JPH0718052B2 - Manufacturing method of high strength acrylic fiber - Google Patents

Manufacturing method of high strength acrylic fiber

Info

Publication number
JPH0718052B2
JPH0718052B2 JP59240438A JP24043884A JPH0718052B2 JP H0718052 B2 JPH0718052 B2 JP H0718052B2 JP 59240438 A JP59240438 A JP 59240438A JP 24043884 A JP24043884 A JP 24043884A JP H0718052 B2 JPH0718052 B2 JP H0718052B2
Authority
JP
Japan
Prior art keywords
fiber
yarn
strength
polymer
coagulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59240438A
Other languages
Japanese (ja)
Other versions
JPS61119708A (en
Inventor
宏佳 田中
三男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59240438A priority Critical patent/JPH0718052B2/en
Publication of JPS61119708A publication Critical patent/JPS61119708A/en
Publication of JPH0718052B2 publication Critical patent/JPH0718052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度アクリル系繊維の製造法、特に従来の市
販アクリル系繊維に比較して繊維を構成する重合体の重
合度および繊維の機械的強度が極めて大きく、繊維表面
の平滑性並びに緻密な繊維構造によって特徴づけられる
新規なアクリロニトリル系繊維の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a high-strength acrylic fiber, and particularly to a degree of polymerization of a polymer constituting the fiber and a machine of the fiber as compared with a conventional commercial acrylic fiber. TECHNICAL FIELD The present invention relates to a novel method for producing an acrylonitrile fiber characterized by extremely high fiber surface smoothness and a dense fiber structure.

(従来の技術) 従来アクリル系繊維(以下、AN系繊維と略す)は、衣料
用として大量に生産、販売されているが、工業用または
産業用としては、機械的強度が十分ではないためにほと
んど使用されていないのが現状である。
(Prior Art) Conventionally, acrylic fibers (hereinafter abbreviated as AN fibers) have been produced and sold in large quantities for clothing, but mechanical strength is not sufficient for industrial or industrial use. It is currently rarely used.

これまでにAN系繊維の機械的強度を改良もしくは向上さ
せようとする多くの試みが提案されてきた。
Many attempts to improve or improve the mechanical strength of AN fibers have been proposed so far.

たとえば、特公昭45−19414号および特公昭46−29891号
各公報には、アクリロニトリル系重合体(以下、AN系ポ
リマという)溶液を不活性ガス状媒質を経由して凝固浴
液中に導いて凝固させる紡糸方法、すなわち乾湿式紡糸
方法により凝固糸条を形成し、洗浄、熱水延伸、油剤処
理、乾燥した後、二次延伸し、さらに収縮許容下に熱処
理する方法、特に上記2段延伸条件および高速巻き取り
速度の条件を選択することにより、高強度の工業用AN系
繊維を得る方法が提案されている。
For example, JP-B-45-19414 and JP-B-46-29891 disclose that an acrylonitrile-based polymer (hereinafter referred to as AN-based polymer) solution is introduced into a coagulation bath solution through an inert gas medium. A spinning method for coagulation, that is, a method for forming a coagulated filament by a dry-wet spinning method, washing, hot water drawing, oil treatment, drying, secondary drawing, and further heat treatment while allowing shrinkage, particularly the above two-stage drawing A method for obtaining a high-strength industrial AN-based fiber by selecting the conditions and the conditions of a high winding speed has been proposed.

また、特開昭57−51810号公報には、湿式または乾式紡
糸方法により得られた繊維を湿式延伸し、緊張下に乾燥
し、引き続いて接触延伸して有効全延伸倍率を9倍以上
25倍以下にする方法が提案され、これによって、高弾性
率のAN系繊維を得ることができることが記載されてい
る。
Further, in JP-A-57-51810, fibers obtained by a wet or dry spinning method are wet-stretched, dried under tension, and subsequently contact-stretched to obtain an effective total draw ratio of 9 times or more.
A method of making the amount 25 times or less is proposed, and it is described that an AN fiber having a high elastic modulus can be obtained by this method.

さらに、特開昭57−161117号公報には、相対粘度が2.5
〜6.0のAN系ポリマを乾式または湿式紡糸し、洗浄もし
くは洗浄後に湿式延伸し、緊張下に加熱ロール上で乾燥
し、乾熱下延伸し、さらに乾熱下に熱処理する方法が提
案されており、これによって高強度AN系繊維が得られる
ことを記載されている。
Further, JP-A-57-161117 discloses that the relative viscosity is 2.5.
It has been proposed to dry- or wet-spin an AN polymer of up to 6.0, wash or wet-stretch after washing, dry on a heating roll under tension, stretch under dry heat, and heat-treat under dry heat. It is described that a high-strength AN fiber is obtained by this.

しかしながら、これらの公知技術によって得られるAN系
繊維の強度は、たとえば、引張強度が最大約10g/d未満
程度であり、しかも引張強度の向上は、他の機械的性
質、たとえば引張弾性率や結節強度を低下させるケース
が多く、引張強度のみならず弾性率や結節強度などの他
の機械的性質を総合的に向上、改良するものではない。
However, the strength of the AN-based fibers obtained by these known techniques is, for example, a tensile strength of about less than about 10 g / d at the maximum, and the improvement of the tensile strength is caused by other mechanical properties such as tensile modulus and knots. In many cases, the strength is lowered, and it does not comprehensively improve or improve not only tensile strength but also other mechanical properties such as elastic modulus and knot strength.

本発明者らは、AN系繊維の強度、弾性率などの機械的性
質全体を高度に改良、向上した超高強度AN系繊維につい
て、鋭意検討を行って本発明を見出したものである。
The inventors of the present invention have found the present invention by earnestly examining an ultra-high-strength AN fiber having improved and improved mechanical properties such as strength and elastic modulus of the AN fiber.

(発明が解決しようとする問題点) すなわち、本発明の目的は、従来のAN系繊維に比較し
て、その機械的強度の著しく改良、向上した新規AN系繊
維を提供するにある。また他の目的は、このような新規
AN系繊維の工業的製造方法を提供するにある。
(Problems to be Solved by the Invention) That is, an object of the present invention is to provide a novel AN-based fiber whose mechanical strength is remarkably improved and improved as compared with the conventional AN-based fiber. Another purpose is to
It is to provide an industrial manufacturing method of AN fiber.

(問題点を解決するための手段) このような問題点を解決するため本発明の高強度アクリ
ル系繊維の製造法は、次の構成を有する。すなわち、 極限粘度が2.5を越え3.3以下のアクリロニトリル系重合
体からなり、重合体濃度が10〜20重量%、45℃の溶液粘
度が1500ポイズ以上10000ポイズ以下であるアクリロニ
トリル系重合体溶液を紡糸口金孔を通して一旦空気ある
いは不活性気体中に吐出させた後、紡糸口金面と凝固浴
液面との距離を1〜20mmとして、紡糸ドラフトが0.1〜
1.5となるように凝固浴中に導いて凝固させ、得られた
凝固繊維糸条に水洗、延伸、乾燥の処理を施し、次い
で、160〜250℃の加熱空気下で全延伸倍率が10〜20とな
るように二次延伸を施すことを特徴とするX線結晶配向
度が94.0%以上96.4%以下、引張強度が10g/d以上、引
張弾性率が200g/d以上、結節強度が2.2g/d以上および表
面平滑性が対比光沢度で表示して18.2%以上23.1%以下
である表面が平滑な高強度アクリル系繊維の製造法であ
る。
(Means for Solving Problems) In order to solve such problems, the method for producing a high-strength acrylic fiber of the present invention has the following constitution. That is, an acrylonitrile polymer solution having an intrinsic viscosity of more than 2.5 and not more than 3.3 and having a polymer concentration of 10 to 20% by weight and a solution viscosity at 45 ° C of not less than 1500 poise and not more than 10,000 poise is spinneret. After discharging once into air or an inert gas through the holes, the distance between the spinneret surface and the coagulating bath liquid surface is 1 to 20 mm, and the spinning draft is 0.1 to
It is introduced into a coagulation bath to be coagulated so as to be 1.5, and the coagulated fiber yarn obtained is washed with water, drawn, and dried, and then the total draw ratio is 10 to 20 under heating air of 160 to 250 ° C. X-ray crystal orientation is 94.0% or more and 96.4% or less, tensile strength is 10 g / d or more, tensile elastic modulus is 200 g / d or more, knot strength is 2.2 g / It is a method for producing a high-strength acrylic fiber having a smooth surface with d or more and surface smoothness expressed by relative glossiness of 18.2% or more and 23.1% or less.

