into organic fibers and spin them into fibers. For example, Tokuko Sho 52-3060
No. 8 discloses that organic fibers have a length/diameter ratio of lO to 1.
000 and a diameter of 20μ or less, the fibrous inorganic material is approximately oriented in the axial direction of the organic fiber by being stretched at least twice as much. ing.

また、特開昭52−121523号公報には、多数のウ
ィスカーと溶融マトリックス材の混合体を細孔ノズルに
連続して導入し上記細孔ノズル付近の上記混合体中に流
速勾配を生せしめることにより上記溶融マトリックス材
の中にウィスカーを一様に配向させる段階と、上記細孔
ノズルを出た上記溶融マトリックス材と上記ウィスカー
よりなる繊維状の混合体を冷却する段階よりなるウィス
カー強化混合繊維の製造方法が開示されている。
Furthermore, JP-A-52-121523 discloses that a mixture of a large number of whiskers and a molten matrix material is continuously introduced into a fine-pore nozzle to create a flow velocity gradient in the mixture near the fine-pore nozzle. of whisker-reinforced mixed fibers, comprising the steps of uniformly orienting whiskers in the molten matrix material by a method, and cooling a fibrous mixture of the molten matrix material and the whiskers that has exited the pore nozzle. A manufacturing method is disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、ウィスカーを複合材の強化繊維として使用す
る場合にはマトリックス中に均一に分散させる必要があ
る。しかしウィスカーは径が細いため繊維同士が絡まり
ファイバーボールを形威し易く均一分散しないため補強
効果が出にくい、また、ウィスカーの径は細いため絶対
強度(強力)が小さく取り扱いが困難である。
By the way, when whiskers are used as reinforcing fibers in composite materials, they need to be uniformly dispersed in the matrix. However, because the whiskers have a small diameter, the fibers tend to get entangled with each other, forming fiber balls that are not uniformly dispersed, making it difficult to achieve a reinforcing effect.Furthermore, because the whiskers have a small diameter, their absolute strength (power) is low, making them difficult to handle.

(11題を解決するための手段〕 本発明はこのような問題点を解決するべくなされたもの
であり、気相成長カーボンウィスカーが長繊維で導電性
にすぐれるなど種々優れた特性を有していることに着目
し、このウィスカーを繊維形成能を有する有機重合体と
ともに紡糸することによりウィスカーの破損を最小限に
抑えて補強効果を大きく引き出しうることを見出してな
されたものである。
(Means for Solving Problem 11) The present invention has been made to solve these problems, and the vapor-grown carbon whiskers have various excellent properties such as long fibers and excellent conductivity. It was discovered that by spinning these whiskers together with an organic polymer having fiber-forming ability, it is possible to minimize the damage to the whiskers and greatly enhance the reinforcing effect.

すなわち、本発明は長さ/直径の比が10〜5000で
かつ直径が5n以下である気相成長カーボンウィスカー
1.5〜80重量%含んでいる有機繊維に関するもので
ある。
That is, the present invention relates to an organic fiber containing 1.5 to 80% by weight of vapor-grown carbon whiskers having a length/diameter ratio of 10 to 5000 and a diameter of 5 nm or less.

カーボンウィスカーば気相法で得られたものであり、炭
素源はメタン、アセチレン、ベンゼン、トルエン等のほ
かコークス炉からの副産物である粗軽油類、カルボン油
、ナフタリン、中油、アントラセン油、重油、ピッチ、
コールタール、これらの水素化物、これらの混合物等で
あってもよい。
Carbon whiskers are obtained by a gas phase method, and carbon sources include methane, acetylene, benzene, toluene, etc., as well as crude light oils, which are byproducts from coke ovens, carbon oil, naphthalene, medium oil, anthracene oil, heavy oil, pitch,
Coal tar, hydrides thereof, mixtures thereof, etc. may be used.

