JP2927304B2 - Method for producing polyvinyl alcohol-based synthetic fiber - Google Patents

Method for producing polyvinyl alcohol-based synthetic fiber

Info

Publication number
JP2927304B2
JP2927304B2 JP2280734A JP28073490A JP2927304B2 JP 2927304 B2 JP2927304 B2 JP 2927304B2 JP 2280734 A JP2280734 A JP 2280734A JP 28073490 A JP28073490 A JP 28073490A JP 2927304 B2 JP2927304 B2 JP 2927304B2
Authority
JP
Japan
Prior art keywords
salt
polymer
stretching
fiber
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2280734A
Other languages
Japanese (ja)
Other versions
JPH04163310A (en
Inventor
昭雄 溝辺
正一 西山
一之 城山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KK
Original Assignee
KURARE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARE KK filed Critical KURARE KK
Priority to JP2280734A priority Critical patent/JP2927304B2/en
Publication of JPH04163310A publication Critical patent/JPH04163310A/en
Application granted granted Critical
Publication of JP2927304B2 publication Critical patent/JP2927304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、セメントやゴムなどの補強やロープなどの
産業資材として有用な、耐熱水性に優れた高強度・高弾
性率のポリビニルアルコール(以下PVAと略記する)系
合成繊維の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a high-strength, high-elasticity polyvinyl alcohol (hereinafter referred to as "high-strength, high-modulus polyvinyl alcohol") which is useful as a reinforcing material for cement or rubber or as an industrial material such as a rope. (Abbreviated as PVA) based synthetic fiber.

<従来の技術> 従来よりPVA系合成繊維は汎用繊維の中で最も高強度
・高弾性率であるという特長を生かしてプラスチックや
ゴム等の成形材料として、またセメントや石コウ等の水
硬性無機物の補強材料として、さらにまたロープ、ケー
ブル等の一般産業資材として好ましく用いられている。
<Conventional technology> Conventionally, PVA-based synthetic fibers have the highest strength and high elastic modulus among general-purpose fibers as molding materials such as plastics and rubbers, and hydraulic inorganic materials such as cement and masonry. As a reinforcing material, and also as a general industrial material such as a rope and a cable.

近年、強度・弾性率を更に高め、アラミドやポリアリ
レートのようないわゆるスーパー繊維に近づけようとす
る試みがなされており、例えば特開昭60−126312号公報
で示される如く、PVAを有機溶剤に溶解し、乾湿式紡糸
する方法が提案されている。また、特開平1−298208号
公報には、ホウ酸またはホウ酸塩を含有するPVA水溶液
を紡糸原液として用い、これを、凝固浴温度が55〜95℃
と高い、塩類を含むアルカリ性水系凝固浴中へ紡糸し、
得られた紡糸原糸を17倍以上に高倍率に延伸することに
よって、高強度、高弾性率のPVA系合成繊維を得ること
が示されている。
In recent years, attempts have been made to further increase the strength and modulus of elasticity and to approach a so-called super fiber such as aramid or polyarylate.For example, as shown in JP-A-60-122632, PVA is converted into an organic solvent. A method of dissolving and dry-wet spinning has been proposed. Further, JP-A-1-298208 discloses that an aqueous PVA solution containing boric acid or borate is used as a spinning solution, and the coagulation bath temperature is 55 to 95 ° C.
And high, spinning into an alkaline aqueous coagulation bath containing salts,
It has been shown that by stretching the obtained spun yarn at a high magnification of 17 times or more, a PVA-based synthetic fiber having high strength and high elastic modulus can be obtained.

共に、特殊な紡糸方式及び条件を採用することで、PV
A分子の高配向・高結晶化を可能にし、PVAの重合度を高
めるという効果と相俟って、強度・弾性率といった、機
械的物性のみならず、耐熱水性も向上させるに至ってい
る。
Both employ special spinning methods and conditions,
Along with the effect of enabling high orientation and high crystallization of A molecules and increasing the degree of polymerization of PVA, not only mechanical properties such as strength and elastic modulus, but also hot water resistance have been improved.

しかし、かかる繊維も基本的には、水溶性のポリマー
であるPVAからなるものであり、非晶領域が存在する以
上その耐熱水性は十分とはいえない。
However, such fibers are basically made of PVA, which is a water-soluble polymer, and their hot water resistance is not sufficient as long as an amorphous region exists.

最近、強度・弾性率は極力保持したまま、この耐熱水
性を更に向上させようとする検討が行なわれ、特開平2
−84587号公報や、特開平1−156517号公報にその手段
が開示されている。
Recently, studies have been made to further improve the hot water resistance while maintaining the strength and elastic modulus as much as possible.
JP-A-84587 and JP-A-1-156517 disclose such means.

前者は、強度15g/d以上のPVA系合成繊維あるいはこれ
を撚糸してなるコードに対し、架橋処理を施すものであ
るが、分子の配向や結晶化がすすんでいる繊維に対して
処理するために、架橋性薬剤を高温・高濃度で、長時間
付与せざるを得ず、得られる繊維の強度・弾性率の低下
が大きいばかりか形成される架橋構造は主に繊維表面に
偏在するため熱水と接触した場合、繊維中央部が膨潤な
いし溶解してしまうことになる。繊維の断面方向に均一
に架橋性薬剤を浸透せしめるには、付与条件をより過酷
なものとせざるを得ず、強度・弾性率の異なる低下を招
くことになる。加えて、かかる処理は、工程が複雑か
つ、長大であり製造コストは極めて高いものとなってし
まう。
In the former, a PVA-based synthetic fiber with a strength of 15 g / d or more or a cord obtained by twisting the PVA-based synthetic fiber is subjected to a cross-linking treatment.However, in order to treat a fiber in which molecular orientation and crystallization are progressing. In addition, a cross-linking agent must be applied at a high temperature and high concentration for a long time, and the resulting fiber has a large decrease in strength and elastic modulus, and the formed cross-linking structure is mainly unevenly distributed on the fiber surface. When it comes in contact with water, the central part of the fiber swells or dissolves. In order to uniformly penetrate the cross-linking agent in the cross-sectional direction of the fiber, the application conditions must be made severer, resulting in a different decrease in strength and elastic modulus. In addition, such a process involves complicated and long steps, resulting in extremely high manufacturing costs.

