JPS6317929B2 - - Google Patents
Info
- Publication number
- JPS6317929B2 JPS6317929B2 JP54063015A JP6301579A JPS6317929B2 JP S6317929 B2 JPS6317929 B2 JP S6317929B2 JP 54063015 A JP54063015 A JP 54063015A JP 6301579 A JP6301579 A JP 6301579A JP S6317929 B2 JPS6317929 B2 JP S6317929B2
- Authority
- JP
- Japan
- Prior art keywords
- stretching
- fiber
- denier
- spinning
- stages
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 30
- 239000000835 fiber Substances 0.000 claims description 28
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 23
- 239000004917 carbon fiber Substances 0.000 claims description 23
- 230000015271 coagulation Effects 0.000 claims description 21
- 238000005345 coagulation Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 21
- 238000009987 spinning Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000013557 residual solvent Substances 0.000 claims description 11
- 229920002972 Acrylic fiber Polymers 0.000 claims description 10
- 238000002166 wet spinning Methods 0.000 claims description 9
- 229920000058 polyacrylate Polymers 0.000 claims description 6
- 238000000578 dry spinning Methods 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 239000002243 precursor Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000010304 firing Methods 0.000 description 15
- 230000000704 physical effect Effects 0.000 description 9
- 239000002904 solvent Substances 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- NJYFRQQXXXRJHK-UHFFFAOYSA-N (4-aminophenyl) thiocyanate Chemical compound NC1=CC=C(SC#N)C=C1 NJYFRQQXXXRJHK-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 206010061592 cardiac fibrillation Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000002600 fibrillogenic effect Effects 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- -1 washing temperature Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical group N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 238000003402 intramolecular cyclocondensation reaction Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- XFTALRAZSCGSKN-UHFFFAOYSA-M sodium;4-ethenylbenzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=C(C=C)C=C1 XFTALRAZSCGSKN-UHFFFAOYSA-M 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
Description
本発明は炭素繊維(黒鉛繊維を含む。以下同
様)の改善された製造方法に関するものであり、
さらに詳しくは炭素繊維用プレカーサとして特定
の分割延伸が施されて作製された、かつ所定の単
繊維デニールを有ししかも残留容剤量を特定化し
て作製されたアクリル繊維を用い、これを焼成す
ることにより優れた物性を有する炭素繊維を工業
的有利に製造する方法に関するものである。
アクリル系繊維から炭素繊維を製造することは
すでに公知である。該アクリル系繊維から該炭素
繊維を製造する工程のうち酸化性雰囲気中で加熱
処理し繊維構造中にナフチリジン環の環化構造を
形成せしめる、所謂耐炎化工程はきわめて重要な
プロセスであり、かかるプロセスには長時間の加
熱処理操作が余儀なく必要とされ、そこに低生産
性の原因があつた。かかる低生産性を回避すべ
く、到達温度を高くしたり、あるいは急昇温操作
を選択して耐炎化を行なう試みがなされてきたこ
とも事実であるが、いずれの場合も繊維の発熱転