さらに、ヘテロ原子を有するものも使用可能であり、例
えばチオフェン類、チオール類及びチオフェノール類を
用いることができる。触媒源としてはフェロセン、鉄ア
セチルアセテート塩、ジ(インデニル)鉄(IF)等の
有機鉄化合物のほか、その他の遷移金属、例えばチタン
、バナジウム、クロム、マンガン、コバルト、ニッケル
、ルビジウム、ロジウム、タングステン、パラジウム等
の有機化合物が用いられる。上記の炭素源ガスと触媒源
ガスをキャリヤーガスで搬送して600−1300°C
で加熱することによってカーボンウィスカーが形威され
る。キャリヤーガスは上記の原料ガスを搬送するほか系
内を還元性雰囲気に保つ機能も要求され、そのために水
素ガス等が使用されるが、製鋼工場から排出される転炉
ガスは高温の還元性ガスであり、これを用いることによ
って良質のカーボンウィスカーを安価に製造することが
できる。
Furthermore, those having heteroatoms can also be used, such as thiophenes, thiols and thiophenols. Catalyst sources include organic iron compounds such as ferrocene, iron acetylacetate salts, and di(indenyl)iron (IF), as well as other transition metals such as titanium, vanadium, chromium, manganese, cobalt, nickel, rubidium, rhodium, and tungsten. , palladium, and other organic compounds are used. The above carbon source gas and catalyst source gas are conveyed with a carrier gas and heated to 600-1300°C.
Carbon whiskers are formed by heating. In addition to transporting the raw material gases mentioned above, the carrier gas is also required to maintain a reducing atmosphere within the system, and hydrogen gas is used for this purpose, but the converter gas discharged from steel plants is a high-temperature reducing gas. By using this, high-quality carbon whiskers can be manufactured at low cost.

本発明で使用されるカーボンウィスカーの直径は0.1
〜5−程度、好ましくは1〜3−程度、そして長さは直
径の比が10〜5000程度、好ましくは50〜300
0程度である。長さ/直径の比が10未満では補強効果
が不充分になり、一方、長さ/直径の比が5000を越
えると有機重合体への混入性が悪く紡糸が困難になる。
The diameter of the carbon whisker used in the present invention is 0.1
-about 5-degrees, preferably about 1-3-degrees, and the length to diameter ratio is about 10-5000, preferably 50-300
It is about 0. If the length/diameter ratio is less than 10, the reinforcing effect will be insufficient, while if the length/diameter ratio exceeds 5000, the incorporation into organic polymers will be poor and spinning will be difficult.

有機繊維におけるカーボンウィスカーの含有量は1.5
〜80重量%程度、好ましくは2〜50重量%程度であ
る。1.5重量%未満では補強効果が不充分になり、一
方、80重量%を越えると有機重合体への混入性が悪く
紡糸が困難になる。
The carbon whisker content in organic fibers is 1.5
It is about 80% by weight, preferably about 2 to 50% by weight. If it is less than 1.5% by weight, the reinforcing effect will be insufficient, while if it exceeds 80% by weight, it will be difficult to mix into the organic polymer and spinning will be difficult.

有機重合体は繊維形成能を有するものであればよく、例
えばポリビニルアルコール、ポリアクリリロニトリル、
ナイロン、ポリプロピレン、ポリエチレン、ポリ塩化ビ
ニル、ポリエステル等から適宜選択される。
Any organic polymer may be used as long as it has fiber-forming ability, such as polyvinyl alcohol, polyacrylonitrile,
It is appropriately selected from nylon, polypropylene, polyethylene, polyvinyl chloride, polyester, etc.

紡糸方法は公知の方法によればよく、溶融押出法、湿式
紡糸法等を利用できる。しかしながら、本発明の有機繊
維の紡糸には湿式法が好ましく、この方法によってカー
ボンウィスカーの折損を最小限にとどめかつ簡単に均一
分散させることができる。湿式法における有機重合体の
熔解、濃度等は常法と同様でよい。紡糸後は延伸するこ
とが好ましく、それによってカーボンウィスカーを軸方
向への配向性及び引張強度を向上させることができる。
The spinning method may be a known method, such as a melt extrusion method or a wet spinning method. However, a wet method is preferable for spinning the organic fibers of the present invention, and by this method, breakage of carbon whiskers can be minimized and carbon whiskers can be easily and uniformly dispersed. The melting, concentration, etc. of the organic polymer in the wet method may be the same as in the conventional method. It is preferable to stretch the fibers after spinning, thereby improving the axial orientation and tensile strength of the carbon whiskers.