ここで、X線結晶配向度は、繊維を構成するANポリマ分
子鎖の繊維軸方向における配向の程度を示す尺度であ
り、次の測定法によって求められる値である。
Here, the X-ray crystal orientation degree is a scale showing the degree of orientation of the AN polymer molecular chain constituting the fiber in the fiber axis direction, and is a value obtained by the following measuring method.

「X線結晶配向度の測定法」 X線回折法によるAN系繊維の赤道線上の回折点の強度分
布の半価幅Hから次式によって算出される値である。
"Measurement method of X-ray crystal orientation degree" It is a value calculated by the following formula from the half-value width H of the intensity distribution of the diffraction point on the equator line of the AN fiber by the X-ray diffraction method.

配向度(%)={(180−H)/180}×100 広角X線回折(カウンター法) (1)X線発生装置 理学電気(株)製 4036A2 X線源:CuKα(Niフィルター使用) 出力:35KV 15mA (2)ゴニオメーター 理学電気(株)製 2155D1 スリット系:2MM 1°×1° 検出器:シンチレーションカウンター また、繊維表面の光沢度は、次の測定方法によって求め
られる値であり、繊維表面の平滑性と同時に、繊維構造
の緻密性を反映する。
Orientation (%) = {(180-H) / 180} × 100 Wide-angle X-ray diffraction (counter method) (1) X-ray generator Rigaku Denki Co., Ltd. 4036A2 X-ray source: CuKα (using Ni filter) Output : 35KV 15mA (2) Goniometer manufactured by Rigaku Denki Co., Ltd. 2155D1 Slit system: 2MM 1 ° × 1 ° Detector: Scintillation counter Also, the glossiness of the fiber surface is the value determined by the following measurement method. It reflects the fineness of the fiber structure as well as the smoothness of the surface.

「表面光沢度の測定方法」 繊維束を平行に並べる。この時ケン縮を有する糸条は90
〜100℃の熱湯でケン縮を除きストレートな糸条とす
る。この試料面に一方向から光線を与え、反射光を正反
射成分(a)と拡散反射成分(b)とに分離し、この両
者の比を対比光沢度とする。
"Measurement method of surface gloss" Align the fiber bundles in parallel. At this time, the number of threads with crimp is 90
Straighten the yarn by removing the crimp in hot water at ~ 100 ° C. A light ray is applied to this sample surface from one direction to separate the reflected light into a specular reflection component (a) and a diffuse reflection component (b), and the ratio of the two is taken as the contrast glossiness.

対比光沢度=(1−b/a)×100 本発明の特徴は、従来市販されているAN系繊維はもちろ
ん、公知のAN系繊維を構成するAN系ポリマに比較しても
相対的に重合度が著しく大きいAN系ポリマ、すなわち極
限粘度で表示して2.5を越え3.3以下の値を有することに
あり、このような比較的高重合度ポリマから繊維が構成
されているために、約10g/dを越える引張強度を有する
のみならず、他の機械的性質も極めて大きい値を示す。
なお、極限粘度が2.5以下であると、強度10g/d以上、弾
性率200g/d以上、結節強度2.2g/d以上の繊維物性を達成
することが困難となるし、一方、極限粘度が3.3を越え
ると、紡糸原液の粘度が著しく高くなるため、紡糸、延
伸性が低下して目標の繊維物性を得ることが困難となる
ばかりか、ポリマを生産する際の生産性が大幅に低下す
るという問題が生じる。
Contrast gloss = (1-b / a) × 100 The feature of the present invention is that the polymer is relatively polymerized in comparison with the AN polymer which is a commercially available AN fiber as well as the known AN polymer. AN polymer having a remarkably large degree, that is, having a value of more than 2.5 and 3.3 or less when expressed as an intrinsic viscosity.Because the fiber is composed of such a relatively high degree of polymerization polymer, about 10 g / Not only does it have a tensile strength exceeding d, but it also exhibits extremely large values in other mechanical properties.
Incidentally, when the intrinsic viscosity is 2.5 or less, it becomes difficult to achieve fiber properties of strength 10 g / d or more, elastic modulus 200 g / d or more, knot strength 2.2 g / d or more, while the intrinsic viscosity is 3.3. If the viscosity exceeds the above value, the viscosity of the stock solution for spinning will be remarkably increased, and it will be difficult to obtain the target fiber physical properties due to a decrease in spinning and drawability, and the productivity during polymer production will be significantly reduced. The problem arises.

そして、重要なことは、このような高重合度ポリマから
構成されているにも拘わらず、本発明により得られるAN
系繊維は、X線結晶配向度が94.0%以上96.4%以下とい
う高配高度繊維であって、この高い配向度と前記の比較
的高重合ポリマから繊維が構成されていることによって
はじめて、AN系繊維としては、従来考えられなかった超
高強度物性を示すのである。X線結晶配向度が94.0%未
満であると、繊維の強度、弾性率が低下するし、一方、
96.4%を越えると強度、弾性率は向上するが、対比光沢
度が低下し、繊維の緻密性が低下するため、産業用繊維
として重要な物性である結節強度が2.2g/dに到達しなく
なる。
And, importantly, the AN obtained by the present invention, despite being composed of such a high degree of polymerization polymer,
The type fibers are highly distributed fibers having an X-ray crystal orientation degree of 94.0% or more and 96.4% or less, and it is only because the fibers are composed of this high orientation degree and the above-mentioned relatively high polymerized polymer As a result, it exhibits ultrahigh-strength physical properties that have never been considered. If the X-ray crystal orientation degree is less than 94.0%, the strength and elastic modulus of the fiber will decrease, while
If it exceeds 96.4%, the strength and elastic modulus will be improved, but the contrast glossiness will be decreased and the denseness of the fiber will be decreased, so the knot strength, which is an important physical property as an industrial fiber, will not reach 2.2 g / d. .

本発明により得られる繊維の引張強度は10g/d以上とす
るものである。引張強度が10g/d未満では本発明で目的
とする工業用、産業用に用いるには不十分である。な
お、アクリル系繊維で20g/dを越える引張強度とするに
は重合度を著しく高めたり、20倍を越える延伸を要する
など工業的生産は一般に困難である。
The tensile strength of the fiber obtained by the present invention is 10 g / d or more. If the tensile strength is less than 10 g / d, it is not sufficient for industrial and industrial purposes aimed at by the present invention. Incidentally, in order to obtain a tensile strength of more than 20 g / d with an acrylic fiber, industrial production is generally difficult because the degree of polymerization is remarkably increased, and drawing is required to exceed 20 times.

また、本発明により得られる繊維の引張弾性率は200g/d
以上とするものである。引張弾性率が200g/d未満では本
発明で目的とする工業用、産業用に用いることは困難で
ある。なお、アクリル系繊維で300g/dを越える引張弾性
率とするのは一般に困難である。本発明により得られる
繊維の結節強度は2.2g/d以上とするものである。結節強
度が2.2g/d未満では屈曲性、耐久性が不十分であり本発
明で目的とする工業用、産業用に用いることは困難であ
る。なお、本発明により得られる高強度アクリル系繊維
で4g/dを越える結節強度とするのは一般に困難である。
Further, the tensile elastic modulus of the fiber obtained by the present invention is 200 g / d
That is all. When the tensile elastic modulus is less than 200 g / d, it is difficult to use it for industrial purposes and industrial purposes aimed at by the present invention. It is generally difficult to obtain a tensile elastic modulus of more than 300 g / d with acrylic fibers. The knot strength of the fiber obtained by the present invention is 2.2 g / d or more. When the knot strength is less than 2.2 g / d, the flexibility and durability are insufficient, and it is difficult to use it for industrial purposes and industrial purposes which are the objectives of the present invention. It is generally difficult for the high-strength acrylic fiber obtained by the present invention to have a knot strength exceeding 4 g / d.

さらに、本発明により得られるAN系繊維は、繊維表面が
平滑であり、具体的にはその表面の対比光沢度が18.2〜
23.1%の値を有する平滑な表面を有する点に特徴があ
る。対比光沢度が18.2%未満であると、繊維が高度に配
向するため、強度、弾性率は向上するが、結節強度2.2g
/d以上の繊維物性を達成することが困難となる。一方、
対比光沢度23.1%を越えると、繊維の配向度が不十分で
あり、強度10g/dに到達することが困難となる。
Furthermore, the AN-based fiber obtained by the present invention has a smooth fiber surface, and specifically, the contrast glossiness of the surface is 18.2 to
It is characterized by having a smooth surface with a value of 23.1%. If the contrast gloss is less than 18.2%, the fibers are highly oriented and the strength and elastic modulus are improved, but the knot strength is 2.2 g.
It becomes difficult to achieve fiber properties of / d or more. on the other hand,
If the contrast glossiness exceeds 23.1%, the degree of fiber orientation is insufficient and it becomes difficult to reach a strength of 10 g / d.

すなわち、AN系繊維、他の汎用合成繊維のポリアミドや
ポリエステル系繊維のように、ポリマをそのまま溶融紡
糸するのではなくて、通常ポリマを各種の溶剤に溶解
し、このポリマを溶剤に溶解した溶液を紡糸ドープとし
て使用し、湿式、乾式あるいは乾湿式紡糸などの手段を
採用して繊維化されるが、このような手段を採用する場
合には、繊維中に含まれる溶媒を除去すること(脱溶
媒)が必要である。この脱溶媒は通常水を用いて行われ
るが、脱溶媒に対応して繊維の容積収縮が追随できない
ためボイドを生成する。このボイドをなくすため乾燥緻
密化が行われるが、繊維学会誌Vol.29,No.8(1973)に
示されているように、ポリマ濃度が低くなるとボイドの
多い凝固糸が得られるため乾燥工程を経てもボイドが消
失しにくく、強伸度的性質も低いものとなる。
That is, instead of melt-spinning the polymer as it is, like AN-based fibers and polyamides and polyester-based fibers of other general-purpose synthetic fibers, a polymer is usually dissolved in various solvents, and a solution obtained by dissolving the polymer in the solvent is used. Is used as a spinning dope and is made into fibers by adopting means such as wet, dry or dry-wet spinning. When such means is used, the solvent contained in the fibers must be removed (desorption). Solvent) is required. This desolvation is usually performed using water, but voids are generated because the volumetric shrinkage of the fiber cannot follow the desolvation. Dry densification is performed to eliminate the voids, but as shown in the Textile Society of Japan Vol.29, No.8 (1973), when the polymer concentration becomes low, coagulated yarn with many voids is obtained, so the drying process Even after passing through, the voids are hard to disappear, and the strength-elongation property is also low.

一方、重合度を高めることはポリマを溶媒に溶解した時
の原液粘度が高くなることになり、原液の安定性、曳糸
性の点から、ポリマ濃度を低下させざるを得ない。した
がって重合度の高いポリマではポリマ濃度の低下による
悪影響のため緻密化が困難となり、必ずしも高強度糸が
得られない。
On the other hand, if the degree of polymerization is increased, the viscosity of the stock solution when the polymer is dissolved in the solvent is increased, and the polymer concentration must be lowered from the viewpoint of the stability of the stock solution and the spinnability. Therefore, in the case of a polymer having a high degree of polymerization, it becomes difficult to densify it because of the adverse effect of a decrease in the polymer concentration, and a high strength yarn cannot always be obtained.

すなわち、本発明により得られるAN系繊維は、極限粘度
が2.5を越え3.3以下の比較的高重合度ポリマから構成さ
れ、しかもこのような比較的高重合度ポリマが繊維軸方
向にX線結晶配向度で表示して93%以上97%以下と言う
高い値で高度に配向されていることに基本的特徴があ
り、これによってその機械的強度、たとえば引張強度が
10g/d、好ましくは12g/d以上であり、引張弾性率が200g
/d以上であり、結節強度が2.2g/d以上である等、卓越し
た物性値を示すのである。
That is, the AN fiber obtained by the present invention is composed of a relatively high degree of polymerization polymer having an intrinsic viscosity of more than 2.5 and not more than 3.3, and such a relatively high degree of polymerization polymer has an X-ray crystallographic orientation in the fiber axis direction. The basic characteristic is that it is highly oriented with a high value of 93% or more and 97% or less when expressed in degrees, and its mechanical strength, such as tensile strength, is
10 g / d, preferably 12 g / d or more, tensile elastic modulus of 200 g
/ d or more, and the knot strength is 2.2 g / d or more, showing excellent physical properties.

また、本発明により得られる繊維は、その表面が光沢度
で表示して15〜30%の範囲の高い対比光沢度を有してい
るから、表面の欠陥が少なく、加えて繊維の緻密性に優
れているので、高強度高弾性率でしかも曲げや摩擦に対
しても強い繊維が得られる。上記のような優れた物性、
性能を有する本発明の繊維の製造方法としては、前述し
たように、繊維を構成するポリマの重合度が著しく高
く、しかも該ポリマを繊維軸方向に高度に配向させる必
要があるために、AN系繊維の製造方法として最も広く工
業的に採用されている湿式あるいは乾式紡糸方法によっ
ては製造が困難であり、以下に詳述する乾湿式紡糸法、
すなわちAN系ポリマをその溶剤に溶解して得られた紡糸
溶液を紡糸口金孔を通して一旦空気もしくは不活性気
体、好ましくは空気中に吐出し、この吐出糸条を気体の
微小空間を経由して凝固液浴中に導き、凝固せしめる方
法を採用し、さらに特定の製造プロセスおよびその条件
を採用することによってはじめて、かかる高強度AN系繊
維を得ることが可能になるのである。
In addition, the fiber obtained by the present invention has a high contrast glossiness in the range of 15 to 30% in terms of glossiness, so that there are few surface defects and in addition to the denseness of the fiber. Because it is excellent, a fiber having high strength and high elastic modulus and also strong against bending and friction can be obtained. Excellent physical properties as described above,
As a method for producing the fiber of the present invention having performance, as described above, the degree of polymerization of the polymer constituting the fiber is extremely high, and since the polymer needs to be highly oriented in the axial direction of the fiber, the AN system is used. It is difficult to manufacture by the wet or dry spinning method which is most widely adopted industrially as a method for producing fibers, and the dry-wet spinning method described in detail below,
That is, a spinning solution obtained by dissolving an AN polymer in the solvent is once discharged through a spinneret hole into air or an inert gas, preferably air, and the discharged yarn is coagulated through a minute space of gas. It is possible to obtain such high-strength AN fiber only by adopting a method of introducing it into a liquid bath and solidifying it, and further adopting a specific manufacturing process and its conditions.

以下、本発明の高強度AN系繊維の製造方法について詳細
に説明する。
Hereinafter, the method for producing the high-strength AN fiber of the present invention will be described in detail.

まず、本発明に用いられるAN系ポリマは、好ましくはAN
が90モル%以上、より好ましくは95〜100モル%、該AN
に対して共重合性を有するビニル化合物が好ましくは0
〜5モル%とからなるANホモポリマもしくはAN系共重合
体(以下、ANコポリマという)である。このとき、ビニ
ル化合物の共重合割合が5モル%を越えると、得られる
繊維の耐熱性および緻密性が低下する場合があり好まし
くない。
First, the AN polymer used in the present invention is preferably AN
Is 90 mol% or more, more preferably 95 to 100 mol%,
A vinyl compound having copolymerizability with respect to is preferably 0
It is an AN homopolymer or AN-based copolymer (hereinafter referred to as AN copolymer) composed of about 5 mol%. At this time, if the copolymerization ratio of the vinyl compound exceeds 5 mol%, the heat resistance and the denseness of the obtained fiber may deteriorate, which is not preferable.

上記ビニル化合物としては、公知の各種ANに対して共重
合性を有する化合物であればよく、特に限定されない
が、好ましい共重合成分としては、アクリル酸、イタコ
ン酸、アクリル酸メチル、メタクリル酸メチル、酢酸ビ
ニル、アリルスルホン酸ソーダ、メタリルスルホン酸ソ
ーダ、p−スチレンスルホン酸ソーダ等を例示すること
ができる。
The vinyl compound may be any known compound having copolymerizability with various ANs, and is not particularly limited, but preferable copolymerization components include acrylic acid, itaconic acid, methyl acrylate, methyl methacrylate, Examples thereof include vinyl acetate, sodium allyl sulfonate, sodium methallyl sulfonate, sodium p-styrene sulfonate, and the like.

このようなAN系ポリマは、その溶媒、たとえばジメチル
スルホキシド(DMSO)、ジメチルホルムアミド(DM
A)、ジメチルアセトアミド(DMAc)、エチレンカーボ
ネート、ブチルラクトンなどの有機溶剤、塩化亜鉛、塩
化カルシウム、リチウムブロマイド、チオシアン酸ナト
リウムなどの水溶性無機塩の濃厚水溶液に溶解し、得ら
れたポリマ溶液が紡糸原液、すなわち紡糸ドープとして
使用される。
Such AN-based polymers are used in the solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DM
A), dimethylacetamide (DMAc), ethylene carbonate, butyl lactone, etc., organic solvent, zinc chloride, calcium chloride, lithium bromide, sodium thiocyanate, etc. It is used as a spinning dope, that is, as a spinning dope.

この紡糸原液のポリマ濃度は、10〜20重量%、好ましく
は12〜18重量%の範囲内とするものであり、ポリマ濃度
が10重量%よりも低くなると、繊維の緻密性が悪くなる
ため強伸度的性質が低下するし、製造コスト面でも不利
になるために好ましくないし、ポリマ濃度が20重量%を
越えると、原液粘度が高くなりすぎ原液の安定性および
曵糸性が悪くなるために好ましくない。
The polymer concentration of this spinning dope is in the range of 10 to 20% by weight, preferably 12 to 18% by weight, and if the polymer concentration is lower than 10% by weight, the denseness of the fiber will deteriorate and It is not preferable because the elongation property is deteriorated and the manufacturing cost is also disadvantageous. When the polymer concentration exceeds 20% by weight, the viscosity of the stock solution becomes too high and the stability and spinnability of the stock solution deteriorate. Not preferable.

また、45℃の溶液粘度は1500ポイズ以上10000ポイズ以
下、好ましくは2000ポイズ以上9000ポイズ以下、さらに
好ましくは3000〜8,000ポイズとするものである。45℃
における溶液粘度が1500ポイズ未満では凝固構造が悪化
したり、口金面でドリップが発生しやすくなるため、十
分な物性を得るための凝固糸が得られにくくなる。一
方、45℃における溶液粘度が10000ポイズを越えると、
吐出糸条にメルトフラクチャーが発生したり、延伸性が
低下したりして、やはり低強度の繊維しか得られない。
The solution viscosity at 45 ° C. is 1500 poises or more and 10,000 poises or less, preferably 2000 poises or more and 9000 poises or less, and more preferably 3000 to 8,000 poises. 45 ° C
If the solution viscosity is less than 1500 poise, the coagulated structure is deteriorated and drip is likely to occur on the spinneret surface, making it difficult to obtain a coagulated yarn for obtaining sufficient physical properties. On the other hand, if the solution viscosity at 45 ° C exceeds 10,000 poise,
Melt fracture occurs in the discharged yarn and the drawability decreases, so that only fibers having low strength can be obtained.

そしてこの紡糸原液のポリマ濃度および溶液粘度は、本
発明に採用する乾湿式紡糸法においては、極めて重要で
あり、上記紡糸原液のポリマ濃度および溶液粘度が上記
範囲内にあるときにはじめて、乾湿式紡糸によってドリ
ップ、糸切れなどのトラブルを生ずることなく、安定に
紡糸でき、かつ高強度高弾性率の繊維を得ることが可能
になるのである。
And the polymer concentration and solution viscosity of this spinning dope are extremely important in the dry-wet spinning method adopted in the present invention, and only when the polymer concentration and solution viscosity of the spinning dope are within the above range, the dry-wet process is performed. It is possible to obtain a fiber having high strength and high elastic modulus, which can be stably spun without causing problems such as drip and yarn breakage due to spinning.

紡糸原液の温度は、0℃よりも低温になると原液濃度が
高くなり、ゲル化しやすく紡糸が困難になるという欠点
があり、130℃よりも高温になると溶媒や原液の安定性
が不良になる等の欠点があるので、通常30〜100℃の範
囲内に保持するのがよい。
When the temperature of the spinning dope is lower than 0 ° C, the concentration of the dosing solution becomes high, and there is a drawback that it tends to gel and spinning becomes difficult. When the temperature is higher than 130 ° C, the stability of the solvent and the undiluted solution becomes poor. However, it is generally preferable to keep the temperature within the range of 30 to 100 ° C.

かくして調整された紡糸原液は、乾湿式紡糸されるが、
この場合の紡糸口金面と凝固浴液面との間の距離は1〜
20mm、好ましくは2〜10mmの範囲内に設定するものであ
り、1mmよりも小さくなると口金面が液面と接触する等
の問題を生じやすくなるため好ましくないし、20mmを越
えると、吐出糸条の糸切れおよび単糸間接着が発生し易
くなるため好ましくない。
The spinning dope thus prepared is dry-wet spun,
In this case, the distance between the spinneret surface and the coagulating bath liquid surface is 1 to
It is set to 20 mm, preferably in the range of 2 to 10 mm. When it is smaller than 1 mm, problems such as contact of the die surface with the liquid surface are likely to occur. It is not preferable because yarn breakage and adhesion between single yarns easily occur.

このような乾湿式紡糸において、紡糸原液の吐出量と吐
出糸条の引取り速度で定まる紡糸ドラフトは0.1〜1.5、
好ましくは0.2〜0.8の範囲内とするものである。紡糸ド
ラフトが0.1未満であると、単繊維間の融着、糸むらの
原因になり、一方、紡糸ドラフトが1.5を越えると糸切
れなどを生じ易くなる。
In such dry-wet spinning, the spinning draft determined by the discharge amount of the spinning dope and the take-up speed of the discharged yarn is 0.1 to 1.5,
It is preferably within the range of 0.2 to 0.8. If the spinning draft is less than 0.1, fusion between single fibers and unevenness of yarn will be caused, while if the spinning draft exceeds 1.5, yarn breakage will easily occur.

また、凝固浴としては、公知のAN系繊維の湿式または乾
湿式紡糸に使用される水もしくは前述したAN系ポリマの
溶剤の水溶液、たとえば濃度が10〜80重量%および温度
が0〜35℃の溶剤水溶液が用いられる。
Further, as the coagulation bath, water used for the known wet or dry-wet spinning of AN-based fibers or an aqueous solution of a solvent of the AN-based polymer described above, for example, a concentration of 10 to 80 wt% and a temperature of 0 to 35 ° C A solvent aqueous solution is used.

かくして得られた凝固糸条には、従来公知の後処理、す
なわち水洗、延伸、乾燥などの処理が施される。本発明
の製造法においては、凝固の後、延伸による繊維の緻密
化を十分に進める一方、乾燥時の接着を防ぎ、また、延
伸時の糸切れを防ぐ観点から、好ましくは約2〜10倍、
さらに好ましくは4〜8倍に一次延伸される。
The coagulated yarn thus obtained is subjected to conventionally known post-treatments, such as washing with water, drawing and drying. In the production method of the present invention, after coagulation, while sufficiently advancing the densification of fibers by stretching, from the viewpoint of preventing adhesion during drying and preventing yarn breakage during stretching, it is preferably about 2 to 10 times. ,
More preferably, primary stretching is performed 4 to 8 times.

本発明においては、乾燥、緻密化した後の繊維に次に詳
述する乾熱延伸を施すことが必要であり、乾湿式紡糸し
たAN系繊維をこの乾熱延伸を施すことによってはじめ
て、極限粘度が2.5を越え3.3以下の比較的高重合度ポリ
マからなり、X線結晶配向度が93%以上97%以下という
高配向度の繊維表面が平滑なAN系繊維、すなわち高強度
繊維に転換することが可能になるのである。
In the present invention, it is necessary to subject the fibers after being dried and densified to the dry heat drawing which will be described in detail below. Is composed of a polymer having a relatively high degree of polymerization of 2.5 to 3.3 and having a high degree of X-ray crystal orientation of 93% or more and 97% or less. Is possible.

すなわち、本発明における乾熱延伸は、160〜250℃の加
熱空気下で凝固繊維糸条の原長を基準とした全延伸倍率
が10〜20となるように乾熱二次延伸することが必要であ
る。全延伸倍率が10に満たないと繊維の配向・結晶化が
不十分となり目標とする繊維物性を得ることが困難とな
る。一方、全延伸倍率が20を越えると二次延伸時に糸切
れが多発する。
That is, in the dry heat drawing in the present invention, it is necessary to carry out dry heat secondary drawing so that the total draw ratio based on the original length of the coagulated fiber yarn becomes 10 to 20 under heated air of 160 to 250 ° C. Is. If the total draw ratio is less than 10, the fiber orientation and crystallization will be insufficient, and it will be difficult to obtain the target fiber physical properties. On the other hand, if the total draw ratio exceeds 20, yarn breakage frequently occurs during secondary drawing.

また、この乾熱二次延伸は、1g/d以上、さらには1.5〜
2.0g/dの延伸張力発現下に施すのが好ましい。
In addition, this dry heat secondary stretching is 1 g / d or more, further 1.5 to
It is preferable that the stretching tension is 2.0 g / d.

ここで、上記乾熱延伸は、本発明において上述した高重
合度ポリマからなる高分子鎖を繊維軸方向に高度に配向
させる重要な手段であり、他の延伸手段の場合には延伸
倍率を大きくすると破壊を伴った延伸になるため好まし
くない。
Here, the dry heat drawing is an important means for highly orienting the polymer chains made of the above-mentioned high degree of polymerization polymer in the fiber axis direction in the present invention, and in the case of other drawing means, the draw ratio is increased. Then, stretching is accompanied by breakage, which is not preferable.

また、該乾熱延伸の温度範囲が160℃よりも低くなる
と、十分な延伸倍率が得られず、他方、250℃を越える
と繊維の耐熱性の不足に基づく延伸性の低下を伴なう。
Further, if the temperature range of the dry heat drawing is lower than 160 ° C, a sufficient draw ratio cannot be obtained, while if it exceeds 250 ° C, the drawability is deteriorated due to insufficient heat resistance of the fiber.

具体的な乾熱延伸手段としては、熱板、熱ドラム、熱チ
ューブなどの各種の延伸手段を採用することができ、特
に限定されるものではないが、好ましくは熱ドラムまた
は加熱空気を供給、排出することができるチューブ状の
加熱筒を使用し、所定の温度に保たれた該加熱筒中に糸
条を通過させながら延伸する手段またはこれらの組み合
わせを使用するのがよい。
As a specific dry heat stretching means, various stretching means such as a hot plate, a heat drum, and a heat tube can be adopted, and although not particularly limited, preferably a heat drum or heated air is supplied, It is preferable to use a tube-shaped heating cylinder that can be discharged, and use a means or a combination thereof that stretches while allowing the yarn to pass through the heating cylinder kept at a predetermined temperature.

この乾熱延伸における延伸倍率は、乾熱延伸に供される
糸条の延伸の履歴によって異なり、最終的に得られる延
伸糸条の全延伸倍率が10〜20倍になる範囲内で設定され
る。たとえば、乾湿式紡糸し、水洗後、湿熱下4〜8倍
に一次延伸を施されている糸条の場合には、1.5〜4倍
の乾熱延伸が施されるし、このような延伸が施されてい
ない糸条の場合には、乾熱延伸を一段または多段に行う
ことによって、上記全延伸倍率が10〜20倍好ましくは13
〜20倍になるように延伸される。
The draw ratio in this dry heat drawing depends on the history of the drawing of the yarn to be subjected to the dry heat drawing, and is set within a range in which the total draw ratio of the finally obtained drawn yarn is 10 to 20 times. . For example, in the case of a yarn that has been dry-wet spun, washed with water, and then subjected to primary stretching 4 to 8 times under moist heat, dry stretching of 1.5 to 4 times is performed. In the case of a yarn which has not been applied, the total draw ratio is preferably 10 to 20 times, preferably 13 by performing dry heat drawing in one step or in multiple steps.
Stretched to ~ 20 times.

(実施例) 以下、実施例により本発明の効果をさらに具体的に説明
する。なお、以下の実施例、比較例においてポリマの極
限粘度は次の測定法によって測定した値である。
(Examples) Hereinafter, the effects of the present invention will be described more specifically with reference to Examples. In addition, the intrinsic viscosity of polymers in the following Examples and Comparative Examples is a value measured by the following measuring method.

75mgの乾燥したポリマ(サンプル)を25mlのフラスコに
入れ、このフラスコに0.1Nのチオシアン酸ソーダを含有
するジメチルホルムアミドを添加して溶解する。得られ
た溶液をオストワルド粘度計を用いて25℃で比粘度を測
定し、その値から次式により極限粘度を算出した。
75 mg of dried polymer (sample) is placed in a 25 ml flask and dimethylformamide containing 0.1N sodium thiocyanate is added to the flask and dissolved. The specific viscosity of the obtained solution was measured at 25 ° C. using an Ostwald viscometer, and the intrinsic viscosity was calculated from the value by the following formula.

[実施例1〜3、比較例1〜9] 100%のANをDMSO中で溶液重合し、極限粘度がそれぞれ
1.3、1.9、2.6、3.0、3.3および3.8の6種類のAN系ポリ
マを作製した。
[Examples 1 to 3 and Comparative Examples 1 to 9] 100% AN was solution polymerized in DMSO to obtain intrinsic viscosity
Six kinds of AN-based polymers of 1.3, 1.9, 2.6, 3.0, 3.3 and 3.8 were prepared.

これらの6種類のポリマの粘度η(45℃)をそれぞれ約
3,000ポイズになるように調整し、紡糸原液を作製し
た。得られた6種類の紡糸原液を用いて、湿式および乾
湿式紡糸の二つの方法で紡糸した。いずれの紡糸法にお
いても凝固浴には、20℃の55%DMSO水溶液を使用し、紡
糸ドラフトは0.5とした。
The viscosity η (45 ° C) of each of these 6 types of polymers is about
The spinning dope was prepared by adjusting it to 3,000 poise. Spinning was carried out by two methods, wet and dry-wet spinning, using the obtained 6 kinds of spinning dope. In both spinning methods, a 55% DMSO aqueous solution at 20 ° C. was used as the coagulation bath, and the spinning draft was 0.5.

乾湿式紡糸の場合、紡糸口金面と凝固浴液面との距離は
5mmに設定し、凝固浴液面から集束ガイドまでの距離は4
00mmに設定した。
In the case of dry-wet spinning, the distance between the spinneret surface and the coagulation bath liquid surface is
The distance from the coagulation bath surface to the focusing guide is 4 mm.
I set it to 00 mm.

得られた未延伸糸条を水洗後、熱水中で5倍延伸し、油
剤を付与した後、130℃で乾燥・緻密化した。次いで、1
60〜230℃の温度雰囲気の乾熱チューブ中で延伸し、最
大延伸倍率の90%の延伸倍率の延伸糸条をサンプリング
し、その繊維物性を測定した。結果を第1表に示した。
The obtained unstretched yarn was washed with water, stretched 5 times in hot water to give an oily agent, and then dried and densified at 130 ° C. Then 1
The fiber was stretched in a dry heat tube in a temperature atmosphere of 60 to 230 ° C., a stretched yarn having a stretch ratio of 90% of the maximum stretch ratio was sampled, and the physical properties of the fiber were measured. The results are shown in Table 1.

また、実施例1のX線結晶配向度は,94.5%であり、対
比光沢度は、23.1%であり、比較例4のX線結晶配向度
91.7%および対比光沢度5.3%に比較して高い値を示し
た。
The X-ray crystal orientation of Example 1 was 94.5%, and the relative glossiness was 23.1%.
The value was higher than that of 91.7% and relative gloss of 5.3%.

[実施例4,比較例10〜14] AN99.7モル%および2−アクリルアミド−2−メチルプ
ロパンスルホン酸0.3モル%の組成比でDMSO中の溶液重
合を行い、極限粘度が3.3、1.7および1.2の重合体を夫
々得た。
[Example 4, Comparative Examples 10 to 14] Solution polymerization in DMSO was performed at a composition ratio of AN 99.7 mol% and 2-acrylamido-2-methylpropanesulfonic acid 0.3 mol%, and the intrinsic viscosities were 3.3, 1.7 and 1.2. Polymers of

これらの重合体をη(45℃)が約4,000ポイズとなるよ
うに、ポリマ濃度を調整し、紡糸原液を作製した。この
原液を70℃に加熱し、孔径0.12mmφの紡糸口金を用い、
乾式部の長さ3mm、凝固浴液面から集束ガイドまでの距
離を500mmとし、15℃の30%DMSO水溶液に吐出し、引き
取り速度10m/minで凝固糸を得た。なお、このときの紡
糸ドラフトは0.3とした。
The polymer concentration was adjusted so that η (45 ° C.) was about 4,000 poise, and a spinning dope was prepared. This stock solution is heated to 70 ℃, using a spinneret with a hole diameter of 0.12 mmφ,
The length of the dry part was 3 mm, the distance from the surface of the coagulation bath to the focusing guide was 500 mm, and the mixture was discharged into a 30% DMSO aqueous solution at 15 ° C to obtain a coagulated yarn at a take-up speed of 10 m / min. The spinning draft at this time was 0.3.

得られた凝固糸を50℃の水で水洗後、熱水中で5倍に延
伸後、油剤を付与し、120℃で乾燥した。
The obtained coagulated yarn was washed with water at 50 ° C., stretched 5 times in hot water, added with an oil agent, and dried at 120 ° C.

得られた繊維を夫々加圧スチーム中または乾熱空気中で
二次延伸を行ない、最大延伸倍率の95%で延伸し、物性
評価した結果を第2表に示す。
The obtained fibers were subjected to secondary stretching in pressurized steam or dry hot air, respectively, and stretched at 95% of the maximum stretching ratio, and the results of physical property evaluation are shown in Table 2.

実施例4の繊維糸条は、乾熱190℃における二次延伸時
の張力は1.8g/dと高い値を示し、X線結晶配向度は94.8
%、対比光沢度は21.2%であった。これに対して、比較
例10〜14の蒸熱延伸では、延伸張力が0.8g/d以下と低
く、強度、弾性率も低いものであった。
The fiber yarn of Example 4 had a high tension of 1.8 g / d at the time of secondary drawing at 190 ° C. in dry heat, and had an X-ray crystal orientation of 94.8.
%, And the relative glossiness was 21.2%. On the other hand, in the steam drawing of Comparative Examples 10 to 14, the drawing tension was as low as 0.8 g / d or less, and the strength and elastic modulus were also low.

[実施例5〜6,比較例15〜17] AN99.5モル%および2−アクリルアミド−2−メチルプ
ロパンスルホン酸0.5モル%の組成比でDMSO中の溶液重
合を行い、極限粘度が3.2の重合体を得た。
[Examples 5 to 6, Comparative Examples 15 to 17] Solution polymerization in DMSO was carried out at a composition ratio of 99.5 mol% AN and 0.5 mol% 2-acrylamido-2-methylpropanesulfonic acid, and the intrinsic viscosity was 3.2. Got united.

この重合体をDMSOに溶解し、ポリマ濃度が4、8、12、
18、21重量%の紡糸原液を調整した。これらの原液を50
℃に加温し、乾式部の長さ10mmとし、15℃の30%DMSO水
溶液中に乾湿式紡糸し、凝固糸を得た。なお、このとき
の紡糸ドラフトは0.4とした。
This polymer was dissolved in DMSO and the polymer concentration was 4, 8, 12,
A spinning dope of 18 and 21% by weight was prepared. 50 of these stock solutions
The mixture was heated to ℃, the length of the dry part was adjusted to 10 mm, and dry-wet spinning was performed in a 30% DMSO aqueous solution at 15 ℃ to obtain a coagulated yarn. The spinning draft at this time was 0.4.

ポリマ濃度4重量%の原液は糸立て性が悪く、ドリップ
発生による糸切れが多発し、満足な凝固糸が得られなか
った。また、ポリマ濃度21%の原液は粘度が高く、吐出
時メルトフラクチャーが発生した。
The stock solution having a polymer concentration of 4% by weight had a poor threading property, and the thread was frequently broken due to the occurrence of drip, and a satisfactory coagulated thread could not be obtained. In addition, the stock solution with a polymer concentration of 21% had a high viscosity, and melt fracture occurred during ejection.

得られた凝固糸を熱水中で5倍に延伸し、水洗後、110
℃で緊張乾燥した。さらに乾熱チューブを用いて190℃
で最大延伸倍率の90%の延伸倍率の延伸糸条をサンプリ
ングした。得られた繊維の物性評価した結果を第3表に
示す。
The obtained coagulated yarn is stretched 5 times in hot water, washed with water, and then 110
Tension dried at ℃. 190 ° C using a dry heat tube
The drawn yarn having a draw ratio of 90% of the maximum draw ratio was sampled. Table 3 shows the results of evaluation of physical properties of the obtained fibers.

[実施例7〜11、比較例18〜20] 100%のANをDMSOに溶解し、溶液重合を行って極限粘度
が2.8のポリマを作製した。得られたポリマ溶液のポリ
マ濃度を16重量%に調整し、45℃における溶液粘度が31
00ポイズの紡糸原液を作製し、70℃に加温し、乾式部の
長さ5mmとし、15℃,50%DMSO水溶液の凝固浴中に乾湿式
紡糸した。凝固糸を得るにあたり孔径を変更して、紡糸
ドラフトを調節した。
[Examples 7 to 11 and Comparative Examples 18 to 20] 100% AN was dissolved in DMSO and solution polymerization was performed to prepare polymers having an intrinsic viscosity of 2.8. The polymer concentration of the obtained polymer solution was adjusted to 16% by weight, and the solution viscosity at 45 ° C was 31%.
A spinning dope of 00 poise was prepared, heated to 70 ° C., the dry section length was 5 mm, and dry-wet spinning was performed in a coagulation bath of a 50% DMSO aqueous solution at 15 ° C. When obtaining the coagulated yarn, the pore diameter was changed to adjust the spinning draft.

得られた凝固糸は30℃水中で水洗後、沸水中で4倍に延
伸し、130℃で緊張乾燥を行なった。次いで乾熱チュー
ブを用いて二次延伸を行ない、180℃で最大延伸倍率の9
0%の延伸倍率の延伸糸条をサンプリングした。得られ
た繊維の物性評価した結果を第4表に示す。
The obtained coagulated yarn was washed in water at 30 ° C., drawn 4 times in boiling water, and then tension-dried at 130 ° C. Then, using a dry heat tube, carry out secondary stretching, and at 180 ° C the maximum stretch ratio of 9
A drawn yarn having a draw ratio of 0% was sampled. Table 4 shows the results of evaluation of the physical properties of the obtained fiber.

注)比較例18の場合、凝固糸たるみ発生のため凝固糸の
採取不可能。
Note) In the case of Comparative Example 18, coagulated yarn cannot be collected due to slack in the coagulated yarn.

[実施例12〜13、比較例21〜23] 実施例8で得た凝固糸を30℃の水中で水洗しつつ2倍に
延伸後、85℃の熱水中で2倍、沸水中で2.0倍に延伸
し、さらに130℃および160℃のエチレングリコーメ中で
ゆっくりモデル延伸を行ない、全延伸倍率が9倍、14
倍、19倍、24倍、28倍の延伸糸条を得た(最大延伸倍率
は31倍であった)。得られた延伸糸条を60℃の温水で洗
浄し、温度120℃で緊張乾燥を行なった。得られた繊維
の物性を第5表に示す。
[Examples 12 to 13 and Comparative Examples 21 to 23] The coagulated yarn obtained in Example 8 was drawn twice in water at 30 ° C while being washed with water, then doubled in hot water at 85 ° C and 2.0 in boiling water. Stretched twice, and then model stretched slowly in ethylene glycol at 130 ℃ and 160 ℃.
Double, 19 times, 24 times and 28 times drawn yarns were obtained (the maximum draw ratio was 31 times). The drawn yarn thus obtained was washed with warm water of 60 ° C. and tension-dried at a temperature of 120 ° C. Table 5 shows the physical properties of the obtained fibers.

第5表から、全延伸倍率を上げることにより、強度、弾
性率、X線結晶配向度は向上するが、結節強度、対比光
沢度が低下し、産業用繊維としては、性能的にバランス
が悪くなることが理解できる。
From Table 5, by increasing the total draw ratio, the strength, elastic modulus, and X-ray crystal orientation degree are improved, but the knot strength and the relative gloss are decreased, and the performance is unbalanced as an industrial fiber. I can understand.

[実施例14〜17、比較例24〜25] 実施例2で得た凝固糸を水洗後、沸水中で4倍の延伸を
行ない、120℃で緊張乾燥を行なった。得られた乾燥糸
について、温度を140、160、180、200、230、260℃と変
更した乾熱チューブで二次延伸を行ない、最大延伸倍率
の90%の延伸倍率でサンプリングを行なった。結果を第
6表に示す。
[Examples 14 to 17 and Comparative Examples 24 to 25] The coagulated yarn obtained in Example 2 was washed with water, drawn 4 times in boiling water, and tension-dried at 120 ° C. The dry yarn thus obtained was subjected to secondary stretching with a dry heat tube whose temperature was changed to 140, 160, 180, 200, 230 and 260 ° C., and sampling was performed at a stretch ratio of 90% of the maximum stretch ratio. The results are shown in Table 6.

第6表から二次延伸温度が適切でないと十分な繊維性能
が得られないことがわかる。径0.12mmφ、孔数200の紡
糸口金を用い、15℃,50%DMSO水溶液の凝固浴中に乾湿
式紡糸した。このときの紡糸ドラフトは0.5とした。な
お、凝固浴液面から集束ガイドまでの距離を500mmとし
た。乾式部の長さを変更して紡糸状態を観察した結果を
第7表に示す。
It can be seen from Table 6 that sufficient fiber performance cannot be obtained if the secondary drawing temperature is not appropriate. Using a spinneret with a diameter of 0.12 mm and a number of holes of 200, dry and wet spinning was performed in a coagulation bath of a 50% DMSO aqueous solution at 15 ° C. The spinning draft at this time was 0.5. The distance from the liquid surface of the coagulation bath to the focusing guide was 500 mm. Table 7 shows the results of observing the spinning state by changing the length of the dry section.

第7表に示すように、紡糸口金と凝固浴液面間の距離が
0.5mmの場合には、凝固浴の浴液が口金面を濡らし、乾
湿式紡糸が困難になるし、他方、25mmを越えると、吐出
糸条が凝固浴に入る前に単繊維相互間で接着が生じ易く
なり、正常な繊維糸条を得ることができなかった。すな
わち、上記紡糸口金面−凝固浴液面間の距離は1〜20mm
の範囲内にすることによって安定した乾湿式紡糸が可能
になることがわかる。
As shown in Table 7, the distance between the spinneret and the surface of the coagulation bath is
If it is 0.5 mm, the spinneret of the coagulation bath will wet the spinneret surface, making dry-wet spinning difficult.On the other hand, if it exceeds 25 mm, the filaments will adhere to each other before entering the coagulation bath. Was likely to occur, and a normal fiber yarn could not be obtained. That is, the distance between the spinneret surface and the liquid surface of the coagulation bath is 1 to 20 mm.
It can be seen that stable dry-wet spinning is possible by setting the ratio within the range.

(発明の効果) 本発明により得られるAN系繊維は、単繊維繊度が3デニ
ール(d)以下、好ましくは2d以下のマルチフィラメン
トであり、前述したように、X線結晶配向度が93%以上
97%以下という高配向性を示し、引張強度をはじめとす
る機械的性質において卓越した高強度を有する。しかも
繊維構造は極めて緻密で、繊維の表面も平滑性に富み、
表面欠陥が少いというメリットを有するから、工業用ま
たは産業用、繊維強化用として多くの分野、具体的には
キャンバス、アスベスト代替、縫糸、ホース、重布等に
使用することが可能であるが、特にアスベスト代替繊維
として有用である。
(Effects of the Invention) The AN-based fiber obtained by the present invention is a multifilament having a single fiber fineness of 3 denier (d) or less, preferably 2d or less, and as described above, the X-ray crystal orientation degree is 93% or more.
It has a high orientation of 97% or less, and has outstanding strength in mechanical properties such as tensile strength. Moreover, the fiber structure is extremely dense, the surface of the fiber is also smooth,
Since it has the advantage of having few surface defects, it can be used in many fields for industrial or industrial use, fiber reinforcement, specifically canvas, asbestos substitute, sewing thread, hose, heavy cloth, etc. , Especially useful as a substitute fiber for asbestos.

フロントページの続き (56)参考文献 特開 昭55−112310(JP,A) 特開 昭59−199809(JP,A) 特開 昭55−90616(JP,A) 特公 昭45−39494(JP,B1) 特公 昭49−14852(JP,B1) 特公 昭51−46856(JP,B2) 特公 昭52−48204(JP,B2)Front Page Continuation (56) References JP-A-55-112310 (JP, A) JP-A-59-199809 (JP, A) JP-A-55-90616 (JP, A) JP-B-45-39494 (JP , B1) JP-B-49-14852 (JP, B1) JP-B-51-46856 (JP, B2) JP-B-52-48204 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】極限粘度が2.5を越え3.3以下のアクリロニ
トリル系重合体からなり、重合体濃度が10〜20重量%、
45℃の溶液粘度が1500ポイズ以上10000ポイズ以下であ
るアクリロニトリル系重合体溶液を紡糸口金孔を通して
一旦空気あるいは不活性気体中に吐出させた後、紡糸口
金面と凝固浴液面との距離を1〜20mmとして、紡糸ドラ
フトが0.1〜1.5となるように凝固浴中に導いて凝固さ
せ、得られた凝固繊維糸条に水洗、延伸、乾燥の処理を
施し、次いで、160〜250℃の加熱空気下で全延伸倍率が
10〜20となるように二次延伸を施すことを特徴とするX
線結晶配向度が94.0%以上96.4%以下、引張強度が10g/
d以上、引張弾性率が200g/d以上、結節強度が2.2g/d以
上および表面平滑性が対比光沢度で表示して18.2%以上
23.1%以下である表面が平滑な高強度アクリル系繊維の
製造法。
1. An acrylonitrile polymer having an intrinsic viscosity of more than 2.5 and not more than 3.3 and a polymer concentration of 10 to 20% by weight,
A solution of acrylonitrile-based polymer having a solution viscosity at 45 ° C of not less than 1500 poise and not more than 10,000 poise is once discharged into air or an inert gas through the spinneret hole, and then the distance between the spinneret surface and the coagulating bath liquid surface is 1 It is introduced into a coagulation bath so that the spinning draft is 0.1 to 1.5 and coagulated, and the obtained coagulated fiber yarn is washed with water, stretched and dried, and then heated with air of 160 to 250 ° C. Below the total draw ratio
X, which is subjected to secondary stretching so as to be 10 to 20
Wire crystal orientation is 94.0% to 96.4%, tensile strength is 10g /
d or more, tensile elastic modulus of 200 g / d or more, knot strength of 2.2 g / d or more, and surface smoothness of 18.2% or more in terms of contrast gloss.
A method for producing high-strength acrylic fibers with a smooth surface of 23.1% or less.
【請求項2】特許請求の範囲第1項において、凝固糸条
を2〜10倍に一次延伸し、乾燥後1.5〜10倍の乾熱延伸
を施し、全延伸倍率を13〜20倍とする高強度アクリル系
繊維の製造法。
2. The coagulated yarn according to claim 1, wherein the coagulated yarn is primarily stretched to 2 to 10 times, dried and then subjected to dry heat stretching of 1.5 to 10 times, and the total draw ratio is 13 to 20 times. High strength acrylic fiber manufacturing method.
【請求項3】特許請求の範囲第1項または第2項におい
て、乾燥後の糸条を加熱空気を含むチューブ中に通過さ
せながら乾熱延伸する高強度アクリル系繊維の製造法。
3. The method for producing a high-strength acrylic fiber according to claim 1 or 2, wherein the dried yarn is stretched by dry heat while passing the dried yarn through a tube containing heated air.
JP59240438A 1984-11-16 1984-11-16 Manufacturing method of high strength acrylic fiber Expired - Lifetime JPH0718052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59240438A JPH0718052B2 (en) 1984-11-16 1984-11-16 Manufacturing method of high strength acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59240438A JPH0718052B2 (en) 1984-11-16 1984-11-16 Manufacturing method of high strength acrylic fiber

Publications (2)

Publication Number Publication Date
JPS61119708A JPS61119708A (en) 1986-06-06
JPH0718052B2 true JPH0718052B2 (en) 1995-03-01

Family

ID=17059490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240438A Expired - Lifetime JPH0718052B2 (en) 1984-11-16 1984-11-16 Manufacturing method of high strength acrylic fiber

Country Status (1)

Country Link
JP (1) JPH0718052B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167013A (en) * 1985-01-10 1986-07-28 Mitsubishi Rayon Co Ltd Acrylonitrile fiber
JPS61120799U (en) * 1985-01-14 1986-07-30
JPS61120793U (en) * 1985-01-14 1986-07-30
JPH0653976B2 (en) * 1987-01-28 1994-07-20 東レ株式会社 Manufacturing method of polyacrylonitrile-based hollow fiber membrane
JP6909453B2 (en) * 2015-02-04 2021-07-28 三菱ケミカル株式会社 High-performance fiber manufacturing method
US11932971B2 (en) 2018-10-29 2024-03-19 Toray Industries, Inc. Method of producing precursor fiber for carbon fiber and carbon fiber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914852A (en) * 1972-06-06 1974-02-08
JPS5519466B2 (en) * 1974-10-18 1980-05-26
JPS5248204A (en) * 1975-10-14 1977-04-16 Yoshirou Shigemori Method of constructing wall body
JPS5590616A (en) * 1978-12-23 1980-07-09 Nippon Zeon Co Ltd Production of hollow acrylonitrile fiber
JPS55112310A (en) * 1979-02-22 1980-08-29 Nippon Zeon Co Ltd Production of acrylonitrile hollow fiber
JPS59199809A (en) * 1983-04-20 1984-11-13 Japan Exlan Co Ltd Polyacrylonitrile yarn having high strength and its preparation

Also Published As

Publication number Publication date
JPS61119708A (en) 1986-06-06

Similar Documents

Publication Publication Date Title
EP0146084A2 (en) Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JP4172888B2 (en) Monofilament and method for producing the same
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JPH0711086B2 (en) High-strength, high-modulus acrylic fiber manufacturing method
JP4570273B2 (en) Polyketone fiber, cord and method for producing the same
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JP2010242264A (en) Spun yarn containing acrylic fiber and knitted fabric using the same
JPH09250024A (en) Pill-resistant ultrafine acrylic fiber and its production
JP3969799B2 (en) High-strength acrylic fiber and method for producing carbon fiber using the same
JP2013174033A (en) Anti-pill acrylic fiber having v-shaped cross section and method for producing the same
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JPS6385105A (en) Organic high-strength yarn with excellent abrasion resistance
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JPS61152811A (en) High tenacity acrylic fiber yarn and production thereof
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JP2007182645A (en) Method for producing acrylic fiber
JPH0657524A (en) Production of acrylic fiber
JP2001055620A (en) Acrylic fiber suitable for production of nonwoven fabric
JP2002266159A (en) Precursor fiber bundle for carbon fiber and method for producing the same
JPH04240220A (en) Precursor for carbon fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term