移点付近の温度域にて分子間架橋や分子内環化等
の急激な反応がおこり、これに伴なつて局部的な
蓄熱が惹起し、そこにピツチ・タール状物質が発
生し、最終的には繊維同志が融着したり、また機
械的強度低下等トラブルが派生し高物性の炭素繊
維を得るに至つていないのが実状である。
かかる蓄熱を軽減する目的で例えばプレカーサ
の単糸デニールを小さくする試み(特公昭47−
40574号公報等)が提起されているが、単に細デ
ニール化だけではプレカーサの製造
processabilityを悪くし、得られるプレカーサに
毛羽立ち等形態的不安定さを伴なうためかえつて
焼成は技術的困難性を伴ない、また炭素繊維の性
能も低下する。これを解決せんとして例えば特公
昭50−29530号公報等において提唱されているよ
うに細デニール化以外に出発重合体の極限粘度を
特定化する試みもなされているが、未だ満足せし
める技術となり得ていない。
また異常発熱、ピツチ・タール状物質発生を抑
制すべく残留溶剤量を低減する試み(特公昭50−
29531号公報等)も提起されているが、残留溶剤
量を適当なレベルにまで低下させるには特殊な水
洗装置が必要となり、この採用が糸条の乱れの原
因をつくることになり工業的見地から有利なもの
とはいいがたかつた。
ここにおいて本発明者等は、従来の技術に付随
する欠点を解消すべく鋭意検討した結果、特定の
製造手段を採用して作製された所定のアクリル繊
維をプレカーサとして用い、これを焼成すること
により著しく焼成時間を短縮し得るとともにきわ
めて高物性、高品質の炭素繊維を工業的有利に製
造し得ることを見出した。
本発明の目的は、優れた物性、品質を具備する
炭素繊維を工業的有利に製造する方法を提唱する
ことにある。
本発明の他の目的は、短時間焼成にして高物
性、高品質の炭素繊維を得る技術的知見を提唱す
ることにある。
本発明のさらに異なれる他の目的は、以下の具
体的な説明より明らかとなろう。
しかして上記目的は、アクリロニトリルを90重
量%以上結合含有するアクリル系重合体よりな
り、かつ該重合体を湿式紡糸又は乾/湿式紡糸し
て作製しててなるアクリル繊維より炭素繊維を製
造するに際し、紡出後凝固浴をでるまでに2段以
上、繊維製造工程全体として5段以上に延伸を分
割せしめて作製し、かつ単繊維デニールが1.5デ
ニール以下でありしかも残留溶剤量が300p.p.m
以下であるアクリル繊維を焼成することによつて
達成される。
このように本発明に係る特異的な分割、配賦延
伸を行なうことにより、単繊維に作用する力が効
率的に分散し、以て単繊維微少部分での断面積、
配向性が均一化し、さらに繊維表面上に発現する
異常形態(2ないし数本の単繊維が強い力で押し
つけられ一体化ないしそれに近い状態に合着し、
その後の工程においてある力により引きはがされ
て繊維表面に凹部、凸部を形成あるいは表面層が
繊維径の数分の1程度の幅で引きむかれたような
状態)がなくなり、終局的には均一な環化あるい
は架橋反応が達成され焼成操業性が格段と向上す
る他、高品質の炭素繊維が作製される。
また上記特定分割延伸と関連して単繊維デニー
ルも小さいため、耐炎化段階での蓄熱が小さく、
以て短時間焼成が可能となる。
さらに特定分割及び細デニール形態に加えて残
留溶剤もほとんどないため、焼成工程で異常発熱
をおこすこともなくやはり焼成操業性を高め得る
のである。
これら本発明の係るそれぞれ独立して採択され
得る技術構成(分割延伸並びに細デニール化及び
残留溶剤)が一体化してはじめて所期の目的、効
果が達成され、いずれも欠いても満足な結果を与
え得ないのである。また上記構成は各々独立的に
なされうるものであるが、分割、配賦延伸の採用
によつて他の細デニール化及び残留溶剤量の低減
化がより有効に達成され得る点も本発明の特徴と
いえる。いいかえれば分割延伸の採用の結果細デ
ニール化及び溶剤除去がなされ得るというのでは
なく、その結果別工程あるいは別手段でなされる
細デニール化プロセス及び溶剤除去プロセスにお
けるprocessability及び効果をある水準にまで高
める役割を担うことになる。
このように本発明の実施において重要なこと
は、紡出後凝固浴をでるまでに2段以上、かつ繊
維製造工程全体として5段以上に延伸を多段に配
賦して行なう点にある。つまり紡出後凝固浴槽を
でるまでに多段分割延伸を行なうと、液体糸又は
液体糸に近い溶剤濃度のきわめて高い状態で高倍
率の延伸を容易に行なうことができるため凝固浴
槽をでた後の延伸(いわゆる冷水延伸、熱水延
伸、蒸気延伸、乾熱延伸等)の負担が軽減でき、
しかも凝固浴槽内での延伸では配向性がさほど高
くならないため凝固浴槽以降の工程での延伸が容
易に行ない得不均一延伸が惹起されない利点を生
じ、以て焼成原糸として優れた品質を有する(断
面積、配向性に斑のない、しかも前記した如き異
常形態のない)細デニールプレカーサを
processabilityよく(糸切れ等のない)得ること
ができる。さらに凝固浴槽内では凝固浴液流が紡
出糸条の流れと並流もしくは静止に近い状態を維
持するため、単繊維相互を集束させようとする現
象はおこらず、また高度の延伸作用も付加して均
一な細デニール化と同時に比表面積大なること及
び延伸に伴ない糸条が細化して膨潤ゲル糸内に含
まれる溶剤濃度の高い水が糸条から押出されるこ
とに起因して脱溶剤速度も速くなることも特徴的
である。また繊維製造工程全体として5段以上の
分割延伸を行なうことにより、それぞれのプロセ
ス段階での延伸点にかかる負担が分割、軽減で
き、均一な延伸効果が効率よく達成され得ると同
時に高負担の延伸に伴なうフイブリル化(異常形
状)も惹起されず、さらに繊維製造工程を介して
全延伸倍率を上げることが可能となり、高配向性
の原糸(換言すれば高物性の炭素繊維)が製造さ
れ得ることとなつた。本発明に係る多段分割段数
を満足しないと前記した種々のメリツトは奏され
得ない。
また本発明の実施における好適な態様として、
次の点をあげることができる。即ち、繊維製造工
程全体における全延伸倍率(以下TDという)を
〔ノズル孔面積〕÷〔プレカーサ断面積〕と定義し、
紡出後〜凝固浴を出るまでの延伸倍率をFD、凝