このようにして得られる有機繊維の径は15〜500μ
程度、好ましくは30〜300n程度が適当である。繊
維径が15Q未満ではファイバーポールが形威しやすく
、一方、500 nを越えるとカーボンウィスカーが軸
方向に配向しなくなる。
The diameter of the organic fibers obtained in this way is 15 to 500μ.
A suitable range is preferably about 30 to 300n. If the fiber diameter is less than 15Q, fiber poles are likely to form, while if it exceeds 500n, the carbon whiskers will not be oriented in the axial direction.

〔作用〕 カーボンウィスカーを有機重合体とともに紡糸すること
により折損させずに配向させることに成功した。
[Operation] By spinning carbon whiskers together with an organic polymer, we succeeded in orienting them without causing breakage.

〔実施例〕〔Example〕

実施例1 十分に精製し残留酢酸ナトリウムを除いたケンカ度99
.6モル%、重合度1500のポリビニルアルコール粉
末を緩やかに撹はんしている精製ジメチルスルホキシド
に室温で少しずつ加え分散溶解し20重量%の均質な分
散溶液を作った。次いで、これに直径2n、長さ3m(
アスペクト比1500)の気・相戒長カーボンウィスカ
ーを加えて混合した。加えた気相成長カーボンウィスカ
ーの量はポリビニルアルコールに対して25重量%であ
った。気相成長カーボンウィスカーを分散させた後80
°C11時間加熱してポリビニルアルコールを完全に溶
解させるとともに気相成長カーボンウィスカーを十分に
分散させた。
Example 1 Sufficiently purified to remove residual sodium acetate, with a degree of 99
.. Polyvinyl alcohol powder having a concentration of 6 mol % and a degree of polymerization of 1500 was added little by little at room temperature to gently stirred purified dimethyl sulfoxide to form a homogeneous dispersion solution of 20% by weight. Next, a diameter of 2n and a length of 3m (
Gas-phase Kaicho carbon whiskers with an aspect ratio of 1500) were added and mixed. The amount of vapor grown carbon whiskers added was 25% by weight based on polyvinyl alcohol. 80 after dispersing vapor grown carbon whiskers
The mixture was heated at °C for 11 hours to completely dissolve the polyvinyl alcohol and to sufficiently disperse the vapor-grown carbon whiskers.

この溶液を孔径0.5鵬の紡糸ノズルから25℃のアセ
トン凝固浴中に紡糸し凝固糸を得た。この凝固糸を20
0℃の熱板で延伸し直径0.15■の延伸糸を得、これ
を230°Cで熱処理した。この熱処理系を繊維軸に対
して直角方向に切断し切断面を走査型電子顕微鏡で観察
したところ気相成長カーボンウィスカーはこの繊維の繊
維軸方向に十分に配向していることが確かめられた。ま
た、ポリビニルアルコールと気相成長カーボンウィスカ
ーとは密着しており親和性も良好であり、しかも繊維中
の気相成長カーボンウィスカーは混合や延伸で何の損傷
も受けていないことがわかった。この繊維の引張強度は
184kg/ms”で弾性率は10t/an”であった
This solution was spun into an acetone coagulation bath at 25° C. from a spinning nozzle with a pore size of 0.5 to obtain a coagulated thread. 20 pieces of this coagulated thread
A drawn yarn with a diameter of 0.15 cm was obtained by drawing on a hot plate at 0°C, and this was heat-treated at 230°C. When this heat-treated system was cut in a direction perpendicular to the fiber axis and the cut surface was observed with a scanning electron microscope, it was confirmed that the vapor-grown carbon whiskers were sufficiently oriented in the fiber axis direction of the fiber. It was also found that polyvinyl alcohol and vapor-grown carbon whiskers were in close contact with each other and had good affinity, and that the vapor-grown carbon whiskers in the fibers were not damaged in any way by mixing or stretching. The tensile strength of this fiber was 184 kg/ms'' and the elastic modulus was 10 t/an''.