一方、後者においては、乾熱延伸前に架橋性薬剤を付
与する手法により、工程の簡素化が図られているもの
の、意図的には架橋構造を繊維表面に偏在させるべく、
紡糸後少なくとも3倍延伸したのち、架橋性薬剤を付与
しなければならないと記述されている。
On the other hand, in the latter, although the process is simplified by a method of applying a cross-linking agent before hot drawing, in order to intentionally distribute the cross-linked structure to the fiber surface,
It is described that a crosslinkable agent must be applied after drawing at least three times after spinning.

かかる方法で得られた繊維も、前出のものと同様、熱
水との接触時、繊維の中央部より膨潤ないし溶解してし
まうことになり、十分な耐熱水性を有しているとは到底
いえない。
Fibers obtained by such a method also swell or dissolve from the central portion of the fibers upon contact with hot water, as in the case of the above, and it is not considered that they have sufficient hot water resistance. I can't say.

つまり、従来の技術では、十分な耐熱水性を有する高
強力・高弾性率PVA系合成繊維を簡潔な工程で安価に製
造することができなかったのである。
That is, with the conventional technology, a high-strength, high-modulus PVA-based synthetic fiber having sufficient hot water resistance could not be produced in a simple process at low cost.

<発明が解決しようとする課題> 本発明は、十分な耐熱水性を有しかつ高強力・高弾性
であるPVA系合成繊維を前述した特開平1−298208号公
報等の水系溶媒・水系凝固浴使用の製造方式を用い、簡
潔な工程で安価に製造せんとするものである。
<Problems to be Solved by the Invention> The present invention provides a PVA-based synthetic fiber having sufficient hot water resistance and high strength and high elasticity by using an aqueous solvent and an aqueous coagulation bath as described in JP-A-1-298208 described above. It is intended to be manufactured in a simple process and at low cost by using the manufacturing method used.

<課題を解決するための手段> 本発明者らは、繊維の断面方向に均一に架橋性薬剤を
浸透させ、繊維表面のみならず、中央部にも架橋構造を
形成せしめることが十分な耐熱水性を強度・弾性率を有
するPVA系合成繊維を得るに極めて有効であると考え、
鋭意検討し結果、後述する特定の手段を採用することに
より、目的とする繊維を簡潔な工程で安価に製造しうる
ことを見出し本発明に至った。
<Means for Solving the Problems> The present inventors have found that it is sufficient to infiltrate the cross-linking agent uniformly in the cross-sectional direction of the fiber and to form a cross-linked structure not only on the fiber surface but also on the central part. Is considered to be extremely effective in obtaining PVA-based synthetic fibers having strength and elastic modulus,
As a result of intensive studies, the present inventors have found that the intended fiber can be produced in a simple process at a low cost by employing a specific means described later.

すなわち本発明の方法は (1)ホウ酸又はホウ酸塩を含有するポリビニルアルコ
ール系ポリマーの水溶液を紡糸原液とし、これを脱水能
を有する塩類を含む55〜95℃の高温アルカリ性凝固浴へ
紡糸し、1.5倍以上の延伸、中和、1.0〜2.0倍でここま
での延伸倍率が2.0〜5.0倍の湿熱延伸を行い、水洗後、
含水量をポリマーに対して50〜300重量%に水分調整し
た糸篠に塩の水溶液を接触させ、多価強酸とアルカリ金
属あるいはアルカリ土類金属との酸性塩、強酸とアンモ
ニアとのアンモニューム塩および強酸と遷移金属との塩
から選ばれる1種以上の塩をポリマーに対して50〜5000
0ppm付与して乾燥し、ひき続いて220℃以上で、全延伸
倍率が17倍以上となるよう延伸することを特徴とするポ
リビニルアルコール系合成繊維の製造法。
That is, the method of the present invention comprises: (1) spinning an aqueous solution of a polyvinyl alcohol-based polymer containing boric acid or borate into a high-temperature alkaline coagulation bath at 55 to 95 ° C. containing salts having a dehydrating ability; , 1.5 times or more of stretching, neutralization, wet heat stretching of 1.0 to 2.0 times, the stretching ratio up to here is 2.0 to 5.0 times, after washing with water,
An aqueous solution of a salt is brought into contact with an aqueous solution of salt adjusted to a water content of 50 to 300% by weight with respect to the polymer, and an acidic salt of a polyvalent strong acid with an alkali metal or an alkaline earth metal, and an ammonium salt of a strong acid with ammonia. And at least one salt selected from salts of strong acids and transition metals with the polymer in an amount of 50 to 5000
A process for producing a polyvinyl alcohol-based synthetic fiber, comprising applying 0 ppm, drying, and subsequently stretching at 220 ° C. or higher so that the total draw ratio is 17 times or higher.