固浴を出たあとプレカーサに製せられるまでの延
伸倍率をSDとすると、当然のこと乍らTD=FD
×SD(logTD=logFD+logSD)が成り立つが、
本発明においてはTDを12以上、好ましくは15以
上とし、かつlogFDがlogTDの15%以上になるよ
うに割りふることにある。一例を示せば仮りに直
径0.055mmのノズル孔径を有するノズルより1.5デ
ニールのプレカーサを製造する場合、TDは16.7
でFDを1.53(=100.15logTD)以上に、またSDを10.9
(=16.7/1.53)以下にわりふることである。む
ろんFD及びSDを所定の範囲に維持する限りその
範囲内で延伸段数を何段にするかは適宜選択でき
る(むろん凝固浴をでるまでは2段以上、全体と
しては5段以上にすることは必須であるが)こと
である。例えばFDを8に設定すれば、2段以上、
例えば4段でFDが8になるように各段における
延伸倍率を決めればよい。なお、紡出後〜凝固浴
をでるまでの延伸ステツプとしては、2つ以上の
凝固浴槽を使用したり凝固浴中に適当な延伸点
(方向転換用非回転ガイドや駆動ローラー等)を
設けて行なう延伸はもちろん、湿式紡糸における
いわゆるジエツトストレツチや乾/湿式紡糸にお
けるノズル面と凝固浴面の間での液体糸にかかる
延伸も含むものであり、さらに凝固浴をでたあと
プレカーサに至るまでの延伸ステツプとしては、
前記したように冷水延伸、熱水延伸、蒸気延伸、
乾熱延伸等をあげることができる。
さらに本発明においては、上記の分割延伸を実
施する以外に全く別工程で単繊維の細デニール化
及び単繊維に残留する溶剤の除去をなし得ること
が必要である。即ち、いくら上記の分割、配賦延
伸が達成されたとしても単繊維デニールが1.5デ
ニール以下及び残留溶剤量が300p.p.m以下を満
足しないプレカーサは本発明の目的、効果を達成
し得ないものとなる。例えばプレカーサ製造工程
において所定の分割多段延伸を行なつて作製され
た単繊維デニール1.8デニールのプレカーサは、
確かにプレカーサ一本一本の均質化は達成される
ものの焼成processabilityが悪く焼成に長時間を
有し工業上有利といえない。また例えば細デニー
ルでしかも分割延伸されたプレカーサにも拘らず
残留溶剤量が500p.p.mと高いと、焼成工程で異
常発熱が惹起され、焼成糸の相互の融着等が発生
し、焼成processabilityを低下させる他前記した
如き異常形態(一種のフイブリル化)の発生のた
め高品質、高物性の炭素繊維を得ることを困難に
する。
なお、上記細デニール化及び残留溶剤の除去手
段としては、前者はノズル孔径の選択、ギヤポン
プによる吐出量のコントロール、全延伸倍率の設
定等により、また後者は水洗水量、水洗温度、水
流等水洗条件の適正化等によりなされ得、格別の
限定をつけるものでない。むろん前記したように
分割多段延伸操作がこれらの達成に大きく寄与し
ていることはいうまでもないところである。
以上のように本発明においては、分割延伸操作
の採用並びに細デニール化及び残留溶剤の除去が
一体的になされてはじめて高品質、高物性の炭素
繊維が作製されることとなつた。
また本発明に用いるアクリル系重合体とは、ア
クリロニトリルを少なくとも90重量%結合含有す
るものであつて、その他の不飽和単量体を共重合
せしめて作製されるものである。その他の不飽和
単量体として、アクリル酸、メタクリル酸、アク
リル酸メチル、メタクリル酸メチル、酢酸ビニ
ル、メタアリルスルホン酸ソーダ、p−スチレン
スルホン酸ソーダ等周知のエチレン系不飽和化合
物を挙げることができる。またアクリル系重合体
は一般の重合手段によつて製せられ、さらにかか
る重合体からのアクリル繊維の製造に際して溶剤
としては、ジメチルホルムアミド、ジメチルアセ
トアミド、ジメチルスルホキシド等の有機溶剤;
硝酸、塩化亜鉛水溶液、ロダンソーダ水溶液等の
無機溶剤が使用され、常法に従つて紡糸原液が作
製され、紡糸、繊維化されることになる。かかる
紡糸手段としては、公知の湿式紡糸法、乾/湿式
紡糸法から選択できる。なお、本発明の実施にお
いては乾/湿式紡糸法の採用が好ましい(何故な
ら本紡糸手段における延伸では紡糸原液よりなる
液体糸を延伸することになるため紡糸原液の粘弾
性的性質が紡糸に適合する範囲なら高倍率に、か
つ完全に無配向に近い状態にそれがなされるた
め)。しかして紡出、凝固された紡出繊維束(こ
の間2段以上の分割延伸が施されていることが必
須であるが)は、この後冷水延伸、水洗、ゲル処
理、熱水延伸、蒸気延伸、乾熱延伸されて乾燥さ
れる(紡出後乾燥までの間全体として5段以上の
分割延伸が施されていることが必須であるが)。
かくして得られたアクリル繊維から炭素繊維を
製造するに際しては従来より公知の如何なる焼成
方法をも採用することができるが、一般に酸化性
雰囲気中にて150〜400℃に加熱し環化せしめる耐
炎化工程と、次いで非酸化性雰囲気中又は減圧下
にて高温焼成することにより炭素化乃至黒鉛化せ
しめる炭素化工程とからなる焼成方法が好適に採
用される。なお、耐炎化の雰囲気としては空気が
好適であり、炭素化乃至は黒鉛化の雰囲気として
は窒素、ヘリウム、アルゴン等が好適である。さ
らにより優れた強度、弾性率の炭素繊維を製造す
る場合には張力を掛けて加熱することは好ましい
方法の一つである。
かくして、かくの如き本発明方法を採用するこ
とによつて、品質均一性に富み、かつ高強度、高
弾性率の炭素繊維を生産性よく短時間にて製造す
ることが可能となり、従つてかかる優れた性能を
有する炭素繊維は、高品質性能を与え得るべくコ
ンポジツトの形成素材としても好適に使用され、
補強材料、発熱体、耐熱材料等の広範な分野に使
用され得ることとなつた。
本発明の理解をさらに良好にするため、次に代
表的実施例を示す。なお、実施例中、特に断わら
ない限り百分率及び部は重量基準にて示す。
実施例 1
(NH4)2S2O8/Na2SO3系レドツクス触媒を用
いて水系懸濁重合法により得られたアクリロニト
リル98%及びメタクリル酸2%からなるアクリル
系重合体15.5部を、51.36%のロダンソーダ水溶