この繊維を長さ6■に切断して、普通ポリトランドセメ
ント、シラスバルーンと乾式混練したところこの繊維を
長さ6■に切断してファイバーボールを形成することも
なく均一に分散した。また、糸の破損も見られなかった
The fibers were cut into lengths of 6 cm and dry-kneaded with ordinary Polytoland cement and Shirasu balloons. When the fibers were cut into lengths of 6 cm, they were uniformly dispersed without forming fiber balls. Moreover, no damage to the threads was observed.

水セメント比=0.62、骨材セメント比=0.24、
繊維混入量を2.0vo1%に調整し軽量モルタルを作
った。養生方法は成形後20℃、65%RHの養生室内
で静置した後、6日間25℃水中養生を行った1本モル
タルの曲げ強度は131kg/cjであった。
Water-cement ratio = 0.62, aggregate-cement ratio = 0.24,
A lightweight mortar was made by adjusting the amount of fiber mixed to 2.0vo1%. The curing method was as follows: After molding, the mortar was allowed to stand in a curing chamber at 20°C and 65% RH, and then cured in water at 25°C for 6 days.The bending strength of one piece of mortar was 131 kg/cj.

実施例2 十分に精製し残留酢酸ナトリウムを除いたケンカ度99
.5モル%、重合度1750のポリビニルアルコール粉
末を緩やかに撹はんしている精製ジメチルスルホキシド
に室温で分散溶解し工5重量%の均質な分散溶液を作っ
た。次いで、これに直径2n、長さ3■(アスペクト比
1500)の気相成長カーボンウィスカーを加えて混合
した。加えた気相成長カーボンウィスカーの量はポリビ
ニルアルコールに対して15重量%であった。気相成長
カーボンウィスカーを分散させた後80°C11時間加
熱してポリビニルアルコールを完全に溶解させるととも
に気相成長カーボンウィスカーを十分に分散させた。
Example 2 Sufficiently purified to remove residual sodium acetate, with a degree of 99
.. A homogeneous dispersion solution of 5% by weight polyvinyl alcohol powder with a polymerization degree of 1750 was prepared by dispersing and dissolving polyvinyl alcohol powder with a degree of polymerization of 1750 in gently stirred purified dimethyl sulfoxide at room temperature. Next, vapor grown carbon whiskers having a diameter of 2n and a length of 3mm (aspect ratio 1500) were added and mixed. The amount of vapor grown carbon whiskers added was 15% by weight based on polyvinyl alcohol. After dispersing the vapor-grown carbon whiskers, the mixture was heated at 80° C. for 11 hours to completely dissolve the polyvinyl alcohol and to sufficiently disperse the vapor-grown carbon whiskers.

この溶液を孔径0.2 waの紡糸ノズルから20’C
のメタノール凝固浴中に紡糸し凝固糸を得た。この凝固
糸を200℃の熱板で延伸しさらに240’Cで熱処理
し直径0.08鵬の延伸熱処理系を得た。この延伸熱処
理系を繊維軸に対して直角方向に切断し切断面を走査型
電子顕微鏡で観察したところ気相成長カーボンウィスカ
ーはこの繊維の繊維軸方向に十分に配向していることが
確かめられた。また、ポリビニルアルコールと気相成長
カーボンウィスカーとは密着しており親和性も良好であ
り、しかも繊維中の気相成長カーボンウィスカーは混合
や延伸で何の損傷も受けていないことがわかった。
This solution was heated at 20'C from a spinning nozzle with a pore size of 0.2 wa.
A coagulated thread was obtained by spinning in a methanol coagulation bath. This coagulated thread was drawn on a hot plate at 200°C and further heat treated at 240'C to obtain a drawing heat-treated system with a diameter of 0.08 mm. When this stretched heat-treated system was cut in a direction perpendicular to the fiber axis and the cut surface was observed using a scanning electron microscope, it was confirmed that the vapor-grown carbon whiskers were sufficiently oriented in the direction of the fiber axis. . It was also found that polyvinyl alcohol and vapor-grown carbon whiskers were in close contact with each other and had good affinity, and that the vapor-grown carbon whiskers in the fibers were not damaged in any way by mixing or stretching.