(2)ホウ酸又はホウ酸塩と、一種又は二種以上の界面
活性剤をポリマーに対して1〜20重量%含有するポリビ
ニルアルコール系ポリマーの水溶液を紡糸原液とし、こ
れを脱水能を有する塩類を含む55〜95℃の高温アルカリ
性凝固浴へ紡糸し、1.5倍以上の延伸、中和、1.0〜2.0
倍で、ここまでの延伸倍率が2.0〜5.0倍の湿熱延伸を行
ない、水洗後、含水量をポリマーに対して50〜300重量
%に水分調整した糸篠に多価強酸とアルカリ金属あるい
はアルカリ土類金属との酸性塩、強酸とアンモニアとの
アンモニューム塩および強酸と遷移金属との塩から選ば
れる1種以上の塩の水溶液を接触させ、塩をポリマーに
対して50〜50000ppm付与して乾燥し、ひき続いて220℃
以上で全延伸倍率が20倍以上となるよう延伸することを
特徴とするポリビニルアルコール系合成繊維の製造法。
(2) An aqueous solution of a polyvinyl alcohol-based polymer containing boric acid or a borate and one or more surfactants in an amount of 1 to 20% by weight based on the polymer is used as a spinning dope, and this is a salt having a dehydrating ability. Spun into a high-temperature alkaline coagulation bath at 55 to 95 ° C containing 1.5 times or more of stretching and neutralization, 1.0 to 2.0
And then stretched to 2.0 to 5.0 times the wet heat and then washed with water and adjusted to a water content of 50 to 300% by weight with respect to the polymer. Contact an aqueous solution of at least one salt selected from an acidic salt with a class of metals, an ammonium salt of a strong acid with ammonia and a salt of a strong acid with a transition metal, and applying the salt to the polymer in an amount of 50 to 50,000 ppm and drying. Followed by 220 ° C
A method for producing a polyvinyl alcohol-based synthetic fiber, wherein the stretching is performed so that the total draw ratio is 20 times or more.

であって、耐熱水性を向上させる薬剤として、PVAと親
和性の高い特定の塩をやはりPVAを親和性の高い水に溶
解し、含水状態にある糸篠にこれを接触させて、塩を繊
維内部にまで均一に浸透せしめるものである。
As a drug for improving hot water resistance, a specific salt with high affinity for PVA is also dissolved in water with high affinity for PVA, and this is brought into contact with the water-containing state of Itoshino to convert the salt into fiber. It is to penetrate the inside evenly.

この方法を活かすPVA繊維の製造方法として、本方法
は、前記のホウ酸又はホウ酸塩を含むPVA系ポリマーの
水溶液を脱水能を有する塩類を含む55〜95℃の高温凝固
浴へ紡糸する製造技術を採取するものであるが、これ
は、この技術が延伸性を高めるという効果の他に、水洗
後の含水状態にある糸篠の結晶性を低下させ、酸の繊維
内部への均一浸透を容易ならしめるという本発明の目的
にとって誠に好都合な効果をも有しているためである。
また、凝固浴を出た糸篠の延伸・湿熱延伸は共に、塩の
浸透性を阻害するため、紡糸から湿熱延伸までの延伸倍
率は2〜5倍に抑える。かくして、塩の浸透を容易なら
しめることができるが、それだけでは、不十分であり、
更に浸透を促すために、特定の塩の水溶液を付与する際
の糸篠の含水率をポリマーに対して50〜3000重量%に制
御するというのが、塩を繊維内部へ均一浸透させ、高延
伸するに必要な手段である。
As a method for producing PVA fiber utilizing this method, the present method comprises spinning an aqueous solution of the above-mentioned PVA-based polymer containing boric acid or borate into a high-temperature coagulation bath at 55 to 95 ° C containing salts having a dehydrating ability. This technique is to collect the technology, but in addition to the effect of this technology to enhance the stretchability, it also reduces the crystallinity of the water-containing itoshino after washing, and allows the acid to uniformly penetrate inside the fiber. This is because it also has a very advantageous effect for the purpose of the present invention of facilitating the facilitation.
In addition, since the stretching and the wet heat stretching of the yarn from the coagulation bath both inhibit the permeability of the salt, the stretching ratio from spinning to the wet heat stretching is suppressed to 2 to 5 times. Thus, salt penetration can be facilitated, but that alone is not enough,
In order to further promote penetration, the water content of itoshino when applying an aqueous solution of a specific salt is controlled to 50 to 3000% by weight with respect to the polymer. It is a necessary means to do.

さらに本発明は、前記紡糸原液にさらに一種又は二種
以上の界面活性剤をポリマーに対して1〜20重量%添加
する製造方式を採用することにより、塩の浸透が更に促
進され、この製造方式が、より延伸性をも高め得ること
と相俟って、より高強力高弾性率で、より耐熱水性の向
上したPVA繊維が得られるものである。
Further, the present invention employs a production system in which one or more surfactants are further added to the spinning dope in an amount of 1 to 20% by weight based on the polymer, thereby further promoting salt penetration. However, in combination with the fact that the stretchability can be further improved, a PVA fiber having a higher strength and a higher elastic modulus and further improved hot water resistance can be obtained.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

PVAの重合度は1500以上で、好ましくは3000更に好ま
しくは5000以上である。重合度が高い方が耐熱水性、強
度・弾性率が得られやすい。ケン化度は、凝固浴中でケ
ン化されるため特に限定はないが、95モル%以上が好ま
しい。又、他のビニル基を有するモノマーを10モル%以
下の比率で共重合したものでもよい。又、紡糸原液にお
けるPVA濃度及びホウ酸又はホウ酸塩の濃度は、重合度
により適宜調整すればよい。無論、該紡糸原液のPH調整
を酢酸やシユウ酸などを用いて行っても全くさしつかえ
ない。
The degree of polymerization of PVA is 1500 or more, preferably 3000 or more, more preferably 5000 or more. The higher the degree of polymerization, the easier it is to obtain hot water resistance, strength and elastic modulus. The saponification degree is not particularly limited since it is saponified in a coagulation bath, but is preferably 95 mol% or more. Further, a copolymer of another monomer having a vinyl group at a ratio of 10 mol% or less may be used. In addition, the PVA concentration and the concentration of boric acid or borate in the spinning dope may be appropriately adjusted depending on the degree of polymerization. Of course, even if the pH of the spinning solution is adjusted using acetic acid, oxalic acid, or the like, there is no problem at all.