液84.5部に溶解してなる紡糸原液(73℃保持)
を、紡糸口金(孔径0.15mm、孔数50)を介して一
旦空気中に吐出し、この後3℃、14%ロダンソー
ダ水溶液からなる凝固浴中に導いて凝固せしめ
た。この時の紡糸口金面と凝固浴液面との距離は
0.3cmであつた。吐出後第1表の如く延伸操作を
採用し凝固せしめたのち、次いで2.0倍冷延伸、
水洗(30℃)した後ゲル処理を行ない(PH2.2)、
さらに2.4倍熱水延伸、2.08倍蒸気延伸した後乾
燥してプレカーサを作製した。かかる際各延伸ス
テツプにおいて採用した分割延伸段数のトータル
も第1表に示す(以上プロセスA)。
一方上記アクリル系重合体9.0部を、47.2%の
ロダンソーダ水溶液91.0倍に溶解して得られた紡
糸原液(50℃)を、紡糸口金(孔径0.055mm、孔
数50)を介して−3℃、12%のロダンソーダ水溶
液からなる凝固浴中に押出し凝固せしめた。また
凝固から乾燥に至る工程はプロセスAの順に従い
(但し、No.6は8.3倍熱水延伸のみ、No.7は蒸気延
伸を1.73倍、No.8は熱水延伸を1.2倍と2.0倍の2
段に分割、No.9は5.0倍熱水延伸及び2.0倍蒸気延
伸)、紡出後凝固浴をでるまでの延伸段数及び全
延伸段数を第1表の如く変化せしめてプレカーサ
を作製した(以上プロセスB)。プロセスA及び
プロセスBとも吐出量のコントロール及び水洗水
量の増量を適宜選択することにより細デニール化
及び脱溶剤挙動を調整した。
このようにして得られたプレカーサを電気炉を
使用してまず空気雰囲気下で180℃で1.2倍延伸、
さらに240℃で30分間、260℃で30分間連続的に処
理することにより耐炎化糸を得、引続いてかかる
耐炎化糸を窒素雰囲気下で300℃から1300℃まで
2分間を要して連続的に昇温することにより炭素
繊維を得た。得られた炭素繊維の物性も第1表に
併記する。
The present invention relates to an improved method for producing carbon fibers (including graphite fibers, hereinafter the same),
More specifically, an acrylic fiber that has been subjected to a specific split drawing process, has a predetermined single fiber denier, and has a specific residual capacity is used as a carbon fiber precursor, and is fired. In particular, the present invention relates to an industrially advantageous method for producing carbon fibers having excellent physical properties. It is already known to produce carbon fibers from acrylic fibers. Among the processes for manufacturing carbon fibers from acrylic fibers, the so-called flame-retardant process, in which heat treatment is performed in an oxidizing atmosphere to form a cyclized structure of naphthyridine rings in the fiber structure, is an extremely important process. This inevitably required a long heat treatment operation, which was the cause of low productivity. It is true that in order to avoid such low productivity, attempts have been made to achieve flame resistance by increasing the temperature reached or by selecting rapid temperature raising operations, but in either case, the heating transition point of the fiber Rapid reactions such as intermolecular cross-linking and intramolecular cyclization occur in the nearby temperature range, leading to local heat accumulation, generating pitch-tar-like substances, and eventually The reality is that carbon fibers with high physical properties have not been obtained due to problems such as fibers fusing together and a decrease in mechanical strength. For the purpose of reducing such heat accumulation, for example, an attempt was made to reduce the single yarn denier of the precursor (Special Publication No. 1973-
40574, etc.), but it is difficult to manufacture precursors by simply making the denier finer.
