JP2009108432A - Polyvinyl alcohol-based fiber and method for producing the same - Google Patents

Polyvinyl alcohol-based fiber and method for producing the same Download PDF

Info

Publication number
JP2009108432A
JP2009108432A JP2007279994A JP2007279994A JP2009108432A JP 2009108432 A JP2009108432 A JP 2009108432A JP 2007279994 A JP2007279994 A JP 2007279994A JP 2007279994 A JP2007279994 A JP 2007279994A JP 2009108432 A JP2009108432 A JP 2009108432A
Authority
JP
Japan
Prior art keywords
fiber
pva
boric acid
polyvinyl alcohol
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007279994A
Other languages
Japanese (ja)
Inventor
Shinichi Takemoto
慎一 竹本
Hideki Kamata
英樹 鎌田
Akira Yamamoto
亮 山本
Takashi Katayama
隆 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2007279994A priority Critical patent/JP2009108432A/en
Publication of JP2009108432A publication Critical patent/JP2009108432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PVA-based fiber having improved modulus at a high temperature and excellent fatigue resistance. <P>SOLUTION: The PVA-based fiber comprises an atactic polyvinyl alcohol-based polymer having 1,000-2,000 viscosity-average polymerization degree, and contains 1,000-12,000 ppm boric acid or borate expressed in terms of a boron atom based on the polyvinyl alcohol. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐疲労性に優れ、さらに高温時の弾性率を向上させたポリビニルアルコール(以下、PVAと略記)系繊維およびその製造方法に関するものである。   The present invention relates to a polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having excellent fatigue resistance and improved elastic modulus at high temperature, and a method for producing the same.

従来、PVA系繊維は、強度、弾性率や耐候性、耐薬品性、接着性などの点で、ポリアミド、ポリエステル、ポリアクリロニトリル系繊維に比べて優れており、産業資材分野を中心に独自の用途を開拓してきた。最近では耐アルカリ性の特長をいかしたセメント補強用繊維(アスベスト代替)やアルカリ電池用セパレーターなどの分野に対して好適な素材として注目されている。そして、それらの特長に加えて、さらなる高強度、高弾性率で耐疲労性良好なPVA系繊維が開発されればゴムやプラスチックの補強材としての用途が期待できる。特にゴム補強用途では、耐疲労性の他に安全性、寸法安定性が必要であり、ゴム補強材としては高温時に高弾性率でかつ低収縮の繊維が要望されてきた。   Conventionally, PVA fibers are superior to polyamide, polyester, and polyacrylonitrile fibers in terms of strength, elastic modulus, weather resistance, chemical resistance, adhesiveness, etc. Has pioneered. Recently, it has been attracting attention as a suitable material for fields such as cement reinforcing fibers (substitution for asbestos) and alkaline battery separators that utilize the characteristics of alkali resistance. In addition to these features, if a PVA fiber having higher strength, higher elastic modulus, and better fatigue resistance is developed, it can be used as a reinforcing material for rubber and plastic. In particular, in rubber reinforcement applications, safety and dimensional stability are required in addition to fatigue resistance, and a fiber having a high elastic modulus and low shrinkage at high temperatures has been demanded as a rubber reinforcement.

高温での耐疲労性や耐湿熱性を向上させる目的でPVA系繊維を架橋させる方法としては、アセタール化処理することが公知である(例えば、特許文献1参照。)。しかし、この方法では、耐湿熱性は向上するが、弾性率の低下が起こるという問題点があった。   As a method of cross-linking PVA fibers for the purpose of improving fatigue resistance at high temperature and heat-and-moisture resistance, acetalization treatment is known (for example, see Patent Document 1). However, this method has improved wet heat resistance, but has a problem that the elastic modulus is lowered.

また、架橋時に強度・弾性率低下を引き起こさないものとして、硼酸または硼酸塩により架橋させる方法が開示されている(例えば、特許文献2参照。)。しかし、硼酸架橋により延伸性が阻害され、性能低下があることが判った。   Further, a method of crosslinking with boric acid or borate is disclosed as one that does not cause a decrease in strength and elastic modulus during crosslinking (see, for example, Patent Document 2). However, it was found that the stretchability was hindered by the boric acid crosslinking, and the performance was lowered.

更には、アタクチックPVAに高シンジオタクチックPVAをブレンドし、硼酸または硼酸塩を乾燥工程までに添加したものが、高温時に高弾性率を示すことが開示されている(例えば、特許文献3参照。)。しかしながら高重合度のPVAやシンジオタクチックPVAを使用することからPVA系重合体の溶剤として、有機溶剤を使用しなければならないという問題点があり、安全面や環境面から水系で製造できる手段が要求されていた。   Furthermore, it is disclosed that a high syndiotactic PVA blended with atactic PVA and boric acid or borate added to the drying step exhibits a high elastic modulus at a high temperature (see, for example, Patent Document 3). ). However, since PVA or syndiotactic PVA with a high degree of polymerization is used, there is a problem that an organic solvent must be used as a solvent for the PVA polymer, and there is a means that can be produced in an aqueous system from the viewpoint of safety and environment It was requested.

特開昭63−120107号公報JP 63-120107 A 特開昭62−149909号公報JP 62-149909 A 特開平7−243122号公報JP 7-243122 A

本発明の目的は、高温時の弾性率が改善された、耐疲労性の優れたPVA系繊維を提供することにある。   An object of the present invention is to provide a PVA fiber excellent in fatigue resistance and having improved elastic modulus at high temperature.

上記の目的を達成すべく、本発明者らは、鋭意検討を行ってきた。その結果、アタクチックPVA系重合体からなるポリマーを、水を溶剤として繊維化した後、該繊維に対して硼酸または硼酸塩を所定濃度含有させて架橋反応させることにより、得られるPVA系繊維は耐疲労性に優れ、さらに高温時の弾性率を向上されることを見出し、本発明を完成させた。   In order to achieve the above object, the present inventors have conducted intensive studies. As a result, after the polymer composed of an atactic PVA polymer is made into a fiber using water as a solvent, the resulting PVA fiber is resistant to cross-linking by containing a predetermined concentration of boric acid or borate to the fiber. The present inventors have found that it is excellent in fatigue property and can improve the elastic modulus at high temperature, and has completed the present invention.