一方、紡糸原液に、一種又は二種以上の界面活性剤を
添加すると、前述の如く、塩の浸透を促進し、延伸性を
も高めることができるので特に好ましいが、その添加率
は1〜20重量%/ポリマーの範囲であることが必要であ
る。1重量%/ポリマーより少ない場合はその効果が得
られず、20重量%/ポリマーより多くても凝固不良とな
る。界面活性剤の種類としては、ノニオン、アニオン、
カチオン、両性いかなるものでも用いることができる
が、二種以上を複合して用いる場合沈澱を生ずるような
組合せ(例えばアニオンとカチオン)は好ましくない。
また、好ましいものはノニオンであり、とりわけHLB13
〜19のものが、結果として、得られる繊維の強度・弾性
率の点で好ましい。
On the other hand, when one or more surfactants are added to the spinning dope, as described above, salt penetration can be promoted and stretchability can also be increased, but the addition rate is preferably 1 to 20. It must be in the range of weight% / polymer. If the amount is less than 1% by weight / polymer, the effect cannot be obtained, and if the amount is more than 20% by weight / polymer, poor coagulation occurs. As the type of surfactant, nonionic, anionic,
Any cation or amphoteric can be used, but a combination that produces a precipitate (eg, an anion and a cation) is not preferred when two or more are used in combination.
Also preferred are nonions, especially HLB13
~ 19 are preferred in terms of the strength and elastic modulus of the resulting fiber.

紡糸方式は、通常の湿式紡糸でもよいし、ノズル面と
凝固浴液面との間に、空気や、不活性ガス層を設けた乾
湿式紡糸のいずれをも採用しうる。
The spinning method may be ordinary wet spinning or dry-wet spinning having an air or an inert gas layer between the nozzle surface and the coagulation bath liquid surface.

凝固浴の温度は55〜95℃、好ましくは、60〜85℃であ
る。55℃より低くては、塩の水溶液を接触させる際の含
水糸篠の結晶性が高すぎるため、繊維内部へ浸透しにく
く、また、延伸性も無い。95℃を越えては凝固浴の沸騰
ないし単繊維の膠着をきたして、紡糸できない。凝固浴
のアルカリ成分、及び脱水能を有する塩類成分は、それ
ぞれ苛性ソーダ、芒硝など公知のものでよい。
The temperature of the coagulation bath is 55-95 ° C, preferably 60-85 ° C. If the temperature is lower than 55 ° C., the crystallinity of the water-containing thread at the time of contact with the aqueous salt solution is too high, so that it does not easily penetrate into the interior of the fiber and has no stretchability. If the temperature exceeds 95 ° C., the coagulation bath will boil or the single fibers will stick, making it impossible to spin. The alkali component and the dehydrating salt component of the coagulation bath may each be a known component such as caustic soda and sodium sulfate.

紡糸後の糸篠は、延伸、中和、湿熱延伸、水洗を常法
に従って実施すればよいが、ローラー延伸及び湿熱延伸
はそれぞれ1.5倍以上、1.0〜2.0倍、そして紡糸から湿
熱延伸までの延伸倍率としては2.0〜5.0倍としなければ
ならない。紡糸後の第1の延伸は後の中和工程におけ
る、そしてまた中和後の湿熱延伸は後の水洗工程におけ
る、それぞれ繊維の膨潤ないし極度な繊維の構造破壊を
防止するために実施するものであり、必要欠くべからざ
るものであるが、これらの延伸率が大きすぎると、糸篠
の配向ないし結晶化が起り、塩の浸透を阻害してしま
う。つまり、後続する工程での膨潤の抑制と、塩の浸透
性確保とをうまくバランスさせる必要があり、種々検討
した結果、凝固後の第1の延伸は1.5倍以上、湿熱延伸
は1.0〜2.0倍、そして両者の積つまり、紡糸から湿熱延
伸までの延伸倍率を2.0〜5.0倍という、限られた範囲に
おいてのみうまくバランスさせうるのである。
Stretching, neutralization, wet heat stretching, and water washing may be performed according to a conventional method after spinning, but roller stretching and wet heat stretching are each 1.5 times or more, 1.0 to 2.0 times, and stretching from spinning to wet heat stretching. The magnification must be 2.0 to 5.0 times. The first drawing after spinning is carried out in the subsequent neutralization step, and the wet heat drawing after the neutralization is carried out in the subsequent washing step to prevent swelling of the fiber or extreme structural damage of the fiber. Although it is necessary and indispensable, if these stretching ratios are too large, the orientation or crystallization of the shinoshino occurs, which impedes the penetration of salt. In other words, it is necessary to balance the suppression of swelling in the subsequent step and the securing of salt permeability, and as a result of various studies, the first stretching after solidification is 1.5 times or more, and the wet heat stretching is 1.0 to 2.0 times. And the product of both, that is, the draw ratio from spinning to wet heat drawing can be well balanced only within a limited range of 2.0 to 5.0 times.

水洗後の糸篠は、その含水率をポリマーに対して50〜
300重量%に調整した上で、塩の水溶液と接触させる。
尚本明細書において前記含水率とは、 ここでA:糸篠を3000rpm×5分間遠心脱水後の重量 B:糸篠を100℃×4時間乾燥後の重量 で表わされるものをいう。
After washing with water, itoshino has a water content of 50-
After adjusting to 300% by weight, it is brought into contact with an aqueous solution of a salt.
In the present specification, the water content is Here, A: the weight after centrifugal dehydration of itoshino at 3,000 rpm x 5 minutes B: the weight of itoshino after drying at 100 ° C for 4 hours.

含水率が50重量%/ポリマー未満では、塩が内部まで
浸透し得ず300重量%/ポリマーを越えては、塩が繊維
内部に浸透しても、乾燥中に水の繊維表面への拡散に伴
い、塩も表面に移動し偏在してしまうばかりか、乾燥膠
着を起しやすい。また、含水率の調整法は、特に限定さ
れないが水洗工程における水温や、滞留時間によって、
あるいは水洗後に搾液したり、軽度に乾燥してもよい。
If the water content is less than 50% by weight / polymer, the salt cannot penetrate into the interior, and if it exceeds 300% by weight / polymer, even if the salt penetrates into the interior of the fiber, water will diffuse to the fiber surface during drying. As a result, not only salts move to the surface and are unevenly distributed, but also dry sticking tends to occur. The method of adjusting the water content is not particularly limited, but the water temperature in the washing step and the residence time,
Alternatively, it may be squeezed after washing with water or lightly dried.