This impairs the processability and causes morphological instability such as fuzziness in the obtained precursor, which makes firing more technically difficult and also reduces the performance of the carbon fiber. In order to solve this problem, attempts have been made to specify the intrinsic viscosity of the starting polymer in addition to making the denier finer, as proposed in, for example, Japanese Patent Publication No. 50-29530, but this has not yet been a satisfactory technique. do not have. In addition, an attempt was made to reduce the amount of residual solvent in order to suppress abnormal heat generation and the generation of pitch and tar-like substances (Special Public Interest Publication in 1973).
29531, etc.), but in order to reduce the amount of residual solvent to an appropriate level, a special water washing device is required, and the use of this device causes the yarn to become disordered, so it is not recommended from an industrial perspective. It was difficult to say that it was advantageous. As a result of intensive studies to eliminate the drawbacks associated with conventional techniques, the inventors of the present invention have discovered that by using a predetermined acrylic fiber produced by adopting a specific manufacturing method as a precursor and firing it, It has been found that the firing time can be significantly shortened and carbon fibers with extremely high physical properties and high quality can be manufactured with industrial advantage. An object of the present invention is to propose an industrially advantageous method for producing carbon fibers having excellent physical properties and quality. Another object of the present invention is to propose technical knowledge for obtaining carbon fibers with high physical properties and high quality by short firing time. Other objects of the present invention will become clear from the detailed description below. Therefore, the above purpose is to produce carbon fibers from acrylic fibers made of an acrylic polymer containing 90% by weight or more of acrylonitrile bonded and produced by wet spinning or dry/wet spinning the polymer. , made by dividing the stretching into two or more stages before exiting the coagulation bath after spinning, and five or more stages in the entire fiber manufacturing process, and the single fiber denier is 1.5 denier or less, and the amount of residual solvent is 300 p.pm
This is achieved by firing the following acrylic fibers. As described above, by carrying out the specific division and distribution drawing according to the present invention, the force acting on the single fiber is efficiently dispersed, and the cross-sectional area of the single fiber minute portion is reduced.
The orientation becomes uniform, and an abnormal morphology develops on the fiber surface (two or several single fibers are pressed together with strong force and coalesce into one or a similar state,
In the subsequent process, the fiber is pulled off by a certain force, forming concave or convex portions on the fiber surface, or the surface layer is pulled to a width of about a fraction of the fiber diameter), and the final result is In addition to achieving uniform cyclization or crosslinking reactions and significantly improving firing operability, high-quality carbon fibers can be produced. In addition, because the single fiber denier is small in connection with the above-mentioned specific split drawing, heat accumulation during the flame resistance stage is small.
This makes it possible to bake for a short time. Furthermore, in addition to the specific division and fine denier form, there is almost no residual solvent, so that abnormal heat generation does not occur during the firing process, and firing operability can be improved. The desired purpose and effect are achieved only when these technical components of the present invention, which can be adopted independently (split stretching, fine denier, and residual solvent), are integrated, and even if none of them are absent, a satisfactory result can be achieved. You can't get it. Further, although each of the above configurations can be made independently, another feature of the present invention is that other fine denier and reduction of the amount of residual solvent can be achieved more effectively by employing division and distributed stretching. It can be said. In other words, it is not that fine deniering and solvent removal can be achieved as a result of adopting split stretching, but that the processability and effectiveness of the fine deniering process and solvent removal process, which are performed in separate steps or by other means, are increased to a certain level. He will play a role. As described above, what is important in carrying out the present invention is that the stretching is carried out in multiple stages, including two or more stages before exiting the coagulation bath after spinning, and five or more stages in the fiber manufacturing process as a whole. In other words, if multi-stage divisional stretching is performed after spinning and before exiting the coagulation bath, it is possible to easily perform high-magnification stretching in a liquid yarn or extremely high solvent concentration state similar to that of a liquid yarn. The burden of stretching (so-called cold water stretching, hot water stretching, steam stretching, dry heat stretching, etc.) can be reduced.
Moreover, since the orientation does not become very high during stretching in the coagulation bath, it is easy to draw in the steps after the coagulation bath, which has the advantage of not causing non-uniform stretching, and has excellent quality as a fired yarn ( A fine denier precursor (with no irregularities in cross-sectional area or orientation, and without the above-mentioned abnormal morphology) is used.