すなわち本発明は、粘度平均重合度1000〜2000のアタクチックPVA系重合体からなり、さらに該PVAに対して硼酸または硼酸塩をホウ素原子換算で1000から12000ppm含有されてなるPVA系繊維にであり、好ましくは、以下(1)〜(3)の条件を全て満足することを特徴とする上記のPVA系繊維である。
(1)80℃における強度が4cN/dtex以上であること、
(2)雰囲気温度80℃における弾性率が120cN/dtex以上であること、
(3)100℃における熱水収縮率が7%以下であること、
That is, the present invention is a PVA fiber comprising an atactic PVA polymer having a viscosity average degree of polymerization of 1000 to 2000, and further containing boric acid or borate in an amount of 1000 to 12000 ppm in terms of boron atom. Preferably, the PVA fiber is characterized in that all of the following conditions (1) to (3) are satisfied.
(1) The strength at 80 ° C. is 4 cN / dtex or more,
(2) The elastic modulus at an atmospheric temperature of 80 ° C. is 120 cN / dtex or more,
(3) The hot water shrinkage at 100 ° C. is 7% or less,

そして本発明は、アタクチックPVA系重合体の溶液をノズルより吐出して糸条を形成し、次いで糸条から溶媒を除去し乾燥したのち、乾熱延伸してPVA系繊維を製造する方法において、該PVA系重合体の溶剤として水を使用し、さらに乾熱延伸工程以降に硼酸または硼酸塩を添加して、ホウ素原子換算で1000〜12000ppm存在させることを特徴とする上記のPVA系繊維の製造方法である。   And, the present invention is a method for producing a PVA fiber by discharging a solution of an atactic PVA polymer from a nozzle to form a yarn, then removing the solvent from the yarn and drying, followed by dry heat drawing. Use of water as a solvent for the PVA polymer, and addition of boric acid or a borate after the dry heat drawing step, causing the presence of 1000 to 12000 ppm in terms of boron atom, production of the above PVA fiber Is the method.

本発明によれば、優れた耐疲労性、高弾性率を有し、特に高温時の弾性率を向上させたPVA系繊維が得られる。このような本発明の繊維はゴム、プラスチック、セメントなどの補強材あるいはロープ、漁網、テント、土木シートなどの一般産業資材に適しており、特にタイヤ、ホース、ベルト等のゴム補強材に優れたPVA系繊維である。   According to the present invention, a PVA fiber having excellent fatigue resistance and high elastic modulus, and particularly improved elastic modulus at high temperature can be obtained. Such a fiber of the present invention is suitable for reinforcing materials such as rubber, plastic and cement or general industrial materials such as ropes, fishing nets, tents and civil engineering sheets, and particularly excellent for rubber reinforcing materials such as tires, hoses and belts. PVA fiber.

以下、本発明について具体的に説明する。
まず本発明のPVA系繊維を構成するPVA系重合体について説明する。本発明に用いるアタクチックPVA系重合体とは、後述するNMRより求めたダイアッド表示で求めたシンジオタクチシチィS=52〜54%のものであり、粘度平均重合度が1000〜2000の直鎖状のものである。シンジオタクチシチィSが52%未満の場合は、強度や耐湿熱性等の点で劣る場合がある。
一方、高シンジオタクチシチィのものを用いると、強度、耐湿熱性等の点で優れるので好ましいが、ポリマー製造コストや繊維化コストなどの観点からシンジオタクチシチィSが54%以下であることが好ましい。また粘度平均重合度に関しても、高重合度のものを用いると、強度、耐湿熱性等の点で優れるので好ましいが、ポリマー製造コストや繊維化コストなどの観点から平均重合度が1200〜1900のものが好ましく、1400〜1800のものがより好ましい。ケン化度は特に限定されるものではないが、得られる繊維の結晶性及び配向性の点で98モル%以上が好ましく、より好ましくは99モル%以上、特に好ましくは99.7モル%以上である。
なお、本発明でいうシンジオタクチシティとは、重水素化ジメチルスルホキシド(d6−DMSO)に溶解したPVA系重合体のプロトンNMR測定値により求まるトライアッド表示によるシンジオタクチシティ(T.Moritani et al.,Macromolecules,5,577(1972)) でシンジオタクチシティ(S)、ヘテロタクチシティ(H)、およびアイソタクチシティ(I)から次式により算出される値である。
s=S+H/2(ダイアッド表示によるシンジオタクチシティ)
i=I+H/2(ダイアッド表示によるアイソタクチシティ)
Hereinafter, the present invention will be specifically described.
First, the PVA polymer constituting the PVA fiber of the present invention will be described. The atactic PVA polymer used in the present invention is a syndiotacticity S = 52-54% obtained by dyad display obtained from NMR, which will be described later, and is a straight chain having a viscosity average polymerization degree of 1000-2000. belongs to. If the syndiotacticity S is less than 52%, it may be inferior in terms of strength, resistance to moist heat and the like.
On the other hand, it is preferable to use a high syndiotacticity because it is excellent in terms of strength, moist heat resistance and the like, but syndiotacticity S is 54% or less from the viewpoint of polymer production cost and fiberization cost. preferable. Also, with respect to the viscosity average degree of polymerization, it is preferable to use those having a high degree of polymerization because they are excellent in terms of strength, moist heat resistance, etc., but those having an average degree of polymerization of 1200 to 1900 from the viewpoint of polymer production costs and fiberization costs Are preferred, and those of 1400-1800 are more preferred. The degree of saponification is not particularly limited, but is preferably 98 mol% or more, more preferably 99 mol% or more, particularly preferably 99.7 mol% or more in terms of crystallinity and orientation of the obtained fiber. is there.
In addition, syndiotacticity as used in the field of this invention is syndiotacticity (T. Moritani et al.) By the triad display calculated | required by the proton NMR measurement value of the PVA-type polymer melt | dissolved in deuterated dimethylsulfoxide (d6-DMSO). , Macromolecules, 5, 577 (1972)) and calculated from the following equation from syndiotacticity (S), heterotacticity (H), and isotacticity (I).
s = S + H / 2 (Syndiotacticity with dyad display)
i = I + H / 2 (isotacticity by dyad display)