耐熱水性向上のために使用する薬剤としては、イソシ
アネート類やエポキシ類など数ある中で塩を選択したの
は、あくまで、繊維内部に均一に浸透させるため、PVA
との親和性を考慮したためである。したがって本発明で
の塩としては、硫酸やりん酸などの多価強酸とアルカリ
金属あるいはアルカリ土類金属との酸性塩、強酸とアン
モニアとのアンモニューム塩、強酸と遷移金属との塩が
使用される。具体的には、リン酸第一カリ、リン酸第二
カリ、リン酸第一ソーダ、りん酸第二ソーダ、酸性硫酸
カリ、酸性りん酸カルシウム、硫酸アンモン、りん酸ア
ンモン、りん酸第一アンモン、リン酸第二アンモン、リ
ン酸水素カリウムアンモン、硫酸銅、硝酸コバルト、塩
化マンガンなどがあげられる。
As the chemical used to improve the hot water resistance, the salt was selected from among a number of isocyanates and epoxies, because the PVA was used to make it penetrate evenly into the fiber.
This is due to the consideration of the affinity with. Therefore, as the salt in the present invention, an acid salt of a polyvalent strong acid such as sulfuric acid or phosphoric acid with an alkali metal or an alkaline earth metal, an ammonium salt of a strong acid with ammonia, and a salt of a strong acid with a transition metal are used. You. Specifically, primary potassium phosphate, secondary potassium phosphate, primary sodium phosphate, secondary sodium phosphate, acidic potassium sulfate, calcium calcium phosphate, ammonium sulfate, ammonium phosphate, primary ammonium phosphate , Ammonium phosphate dibasic, potassium ammonium phosphate, copper sulfate, cobalt nitrate, manganese chloride and the like.

これらの塩の付与方法は、浸漬、噴霧、ローラータツ
チいかなるものでもよいが、その量はポリマーに対して
50〜50000ppm、好ましくは100〜5000ppmとしなければな
らない。50ppm/ポリマー未満では、その効果が発現せ
ず、50000ppm/ポリマーを越えては繊維の酢化劣化が著
しく、強度・弾性率が大幅に低下してしまう。引き続
き、常法に従って乾燥・延伸するが、延伸温度は220℃
以上としなければ、塩による架橋反応が進行しない。ま
た、十分な強度を得るには、全延伸倍率を17倍以上にす
る必要がある。紡糸原液に界面活性剤を添加する場合に
は更に、高延伸が可能で20倍以上となるように延伸す
る。
The method for applying these salts may be any of dipping, spraying, and roller touching.
It must be between 50 and 50000 ppm, preferably between 100 and 5000 ppm. If the amount is less than 50 ppm / polymer, the effect is not exhibited. If the amount exceeds 50,000 ppm / polymer, the acetylation of the fiber is remarkably deteriorated, and the strength and elastic modulus are significantly reduced. Subsequently, drying and stretching are performed according to a conventional method, but the stretching temperature is 220 ° C.
Otherwise, the crosslinking reaction by the salt does not proceed. Further, in order to obtain sufficient strength, it is necessary to make the total stretching ratio 17 times or more. When a surfactant is added to the spinning dope, the film is further stretched so that high stretching is possible and 20 times or more.

更に、必要に応じて延伸した糸篠を熱処理して、耐熱
水性をより向上させることもできる。
Furthermore, if necessary, the drawn yarn may be heat-treated to further improve the hot water resistance.

以上実施例により具体的に説明するが、本発明はこれ
ら実施例に限定されるものではない。
The present invention will be described in detail with reference to the examples, but the present invention is not limited to these examples.

尚、実施例中、強伸度・弾性率及び耐熱水性は以下の
方法で測定するものとする。
In the examples, the elongation / elasticity and hot water resistance are measured by the following methods.

(1)強伸度・弾性率: 試料:マルチフイラメントヤーン80T/m撚糸品 方法:JIS L−1017に準拠し、インストロン引張試験機に
て測定。
(1) High elongation / elasticity: Sample: Multifilament yarn 80T / m twisted yarn Method: Measured with an Instron tensile tester in accordance with JIS L-1017.

(2)耐熱水性: 繊維を5mmにカツトし、1:500の浴比で水に分散させた
のち、これをオートクレーブ容器に移し、140℃で1時
間熱水処理したのち未溶解分を分離し乾燥する。
(2) Hot water resistance: The fiber was cut to 5 mm, dispersed in water at a bath ratio of 1: 500, transferred to an autoclave container, treated with hot water at 140 ° C. for 1 hour, and the undissolved portion was separated. dry.

として、耐熱水性を表示する。 As hot water resistance.

実施例1 重合度3500、ケン化度98.5モル%のPVAを13%の濃度
で水に溶解し、ホウ酸を2%/ポリマー加えて紡糸原液
とした。該紡糸原液を1000ホールのノズルから、水酸化
ナトリウム30g/l、芒硝330g/lの60℃の凝固浴へ湿式紡
糸した。離浴後2倍にローラー延伸し、中和し、1.5倍
湿熱延伸し、ここまでの延伸倍率を3倍として水洗し
た。水洗後の含水率75%/ポリマーの糸篠を5000ppmの
濃度の硫酸アンモン水溶液に浸漬し、硫酸アンモンを10
000ppm/ポリマー付与して乾燥し、230℃で全延伸倍率が
24倍となるように延伸し、235℃で30秒定長熱処理し
た。
Example 1 PVA having a polymerization degree of 3500 and a saponification degree of 98.5 mol% was dissolved in water at a concentration of 13%, and boric acid was added at 2% / polymer to prepare a spinning solution. The spinning solution was wet-spun from a 1000-hole nozzle into a coagulation bath at 60 ° C. containing 30 g / l of sodium hydroxide and 330 g / l of sodium sulfate. After the bath was separated, the film was stretched by 2 times with a roller, neutralized, stretched by 1.5 times in wet heat, and washed with water at a stretch ratio up to 3 times. After washing with water, 75% of the water content of the polymer is immersed in a 5000 ppm aqueous solution of ammonium sulfate.
000ppm / Polymer is applied and dried.
The film was stretched to 24 times and heat-treated at 235 ° C. for 30 seconds.