You can get good processability (no thread breakage etc.). Furthermore, in the coagulation bath, the flow of the coagulation bath liquid is maintained in parallel with the flow of the spun yarn, or in a nearly stationary state, so the phenomenon of bunching the single fibers together does not occur, and a high degree of stretching action is also added. At the same time as the denier becomes uniform and fine, the specific surface area increases, and as the yarn becomes thinner as it is drawn, water with a high solvent concentration contained in the swollen gel yarn is extruded from the yarn. Another characteristic is that the solvent speed is also faster. In addition, by performing divided stretching in five or more stages in the entire fiber manufacturing process, the load on the stretching points at each process stage can be divided and reduced, and a uniform stretching effect can be efficiently achieved, while at the same time, the strain on the stretching points can be reduced. Fibrillation (abnormal shape) accompanying this process is not caused, and it is also possible to increase the total stretching ratio through the fiber manufacturing process, producing highly oriented yarn (in other words, carbon fiber with high physical properties). It became possible to do so. Unless the number of multi-stage divisions according to the present invention is satisfied, the various advantages described above cannot be achieved. Further, as a preferred embodiment of the present invention,
The following points can be mentioned. That is, the total stretching ratio (hereinafter referred to as TD) in the entire fiber manufacturing process is defined as [nozzle hole area] ÷ [precursor cross-sectional area],
If the stretching ratio from after spinning to leaving the coagulation bath is FD, and the stretching ratio after leaving the coagulation bath until it is made into a precursor is SD, then TD = FD.
×SD (logTD=logFD+logSD) holds, but
In the present invention, TD is set to 12 or more, preferably 15 or more, and logFD is allocated so that it is 15% or more of logTD. For example, if a 1.5 denier precursor is manufactured using a nozzle with a nozzle hole diameter of 0.055 mm, the TD is 16.7.
FD to 1.53 (=10 0.15logTD ) or more, and SD to 10.9
(=16.7/1.53) The following applies. Of course, as long as FD and SD are maintained within the specified range, the number of stretching stages can be selected as appropriate (of course, the number of stretching stages should be 2 or more before exiting the coagulation bath, and 5 or more stages as a whole). (Although it is mandatory). For example, if you set FD to 8, 2 or more stages,
For example, the stretching ratio in each stage may be determined so that the FD is 8 in 4 stages. The stretching step from after spinning until exiting the coagulation bath involves using two or more coagulation baths or providing appropriate stretching points (non-rotating guides for direction change, drive rollers, etc.) in the coagulation bath. It includes not only the stretching performed, but also the so-called jet stretching in wet spinning and the stretching applied to the liquid yarn between the nozzle surface and the coagulation bath surface in dry/wet spinning. The stretching steps up to
As mentioned above, cold water stretching, hot water stretching, steam stretching,
Examples include dry heat stretching. Furthermore, in the present invention, it is necessary to be able to make the single fibers finer in denier and to remove the solvent remaining in the single fibers in a completely separate process in addition to carrying out the split stretching described above. In other words, no matter how much the above-mentioned splitting and distributive drawing are achieved, a precursor that does not satisfy the single fiber denier of 1.5 denier or less and the residual solvent amount of 300 p.pm or less will not be able to achieve the objectives and effects of the present invention. Become. For example, a precursor with a single fiber denier of 1.8 denier is produced by performing predetermined divisional multistage stretching in the precursor manufacturing process.
Although it is true that homogenization of each precursor is achieved, the firing processability is poor and the firing takes a long time, which is not industrially advantageous. For example, if the amount of residual solvent is as high as 500 p.pm despite the fine denier and split-stretched precursor, abnormal heat generation will occur during the firing process, causing mutual fusion of the fired yarns, which will reduce the firing processability. In addition to this, it becomes difficult to obtain carbon fibers of high quality and high physical properties due to the occurrence of abnormal morphology (a type of fibrillation) as described above. In addition, as for the above-mentioned fine denier and removal of residual solvent, the former is achieved by selecting the nozzle hole diameter, controlling the discharge amount by a gear pump, setting the total stretching ratio, etc., and the latter is by controlling the washing conditions such as the amount of washing water, washing temperature, water flow, etc. This can be done by optimizing the system, etc., and there are no particular limitations. Of course, it goes without saying that the divided multi-stage stretching operation as described above greatly contributes to achieving these goals. As described above, in the present invention, carbon fibers of high quality and high physical properties can only be produced by adopting the split drawing operation, reducing the denier, and removing the residual solvent in an integrated manner. The acrylic polymer used in the present invention contains at least 90% by weight of acrylonitrile and is prepared by copolymerizing other unsaturated monomers. Other unsaturated monomers include well-known ethylenically unsaturated compounds such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, vinyl acetate, sodium methalylsulfonate, and sodium p-styrenesulfonate. can. Acrylic polymers are produced by general polymerization methods, and when producing acrylic fibers from such polymers, organic solvents such as dimethylformamide, dimethylacetamide, and dimethyl sulfoxide are used as solvents;