この繊維の引張強度は153kg/+n”で弾性率は9
.5t/鼎2であった。この繊維を長さ6waに切断し
てモルタルと乾式混練したところ、ファイバーボールを
形成することもなく均一に分散した。また、糸の破損も
見られなかった。
The tensile strength of this fiber is 153 kg/+n'' and the elastic modulus is 9.
.. It was 5t/2 ton. When this fiber was cut into lengths of 6 wa and dry kneaded with mortar, it was uniformly dispersed without forming fiber balls. Moreover, no damage to the threads was observed.

実施例3 十分に精製し残留酢酸ナトリウムを除いたケンカ度99
.0モル%、重合度1000のポリビニルアルコール粉
末を緩やかに撹はんしている精製ジメチルスルホキシド
に室温で分散溶解し25重量%の均質な分散溶液を作っ
た0次いで、これに直径2n、長さ1m(アスペクト比
500)の気相成長カーボンウィスカーを加えて混合し
た。加えた気相成長カーボンウィスカーの量はポリビニ
ルアルコールに対して78重量%であった。気相成長カ
ーボンウィスカーを分散させた後80℃、1時間加熱し
てポリビニルアルコールを完全に溶解させるとともに気
相成長カーボンウィスカーを十分に分散させた。
Example 3 Sufficiently purified to remove residual sodium acetate, with a degree of 99
.. A homogeneous dispersion solution of 25% by weight was prepared by dispersing and dissolving polyvinyl alcohol powder of 0 mol % and degree of polymerization of 1000 in gently stirred purified dimethyl sulfoxide at room temperature. 1 m (aspect ratio 500) of vapor grown carbon whiskers was added and mixed. The amount of vapor grown carbon whiskers added was 78% by weight based on polyvinyl alcohol. After the vapor-grown carbon whiskers were dispersed, the mixture was heated at 80° C. for 1 hour to completely dissolve the polyvinyl alcohol and to sufficiently disperse the vapor-grown carbon whiskers.

この溶液を孔径0.65mの紡糸ノズルから20℃のメ
タノール凝固浴中に紡糸し凝固糸を得た。この凝固糸を
200°Cの熱板で延伸し235°Cの熱板で熱処理を
行い直径0.18園の延伸熱処理系を得た。この延伸熱
処理系を繊維軸に対して直角方向に切断し切断面を走査
型電子顕微鏡で観察したところ気相成長カニボンウィス
カーはこの繊維の繊維軸方向に十分に配向していること
が確かめられた。また、ポリビニルアルコールと気相成
長カーボンウィスカーとは密着しており親和性も良好で
あり、しかも繊維中の気相成長カーボンウィスカーは混
合や延伸で何の損傷も受けていないことがわかった。
This solution was spun into a methanol coagulation bath at 20° C. from a spinning nozzle with a hole diameter of 0.65 m to obtain a coagulated thread. This coagulated thread was drawn on a hot plate at 200°C and heat treated on a hot plate at 235°C to obtain a drawing heat treatment system with a diameter of 0.18 mm. When this drawing heat-treated system was cut in a direction perpendicular to the fiber axis and the cut surface was observed using a scanning electron microscope, it was confirmed that the vapor-grown crab whiskers were well oriented in the fiber axis direction of this fiber. Ta. It was also found that polyvinyl alcohol and vapor-grown carbon whiskers were in close contact with each other and had good affinity, and that the vapor-grown carbon whiskers in the fibers were not damaged in any way by mixing or stretching.

この繊維の引張強度は187kg/am”で弾性率は2
8t/−■1であった。この繊維を長さ6mに切断して
モルタルと乾式混練したところ、ファイバーボールを形
成することもなく均一に分散した。また、糸の破損も見
られなかった。
The tensile strength of this fiber is 187 kg/am” and the elastic modulus is 2.
It was 8t/-■1. When this fiber was cut into lengths of 6 m and dry kneaded with mortar, it was uniformly dispersed without forming fiber balls. Moreover, no damage to the threads was observed.

実施例4 十分に精製し残留酢酸ナトリウムを除いたケンカ度99
.0モル%、重合度1750のポリビニルアルコール粉
末を緩やかに撹はんしている精製ジメチルスルホキシド
に室温で分散溶解し20.2重量%の均質な分散溶液を
作った。次いで、これに直径1.5n1長さ1−(アス
ペクト比670)の気相成長カーボンウィスカーを加え
て混合した。加えた気相成長カーボンウィスカーの量は
ポリビニルアルコールに対して58重量%であった。気
相成長カーボンウィスカーを分散させた後80°C,1
時間加熱してポリビニルアルコールを完全に溶解させる
とともに気相成長カーボンウィスカーを十分に分散させ
た。
Example 4 Sufficiently purified to remove residual sodium acetate, with a degree of 99
.. A homogeneous dispersion solution of 20.2% by weight was prepared by dispersing and dissolving polyvinyl alcohol powder of 0 mol % and a degree of polymerization of 1750 in gently stirred purified dimethyl sulfoxide at room temperature. Next, vapor-grown carbon whiskers having a diameter of 1.5n1 and a length of 1- (aspect ratio 670) were added and mixed. The amount of vapor grown carbon whiskers added was 58% by weight based on the polyvinyl alcohol. After dispersing the vapor grown carbon whiskers at 80°C, 1
The mixture was heated for a period of time to completely dissolve the polyvinyl alcohol and to sufficiently disperse the vapor-grown carbon whiskers.

この溶液を孔径0.15mmの紡糸ノズルから20°C
の硫酸ナトリウム水溶液を凝固浴とする凝固浴中に紡糸
し凝固させ、この凝固糸を凝固にひき続き多段凝固延伸
熱処理して直径0.09amの延伸熱処理系を得た。こ
の繊維を繊維軸に対して直角方向に切断し切断面を走査
型電子顕微鏡で観察したところ気相成長カーボンウィス
カーは繊維の繊維軸方向に十分に配向していることが確
かめられた。また、ポリビニルアルコールと気相成長カ
ーボンウィスカーとは密着しており親和性も良好であり
、しかも繊維中の気相成長カーボンウィスカーは混合や
延伸で何の損傷も受けていないことがわかった。
This solution was passed through a spinning nozzle with a hole diameter of 0.15 mm at 20°C.
The coagulated thread was spun and coagulated in a coagulation bath using an aqueous solution of sodium sulfate as a coagulation bath, and the coagulated thread was subjected to a multi-stage coagulation and stretching heat treatment following coagulation to obtain a stretching heat treatment system having a diameter of 0.09 am. When this fiber was cut in a direction perpendicular to the fiber axis and the cut surface was observed with a scanning electron microscope, it was confirmed that the vapor-grown carbon whiskers were sufficiently oriented in the fiber axis direction of the fiber. It was also found that polyvinyl alcohol and vapor-grown carbon whiskers were in close contact with each other and had good affinity, and that the vapor-grown carbon whiskers in the fibers were not damaged in any way by mixing or stretching.

この繊維の引張強度は177kg/mm”で弾性率は1
7t/lllm2であった。この繊維を長さ6圓に切断
してモルタルと乾式混練したところ、ファイバーボール
を形成することもなく均一に分散した。また、糸の破損
も見られなかった。
The tensile strength of this fiber is 177 kg/mm” and the elastic modulus is 1.
It was 7t/llm2. When this fiber was cut into lengths of 6 mm and dry kneaded with mortar, it was uniformly dispersed without forming fiber balls. Moreover, no damage to the threads was observed.

実施例5 ジメチルスルホキシドを溶媒としアゾビスイソブチロニ
トリルを重合開始剤として溶液重合しアクリロニトリル
95.7モル%、アクリル酸メチル4モル%、スチレン
スルホン酸ナトリウム0.3モル%共重合体をえた。共
重合体の重合度は37,000、溶液濃度は25重量%
であった。この溶液に直径2μ、長さ3■(アスペクト
比1500)の気相成長カーボンウィスカーを加えて混
合した。加えた気相成長カーボンウィスカーの量はアク
リル共重合体に対して35重量%であった。気相成長カ
ーボンウィスカーの混合分散は均一であった。この溶液
を紡糸原液とし孔径0.1 iwの紡糸ノズルを用いジ
メチルスルホキシド/水系紡糸浴で多段凝固、延伸法に
よる紡糸を行い延伸糸を得た。この延伸糸を130℃で
乾燥しち密化した。この繊維を繊維軸に対して直角方向
に切断し切断面を走査型電子顕微鏡で観察したところ気
相成長カーボンウィスカーは繊維の繊維軸方向に十分に
配向していることが確かめられた。また、アクリル共重
合体と気相成長カーボンウィスカーとは密着しており親
和性も良好であり、しかも繊維中の気相成長カーボンウ
ィスカーは混合や延伸で何の損傷も受けていないことが
わかった。この繊維の引張強度は80)cg/mm”で
弾性率は7.5t/arm”であった。この繊維を長さ
6閣に切断してモルタルと乾式混練したところ、ファイ
バーボールを形成することもなく均一に分散した。また
、糸の破損も見られなかった。
Example 5 A copolymer of 95.7 mol% acrylonitrile, 4 mol% methyl acrylate, and 0.3 mol% sodium styrene sulfonate was obtained by solution polymerization using dimethyl sulfoxide as a solvent and azobisisobutyronitrile as a polymerization initiator. . The degree of polymerization of the copolymer is 37,000, and the solution concentration is 25% by weight.
Met. Vapor-grown carbon whiskers having a diameter of 2 μm and a length of 3 μm (aspect ratio 1500) were added to this solution and mixed. The amount of vapor grown carbon whiskers added was 35% by weight based on the acrylic copolymer. The mixing and dispersion of vapor-grown carbon whiskers was uniform. This solution was used as a spinning dope and spinning was carried out using a spinning nozzle with a pore size of 0.1 iW in a dimethyl sulfoxide/water based spinning bath by a multi-stage coagulation and stretching method to obtain a drawn yarn. This drawn yarn was dried at 130° C. and densified. When this fiber was cut in a direction perpendicular to the fiber axis and the cut surface was observed with a scanning electron microscope, it was confirmed that the vapor-grown carbon whiskers were sufficiently oriented in the fiber axis direction of the fiber. It was also found that the acrylic copolymer and vapor-grown carbon whiskers were in close contact and had good affinity, and that the vapor-grown carbon whiskers in the fibers were not damaged in any way by mixing or stretching. . The tensile strength of this fiber was 80) cg/mm'' and the elastic modulus was 7.5 t/arm''. When this fiber was cut into 6 lengths and dry kneaded with mortar, it was uniformly dispersed without forming fiber balls. Moreover, no damage to the threads was observed.

実施例1と同様に軽量モルタル(vf=1.5%)を作
り、曲げ強度を調べたところ90kg/cifであった
A lightweight mortar (vf=1.5%) was made in the same manner as in Example 1, and its bending strength was examined and found to be 90 kg/cif.

〔発明の効果〕〔Effect of the invention〕

本発明の繊維はカーボンウィスカーの折損が少なく、カ
ーボンウィスカーの配向性も良好であり、高強度、高弾
性、低熱収縮性である。しかもモルタル等のマトリック
ス中に容易に均一に分散させることができる。
The fibers of the present invention have less breakage of carbon whiskers, good orientation of carbon whiskers, high strength, high elasticity, and low heat shrinkage. Moreover, it can be easily and uniformly dispersed in a matrix such as mortar.

Claims (2)

【特許請求の範囲】[Claims] (1)長さ/直径の比が10〜5000でかつ直径が5
μm以下である気相成長カーボンウィスカーを1.5〜
80重量%含んでいる有機繊維
(1) The length/diameter ratio is 10 to 5000 and the diameter is 5
Vapor-grown carbon whiskers with a diameter of 1.5 μm or less
Organic fiber containing 80% by weight
(2)有機繊維が少なくとも1.15倍以上延伸され、
該ウィスカーが該繊維の軸方向に配向していることを特
徴とする請求項(1)に記載の有機繊維(3)有機繊維
直径が15〜500μmである請求項(1)に記載の有
機繊維
(2) the organic fiber is stretched at least 1.15 times or more;
(3) The organic fiber according to claim (1), wherein the whiskers are oriented in the axial direction of the fiber. (3) The organic fiber according to claim (1), wherein the organic fiber has a diameter of 15 to 500 μm.
JP2051809A 1990-03-05 1990-03-05 Gas phase grown carbon fiber-mixed organic fiber Pending JPH03260109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2051809A JPH03260109A (en) 1990-03-05 1990-03-05 Gas phase grown carbon fiber-mixed organic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2051809A JPH03260109A (en) 1990-03-05 1990-03-05 Gas phase grown carbon fiber-mixed organic fiber

Publications (1)

Publication Number Publication Date
JPH03260109A true JPH03260109A (en) 1991-11-20

Family

ID=12897244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2051809A Pending JPH03260109A (en) 1990-03-05 1990-03-05 Gas phase grown carbon fiber-mixed organic fiber

Country Status (1)

Country Link
JP (1) JPH03260109A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138838A (en) * 1993-11-17 1995-05-30 Nec Corp Woven fabric and sheet produced by using carbon nano-tube
JP2005526186A (en) * 2001-08-08 2005-09-02 サーントル ナシオナル ドウ ラ ルシェルシェ シャーンティフィク(セー.エンヌ.エール.エス.) Synthetic fiber modification method and use thereof
JP2006525442A (en) * 2003-04-30 2006-11-09 サーントル ナシオナル ドゥ ラ ルシェルシェ シャーンティフィク(セーエンヌエールエス) Method for producing fiber having high content of colloidal particles and composite fiber obtained therefrom
JP2010216018A (en) * 2009-03-13 2010-09-30 Shinshu Univ Polyvinyl alcohol-based composite fiber and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138838A (en) * 1993-11-17 1995-05-30 Nec Corp Woven fabric and sheet produced by using carbon nano-tube
JP2005526186A (en) * 2001-08-08 2005-09-02 サーントル ナシオナル ドウ ラ ルシェルシェ シャーンティフィク(セー.エンヌ.エール.エス.) Synthetic fiber modification method and use thereof
JP2006525442A (en) * 2003-04-30 2006-11-09 サーントル ナシオナル ドゥ ラ ルシェルシェ シャーンティフィク(セーエンヌエールエス) Method for producing fiber having high content of colloidal particles and composite fiber obtained therefrom
JP2010216018A (en) * 2009-03-13 2010-09-30 Shinshu Univ Polyvinyl alcohol-based composite fiber and method for producing the same

Similar Documents

Publication Publication Date Title
CN102534870B (en) Preparation method of grapheme-modified acrylonitrile base carbon fiber
US3635675A (en) Preparation of graphite yarns
JP2588579B2 (en) Polyvinyl alcohol fiber excellent in hot water resistance and method for producing the same
CN111285949A (en) Polyacrylonitrile-coated graphene composite material and preparation method and application thereof
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
JPH03260109A (en) Gas phase grown carbon fiber-mixed organic fiber
US4020145A (en) Carbon fiber production
WO1992003601A2 (en) Carbon fiber and process for its production
JPS61132629A (en) Production of nonwoven fabrics of pitch activated carbon fiber
KR102115961B1 (en) The manufacturing method of carbon fiber
US5348719A (en) Process for producing carbon fibers having high strand strength
JPH05179507A (en) Spinningless heat-resistant aclyric short fiber
CN114232109A (en) Method for preparing polyether ketone fiber based on nondestructive dissolution wet method
CN112011855B (en) Method for producing carbon fiber
US3850876A (en) Production of thermally stabilized acrylic fibers and films
KR102016272B1 (en) Carbon material and its manufacturing method
KR102115967B1 (en) The manufacturing method of carbon fiber
CN114474787B (en) Method for preparing umbrella rib from carbon fiber-based resin composite material
US3779983A (en) Acrylic fibers and films which particularly are suited for thermal stabilization
JPS61119719A (en) Production of carbon fiber of high strength
JP3303424B2 (en) Method for producing acrylic carbon fiber
JPH02264011A (en) Acrylic fiber for graphite fibers
JPH07166432A (en) Carbon fiber
JPS63162559A (en) Manufacture of carbon fiber reinforced hydraulic composite material
JPS6366324A (en) Knot carbon fiber, production thereof and composite material containing knot carbon fiber as reinforcing material