得られた繊維は、強度18.2g/d、弾性率350g/d耐熱水
性90%であった。
The obtained fiber had a strength of 18.2 g / d and a modulus of elasticity of 350 g / d and a hot water resistance of 90%.

比較例1,2 硫酸アンモンを付与しないこと以外は実施例1と全く
同様の方法で得た試料(比較例1)及びこの比較例1の
試料を60℃、10wt%の硫酸アンモン水溶液に30分浸漬
し、5分水洗後乾燥し、200℃で5分定長熱処理して後
処理繊維を得た(比較例2)。それぞれの物性を第1表
に示す。
Comparative Examples 1 and 2 A sample obtained in exactly the same manner as in Example 1 except that no ammonium sulfate was applied (Comparative Example 1) and a sample of Comparative Example 1 were placed in an aqueous solution of 10% by weight of ammonium sulfate at 60 ° C. for 30 minutes. It was immersed, washed for 5 minutes, dried, and heat-treated at 200 ° C. for 5 minutes to obtain a post-treated fiber (Comparative Example 2). Table 1 shows the respective physical properties.

第1表で示されるように、本発明の架橋処理による耐
熱水性向上効果は著しく、また、従来の後処理では、強
度・弾性率の低下が大きく、耐熱水性も不十分である。
尚比較例2の熱水処理後の試料を観察したところ、単繊
維中央部が一部膨潤、溶解しているのが認められた。
As shown in Table 1, the effect of improving the hot water resistance by the cross-linking treatment of the present invention is remarkable, and the strength and elastic modulus are greatly reduced and the hot water resistance is insufficient with the conventional post-treatment.
Observation of the sample after the hot water treatment of Comparative Example 2 showed that the central portion of the single fiber was partially swollen and dissolved.

比較例3(対照) 実施例1と同じPVAをジメチルスルオキシドに12%で
溶解し、750ホールのノズルから3mmのエアーギヤツプを
とり、メタノール浴へ乾・湿式紡糸した。抽出しなが
ら、4倍の湿延伸を行い乾燥後、クメンハイドロパーオ
キサイドの10wt%メタノール溶液に浸漬し、240℃で5
倍乾熱延伸した。この繊維は繊度18g/d、弾性率300g/d
で、耐熱水性は55%であった。熱水処理後のサンプルは
比較例2と同様に単繊維中央部に一部膨潤ないし溶解し
ていた。
Comparative Example 3 (Control) The same PVA as in Example 1 was dissolved in dimethylsulfoxide at 12%, and a 3 mm air gap was taken from a 750-hole nozzle, followed by dry / wet spinning to a methanol bath. After extracting and performing 4 times wet stretching while drying, immersing in a 10 wt% methanol solution of cumene hydroperoxide,
The film was stretched twice in dry heat. This fiber has a fineness of 18 g / d and an elastic modulus of 300 g / d
The hot water resistance was 55%. The sample after the hot water treatment was partially swollen or dissolved in the central portion of the single fiber as in Comparative Example 2.

比較例4〜6 実施例1の条件を基に、凝固浴温度、ローラー延伸、
湿熱延伸率のみを変更した。各条件と得られた繊維物性
を第2表に示す。
Comparative Examples 4 to 6 Based on the conditions of Example 1, a coagulation bath temperature, roller stretching,
Only the wet heat draw ratio was changed. Table 2 shows the conditions and the fiber properties obtained.

凝固浴温度の低い比較例4では、延伸性低く強度が出
ない。また、塩の浸透が悪いため、耐熱水性も低い。ロ
ーラー延伸倍率の低い比較例5では、中和で繊維が膨潤
してしまい強度が極めて低い。また、紡糸〜湿熱延伸ま
での倍率の高い比較例6では塩の浸透が悪いため耐熱水
性が低い。
In Comparative Example 4 where the coagulation bath temperature is low, the stretchability is low and the strength is not obtained. In addition, hot water resistance is low due to poor salt penetration. In Comparative Example 5 in which the roller stretching ratio was low, the fibers swelled due to neutralization, and the strength was extremely low. In Comparative Example 6, in which the magnification from spinning to wet heat stretching is high, the hot water resistance is low due to poor penetration of the salt.