An inorganic solvent such as nitric acid, an aqueous solution of zinc chloride, an aqueous solution of Rodan soda, etc. is used, and a spinning dope is prepared according to a conventional method, which is then spun and made into fibers. Such spinning means can be selected from known wet spinning methods and dry/wet spinning methods. In the practice of the present invention, it is preferable to adopt a dry/wet spinning method (because the stretching in this spinning means involves stretching a liquid yarn made of a spinning dope, so the viscoelastic properties of the spinning dope are suitable for spinning. (This is because it is done at high magnification and in a state that is close to completely non-oriented). The spun fiber bundle that has been spun and solidified (it is essential to undergo two or more stages of divided stretching during this process) is then subjected to cold water stretching, water washing, gel treatment, hot water stretching, and steam stretching. , dry heat stretching and drying (although it is essential that divisional stretching is performed in five or more stages during the period from spinning to drying). When producing carbon fibers from the acrylic fibers obtained in this way, any conventionally known firing method can be employed, but generally a flame-retardant process of heating to 150 to 400°C in an oxidizing atmosphere to cyclize is used. A firing method comprising a carbonization step of carbonizing or graphitizing the material by performing high-temperature firing in a non-oxidizing atmosphere or under reduced pressure is preferably employed. Note that air is suitable as an atmosphere for flameproofing, and nitrogen, helium, argon, etc. are suitable as an atmosphere for carbonization or graphitization. In order to produce carbon fibers with even better strength and modulus of elasticity, heating under tension is one of the preferred methods. Thus, by employing the method of the present invention as described above, it becomes possible to produce carbon fibers with high quality uniformity, high strength, and high modulus in a short time with good productivity. Carbon fiber, which has excellent performance, is also suitable for use as a material for forming composites to provide high quality performance.
It can now be used in a wide range of fields such as reinforcing materials, heating elements, and heat-resistant materials. In order to provide a better understanding of the invention, the following representative examples are presented. In the examples, percentages and parts are expressed on a weight basis unless otherwise specified. Example 1 15.5 parts of an acrylic polymer consisting of 98% acrylonitrile and 2% methacrylic acid obtained by an aqueous suspension polymerization method using a ( NH4 ) 2S2O8 / Na2SO3 - based redox catalyst , Spinning stock solution dissolved in 84.5 parts of 51.36% Rodan soda aqueous solution (held at 73℃)
was once discharged into the air through a spinneret (pore diameter: 0.15 mm, number of holes: 50), and then introduced into a coagulation bath consisting of a 14% rhodan soda aqueous solution at 3° C. for coagulation. At this time, the distance between the spinneret surface and the coagulation bath liquid level is
It was 0.3cm warm. After discharging, the stretching operation as shown in Table 1 was used to solidify the material, followed by 2.0 times cold stretching.
After washing with water (30℃), gel treatment is performed (PH2.2).
A precursor was produced by further stretching 2.4 times in hot water and stretching 2.08 times in steam, followed by drying. Table 1 also shows the total number of divided stretching steps employed in each stretching step (Process A). On the other hand, a spinning stock solution (50°C) obtained by dissolving 9.0 parts of the above acrylic polymer in 91.0 times the 47.2% Rodan Soda aqueous solution was passed through a spinneret (pore diameter 0.055 mm, number of holes 50) at -3°C. It was coagulated by extrusion into a coagulation bath consisting of a 12% Rodan soda aqueous solution. In addition, the steps from coagulation to drying follow the order of process A (however, No. 6 uses only 8.3 times hot water stretching, No. 7 uses steam stretching 1.73 times, and No. 8 uses hot water stretching 1.2 times and 2.0 times. 2
Divided into stages (No. 9 is 5.0 times hot water stretching and 2.0 times steam stretching), the number of stretching stages before exiting the coagulation bath after spinning and the total number of stretching stages were varied as shown in Table 1 to produce precursors. Process B). In both Process A and Process B, fine deniering and solvent removal behavior were adjusted by controlling the discharge amount and appropriately selecting an increase in the amount of washing water. The precursor thus obtained was first stretched 1.2 times at 180°C in an air atmosphere using an electric furnace.
Further, a flame-resistant yarn was obtained by continuously treating at 240℃ for 30 minutes and at 260℃ for 30 minutes, and then the flame-resistant yarn was continuously heated from 300℃ to 1300℃ for 2 minutes under a nitrogen atmosphere. Carbon fibers were obtained by increasing the temperature. The physical properties of the obtained carbon fibers are also listed in Table 1.
【表】
実施例 2
実施例1試料No.8作製時、紡糸から乾燥に至る
プロセスで採用した全延伸倍率TDは一定に維持
し、第2表の如くFD及びSDの割り振りを変化さ
せたプレカーサ(試料10)を作製し、その紡糸状
況を観察したところ単糸切れが時々発生して操業
性が低下した。[Table] Example 2 Example 1 When preparing sample No. 8, the total draw ratio TD adopted in the process from spinning to drying was kept constant, and the precursor was prepared by changing the allocation of FD and SD as shown in Table 2. (Sample 10) was prepared and its spinning status was observed. As a result, single yarn breakage occasionally occurred and operability decreased.