また本発明の繊維を構成するアタクチックPVA系重合体は、ビニルアルコールユニットを主成分とするものであれば特に限定されず、本発明の効果を損なわない範囲で他の構成単位を有していてもかまわない。このような構造単位としては、例えば、エチレン、プロピレン、ブチレン等のオレフィン類、アクリル酸及びその塩とアクリル酸メチルなどのアクリル酸エステル、メタクリル酸およびその塩、メタクリル酸メチル等のメタクリル酸エステル類、アクリルアミド、N − メチルアクリルアミド等のアクリルアミド誘導体、メタクリルアミド、N − メチロールメタクリルアミド等のメタクリルアミド誘導体、N − ビニルピロリドン、N − ビニルホルムアミド、N− ビニルアセトアミド等のN − ビニルアミド類、ポリアルキレンオキシドを側鎖に有するアリルエーテル類、メチルビニルエーテル等のビニルエーテル類、アクリロニトリル等のニトリル類、塩化ビニル等のハロゲン化ビニル、マレイン酸およびその塩またはその無水物やそのエステル等の不飽和ジカルボン酸等がある。このような変性ユニットの導入法は共重合による方法でも、後反応による方法でもよい。   The atactic PVA polymer constituting the fiber of the present invention is not particularly limited as long as it has a vinyl alcohol unit as a main component, and has other structural units as long as the effects of the present invention are not impaired. It doesn't matter. Examples of such a structural unit include olefins such as ethylene, propylene, and butylene, acrylic acid and salts thereof and acrylic esters such as methyl acrylate, methacrylic acid and salts thereof, and methacrylate esters such as methyl methacrylate. Acrylamide derivatives such as acrylamide, N-methylacrylamide, methacrylamide derivatives such as methacrylamide, N-methylol methacrylamide, N-vinylamides such as N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, polyalkylene oxide Allyl ethers having a side chain, vinyl ethers such as methyl vinyl ether, nitriles such as acrylonitrile, vinyl halides such as vinyl chloride, maleic acid and salts thereof or anhydrides thereof and the like And the like unsaturated dicarboxylic acids such as ester. Such a modified unit may be introduced by copolymerization or post-reaction.

本発明のアタクチックPVA系繊維は、PVA系重合体を含む紡糸原液を溶液紡糸、具体的には湿式紡糸、乾湿式紡糸、乾式紡糸して製造される。紡糸原液に用いる溶媒としては、供給性、環境負荷への影響の観点から、水が好ましい。紡糸原液中のポリマー濃度は、PVA系重合体の組成や重合度によって異なるが、6〜60質量%の範囲が一般的である。本発明の効果を損なわない範囲であれば、紡糸原液にはPVA系重合体以外にも、目的に応じて、酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤などの添加剤などが含まれていてもよい。   The atactic PVA fiber of the present invention is produced by solution spinning, specifically, wet spinning, dry wet spinning, and dry spinning, of a spinning stock solution containing a PVA polymer. As the solvent used for the spinning dope, water is preferable from the viewpoints of availability and influence on the environmental load. The polymer concentration in the spinning dope varies depending on the composition and degree of polymerization of the PVA polymer, but is generally in the range of 6 to 60% by mass. As long as the effects of the present invention are not impaired, the spinning dope includes an antioxidant, an antifreezing agent, a pH adjusting agent, a concealing agent, a coloring agent, an oil agent, etc., in addition to the PVA polymer, depending on the purpose. Additives and the like may be included.

かかる紡糸原液を口金から吐出して、たとえば湿式紡糸法、乾式紡糸法、乾湿式紡糸法等により紡糸すればよい。湿式紡糸法や乾湿式紡糸法を採用する場合には、紡糸原液に対して固化能を有する固化浴へ吐出し、適宜湿熱延伸、乾燥等を施せば所望の糸条が得られる。たとえば、PVA系水溶液を紡糸原液としている場合には飽和芒硝液を固化液として湿式紡糸すればよい。   Such a spinning dope may be discharged from the die and spun by, for example, a wet spinning method, a dry spinning method, a dry wet spinning method, or the like. When the wet spinning method or the dry and wet spinning method is adopted, a desired yarn can be obtained by discharging the spinning stock solution to a solidification bath having a solidification ability and appropriately applying wet heat drawing, drying and the like. For example, when a PVA-based aqueous solution is used as a spinning solution, wet spinning may be performed using a saturated salt solution as a solidification solution.

ブレーキホース補強材のように繊維がフィラメント状であることが好ましい場合には紡糸原液を気体中に吐出する乾式紡糸法により紡糸するのが好ましい。気体としては一般に空気が用いられ、気体の温度は60〜140℃が一般的である。次いで吐出した糸条を加熱すればよく、一般にはホットプレート、ホットローラー、加熱エアゾーン等を用いて糸条を走らせることにより乾燥される。   When it is preferable that the fiber is in the form of a filament as in the case of a brake hose reinforcement, it is preferable to perform spinning by a dry spinning method in which a spinning solution is discharged into a gas. Air is generally used as the gas, and the temperature of the gas is generally 60 to 140 ° C. The discharged yarn may then be heated, and is generally dried by running the yarn using a hot plate, hot roller, heated air zone, or the like.

本発明においては、繊維の機械的性能、耐熱水性を高める点から少なくとも乾熱延伸を行うのが好ましい。熱延伸の方法は、ホットローラーやヒートプレート等の加熱体に未延伸糸を接触されて行う方法、熱溶媒中で行う方法、熱風加熱装置中で行う方法、誘電加熱方法を行う方法等適宜選択すればよい。延伸温度は、ポリマーの分解を抑制するとともに効率的に延伸する点からは100℃以上250℃未満、特に200〜240℃とするのが好ましい。また繊維の機械的性能の点からは、全延伸倍率が7倍以上、特に8倍以上、さらに10倍以上となる条件で延伸するのが好ましい。このとき、繊維の耐疲労性を高める点からは、乾熱延伸後に熱収縮処理を施す野が好ましい。熱収縮処理は230℃以上で行うのが好ましく、乾熱延伸温度よりも3℃以上、特に5℃以上高い温度で行うのが好ましい。さらにリラックス率は1%以上とするのが好ましく、繊維の機械的性能を実質的に損わない点からは20%以下、特に15%以下とするのが好ましい。またリラックス率を高めるほど繊維の伸度を高めることができ耐疲労性が向上するため、繊維の伸度は3%以上、さらに5%以上であることが好ましい。   In the present invention, it is preferable to perform at least dry heat drawing from the viewpoint of enhancing the mechanical performance and hot water resistance of the fiber. The method of hot drawing is appropriately selected, such as a method in which an undrawn yarn is brought into contact with a heating body such as a hot roller or a heat plate, a method in a hot solvent, a method in a hot air heating apparatus, a method of performing a dielectric heating method, etc. do it. The stretching temperature is preferably 100 ° C. or more and less than 250 ° C., particularly 200 to 240 ° C. from the viewpoint of suppressing the decomposition of the polymer and efficiently stretching. Further, from the viewpoint of the mechanical performance of the fiber, it is preferable that the total stretching ratio is 7 times or more, particularly 8 times or more, and more preferably 10 times or more. At this time, from the viewpoint of increasing the fatigue resistance of the fiber, a field in which a heat shrink treatment is performed after dry heat drawing is preferable. The heat shrinking treatment is preferably performed at 230 ° C. or higher, and is preferably performed at a temperature 3 ° C. or higher, particularly 5 ° C. higher than the dry heat stretching temperature. Furthermore, the relaxation rate is preferably 1% or more, and is preferably 20% or less, particularly preferably 15% or less from the viewpoint of not substantially impairing the mechanical performance of the fiber. Further, the higher the relaxation rate, the higher the elongation of the fiber and the better the fatigue resistance. Therefore, the elongation of the fiber is preferably 3% or more, and more preferably 5% or more.

本発明では延伸工程の後にPVA系繊維に硼酸または硼酸塩を添加して、PVA系ポリマーに対して硼酸または硼酸塩をホウ素原子換算で1000〜12000ppm含有させる必要がある。延伸工程前に硼酸または硼酸塩を添加すると、硼酸架橋により延伸性が阻害され、性能低下が起こる。本発明は、硼酸または硼酸塩を含有させ、架橋を起こさせ、乾熱高温時の分子鎖運動性を抑制する事により乾熱高温時の弾性率の低下を抑える効果を有する。硼酸または硼酸塩のPVA系ポリマー中における含有量が1000ppm未満では架橋点が少なく分子鎖の運動抑制効果が不十分であるため本発明の効果は十分発揮されず、逆に12000ppmを越えると、強度が著しく低下する。したがって、硼酸含有量は1000〜12000ppmであることが好ましく、2000〜10000ppmであることが好ましく、3000〜8000ppmであることがさらに好ましい。   In the present invention, it is necessary to add boric acid or a borate to the PVA fiber after the stretching step so that the PVA polymer contains boric acid or borate in an amount of 1000 to 12000 ppm in terms of boron atom. When boric acid or a borate is added before the stretching step, the stretchability is hindered by the boric acid crosslinking, and the performance is lowered. The present invention contains boric acid or a borate, causes cross-linking, and has an effect of suppressing a decrease in elastic modulus at a high temperature of dry heat by suppressing molecular chain mobility at a high temperature of dry heat. If the content of boric acid or borate in the PVA polymer is less than 1000 ppm, the effect of the present invention is not sufficiently exerted because the crosslinking point is small and the effect of suppressing the movement of the molecular chain is insufficient. Is significantly reduced. Therefore, the boric acid content is preferably 1000 to 12000 ppm, preferably 2000 to 10000 ppm, and more preferably 3000 to 8000 ppm.

本発明のPVA系繊維では、用途や目的に応じ、耐熱水性を向上させることを目的としてPVA系繊維で一般的に行われているアセタール化処理やその他の架橋処理を施すこともできる。すなわち、PVA系繊維をPVA系ポリマーの水酸基と反応するホルムアルデヒド等の架橋剤を含む水溶液中で処理して、水酸基を封鎖することで繊維を疎水化することができる。この該処理は、硼酸架橋処理より前でも後でもよく、処理の順番は特に限定されるものではないが、硼酸架橋処理後にこれら該処理を行うのが好ましい。   The PVA fiber of the present invention can be subjected to acetalization treatment and other crosslinking treatments generally performed for PVA fibers for the purpose of improving hot water resistance depending on applications and purposes. That is, the fiber can be hydrophobized by treating the PVA fiber in an aqueous solution containing a crosslinking agent such as formaldehyde that reacts with the hydroxyl group of the PVA polymer to block the hydroxyl group. The treatment may be performed before or after the boric acid crosslinking treatment, and the order of the treatment is not particularly limited, but it is preferable to perform the treatment after the boric acid crosslinking treatment.

本発明のPVA系繊維を、特に力学物性、耐熱性、耐湿熱性などが要求される用途に用いる場合には、80℃における強度が4cN/dtex以上、および80℃における弾性率が120cN/dtex以上であることが好ましい。
80℃における強度が4cN/dtexより小さい場合には、補強用繊維としての機能を十分に果たすことができない場合がある。より好ましくは5cN/dtexであり、さらに好ましくは7cN/dtex以上20cN/dtex以下である。また、80℃での弾性率が120cN/dtex未満の場合には、補強用繊維としての機能を十分に果たすことができない場合がある。より好ましくは150cN/dtex以上であり、さらに好ましくは160cN/dex以上400cN/dtex以下である。なお、80℃における強度、弾性率は後述する方法にて測定される。
When the PVA-based fiber of the present invention is used for applications that particularly require mechanical properties, heat resistance, moist heat resistance, etc., the strength at 80 ° C. is 4 cN / dtex or more, and the elastic modulus at 80 ° C. is 120 cN / dtex or more. It is preferable that
When the strength at 80 ° C. is smaller than 4 cN / dtex, the function as a reinforcing fiber may not be sufficiently achieved. More preferably, it is 5 cN / dtex, More preferably, it is 7 cN / dtex or more and 20 cN / dtex or less. Further, when the elastic modulus at 80 ° C. is less than 120 cN / dtex, the function as the reinforcing fiber may not be sufficiently achieved. More preferably, it is 150 cN / dtex or more, More preferably, it is 160 cN / dex or more and 400 cN / dtex or less. In addition, the intensity | strength and elastic modulus in 80 degreeC are measured by the method mentioned later.

特にゴム補強用途に用いる場合には、PVA系繊維の100℃における熱水収縮率が7%以下、100℃のゴム中での耐疲労性が強度保持率で70%以上であることが好ましい。熱水収縮率が7%より大きい場合には、ゴムの加硫処理中に繊維が溶けてしまう場合がある。
また、PVA系繊維の100℃のゴム中での耐疲労性が70%より小さい場合には、補強用繊維としての機能を十分に果たすことができない場合がある。
なお、100℃における熱水収縮率、100℃のゴム中での耐疲労性は後述する方法にて測定される。
In particular, when used for rubber reinforcement, the PVA fiber preferably has a hot water shrinkage rate at 100 ° C. of 7% or less, and fatigue resistance in rubber at 100 ° C. is 70% or more in terms of strength retention. If the hot water shrinkage is greater than 7%, the fibers may melt during the rubber vulcanization process.
Further, when the fatigue resistance of the PVA fiber in 100 ° C. rubber is less than 70%, the function as the reinforcing fiber may not be sufficiently achieved.
The hot water shrinkage at 100 ° C. and the fatigue resistance in rubber at 100 ° C. are measured by the methods described later.

本発明の繊維は、ステープルファイバー、ショートカットファイバー、フィラメントヤーン、紡績糸などのあらゆる繊維形態で用いることができる。その際の繊維の断面形状に関しても特に制限はなく、円形、中空、あるいは星型等異型断面であってもかまわない。さらには、本発明の繊維を他の繊維と混合・併用してもよい。この時、併用しうる繊維として特に限定はないが、硼酸架橋処理を行わないPVA系繊維や、ポリエステル系繊維、ポリアミド系繊維、セルロース系繊維等を挙げることができる。   The fiber of the present invention can be used in any fiber form such as staple fiber, shortcut fiber, filament yarn, spun yarn and the like. The cross-sectional shape of the fiber at that time is also not particularly limited, and may be circular, hollow, or a different cross section such as a star shape. Furthermore, you may mix and use the fiber of this invention with another fiber. In this case, the fiber that can be used in combination is not particularly limited, and examples thereof include PVA fibers that are not subjected to boric acid crosslinking treatment, polyester fibers, polyamide fibers, and cellulose fibers.

本発明の繊維は産業資材用、衣料用、医療用等あらゆる用途に好適に使用でき、例えば、各種フィルター、断熱材、高保温性衣料品、ハウスラッピングペーパー、清掃用モップ材、補強用( セメント、ゴム、樹脂等) などに広く使用することができる。特に、力学物性、耐熱性、耐湿熱性に優れることから、セメント、ゴム、樹脂等の補強用繊維として適している。   The fiber of the present invention can be suitably used for various uses such as industrial materials, clothing, and medical use. For example, various filters, heat insulating materials, high heat retaining clothing, house wrapping paper, cleaning mop materials, and reinforcing (cement , Rubber, resin, etc.). In particular, it is suitable as a reinforcing fiber for cement, rubber, resin, etc. because of its excellent mechanical properties, heat resistance, and moist heat resistance.

以下、実施例により本発明をより詳細に説明するが、本発明はこれら実施例により何等限定されるものではない。なお以下の実施例において、各物性値は以下の方法により測定したものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples. In the following examples, each physical property value is measured by the following method.

[アタクチックPVAの粘度平均重合度]
JIS K−6726試験法に準じ、30℃の水溶液の極限粘度〔η〕の測定値より、次式により粘度平均重合度を求めた。
Pa=(〔η〕×10/8.29)1.63
[Viscosity average polymerization degree of atactic PVA]
According to the JIS K-6726 test method, the viscosity average polymerization degree was determined from the measured value of the intrinsic viscosity [η] of an aqueous solution at 30 ° C. according to the following formula.
Pa = ([η] × 10 4 /8.29) 1.63

[硼素含有量 ppm]
PVA系繊維を140℃の水に密閉条件下で溶解し、硼素と反応しやすいマンニット(関東化学製)を添加してNaOHの滴定により算出した。
[Boron content ppm]
The PVA fiber was dissolved in 140 ° C. water under hermetic conditions, mannitol (manufactured by Kanto Chemical Co., Ltd.) that easily reacts with boron was added, and calculation was performed by titration with NaOH.

[PVA繊維の引張強度、弾性率 cN/dtex]
JIS L−1013試験法に準じ、予め絶乾されたヤーンを試長20cm、初荷重0.25g/dおよび引張り速度50%/分の条件で測定し、5点以上の測定値の平均値を採用した。室温での繊維物性は20℃の空気中で測定した。また、高温での繊維物性は、引張り試験機に空気高温槽を取り付け、80℃における強度、弾性率を測定し、求めた。なお繊維太さ(dtex)は質量法により求めた。
[Tensile strength and elastic modulus of PVA fiber cN / dtex]
In accordance with the JIS L-1013 test method, a pre-dried yarn was measured under the conditions of a test length of 20 cm, an initial load of 0.25 g / d, and a tensile speed of 50% / min. Adopted. Fiber physical properties at room temperature were measured in air at 20 ° C. Further, the fiber physical properties at high temperature were determined by attaching a high-temperature air tank to a tensile tester and measuring the strength and elastic modulus at 80 ° C. The fiber thickness (dtex) was determined by a mass method.

[熱水収縮率 %]
デシテックス当たり2mgのおもりを一端に取り付け、目盛板上に他端を固定して、繊維の長さAを測定する。これを100℃の熱水中に垂直になるように入れて浸漬させ、30分間放置し、その後熱水中での繊維の長さBを目盛から読み取り、以下の式より収縮率を算出した。
熱水収縮率(%)=(A−B)/A×100
[Hot water shrinkage%]
A 2 mg weight per decitex is attached to one end, the other end is fixed on the scale plate, and the fiber length A0 is measured. This was immersed vertically in 100 ° C. hot water, allowed to stand for 30 minutes, and then the fiber length B 0 in the hot water was read from the scale, and the shrinkage was calculated from the following equation. .
Hot water shrinkage (%) = (A 0 −B 0 ) / A 0 × 100

[耐疲労性 %]
ヤーンを365t/mでz方向に撚糸して下撚糸とし、この下撚糸3本をS方向に300t/m上撚りしてコードを作成した。このコードにゴム接着性改良剤であるRFL樹脂を固形分で5質量%付着させた後、110℃で乾燥し、160℃で熱処理してデイップコードを得た。このデイップコードと天然ゴム/スチレンブタジエンゴム=1/1の組成のゴムを用いて、JIS L−1017化学繊維タイヤコード試験方法に記載のデイスク疲労試験装置を用い、圧縮3%、伸長3%、温度100℃、30万回の条件で疲労させ、試験後のデイップコード強力から強力保持率(%)を算出した。なお、RFL樹脂は以下の組成のものを使用した。
<RFL液組成>
A液
水 67質量部
レゾルシン 2.8質量部
ホルムアルデヒド(37%) 6.1質量部
水酸化ナトリウム水溶液(10%) 2.0質量部
上記A液を25℃の温度で6時間熟成した。
B液
SBRラテックス 50質量部
ビニルピリジン変性SBRラテックス 21.5質量部
水 76.3質量部
上記B液を熟成済みのA液と混合した後、25℃の温度で16時間熟成し、さらに水及び接着助剤としてクロロフェノール系助剤を加えて8重量%濃度のRFL液とした。JIS L1906試験法のシングルタング法に準拠して測定し求めた。
[Fatigue resistance%]
The yarn was twisted in the z direction at 365 t / m to form a lower twisted yarn, and three lower twisted yarns were twisted 300 t / m in the S direction to prepare a cord. An RFL resin, which is a rubber adhesion improver, was attached to this cord at a solid content of 5% by mass, dried at 110 ° C., and heat treated at 160 ° C. to obtain a dip cord. Using this dip cord and rubber having a composition of natural rubber / styrene butadiene rubber = 1/1, using a disk fatigue test apparatus described in JIS L-1017 chemical fiber tire cord test method, compression 3%, elongation 3%, Fatigue was carried out at a temperature of 100 ° C. and 300,000 times, and the strength retention (%) was calculated from the dip cord strength after the test. The RFL resin having the following composition was used.
<RFL liquid composition>
A liquid
Water 67 parts by weight Resorcin 2.8 parts by weight Formaldehyde (37%) 6.1 parts by weight Sodium hydroxide aqueous solution (10%) 2.0 parts by weight The above solution A was aged at 25 ° C. for 6 hours.
B liquid
SBR latex 50 parts by weight Vinylpyridine-modified SBR latex 21.5 parts by weight Water 76.3 parts by weight The above B liquid was mixed with the aged A liquid and then aged at 25 ° C. for 16 hours. A chlorophenol-based auxiliary was added as an agent to prepare an RFL solution having a concentration of 8 wt%. The measurement was made in accordance with the single tongue method of the JIS L1906 test method.

[実施例1]
(1)平均重合度1700、ケン化度99.9モル%、シンジオテクティシティS=53.4%のPVA重合体をPVA濃度41.0質量%となるように水中に添加し、95℃ にて加熱溶解した。得られた紡糸原液を、孔径0.10mm 、ホール数40の丸型ノズルを通して、原液吐出量100cc/分、引取速度155m/分にて紡出した後、240℃ で10倍延伸を行った。
(2)上記(1)で得られたPVA繊維を硼酸80g/L、水酸化ナトリウム20g/Lの水溶液の浴中に80℃で60分間、浴比50:1にて浸漬し、次いで十分に水洗洗浄した後、24時間風乾させたところ、硼素含有量が5700ppmであるPVA繊維が得られた。
このようにして得られた繊維は、80℃における弾性率及び耐久性に優れるものであった。結果を表1に示す。
[Example 1]
(1) A PVA polymer having an average degree of polymerization of 1700, a degree of saponification of 99.9 mol%, and a syndiotacticity S = 53.4% was added to water so that the PVA concentration would be 41.0% by mass, and 95 ° C. And dissolved by heating. The obtained spinning dope was spun through a round nozzle having a hole diameter of 0.10 mm and a hole number of 40 at a stock solution discharge rate of 100 cc / min and a take-up speed of 155 m / min, and then stretched 10 times at 240 ° C.
(2) The PVA fiber obtained in (1) above is immersed in a bath of an aqueous solution of boric acid 80 g / L and sodium hydroxide 20 g / L at 80 ° C. for 60 minutes at a bath ratio of 50: 1, and then fully After washing with water and air drying for 24 hours, PVA fibers with a boron content of 5700 ppm were obtained.
The fiber thus obtained was excellent in elastic modulus and durability at 80 ° C. The results are shown in Table 1.

[実施例2]
実施例1と全く同様にして得られたPVA繊維を硼酸80g/L、水酸化ナトリウム20g/Lの水溶液の浴中に実施例1よりも温度が低い条件(60℃)で60分間浴比50:1にて浸漬し、いで十分に水洗洗浄した後、24時間風乾させ、硼素含有量が1700ppmであるPVA繊維が得られた。
このようにして得られた繊維は、80℃における弾性率及び耐久性に優れるものであった。結果を表1に示す。
[Example 2]
A PVA fiber obtained in exactly the same manner as in Example 1 was placed in a bath of an aqueous solution of boric acid 80 g / L and sodium hydroxide 20 g / L at a temperature lower than that of Example 1 (60 ° C.) for 60 minutes and a bath ratio of 50. After being soaked in water and thoroughly washed with water, it was air-dried for 24 hours to obtain a PVA fiber having a boron content of 1700 ppm.
The fiber thus obtained was excellent in elastic modulus and durability at 80 ° C. The results are shown in Table 1.

[実施例3]
実施例1と全く同様にして得られたPVA繊維を硼酸80g/L、水酸化ナトリウム20g/Lの水溶液の浴中に実施例1よりも温度が高く、かつ処理時間が長い条件(85℃で80分間)で、浴比50:1にて浸漬し、次いで十分に水洗洗浄した後、24時間風乾させ、硼酸含有量が8400ppmであるPVA繊維が得られた。
このようにして得られた繊維は80℃における弾性率及び耐久性に優れるものであった。結果を表1に示す。
[Example 3]
The PVA fiber obtained in exactly the same manner as in Example 1 was placed in a bath of an aqueous solution of boric acid 80 g / L and sodium hydroxide 20 g / L at a temperature higher than that of Example 1 and a longer processing time (at 85 ° C. 80 minutes), and then immersed in a bath ratio of 50: 1, and then sufficiently washed with water and air-dried for 24 hours to obtain a PVA fiber having a boric acid content of 8400 ppm.
The fiber thus obtained was excellent in elastic modulus and durability at 80 ° C. The results are shown in Table 1.

[実施例4]
(1)粘度平均重合度1400、ケン化度99.9モル%、シンジオテクティシティS=53.4%のPVA重合体をPVA濃度41.0質量%となるように水中に添加し、95℃ にて加熱溶解した。得られた紡糸原液を、孔径0.10mm 、ホール数40の丸型ノズルを通して、原液吐出量100cc/分、引取速度155m/分にて紡出した後、240℃ で10倍延伸を行い、PVA繊維を得た。
(2)得られたPVA繊維を硼酸80g/L、水酸化ナトリウム20g/Lの水溶液の浴中に80℃で60分間浴比50:1にて浸漬し、次いで十分に水洗洗浄した後、24時間風乾させ、硼酸含有量が5700ppmであるPVA繊維が得られた。
このようにして得られた繊維は80℃における弾性率及び耐久性に優れるものであった。結果を表1に示す。
[Example 4]
(1) A PVA polymer having a viscosity average polymerization degree of 1400, a saponification degree of 99.9 mol%, and a syndiotechnity S = 53.4% was added to water so that the PVA concentration was 41.0% by mass. Dissolved by heating at ℃. The obtained spinning dope was spun at a stock solution discharge rate of 100 cc / min and a take-up speed of 155 m / min through a round nozzle having a hole diameter of 0.10 mm and a hole number of 40, and then stretched 10 times at 240 ° C. Fiber was obtained.
(2) The obtained PVA fiber was immersed in an aqueous solution of boric acid 80 g / L and sodium hydroxide 20 g / L at a bath ratio of 50: 1 at 80 ° C. for 60 minutes, and then thoroughly washed with water and washed. PVA fibers having a boric acid content of 5700 ppm were obtained by air drying for a period of time.
The fiber thus obtained was excellent in elastic modulus and durability at 80 ° C. The results are shown in Table 1.

[実施例5]
実施例1と全く同様にして得られたPVA繊維を硼酸80g/L、水酸化ナトリウム20g/Lの水溶液の浴中に実施例3と温度が同じで、かつ処理時間が長い条件(85℃で120分間)で、浴比50:1にて浸漬し、次いで十分に水洗洗浄した後24時間風乾させ、硼酸含有量が11500ppmであるPVA繊維が得られた。
このようにして得られた繊維は80℃における弾性率及び耐久性に優れるものであった。結果を表1に示す。
[Example 5]
The PVA fiber obtained in exactly the same manner as in Example 1 was placed in a bath of an aqueous solution of boric acid 80 g / L and sodium hydroxide 20 g / L at the same temperature as Example 3 and under a long treatment time (at 85 ° C. 120 minutes) and then immersed in a bath ratio of 50: 1, then washed thoroughly with water and air-dried for 24 hours to obtain a PVA fiber having a boric acid content of 11500 ppm.
The fiber thus obtained was excellent in elastic modulus and durability at 80 ° C. The results are shown in Table 1.

[比較例1]
実施例1で得られたPVA繊維に硼酸処理を行わなかったところ、得られた繊維は80℃における弾性率が86cN/dtexと低いものであった。
[Comparative Example 1]
When the PVA fiber obtained in Example 1 was not treated with boric acid, the obtained fiber had a low elastic modulus at 80 ° C. of 86 cN / dtex.

[比較例2]
実施例1と全く同様にして得られたPVA繊維を硼酸150g/Lの水溶液の浴中に80℃で60分間浴比50:1にて浸漬し、次いで十分に水洗洗浄した後、24時間風乾させたところ、硼酸含有量が15500ppmであるPVA繊維が得られたが、硼酸含有量が多すぎるために強度が劣っており、本発明の目的とするPVA系繊維は得られなかった。結果を表1に示す。
[Comparative Example 2]
The PVA fiber obtained in exactly the same manner as in Example 1 was immersed in a bath of boric acid 150 g / L in an aqueous solution of 150 g / L at 80 ° C. for 60 minutes at a bath ratio of 50: 1, then washed thoroughly with water and then air-dried for 24 hours. As a result, a PVA fiber having a boric acid content of 15500 ppm was obtained, but the strength was inferior because the boric acid content was too high, and the PVA fiber targeted by the present invention was not obtained. The results are shown in Table 1.

[比較例3]
粘度平均重合度が600のアタクチックPVA重合体を用いたこと以外は、実施例1と全く同様にして、PVA繊維を得た。このようにして得られたPVA繊維はPVA重合体の重合度が低すぎるため、耐疲労性に劣っていた。
[Comparative Example 3]
A PVA fiber was obtained in exactly the same manner as in Example 1 except that an atactic PVA polymer having a viscosity average polymerization degree of 600 was used. The PVA fiber thus obtained was inferior in fatigue resistance because the polymerization degree of the PVA polymer was too low.

[比較例4]
重合度が5000のアタクチックPVA重合体を用いたこと以外は、実施例1と全く同様にして、PVA繊維を得ようと試みたが、PVA重合体の重合度が高すぎるために熱水でも十分に溶解せず、紡糸して繊維を得ることができなかった。
[Comparative Example 4]
Except for using an atactic PVA polymer having a degree of polymerization of 5000, an attempt was made to obtain PVA fibers in exactly the same manner as in Example 1, but hot water was sufficient because the degree of polymerization of the PVA polymer was too high. The fiber was not able to be obtained by spinning.

[比較例5]
実施例1と全く同様にして得られたPVA繊維を硼酸80g/L、水酸化ナトリウム20g/Lの水溶液の浴中に、実施例1よりも温度が低く、かつ処理時間が短い条件(60℃で5分間)で浴比50:1で浸漬し、次いで十分に水洗洗浄した後、24時間風乾させ、硼酸含有量が500ppmであるPVA繊維が得られた。このようにして得られたPVA繊維は80℃における弾性率が95cN/dtexと低く、本発明の目的とするPVA繊維は得られなかった。結果を表1に示す。
[Comparative Example 5]
The PVA fiber obtained in exactly the same manner as in Example 1 was placed in a bath of an aqueous solution of boric acid 80 g / L and sodium hydroxide 20 g / L at a temperature lower than that of Example 1 and a short processing time (60 ° C. For 5 minutes) and then thoroughly washed with water and air-dried for 24 hours to obtain PVA fibers having a boric acid content of 500 ppm. The PVA fiber thus obtained had a low elastic modulus at 80 ° C. of 95 cN / dtex, and the PVA fiber targeted by the present invention was not obtained. The results are shown in Table 1.

[比較例6]
重合度1600、ケン化度99.9モル%、シンジオタクチシティS=61.5%の高シンジオタクチックPVA重合体を用いたこと以外は、実施例1と全く同じ条件にて繊維化を試みたが、PVA重合体が95℃の水中で加熱溶解しようとしても十分に溶解せず、紡糸して繊維を得ることができなかった。
[Comparative Example 6]
Except for using a high syndiotactic PVA polymer having a polymerization degree of 1600, a saponification degree of 99.9 mol%, and a syndiotacticity S = 61.5%, fiberization was performed under exactly the same conditions as in Example 1. Attempts were made to dissolve the PVA polymer in water at 95 ° C. by heating, but the PVA polymer was not sufficiently dissolved, and the fiber could not be obtained by spinning.

Figure 2009108432
Figure 2009108432

本発明の繊維は産業資材用、衣料用、医療用等あらゆる用途に好適に使用でき、例えば、各種フィルター、断熱材、高保温性衣料品、ハウスラッピングペーパー、清掃用モップ材、補強用( セメント、ゴム、樹脂等) などに広く使用することができる。特に、力学物性、耐熱性、耐湿熱性に優れることから、セメント、ゴム、樹脂等の補強用繊維として適している。   The fiber of the present invention can be suitably used for various uses such as industrial materials, clothing, and medical use. For example, various filters, heat insulating materials, high heat retaining clothing, house wrapping paper, cleaning mop materials, and reinforcing (cement , Rubber, resin, etc.). In particular, it is suitable as a reinforcing fiber for cement, rubber, resin, etc. because of its excellent mechanical properties, heat resistance, and moist heat resistance.

Claims (3)

粘度平均重合度1000〜2000のアタクチックポリビニルアルコール系重合体からなり、さらに該ポリビニルアルコールに対して硼酸または硼酸塩をホウ素原子換算で1000から12000ppm含有されてなるポリビニルアルコール系繊維。   A polyvinyl alcohol fiber comprising an atactic polyvinyl alcohol polymer having a viscosity average polymerization degree of 1000 to 2000, and further containing boric acid or borate in an amount of 1000 to 12000 ppm in terms of boron atom. 以下(1)〜(3)の条件を全て満足することを特徴とする請求項1のポリビニルアルコール系繊維。
(1)80℃における強度が4cN/dtex以上であること、
(2)80℃における弾性率が120cN/dtex以上であること、
(3)100℃における熱水収縮率が7%以下であること、
The polyvinyl alcohol fiber according to claim 1, wherein all of the following conditions (1) to (3) are satisfied.
(1) The strength at 80 ° C. is 4 cN / dtex or more,
(2) The elastic modulus at 80 ° C. is 120 cN / dtex or more,
(3) The hot water shrinkage at 100 ° C. is 7% or less,
アタクチックポリビニルアルコール系重合体の溶液をノズルより吐出して糸条を形成し、次いで糸条から溶媒を除去し乾燥したのち、乾熱延伸してポリビニルアルコール系繊維を製造する方法において、該ポリビニルアルコール系重合体の溶剤として水を使用し、さらに乾熱延伸工程以降に硼酸または硼酸塩を添加して、ホウ素原子換算で1000〜12000ppm存在させることを特徴とする請求項1または2記載のポリビニルアルコール系繊維の製造方法。   In the method of producing a polyvinyl alcohol fiber by discharging a solution of an atactic polyvinyl alcohol polymer from a nozzle to form a yarn, then removing the solvent from the yarn and drying, followed by dry heat drawing. 3. The polyvinyl according to claim 1, wherein water is used as a solvent for the alcohol-based polymer, and boric acid or borate is further added after the dry heat stretching step so that 1000 to 12000 ppm in terms of boron atom is present. A method for producing alcohol-based fibers.
JP2007279994A 2007-10-29 2007-10-29 Polyvinyl alcohol-based fiber and method for producing the same Pending JP2009108432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007279994A JP2009108432A (en) 2007-10-29 2007-10-29 Polyvinyl alcohol-based fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007279994A JP2009108432A (en) 2007-10-29 2007-10-29 Polyvinyl alcohol-based fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009108432A true JP2009108432A (en) 2009-05-21

Family

ID=40777217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007279994A Pending JP2009108432A (en) 2007-10-29 2007-10-29 Polyvinyl alcohol-based fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009108432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337605A (en) * 2011-08-18 2012-02-01 安徽皖维高新材料股份有限公司 High-strength, high-modulus and high-melting point PVA (Polyvinyl Acetate) fiber and manufacturing method thereof
WO2014157548A1 (en) * 2013-03-29 2014-10-02 株式会社クラレ Reinforcing fiber for hydraulic molded articles, and hydraulic material containing said fiber
CN105934800A (en) * 2014-01-27 2016-09-07 3M创新有限公司 Electrically insulating material and conductor wrap for electrical equipment, such as transformers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104815A (en) * 1987-10-14 1989-04-21 Toyobo Co Ltd Polyvinyl alcohol fiber and production thereof
JP2005009029A (en) * 2003-06-19 2005-01-13 Kuraray Co Ltd Polyvinyl alcohol-based fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104815A (en) * 1987-10-14 1989-04-21 Toyobo Co Ltd Polyvinyl alcohol fiber and production thereof
JP2005009029A (en) * 2003-06-19 2005-01-13 Kuraray Co Ltd Polyvinyl alcohol-based fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337605A (en) * 2011-08-18 2012-02-01 安徽皖维高新材料股份有限公司 High-strength, high-modulus and high-melting point PVA (Polyvinyl Acetate) fiber and manufacturing method thereof
CN102337605B (en) * 2011-08-18 2013-03-06 安徽皖维高新材料股份有限公司 High-strength, high-modulus and high-melting point PVA (Polyvinyl Acetate) fiber and manufacturing method thereof
WO2014157548A1 (en) * 2013-03-29 2014-10-02 株式会社クラレ Reinforcing fiber for hydraulic molded articles, and hydraulic material containing said fiber
JP2014208583A (en) * 2013-03-29 2014-11-06 株式会社クラレ Reinforcing fiber for hydraulic molded body and hydraulic material containing the same
CN105934800A (en) * 2014-01-27 2016-09-07 3M创新有限公司 Electrically insulating material and conductor wrap for electrical equipment, such as transformers

Similar Documents

Publication Publication Date Title
JP2010242063A (en) Cellulose nanofiber compound polyvinyl alcohol-based polymer composition
JP4128580B2 (en) Polyvinyl alcohol composite fiber
JP4342056B2 (en) Polyketone fiber and production method thereof
JP2009108432A (en) Polyvinyl alcohol-based fiber and method for producing the same
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
JP3105225B2 (en) Manufacturing method of stretched rope
JP2001303359A (en) Method for producing polyvinyl alcohol-based fiber
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP3067056B2 (en) High strength polyvinyl alcohol fiber and method for producing the same
JP3703768B2 (en) Method for producing hollow fiber
JP3316300B2 (en) Polyvinyl alcohol fiber excellent in durability and method for producing the same
JP2004256315A (en) Vinylon fiber for cement reinforcement
JP2858925B2 (en) Method for producing hot water-resistant polyvinyl alcohol fiber
JP6309798B2 (en) Reinforcing fiber
JPH08218221A (en) Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production
JP2927304B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JPH08158149A (en) Production of polyvinyl alcohol-based fiber
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JPH04240207A (en) Polyvinyl alcoholic fiber and its production
JP2006002304A (en) Polyvinyl alcohol-based fiber
JP2000290880A (en) Production of rubber hose reinforcing material
JP2005281900A (en) Polyvinyl alcohol-based fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Effective date: 20111115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306