実施例2,3、比較例7,8 重合度7000、ケン化度99.2モル%のPVAを8%の濃度
で水に溶解し、ホウ酸を3%/ポリマーと、界面活性剤
として、ノニルフエノールエチレンオキサイド30モル付
加物(HLB17)を10wt%ポリマー添加し紡糸原液とし
た。該紡糸原液を水酸化ナトリウム20g/l、芒硝360g/l
からなる70℃の凝固浴へ湿式紡糸したのち、3.0倍のロ
ーラ延伸、中和、1.4倍湿熱延伸し、ここまでの延伸倍
率を4.2倍とした。ひき続き、水洗し、搾液して、含水
率140%にて、種々の濃度のリン酸アンモン水溶液に浸
漬し、塩の付着率をポリマーに対して30ppm(比較例
7)、100ppm(実施例2)、7000ppm(実施例3)、700
00ppm(比較例8)付与した後、乾燥し、240℃で乾熱延
伸した。結果を第3表に示す。
Examples 2 and 3 and Comparative Examples 7 and 8 PVA having a degree of polymerization of 7000 and a degree of saponification of 99.2 mol% was dissolved in water at a concentration of 8%, and boric acid was 3% / polymer and nonylphenol was used as a surfactant. An ethylene oxide 30 mol adduct (HLB17) was added to a 10 wt% polymer to prepare a spinning stock solution. The spinning solution is sodium hydroxide 20 g / l, sodium sulfate 360 g / l
After wet spinning to a coagulation bath at 70 ° C., a 3.0-fold roller stretching, neutralization, and 1.4-fold wet-heat stretching were performed, and the stretching ratio up to this point was 4.2 times. Subsequently, it was washed with water, squeezed, and immersed in various concentrations of ammonium phosphate aqueous solution at a water content of 140%, and the salt adhesion rate was 30 ppm relative to the polymer (Comparative Example 7) and 100 ppm (Example). 2), 7000 ppm (Example 3), 700
After giving 00 ppm (Comparative Example 8), it was dried and stretched by dry heat at 240 ° C. The results are shown in Table 3.

強度、耐熱水性双方を満足するには、本発明の塩付着
量の範囲としなければならないことが明らかである。
Obviously, in order to satisfy both the strength and the hot water resistance, the amount of the salt attached must be within the range of the present invention.

比較例9,10 実施例2において、リン酸アンモンに浸漬する糸篠の
含水率を軽い乾燥により30wt%/ポリマーとした(比較
例9)。また、水洗水温を上げることにより350wt%/
ポリマーとした(比較例10)以外は実施例2と同様の処
理をした。
Comparative Examples 9 and 10 In Example 2, the water content of Ishino immersed in ammonium phosphate was changed to 30 wt% / polymer by light drying (Comparative Example 9). Also, 350wt% /
The same treatment as in Example 2 was performed except that the polymer was used (Comparative Example 10).

比較例9においては、耐熱水性は40%であり、やはり
塩が均一に繊維内部に浸透しなかつたため、繊維中央が
溶出していた。また、比較例10は、乾燥工程で、単繊維
間の膠着が激しく乾熱延伸を中止した。
In Comparative Example 9, the hot water resistance was 40%, and the salt did not uniformly penetrate into the fiber, so the center of the fiber was eluted. In Comparative Example 10, in the drying step, sticking between the single fibers was so severe that the dry heat drawing was stopped.

<発明の効果> 従来の高強力PVA繊維の製造法は表面架橋を主体とし
ていたのに対し、本発明では含液率の高い糸篠に塩を接
触させて乾燥後乾熱延伸することにより、分子の配向結
晶化と同時に繊維内部まで均一に架橋を施こし、これに
より耐熱水性を改善するとともに、新しい設備、製造工
程を追加することなく高強度高耐熱水性の架橋PVA繊維
を得ることができるので安価に製造することを可能とし
たものである。従って得られた高強度高耐熱水性PVA繊
維は従来のPVA繊維やパラ系アラミドなど他のスーパー
繊維に比べてコストパーフオーマンスに優れており、ホ
ース、タイヤ、ベルト類などのゴム資材分野や、FRCお
よびFRPなどの分野などに広く用いることができる。
<Effects of the Invention> Whereas the conventional method for producing high-strength PVA fibers mainly involves surface crosslinking, the present invention involves contacting a salt with high-moisture content Shinoshino, followed by drying and drawing by dry heat. Cross-linking is uniformly applied to the inside of the fiber at the same time as oriented crystallization of molecules, thereby improving hot water resistance and obtaining cross-linked PVA fiber with high strength and high heat water resistance without adding new equipment and manufacturing process. Therefore, it is possible to manufacture at low cost. Therefore, the obtained high-strength and high-temperature water-resistant PVA fiber is superior in cost performance compared to other super fibers such as conventional PVA fiber and para-aramid, and is used in the field of rubber materials such as hoses, tires and belts, and FRC. And can be widely used in fields such as FRP.