Claims (1)
るアクリル系重合体よりなり、かつ該重合体を湿
式紡糸又は乾/湿式紡糸して作製されてなるアク
リル繊維より炭素繊維を製造するに際し、紡出後
凝固浴をでるまでに2段以上、繊維製造工程全体
として5段以上に延伸を分割せしめて作製し、か
つ単繊維デニールが1.5デニール以下でありしか
も残留溶剤量が300p.p.m以下であるアクリル繊
維を焼成することを特徴とする炭素繊維の改善さ
れた製造方法。1. When producing carbon fibers from acrylic fibers made of an acrylic polymer containing 90% by weight or more of acrylonitrile bound and produced by wet spinning or dry/wet spinning of the polymer, a coagulation bath after spinning is required. The acrylic fiber is produced by dividing the drawing process into two or more stages and five or more stages in the entire fiber manufacturing process, and has a single fiber denier of 1.5 denier or less and a residual solvent amount of 300 p.pm or less. An improved method for producing carbon fiber, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6301579A JPS55163217A (en) | 1979-05-21 | 1979-05-21 | Improved preparation of carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6301579A JPS55163217A (en) | 1979-05-21 | 1979-05-21 | Improved preparation of carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55163217A JPS55163217A (en) | 1980-12-19 |
JPS6317929B2 true JPS6317929B2 (en) | 1988-04-15 |
Family
ID=13217065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6301579A Granted JPS55163217A (en) | 1979-05-21 | 1979-05-21 | Improved preparation of carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55163217A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58214525A (en) * | 1982-06-07 | 1983-12-13 | Toray Ind Inc | Production of carbon fiber |
JPS6039408A (en) * | 1983-08-09 | 1985-03-01 | Nikkiso Co Ltd | Preparation of precursor yarn for carbon yarn |
JPS6088126A (en) * | 1983-10-13 | 1985-05-17 | Mitsubishi Rayon Co Ltd | Carbon yarn having high strength and high elasticity |
EP0223199B1 (en) * | 1985-11-18 | 1992-05-27 | Toray Industries, Inc. | Process for producing high-strenght, high-modulus carbon fibers |
US5066433A (en) * | 1988-02-16 | 1991-11-19 | Hercules Incorporated | Method of manufacturing carbon fiber using preliminary stretch |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4833122A (en) * | 1971-09-03 | 1973-05-08 | ||
JPS5175119A (en) * | 1974-12-23 | 1976-06-29 | Neumuenster Masch App | HORIAKURIRUNITORIRUKEISENINOSEIZOHO |
-
1979
- 1979-05-21 JP JP6301579A patent/JPS55163217A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4833122A (en) * | 1971-09-03 | 1973-05-08 | ||
JPS5175119A (en) * | 1974-12-23 | 1976-06-29 | Neumuenster Masch App | HORIAKURIRUNITORIRUKEISENINOSEIZOHO |
Also Published As
Publication number | Publication date |
---|---|
JPS55163217A (en) | 1980-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7500972B2 (en) | Carbon fiber precursor fiber and method for producing carbon fiber | |
JP2010100970A (en) | Method for producing carbon fiber | |
JPS6317929B2 (en) | ||
JP2011042893A (en) | Method for producing polyacrylonitrile-based fiber and method for producing carbon fiber | |
JPH0583642B2 (en) | ||
JP2011017100A (en) | Method for producing carbon fiber | |
JP2002302828A (en) | Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same | |
JP4875238B2 (en) | Method for producing carbon fiber and precursor thereof, and method for attaching oil agent | |
JP4446991B2 (en) | Method for producing acrylonitrile-based precursor fiber for carbon fiber | |
JP2004232155A (en) | Light-weight polyacrylonitrile-based carbon fiber and method for producing the same | |
JPS63275718A (en) | Production of high-tenacity carbon fiber | |
JP4480858B2 (en) | Lightweight composite acrylic fiber and method for producing the same | |
JPH055224A (en) | Production of carbon fiber having excellent uniformity | |
JP2004183194A (en) | Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same | |
JPH1181053A (en) | High-strength acrylic fiber, its production and production of carbon fiber | |
JPS5920004B2 (en) | Carbon fiber manufacturing method | |
US3657409A (en) | Process for the production of acrylic filaments | |
JPS5982420A (en) | Production of carbon fiber | |
JP6232814B2 (en) | Acrylic fiber manufacturing method | |
EP0372622A2 (en) | Acrylic precursor for carbon fibres and method for its preparation | |
JPS6156328B2 (en) | ||
JPH028049B2 (en) | ||
JP7122770B2 (en) | Electrical parameter assisted wet spinning method | |
JPS6156326B2 (en) | ||
JPH0433890B2 (en) |