フロントページの続き (56)参考文献 特開 平1−298208(JP,A) 特開 平2−169709(JP,A) 特開 平2−249705(JP,A) 特公 昭49−12126(JP,B1) 特公 昭46−28220(JP,B1)Continuation of the front page (56) References JP-A-1-298208 (JP, A) JP-A-2-169709 (JP, A) JP-A-2-249705 (JP, A) JP-B-49-12126 (JP) , B1) Japanese Patent Publication No. 46-28220 (JP, B1)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ホウ酸又はホウ酸塩を含有するポリビニル
アルコール系ポリマーの水溶液を紡糸原液とし、これを
脱水能を有する塩類を含む55〜95℃の高温アルカリ性凝
固浴へ紡糸し、1.5倍以上の延伸、中和、1.0〜2.0倍で
ここまでの延伸倍率が2.0〜5.0倍の湿熱延伸を行い、水
洗後、含水量をポリマーに対して50〜300重量%に水分
調整した糸篠に、多価強酸とアルカリ金属あるいはアル
カリ土類金属との酸性塩、強酸とアンモニアとのアンモ
ニューム塩および強酸と遷移金属との塩から選ばれる1
種以上の塩の水溶液を接触させ、該塩をポリマーに対し
て50〜50000ppm付与して乾燥し、ひき続いて220℃以上
で、全延伸倍率が17倍以上となるよう延伸することを特
徴とするポリビニルアルコール系合成繊維の製造法。
An aqueous solution of a polyvinyl alcohol-based polymer containing boric acid or borate is used as a spinning solution, which is spun into a high-temperature alkaline coagulation bath at 55 to 95 ° C. containing salts having a dehydrating ability, and 1.5 times or more. Stretching, neutralization, wet heat stretching of 1.0-2.0 times and the stretching ratio up to 2.0-5.0 times, after washing with water, the water content is adjusted to 50-300% by weight with respect to the polymer. 1 selected from acid salts of polyvalent strong acids with alkali metals or alkaline earth metals, ammonium salts of strong acids with ammonia, and salts of strong acids with transition metals
Contacting an aqueous solution of at least one kind of salt, applying the salt to the polymer in an amount of 50 to 50,000 ppm, drying, and subsequently stretching at 220 ° C. or more, so that the total draw ratio is 17 times or more. For producing polyvinyl alcohol-based synthetic fibers.
【請求項2】ホウ酸又はホウ酸塩と、一種又は二種以上
の界面活性剤をポリマーに対して1〜20重量%含有する
ポリビニルアルコール系ポリマーの水溶液を紡糸原液と
し、これを脱水能を有する塩類を含む55〜95℃の高温ア
ルカリ性凝固浴へ紡糸し、1.5倍以上の延伸、中和、1.0
〜2.0倍で、ここまでの延伸倍率が2.0〜5.0倍の湿熱延
伸を行い、水洗後、含水量をポリマーに対して50〜300
重量%に水分調整した糸篠に、多価強酸とアルカリ金属
あるいはアルカリ土類金属との酸性塩、強酸とアンモニ
アとのアンモニューム塩および強酸と遷移金属との塩か
ら選ばれる1種以上の塩の水溶液を接触させ、該塩をポ
リマーに対して50〜50000ppm付与して乾燥し、ひき続い
て220℃以上で全延伸倍率が20倍以上となるよう延伸す
ることを特徴とするポリビニルアルコール系合成繊維の
製造法。
2. An aqueous spinning solution containing a boric acid or a borate and a polyvinyl alcohol polymer containing 1 to 20% by weight of one or more surfactants with respect to the polymer is used as a spinning dope, and this is used as a spinning solution. Spun into a high-temperature alkaline coagulation bath at 55 to 95 ° C containing salts, stretched 1.5 times or more, neutralized, 1.0 times
~ 2.0 times, the stretching ratio up to here is 2.0 ~ 5.0 times wet heat stretching, after washing with water, the water content is 50 ~ 300 to the polymer
At least one salt selected from the group consisting of an acidic salt of a polyvalent strong acid and an alkali metal or an alkaline earth metal, an ammonium salt of a strong acid and ammonia, and a salt of a strong acid and a transition metal, in itoshino adjusted to a weight%. Aqueous solution of the above, the salt is applied to the polymer in an amount of 50 to 50,000 ppm, dried, and subsequently stretched at 220 ° C. or more so that the total stretching ratio becomes 20 times or more. Fiber manufacturing method.
JP2280734A 1990-10-18 1990-10-18 Method for producing polyvinyl alcohol-based synthetic fiber Expired - Fee Related JP2927304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280734A JP2927304B2 (en) 1990-10-18 1990-10-18 Method for producing polyvinyl alcohol-based synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280734A JP2927304B2 (en) 1990-10-18 1990-10-18 Method for producing polyvinyl alcohol-based synthetic fiber

Publications (2)

Publication Number Publication Date
JPH04163310A JPH04163310A (en) 1992-06-08
JP2927304B2 true JP2927304B2 (en) 1999-07-28

Family

ID=17629209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280734A Expired - Fee Related JP2927304B2 (en) 1990-10-18 1990-10-18 Method for producing polyvinyl alcohol-based synthetic fiber

Country Status (1)

Country Link
JP (1) JP2927304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337605A (en) * 2011-08-18 2012-02-01 安徽皖维高新材料股份有限公司 High-strength, high-modulus and high-melting point PVA (Polyvinyl Acetate) fiber and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912126A (en) * 1972-05-15 1974-02-02
JP2653682B2 (en) * 1987-10-22 1997-09-17 株式会社クラレ Polyvinyl alcohol-based synthetic fiber and method for producing the same
JPH02249705A (en) * 1988-09-06 1990-10-05 Bridgestone Corp Pneumatic tire
JP2656332B2 (en) * 1988-12-16 1997-09-24 株式会社クラレ Polyvinyl alcohol fiber drawing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337605A (en) * 2011-08-18 2012-02-01 安徽皖维高新材料股份有限公司 High-strength, high-modulus and high-melting point PVA (Polyvinyl Acetate) fiber and manufacturing method thereof
CN102337605B (en) * 2011-08-18 2013-03-06 安徽皖维高新材料股份有限公司 High-strength, high-modulus and high-melting point PVA (Polyvinyl Acetate) fiber and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04163310A (en) 1992-06-08

Similar Documents

Publication Publication Date Title
JPH0415287B2 (en)
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JP2927304B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP3043163B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JPS6285013A (en) High-tenacity and high-modulus pva fiber and production thereof
JP2009108432A (en) Polyvinyl alcohol-based fiber and method for producing the same
EP0496376A2 (en) Polyvinyl alcohol fiber and process for preparation thereof
JPH04228610A (en) Polyvinyl alcohol-based synthetic fiber and production thereof
JPH08158149A (en) Production of polyvinyl alcohol-based fiber
KR100494063B1 (en) Polyvinyl alcohol fiber for the reinforcement of tire and method for the production of the same
JPS62149909A (en) Polyvinyl alcohol fiber
JP2858923B2 (en) Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance
JP2858925B2 (en) Method for producing hot water-resistant polyvinyl alcohol fiber
JP3366476B2 (en) High-strength polyvinyl alcohol-based fiber excellent in wet heat resistance and method for producing the same
JP3266673B2 (en) Polyvinyl alcohol-based synthetic fiber
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
KR20020048780A (en) Process for preparation of high-tenacity polyvinyl alcohol fiber with hot-water resistance
JP2826182B2 (en) Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance
JPH02251608A (en) Production of polyvinyl alcohol-based fiber
JP3139689B2 (en) Polyvinyl alcohol-based synthetic fiber and method for producing the same
JPH0941216A (en) Polyvinyl alcoholic fiber and its production
JPH0299607A (en) Production of polyvinyl alcohol-based fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees