JP2001055620A - Acrylic fiber suitable for production of nonwoven fabric - Google Patents

Acrylic fiber suitable for production of nonwoven fabric

Info

Publication number
JP2001055620A
JP2001055620A JP22764499A JP22764499A JP2001055620A JP 2001055620 A JP2001055620 A JP 2001055620A JP 22764499 A JP22764499 A JP 22764499A JP 22764499 A JP22764499 A JP 22764499A JP 2001055620 A JP2001055620 A JP 2001055620A
Authority
JP
Japan
Prior art keywords
acrylonitrile
acrylic fiber
fiber
nonwoven fabric
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22764499A
Other languages
Japanese (ja)
Other versions
JP4168542B2 (en
Inventor
Yoshihiro Watanabe
義弘 渡辺
Koichi Tanaka
孝一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP22764499A priority Critical patent/JP4168542B2/en
Publication of JP2001055620A publication Critical patent/JP2001055620A/en
Application granted granted Critical
Publication of JP4168542B2 publication Critical patent/JP4168542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a acrylic fiber suitable for production of nonwoven fabrics, and also provide a method for producing the same. SOLUTION: This fiber is composed of an acrylonitrile-based copolymer containing acrylonitrile in 98 wt.% or more, having a tensile strength of 3 g/d or more, tensile elongation of 50% or more, and knot strength/tensile strength ratio of 0.9 or more. This acrylic fiber can be made into nonwoven fabrics which can go into various areas, e.g. wipers, filters, and construction and civil engineering materials for its excellent mechanical properties, in particular knot strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不織布加工に適し
たアクリル繊維及びその製造方法に関し、更に詳しくは
不織布加工に適した物性を有する高アクリロニトリル含
有率で耐熱性のアクリル繊維及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acrylic fiber suitable for nonwoven fabric processing and a method for producing the same, and more particularly, to a high acrylonitrile content and heat resistant acrylic fiber having physical properties suitable for nonwoven fabric processing and a method for producing the same. .

【0002】[0002]

【従来の技術】従来、天然、合成を問わず繊維は紡績工
程を経て紡績糸として用いられることが一般的であっ
た。しかしながら、不織布化技術が発達するにつれ、ま
た、国内外の紡績賃金格差が大きくなるにつれ、繊維の
加工形態として紡績糸から不織布への移行が年々強まり
つつある。殊に要求性能さえ満足すれば比較的形態を問
わない産業資材用途では、コストの点から今後飛躍的に
紡績糸から不織布への移行が進むものと予想されてい
る。
2. Description of the Related Art Conventionally, fibers, whether natural or synthetic, have been generally used as spun yarns through a spinning process. However, with the development of nonwoven fabric technology and the widening gap between domestic and overseas spinning wages, the transition from spun yarn to nonwoven fabric as a fiber processing mode is increasing year by year. In particular, it is expected that the use of spun yarns will change dramatically from non-woven fabrics in the future in terms of cost, particularly for industrial material applications of any form as long as the required performance is satisfied.

【0003】一方、アクリル繊維はその優れた風合い及
び染色性を活かして衣料用に大量に使用されているもの
の、産業資材用としては機械的特性が不充分であるため
ほとんど使用されていないのが現状であり、産業資材用
繊維として使用可能な機械的特性を有するアクリル繊維
を製造する試みが数多く提案されてきた。
[0003] On the other hand, acrylic fibers are used in large quantities for clothing, taking advantage of their excellent texture and dyeing properties, but are rarely used for industrial materials due to insufficient mechanical properties. At present, many attempts have been made to produce acrylic fibers having mechanical properties that can be used as fibers for industrial materials.

【0004】例えば特開昭57−51819号公報に
は、湿式または乾湿式紡糸法により得られた繊維を湿式
延伸し、無緊張下で乾燥し引続いて加熱板上にて接触延
伸して有効延伸倍率を9倍以上25倍以下にして高弾性
率のアクリル繊維とすることが提案されている。また特
開昭57−161117号公報には相対粘度が2.5〜
6.0のアクリロニトリル系重合体を乾式または湿式紡
糸し洗浄中もしくは洗浄後に湿式延伸し、緊張下に加熱
ロール上で乾燥し、乾熱下に熱処理する方法が提案され
ている。しかしながら、これらの公知技術では引張強度
を向上させることは出来ても、不織布を製造する際に必
要な適性を付与することは困難である。
For example, Japanese Patent Application Laid-Open No. 57-51819 discloses that a fiber obtained by a wet or dry-wet spinning method is wet-drawn, dried under no tension, and subsequently contact-drawn on a heating plate to be effective. It has been proposed that the draw ratio be 9 to 25 times to obtain an acrylic fiber having a high elastic modulus. Japanese Patent Application Laid-Open No. 57-161117 discloses that the relative viscosity is 2.5 to
A method has been proposed in which an acrylonitrile-based polymer of 6.0 is dry- or wet-spun, wet-drawn during or after washing, dried on a heating roll under tension, and heat-treated under dry heat. However, although these known techniques can improve the tensile strength, it is difficult to provide the necessary properties when producing a nonwoven fabric.

【0005】ところで、産業資材用途には上述してきた
高弾性率、高引張強度の他に、耐熱性を有する繊維であ
ることを要求されるケースが多く、さらに加えて最近で
は不織布加工への適性を備えることも必要となって来た
のは既述の通りである。かかる特に耐熱性への要求に応
えるものとして、例えば特開平1−104818号公報
には95重量%以上のアクリロニトリルを含有する重量
平均分子量50万以上のアクリロニトリル系重合体を有
機溶媒に溶解して得られる紡糸原液を、凝固浴中に乾湿
式紡糸し、得られた凝固糸を温水中で延伸した後、15
0℃以上に保たれた加熱ローラーを用いて乾熱延伸する
ことにより、引張強度15g/d以上、結節強度4g/
d以上のアクリル繊維が得られることが記載されてい
る。
In many cases, industrial materials are required to be a fiber having heat resistance in addition to the above-described high elastic modulus and high tensile strength. As described above, it is also necessary to provide the information. In order to meet such a demand for heat resistance in particular, for example, JP-A-1-104818 discloses a method in which an acrylonitrile-based polymer having a weight average molecular weight of 500,000 or more containing 95% by weight or more of acrylonitrile is dissolved in an organic solvent. The obtained spinning dope is dry-wet spinned in a coagulation bath, and the obtained coagulated yarn is drawn in warm water.
By performing dry heat stretching using a heating roller maintained at 0 ° C. or more, a tensile strength of 15 g / d or more and a knot strength of 4 g / d
It is described that acrylic fibers of d or more can be obtained.

【0006】しかしながら、該アクリル繊維は高引張強
度・高結節強度で耐熱性もそれなりに有するものの、不
織布加工性は単繊維がフィブリル化する等の点で劣って
いる。一方、特開平5−279912号公報には95重
量%以上のアクリロニトリルを含有するアクリロニトリ
ル系重合体の紡糸原液を乾式紡糸し、得られた繊維を
1.5〜4倍の範囲で一次延伸し、次いで乾燥及び緩和
熱処理を施して10〜50%の収縮を与え、更に湿熱下
で1.1〜1.8倍二次延伸した直後、160〜200
℃にて定長熱処理することにより、引張強度1〜3g/
d、結節強度(g/d)と結節伸度(%)の積が50以
下の抗ピリング性アクリル繊維が得られることが記載さ
れている。
[0006] However, the acrylic fiber has high tensile strength and high knot strength, and has a certain level of heat resistance, but is inferior in workability of a nonwoven fabric in that a single fiber is fibrillated. On the other hand, Japanese Unexamined Patent Publication No. Hei 5-279912 discloses that a spinning stock solution of an acrylonitrile polymer containing 95% by weight or more of acrylonitrile is dry-spun, and the obtained fiber is primarily drawn in a range of 1.5 to 4 times. Next, a drying and relaxation heat treatment is performed to give a shrinkage of 10 to 50%, and further, after a second stretching of 1.1 to 1.8 times under moist heat, 160 to 200 times.
Constant-length heat treatment at ℃, tensile strength 1-3g /
d, describes that an anti-pilling acrylic fiber having a product of knot strength (g / d) and knot elongation (%) of 50 or less can be obtained.

【0007】該アクリル繊維は、耐熱性はそれなりに有
しているが、低引張強度・低結節強度であり「抗ピリン
グ性」には優れているものの、不織布加工に耐えるもの
ではない。以上2例から理解されるように、アクリル繊
維の耐熱性は重合体のアクリロニトリル含有率を高める
ことで向上するが、耐熱性と不織布加工適性を充すもの
は得られていないのが現状である。不織布加工適性は、
高い機械的特性のもの(前者)も低いもの(後者)もい
ずれも備えておらず、これを解決する為の技術的な障壁
の高いことを示している。
Although the acrylic fiber has a certain level of heat resistance, it has low tensile strength and low knot strength and is excellent in "anti-pilling property", but does not withstand nonwoven fabric processing. As can be understood from the above two examples, the heat resistance of the acrylic fiber is improved by increasing the acrylonitrile content of the polymer, but at present, there is no material that satisfies the heat resistance and the suitability for nonwoven fabric processing. . Nonwoven fabric processing suitability
Neither one with high mechanical properties (the former) nor one with low mechanical properties (the latter) are provided, indicating a high technical barrier to solve this.

【0008】繊維の断面形状を繭状や三角状といった異
形断面とすることにより、繊維の結節強度が向上するこ
とは公知である。しかしながら、このような方法で結節
強度を向上させても、引張伸度は何ら向上しておらず、
かかる繊維は依然として脆弱で不織布化に適した機械的
特性を有しているとは言い難い。即ち、かかる繊維の結
節強度向上自体が、該繊維の断面形状に基づく見掛け上
のものに過ぎないからである。
It is known that the knot strength of a fiber is improved by forming the fiber into a modified cross section such as a cocoon shape or a triangular shape. However, even if the knot strength is improved by such a method, the tensile elongation is not improved at all,
Such fibers are still fragile and cannot be said to have mechanical properties suitable for making into a nonwoven fabric. That is, the improvement in the knot strength of the fiber itself is merely an apparent one based on the cross-sectional shape of the fiber.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、上記
問題点を解消し、不織布化に必要な機械的特性及び耐熱
性に優れたアクリル繊維、及びその製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an acrylic fiber having excellent mechanical properties and heat resistance required for forming a nonwoven fabric, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明者は、アクリル繊
維について耐熱性を維持しつつ不織布加工適性を付与す
べく鋭意検討を続けて来た。その結果、アクリル繊維に
耐熱性を与える為に重合体のアクリロニトリル含有率を
高める程通常の製法であれば該繊維の結晶化が進み剛直
なものとなること、不織布加工を有利に行うのに剛直な
だけの繊維は不向きで一定の強伸度バランスを有するも
のでなければならないこと、高アクリロニトリル含有率
の繊維でも製造条件の選定により左記強伸度バランスが
付与出来ること、を見出し本発明に到達した。
Means for Solving the Problems The present inventor has intensively studied acrylic fibers in order to impart heat resistance to nonwoven fabric while maintaining heat resistance. As a result, if the acrylonitrile content of the polymer is increased in order to impart heat resistance to the acrylic fiber, the crystallization of the fiber proceeds and becomes rigid if the production method is ordinary. The present invention was found out that some fibers must be unsuitable and must have a certain strength-elongation balance, and that even fibers with a high acrylonitrile content can be given the strength-elongation balance by selecting manufacturing conditions as shown on the left. did.

【0011】本発明は、アクリロニトリルを少なくとも
98重量%以上含有するアクリロニトリル系重合体から
なり、3g/dを超える引張強度、50%以上の引張伸
度、0.9以上の結節強度/引張強度比を有するアクリ
ル繊維にあり、かかる繊維は、アクリロニトリルを少な
くとも98重量%以上含有するアクリロニトリル系重合
体を、湿式あるいは乾湿式紡糸法で紡糸し、水洗、延伸
処理を施した後、先ず110〜130℃の湿熱雰囲気中
で弛緩湿熱処理を施し、次いで弛緩乾燥処理を施すこと
によりトータルとして25〜40%の収縮を与えること
を特徴とする製造方法によって製造しうる。
The present invention comprises an acrylonitrile-based polymer containing at least 98% by weight of acrylonitrile, and has a tensile strength of more than 3 g / d, a tensile elongation of 50% or more, and a knot strength / tensile strength ratio of 0.9 or more. This fiber is obtained by spinning an acrylonitrile-based polymer containing at least 98% by weight or more of acrylonitrile by a wet or dry-wet spinning method, washing with water, and stretching, and then, at 110 to 130 ° C. , A relaxation heat treatment in a humid atmosphere, followed by a relaxation drying treatment to give a total shrinkage of 25 to 40%.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で採用するアクリル繊維の原料であるアクリロニ
トリル系重合体とは、アクリロニトリル単独重合体、も
しくはアクリロニトリル98重量%以上とアクリロニト
リルと共重合可能なビニル系モノマー2重量%以下の共
重合体であり、周知の重合開始剤、重合度調整のための
連鎖移動剤を使用した重合により得られた適宜な重合度
のものが用いられる。アクリロニトリルと共重合可能な
ビニル系モノマーとしては、例えばC1〜C4のアルキ
ルアクリレートやアルキルメタクリレート、アクリル
酸、メタクリル酸、メタクリロニトリル、アクリルアミ
ド、臭化ビニル、弗化ビニル、酢酸ビニル、臭化ビニリ
デン、スチレン、エチレン、プロピレン等が挙げられる
が、アクリロニトリルと共重合させうるものであれば特
に限定されるものではなく、2種類以上のビニル系モノ
マーを併用することも出来る。アクリロニトリルが98
重量%未満では、産業資材用途で必要とされる耐熱性を
アクリル繊維に付与することが出来ず発明が達成されな
い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The acrylonitrile-based polymer which is a raw material of the acrylic fiber employed in the present invention is an acrylonitrile homopolymer or a copolymer of 98% by weight or more of acrylonitrile and 2% by weight or less of a vinyl monomer copolymerizable with acrylonitrile, An appropriate polymerization degree obtained by polymerization using a well-known polymerization initiator and a chain transfer agent for adjusting the degree of polymerization is used. Examples of vinyl monomers copolymerizable with acrylonitrile include, for example, C1 to C4 alkyl acrylates and alkyl methacrylates, acrylic acid, methacrylic acid, methacrylonitrile, acrylamide, vinyl bromide, vinyl fluoride, vinyl acetate, vinylidene bromide, Examples thereof include styrene, ethylene, and propylene, but are not particularly limited as long as they can be copolymerized with acrylonitrile, and two or more vinyl monomers can be used in combination. Acrylonitrile is 98
If the amount is less than 10% by weight, the heat resistance required for industrial material use cannot be imparted to the acrylic fiber, and the invention cannot be achieved.

【0013】該アクリロニトリル系重合体をアクリロニ
トリル系重合体の溶剤に溶解し、紡糸原液を作成する。
かかる溶剤としては、特に限定されるものではなく、例
えばジメチルスルホキシド、ジメチルホルムアミド、ジ
メチルアセトアミド等の有機系溶剤、硝酸、ロダン塩、
塩化亜鉛等の無機系溶剤等が使用できる。しかしなが
ら、本発明のアクリル繊維として不織布加工適性をより
高度に達成するには、繊維の断面形状が不織布化に際し
過度なフィブリル化、微粉末化を生じにくい円状である
方が好ましく、従って本発明のアクリル繊維の断面形状
を円状とする点において、かかる溶剤としては無機系溶
剤が優れており、中でもロダン塩が好ましい。
The acrylonitrile-based polymer is dissolved in a solvent for the acrylonitrile-based polymer to prepare a spinning dope.
Such solvents are not particularly limited, for example, dimethyl sulfoxide, dimethylformamide, organic solvents such as dimethylacetamide, nitric acid, rhodan salt,
Inorganic solvents such as zinc chloride can be used. However, in order to achieve a higher degree of suitability for nonwoven fabric processing as the acrylic fiber of the present invention, it is preferable that the cross-sectional shape of the fiber is a circular shape that is less likely to be excessively fibrillated and pulverized when the nonwoven fabric is formed. In terms of making the cross-sectional shape of the acrylic fiber circular, an inorganic solvent is excellent as such a solvent, and among them, a rhodan salt is preferable.

【0014】該紡糸原液を湿式あるいは乾湿式紡糸法で
凝固浴中へ紡糸し、次いで水洗、延伸処理を施すことに
よりゲル糸條を得る。尚、言う迄もないが、湿式紡糸と
は紡糸口金を凝固浴中に浸漬して糸條を吐出する方法、
乾湿式紡糸とは紡糸口金から吐出した糸條を一旦非凝固
性の媒体…一般には不活性気体…中を経由して凝固浴中
に導入する紡糸方法を言う。かくして得られるゲル糸條
は発明の繊維の中間原料と言うべきものであり、重合体
と凝固性非溶剤、場合によっては残留しているわずかの
溶剤でなる湿潤膨潤体である。かかるゲル糸條の製造方
法の詳細は、一般に知られる湿式あるいは乾湿式紡糸方
法によるアクリル繊維の製造方法であって、紡糸、水
洗、延伸処理の工程を経るものであれば特に限定される
ものではないが、例えば特開昭60−139809号、
特開昭60−139810号、特開昭61−16701
3号、特開昭62−57910号等の公報に開示されて
いる方法が挙げられる。
The spinning solution is spun into a coagulation bath by a wet or dry-wet spinning method, and then washed and stretched to obtain a gel yarn. Needless to say, wet spinning is a method in which a spinneret is immersed in a coagulation bath to discharge the yarn.
Dry-wet spinning refers to a spinning method in which a yarn discharged from a spinneret is once introduced into a coagulation bath through a non-coagulating medium, generally an inert gas. The gel yarn thus obtained is an intermediate raw material for the fiber of the present invention, and is a wet swelled body composed of a polymer and a coagulable non-solvent, and possibly a small amount of a residual solvent. The details of the method for producing such a gel yarn are not particularly limited as long as the method is a generally known wet or dry-wet spinning method for producing an acrylic fiber, and the spinning, washing and drawing processes are performed. No, for example, JP-A-60-139809,
JP-A-60-139810, JP-A-61-16701
No. 3, JP-A-62-57910 and the like.

【0015】かくして得られたゲル糸條を先ず110〜
130℃の湿熱雰囲気中で弛緩湿熱処理を施し、次いで
弛緩乾燥処理を施すことによりトータルとして25〜4
0%の収縮を与え、発明のアクリル繊維を得る。ここ
で、トータル25〜40%の収縮とは、弛緩湿熱処理に
よる収縮と弛緩乾燥処理による収縮の合計であり、弛緩
湿熱処理前のゲル糸條の長さをXcm、弛緩乾燥処理後
の繊維の長さをYcmとしたとき、(X−Y)/X×1
00 で与えられる値である。
[0015] First, the gel yarn thus obtained is subjected to 110-110.
A relaxation and moisture heat treatment is performed in a humidity and heat atmosphere of 130 ° C., and then a relaxation and drying treatment is performed, so that a total of 25 to 4 is obtained.
Give 0% shrinkage to obtain the inventive acrylic fiber. Here, the total shrinkage of 25 to 40% is the sum of the shrinkage due to the relaxation wet heat treatment and the shrinkage due to the relaxation drying treatment. The length of the gel thread before the relaxation wet heat treatment is X cm, and the fiber after the relaxation drying treatment is When the length is Ycm, (XY) / X × 1
It is a value given by 00.

【0016】本発明に記載の弛緩湿熱処理方法として
は、例えばキヤーまたはオートクレーブを使用して、本
発明のゲル糸條を湿熱雰囲気中でリラックスさせる方法
が挙げられる。湿熱雰囲気の媒体としては、飽和水蒸
気、過熱水蒸気等が挙げられるが、特に限定されるもの
ではない。湿熱雰囲気温度が110℃未満の場合には、
ゲル糸條に十分な収縮を与えることが出来ない為、本発
明のアクリル繊維が特徴とする結節強度/引張強度比、
及び引張伸度を繊維に付与することが出来ず、逆に13
0℃を超える場合には、繊維が極度に収縮する為、本発
明のアクリル繊維が特徴とする引張強度を繊維に付与す
ることが出来なかったり、ゲル糸條同士の部分的な融着
が発生したりする。また、湿熱雰囲気中のゲル糸條の滞
留時間としては3〜30分が好ましい。滞留時間が3分
未満の場合には、ゲル糸條間で収縮に不均一が生じる
為、得られるアクリル繊維の機械的物性が不均一とな
り、逆に30分を超える場合には、既にゲル糸條の収縮
が完全に終了している為、徒に湿熱雰囲気を浪費しアク
リル繊維の生産性を低めることになる。
The method of relaxing heat treatment according to the present invention includes, for example, a method of relaxing the gel yarn of the present invention in a moist heat atmosphere using a carrier or an autoclave. Examples of the medium in a wet heat atmosphere include saturated steam and superheated steam, but are not particularly limited. If the moist heat atmosphere temperature is less than 110 ° C,
Since the gel yarn cannot be given sufficient shrinkage, the acrylic fiber of the present invention is characterized by a knot strength / tensile strength ratio,
And tensile elongation could not be imparted to the fiber.
If the temperature exceeds 0 ° C., the fibers shrink extremely, so that the tensile strength characteristic of the acrylic fibers of the present invention cannot be imparted to the fibers, or partial fusion between the gel yarns occurs. Or In addition, the residence time of the gel yarn in a moist heat atmosphere is preferably 3 to 30 minutes. When the residence time is less than 3 minutes, the contraction between the gel yarns becomes uneven, so that the mechanical properties of the obtained acrylic fiber become non-uniform. Since the contraction of the strip is completely completed, the wet heat environment is wasted and the productivity of the acrylic fiber is reduced.

【0017】また、本発明に記載の弛緩乾燥処理方法と
しては、例えばトンネル乾燥機あるいはドラム乾燥機を
用い、繊維をリラックスさせた状態で、湿度40%以
下、温度110〜160℃の高温低湿雰囲気中で乾燥処
理する方法が挙げられるが、上述の弛緩湿熱処理におけ
る収縮と、弛緩乾燥処理における収縮のトータルの収縮
が25〜40%となる方法であれば、特に限定されるも
のではない。
The relaxation drying treatment method described in the present invention is, for example, a high-temperature, low-humidity atmosphere having a humidity of 40% or less and a temperature of 110 to 160 ° C. in a state where the fibers are relaxed using a tunnel dryer or a drum dryer. A method of performing a drying treatment in a medium may be used, but the method is not particularly limited as long as the total shrinkage of the above-described relaxation and moisture treatment and the contraction in the relaxation and drying treatment is 25 to 40%.

【0018】上述のごとくして得られたアクリル繊維
は、3g/dを超える引張強度、50%以上の引張伸
度、0.9以上の結節強度/引張強度比、即ち不織布の
製造に十分な機械的特性を有している。尚、本発明のア
クリル繊維は、不織布の製造に好適に用いられるように
する為、必要に応じて機械捲縮を付与し、切断してステ
ープルとすることも可能であることは言うまでもない。
The acrylic fiber obtained as described above has a tensile strength of more than 3 g / d, a tensile elongation of 50% or more, a knot strength / tensile strength ratio of 0.9 or more, that is, sufficient for the production of a nonwoven fabric. Has mechanical properties. Needless to say, the acrylic fiber of the present invention can be mechanically crimped and cut into staples, if necessary, in order to be suitably used for the production of nonwoven fabrics.

【0019】本発明が採用するアクリル繊維は3g/d
を超える引張強度、50%以上の引張伸度、0.9以上
の結節強度/引張強度比を有している。引張強度が3g
/d以下だと結節強度/引張強度比は高くても、繊維は
脆い性状を示す。そのためかかる繊維は不織布を作成す
る際、繊維同士を絡み合わせる為に加えられる強いせん
断力により繊維が微粉末化しやすく、結果として不織布
強度が低くなるため、不織布の製造に十分な機械的特性
を有しているとは言い難い。また、引張伸度が50%未
満、もしくは結節強度/引張強度比が0.9未満の繊維
は繊維軸方向への配向が強くなる為、該繊維は剛直な性
状を示す。この場合も、不織布を作成する際、繊維同士
を絡み合わせる為に加えられる強いせん断力により繊維
が過度にフィブリル化してフェルト状になる等、不織布
の製造には不適である。
The acrylic fiber used in the present invention is 3 g / d
, Tensile elongation of 50% or more, and knot strength / tensile strength ratio of 0.9 or more. 3g tensile strength
If the ratio is not more than / d, the fiber shows brittleness even though the knot strength / tensile strength ratio is high. For this reason, when producing such a nonwoven fabric, the strong shearing force applied to entangle the fibers makes it easy to pulverize the fiber, resulting in a low strength of the nonwoven fabric. It is hard to say that it is. Further, a fiber having a tensile elongation of less than 50% or a knot strength / tensile strength ratio of less than 0.9 has a strong orientation in a fiber axis direction, so that the fiber has a rigid property. Also in this case, when the nonwoven fabric is produced, the fibers are excessively fibrillated by a strong shearing force applied to entangle the fibers to form a felt, which is not suitable for the production of the nonwoven fabric.

【0020】[0020]

【実施例】以下に本発明の理解を容易にするため実施例
を示すが、これらはあくまで例示的なものであり、本発
明の要旨はこれに限定されるものではない。
The following examples are provided to facilitate understanding of the present invention, but are merely illustrative, and the gist of the present invention is not limited thereto.

【0021】実施例1 アクリロニトリルをアンモニウムパーサルファイト/ピ
ロ亜硫酸ソーダからなるレドックス系重合開始剤を使用
し水系連続重合法にて重合し、重量平均分子量15万の
アクリロニトリル単独重合体を得た。該アクリロニトリ
ル単独重合体を53重量%のチオシアン酸ナトリウム水
溶液に溶解、紡糸原液を作成し、孔径が0.125mm
で、孔形状が円状である紡糸口金を介して−5℃に調整
された15重量%のチオシアン酸ナトリウム水溶液から
なる凝固浴中で凝固させ、次いで水洗、12倍の延伸処
理を施すことにより、該アクリロニトリル単独重合体か
らなるゲル糸條を得た。該ゲル糸條をオートクレーブに
入れ、110℃の飽和水蒸気でなる湿熱雰囲気中で15
分間弛緩湿熱処理を施した後、トンネル乾燥機を用い1
25℃、相対湿度40%の加熱雰囲気中で15分間弛緩
乾燥処理を施すことにより、トータルとして27.5%
の収縮を付与したアクリル繊維を得た。採用した条件、
および得られたアクリル繊維の評価結果を表1に示す。
実施例1のアクリル繊維は引張強度が3.88g/d、
引張伸度が51.3%で、且つ結節強度/引張強度比が
0.93と不織布化に好適な機械的特性を示した。
Example 1 Acrylonitrile was polymerized by an aqueous continuous polymerization method using a redox-based polymerization initiator consisting of ammonium persulfite / sodium pyrosulfite to obtain an acrylonitrile homopolymer having a weight average molecular weight of 150,000. The acrylonitrile homopolymer was dissolved in a 53% by weight aqueous sodium thiocyanate solution to prepare a spinning dope having a pore size of 0.125 mm.
Then, the mixture is coagulated in a coagulation bath composed of a 15% by weight aqueous solution of sodium thiocyanate adjusted to -5 ° C. through a spinneret having a circular hole shape, and then subjected to water washing and 12-fold stretching. Thus, a gel thread comprising the acrylonitrile homopolymer was obtained. The gel yarn was placed in an autoclave and placed in a moist heat atmosphere of saturated steam at 110 ° C. for 15 minutes.
After a relaxing heat treatment for 1 minute, use a tunnel drier for 1 minute.
By performing a relaxation drying treatment in a heating atmosphere at 25 ° C. and a relative humidity of 40% for 15 minutes, a total of 27.5%
Acrylic fiber with shrinkage was obtained. Conditions adopted,
Table 1 shows the evaluation results of the obtained acrylic fibers.
The acrylic fiber of Example 1 has a tensile strength of 3.88 g / d,
The tensile elongation was 51.3%, and the knot strength / tensile strength ratio was 0.93, indicating mechanical properties suitable for forming into a nonwoven fabric.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例2 オートクレーブを用い130℃の飽和水蒸気でなる湿熱
雰囲気中で15分間弛緩湿熱処理を施した他は実施例1
と同様に実施しトータルとして39.5%の収縮を付与
したアクリル繊維を得た。採用した条件、および得られ
たアクリル繊維の評価結果を表1に併記する。実施例2
のアクリル繊維は引張強度が3.17g/d、引張伸度
が60.5%で、且つ結節強度/引張強度比が0.99
と不織布化に好適な機械的特性を示した。
Example 2 Example 1 was conducted except that a relaxing wet heat treatment was performed for 15 minutes in a moist heat atmosphere of saturated steam at 130 ° C. using an autoclave.
Was carried out in the same manner as in Example 1 to obtain an acrylic fiber having a total shrinkage of 39.5%. Table 1 also shows the adopted conditions and the evaluation results of the obtained acrylic fibers. Example 2
Acrylic fiber has a tensile strength of 3.17 g / d, a tensile elongation of 60.5%, and a knot strength / tensile strength ratio of 0.99.
It showed mechanical properties suitable for making into a nonwoven fabric.

【0024】実施例3 アクリロニトリル98重量%とメチルアクリレート2重
量%をアンモニウムパーサルファイト/ピロ亜硫酸ソー
ダからなるレドックス系重合開始剤を使用し、水系連続
重合法にて重合して得た重量平均分子量15万のアクリ
ロニトリル系重合体を使用した他は実施例1と同様に実
施しトータルとして28.0%の収縮を付与したアクリ
ル繊維を得た。採用した条件、および得られたアクリル
繊維の評価結果を表1に併記する。実施例3のアクリル
繊維は引張強度が3.72g/d、引張伸度が52.7
%で、且つ結節強度/引張強度比が0.96と不織布化
に好適な機械的特性を示した。
Example 3 A weight-average molecular weight obtained by polymerizing 98% by weight of acrylonitrile and 2% by weight of methyl acrylate by a water-based continuous polymerization method using a redox-based polymerization initiator composed of ammonium persulfite / sodium pyrosulfite. Except that 150,000 acrylonitrile-based polymers were used, the same procedure as in Example 1 was carried out to obtain an acrylic fiber having a total shrinkage of 28.0%. Table 1 also shows the adopted conditions and the evaluation results of the obtained acrylic fibers. The acrylic fiber of Example 3 has a tensile strength of 3.72 g / d and a tensile elongation of 52.7.
%, And a knot strength / tensile strength ratio of 0.96, indicating mechanical properties suitable for forming a nonwoven fabric.

【0025】実施例4 オートクレーブを用い130℃の飽和水蒸気でなる湿熱
雰囲気中で15分間弛緩湿熱処理を施した他は実施例3
と同様に実施しトータルとして40.0%の収縮を付与
したアクリル繊維を得た。採用した条件、および得られ
たアクリル繊維の評価結果を表1に併記する。実施例4
のアクリル繊維は引張強度が3.14g/d、引張伸度
が61.5%で、且つ結節強度/引張強度比が0.99
と不織布化に好適な機械的特性を示した。
Example 4 Example 3 was conducted except that a relaxing wet heat treatment was performed for 15 minutes in a moist heat atmosphere of saturated steam at 130 ° C. using an autoclave.
Was carried out in the same manner as in Example 1 to obtain an acrylic fiber having a total shrinkage of 40.0%. Table 1 also shows the adopted conditions and the evaluation results of the obtained acrylic fibers. Example 4
Acrylic fiber has a tensile strength of 3.14 g / d, a tensile elongation of 61.5%, and a knot strength / tensile strength ratio of 0.99.
It showed mechanical properties suitable for making into a nonwoven fabric.

【0026】実施例5 紡糸口金として孔面積が0.032mm2で、孔形状が
蝶ネクタイ状の紡糸口金を用いた他は実施例2と同様に
実施し、トータルとして39.0%の収縮を付与したア
クリル繊維を得た。採用した条件、および得られたアク
リル繊維の評価結果を表1に併記する。実施例5のアク
リル繊維は、引張強度が3.10g/d、引張伸度が6
0.0%、結節強度/引張強度比が1.00と十分採用
可能なレベルであったものの、断面形状が繭状であるた
め実施例2のアクリル繊維に比して不織布化に際し若干
フィブリル化しやすい傾向が観られた。
Example 5 The same procedure as in Example 2 was carried out except that a spinneret having a hole area of 0.032 mm 2 and a hole shape of a bow tie was used as the spinneret. A total shrinkage of 39.0% was obtained. The applied acrylic fiber was obtained. Table 1 also shows the adopted conditions and the evaluation results of the obtained acrylic fibers. The acrylic fiber of Example 5 has a tensile strength of 3.10 g / d and a tensile elongation of 6
Although the knot strength / tensile strength ratio was 0.0%, which was a sufficiently acceptable level, the cross-sectional shape was cocoon-shaped, and the fibers became slightly fibrillated when converted into a nonwoven fabric as compared with the acrylic fiber of Example 2. The tendency was easy to see.

【0027】比較例1 オートクレーブを用い105℃の飽和水蒸気でなる湿熱
雰囲気中で15分間弛緩湿熱処理を施した他は実施例1
と同様に実施しトータルとして24.5%の収縮を付与
したアクリル繊維を得た。採用した条件、および得られ
たアクリル繊維の評価結果を表2に示す。比較例1のア
クリル繊維は、引張強度は4.03g/dを示したもの
の、引張伸度が34.9%で、且つ結節強度/引張強度
比が0.79であるため不織布化に際し過度にフィブリ
ル化しやすく満足の出来ない結果であった。
COMPARATIVE EXAMPLE 1 Example 1 was conducted except that a relaxing wet heat treatment was performed for 15 minutes in a moist heat atmosphere consisting of saturated steam at 105 ° C. using an autoclave.
Was carried out in the same manner as described above to obtain an acrylic fiber having a total shrinkage of 24.5%. Table 2 shows the adopted conditions and the evaluation results of the obtained acrylic fibers. Although the acrylic fiber of Comparative Example 1 exhibited a tensile strength of 4.03 g / d, the tensile elongation was 34.9% and the knot strength / tensile strength ratio was 0.79, so that the acrylic fiber was excessively excessive when forming into a nonwoven fabric. The result was unsatisfactory because it was easily fibrillated.

【0028】[0028]

【表2】 [Table 2]

【0029】比較例2 オートクレーブを用い135℃の飽和水蒸気でなる湿熱
雰囲気中で15分間弛緩湿熱処理を施した他は実施例1
と同様に実施しトータルとして41.0%の収縮を付与
したアクリル繊維を得た。採用した条件、および得られ
たアクリル繊維の評価結果を表2に併記する。比較例2
のアクリル繊維は、引張伸度は63.0%で、且つ結節
強度/引張強度比は1.00を示したものの、引張強度
が2.92g/dであるため不織布化に際し微粉末化し
やすく満足の出来ない結果であった。
COMPARATIVE EXAMPLE 2 Example 1 was repeated except that a relaxing heat treatment was performed for 15 minutes in a moist heat atmosphere of saturated steam at 135 ° C. using an autoclave.
Acrylic fibers with a total shrinkage of 41.0% were obtained. Table 2 also shows the adopted conditions and the evaluation results of the obtained acrylic fibers. Comparative Example 2
Acrylic fiber has a tensile elongation of 63.0% and a knot strength / tensile strength ratio of 1.00, but has a tensile strength of 2.92 g / d. The result was not possible.

【0030】比較例3 実施例3で得られたアクリロニトリル系重合体からなる
ゲル糸條に対し、先ずトンネル乾燥機を用い125℃、
相対湿度40%の加熱雰囲気中で15分間弛緩乾燥処理
を施した後、オートクレーブを用い130℃の飽和水蒸
気でなる湿熱雰囲気中で15分間弛緩湿熱処理を施すこ
とにより、トータルとして24.0%の収縮を付与した
アクリル繊維を得た。採用した条件、および得られたア
クリル繊維の評価結果を表2に併記する。比較例3のア
クリル繊維は、引張強度は4.77g/dを示したもの
の、引張伸度が31.2%で、且つ結節強度/引張強度
比が0.42であるため不織布化に際し過度にフィブリ
ル化しやすく満足の出来ない結果であった。実施例1〜
4と比較すれば、後述する比較例4、6とも併せ、本発
明の提案するアクリル繊維の製造方法が如何に不織布化
に好適な機械的特性を有するアクリル繊維を与えるかが
容易に理解される。
Comparative Example 3 The gel yarn comprising the acrylonitrile polymer obtained in Example 3 was first heated at 125 ° C. using a tunnel dryer.
After performing a relaxation drying treatment in a heating atmosphere of 40% relative humidity for 15 minutes, and performing a relaxation moisture heat treatment for 15 minutes in a humid atmosphere consisting of saturated steam at 130 ° C. using an autoclave, a total of 24.0% is obtained. A contracted acrylic fiber was obtained. Table 2 also shows the adopted conditions and the evaluation results of the obtained acrylic fibers. Although the tensile strength of the acrylic fiber of Comparative Example 3 was 4.77 g / d, the tensile elongation was 31.2% and the ratio of the knot strength / tensile strength was 0.42, so that the acrylic fiber was excessively changed into a nonwoven fabric. The result was unsatisfactory because it was easily fibrillated. Example 1
In comparison with Comparative Example No. 4, it is easily understood how the method for producing acrylic fiber proposed by the present invention gives acrylic fibers having mechanical properties suitable for forming into a nonwoven fabric together with Comparative Examples 4 and 6 described below. .

【0031】比較例4 実施例1で得られたアクリロニトリル単独重合体からな
るゲル糸條に対し、トンネル乾燥機を用い125℃、相
対湿度40%の加熱雰囲気中で15分間弛緩乾燥処理を
施した後、オートクレーブを用い130℃の飽和水蒸気
でなる湿熱雰囲気中で15分間弛緩湿熱処理を施すこと
により、トータルとして23.5%の収縮を付与したア
クリル繊維を得た。採用した条件、および得られたアク
リル繊維の評価結果を表2に併記する。比較例4のアク
リル繊維は、引張強度は4.85g/dを示したもの
の、引張伸度が30.2%で、且つ結節強度/引張強度
比が0.39であるため不織布化に際し過度にフィブリ
ル化しやすく満足の出来ない結果であった。
Comparative Example 4 The gel yarn made of the acrylonitrile homopolymer obtained in Example 1 was subjected to a relaxation drying treatment for 15 minutes in a heating atmosphere at 125 ° C. and a relative humidity of 40% using a tunnel dryer. Thereafter, an acrylic fiber having a shrinkage of 23.5% in total was obtained by performing a relaxation and moisture heat treatment for 15 minutes in a moist heat atmosphere of saturated steam at 130 ° C. using an autoclave. Table 2 also shows the adopted conditions and the evaluation results of the obtained acrylic fibers. Although the acrylic fiber of Comparative Example 4 exhibited a tensile strength of 4.85 g / d, the tensile elongation was 30.2% and the ratio of the knot strength / tensile strength was 0.39, so that the acrylic fiber was excessively excessive when forming into a nonwoven fabric. The result was unsatisfactory because it was easily fibrillated.

【0032】比較例5 アクリロニトリル95重量%とメチルアクリレート5重
量%をアンモニウムパーサルファイト/ピロ亜硫酸ソー
ダからなるレドックス系重合開始剤を使用し、水系連続
重合法にて重合して得た重量平均分子量15万のアクリ
ロニトリル系重合体を使用した他は実施例3と同様に実
施しトータルとして33.0%の収縮を付与したアクリ
ル繊維を得た。採用した条件、および得られたアクリル
繊維の評価結果を表2に併記する。比較例5のアクリル
繊維は、アクリロニトリルの含有率が95重量%のアク
リロニトリル系重合体を使用しているため耐熱性が十分
でなく、弛緩湿熱処理に際し繊維同士の部分的融着を発
生し、とても不織布化に供し得る繊維ではなかった。
Comparative Example 5 A weight-average molecular weight obtained by polymerizing 95% by weight of acrylonitrile and 5% by weight of methyl acrylate by a water-based continuous polymerization method using a redox-based polymerization initiator composed of ammonium persulfite / sodium pyrosulfite. Except that 150,000 acrylonitrile-based polymers were used, the same procedure as in Example 3 was carried out to obtain acrylic fibers having a total shrinkage of 33.0%. Table 2 also shows the adopted conditions and the evaluation results of the obtained acrylic fibers. The acrylic fiber of Comparative Example 5 uses an acrylonitrile-based polymer having an acrylonitrile content of 95% by weight, so that the heat resistance is not sufficient, and the fibers are partially fused to each other during the relaxation heat treatment. It was not a fiber that could be used for forming a nonwoven fabric.

【0033】比較例6 実施例5で得られたゲル糸條に対し、トンネル乾燥機を
用い125℃、相対湿度40%の加熱雰囲気中で15分
間弛緩乾燥処理を施した後、オートクレーブを用い13
0℃の飽和水蒸気でなる湿熱雰囲気中で15分間弛緩湿
熱処理を施すことにより、トータルとして24.0%の
収縮を付与したアクリル繊維を得た。採用した条件、お
よび得られたアクリル繊維の評価結果を表2に併記す
る。比較例6のアクリル繊維は、引張強度は3.72g
/dで、且つ断面形状が繭状であるため結節強度/引張
強度比は0.92を示したものの、引張伸度は30.8
%に過ぎず、不織布化に際し過度にフィブリル化しやす
く満足の出来ない結果であった。
Comparative Example 6 The gel yarn obtained in Example 5 was subjected to a relaxation drying treatment in a heating atmosphere at 125 ° C. and a relative humidity of 40% for 15 minutes using a tunnel drier, and then to an autoclave for 13 minutes.
An acrylic fiber having a total shrinkage of 24.0% was obtained by performing a relaxation and moisture heat treatment for 15 minutes in a moist heat atmosphere of saturated steam of 0 ° C. Table 2 also shows the adopted conditions and the evaluation results of the obtained acrylic fibers. The acrylic fiber of Comparative Example 6 has a tensile strength of 3.72 g.
/ D and the cross-sectional shape is cocoon-shaped, the knot strength / tensile strength ratio was 0.92, but the tensile elongation was 30.8.
%, Resulting in unsatisfactory results due to excessive fibrillation during the formation of a nonwoven fabric.

【0034】[0034]

【発明の効果】以上述べたように本発明は、アクリロニ
トリルを少なくとも98重量%以上含有するアクリロニ
トリル系重合体からなり、不織布化に適した機械的特
性、即ち3g/dを超える引張強度、50%以上の引張
伸度、0.9以上の結節強度/引張強度比を有するアク
リル繊維、及びその製造方法を提供した点が特筆すべき
効果であり、工業的意義の大なるものがある。
As described above, the present invention comprises an acrylonitrile-based polymer containing at least 98% by weight of acrylonitrile, and has mechanical properties suitable for forming a nonwoven fabric, that is, a tensile strength exceeding 3 g / d and a 50% strength. The fact that the acrylic fiber having the above tensile elongation and the knot strength / tensile strength ratio of 0.9 or more, and the method for producing the same are a remarkable effect, and have great industrial significance.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L031 AA17 AB01 AB34 CA07 CA08 DA17 4L035 BB02 BB04 BB66 CC05 CC07 EE08 EE20 FF05 MB00 4L036 MA04 MA24 MA33 PA01 PA03 PA10 PA19 RA03 UA21 4L047 AA17 AB02 AB10 BA05 CB01 CB05 CC10 CC12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L031 AA17 AB01 AB34 CA07 CA08 DA17 4L035 BB02 BB04 BB66 CC05 CC07 EE08 EE20 FF05 MB00 4L036 MA04 MA24 MA33 PA01 PA03 PA10 PA19 RA03 UA21 4L047 AA17 AB02 AB10 BA05 CC05 CB01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アクリロニトリルを少なくとも98重量%
以上含有するアクリロニトリル系重合体からなり、3g
/dを超える引張強度、50%以上の引張伸度、0.9
以上の結節強度/引張強度比を有するアクリル繊維。
1. An acrylonitrile comprising at least 98% by weight
Consisting of the acrylonitrile-based polymer contained above, 3 g
/ D, tensile elongation of 50% or more, 0.9
An acrylic fiber having the above knot strength / tensile strength ratio.
【請求項2】アクリロニトリルを少なくとも98重量%
以上含有するアクリロニトリル系重合体を、湿式あるい
は乾湿式紡糸法で紡糸し、水洗、延伸処理を施した後、
先ず110〜130℃の湿熱雰囲気中で弛緩湿熱処理を
施し、次いで弛緩乾燥処理を施すことによりトータルと
して25〜40%の収縮を与えることを特徴とする請求
項1記載のアクリル繊維の製造方法。
2. At least 98% by weight of acrylonitrile
The acrylonitrile polymer containing above is spun by a wet or dry-wet spinning method, washed with water, and subjected to a stretching treatment.
2. The method for producing acrylic fiber according to claim 1, wherein a relaxation heat treatment is first performed in a moist heat atmosphere at 110 to 130 [deg.] C., and then a relaxation drying treatment is performed to give a total shrinkage of 25 to 40%.
JP22764499A 1999-08-11 1999-08-11 Acrylic fiber suitable for nonwoven fabric processing Expired - Lifetime JP4168542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22764499A JP4168542B2 (en) 1999-08-11 1999-08-11 Acrylic fiber suitable for nonwoven fabric processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22764499A JP4168542B2 (en) 1999-08-11 1999-08-11 Acrylic fiber suitable for nonwoven fabric processing

Publications (2)

Publication Number Publication Date
JP2001055620A true JP2001055620A (en) 2001-02-27
JP4168542B2 JP4168542B2 (en) 2008-10-22

Family

ID=16864117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22764499A Expired - Lifetime JP4168542B2 (en) 1999-08-11 1999-08-11 Acrylic fiber suitable for nonwoven fabric processing

Country Status (1)

Country Link
JP (1) JP4168542B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014589A1 (en) * 2001-08-03 2003-02-20 Japan Exlan Company Limited Fiber base material for wet friction material
JP2008240165A (en) * 2007-03-26 2008-10-09 Japan Vilene Co Ltd Method for providing nonwoven fabric of electrostatic spinning with strength
KR101777180B1 (en) * 2013-11-08 2017-09-11 미쯔비시 케미컬 주식회사 High-shrinkage acrylic fiber, spun yarn containing same, and step pile fabric using said yarn

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014589A1 (en) * 2001-08-03 2003-02-20 Japan Exlan Company Limited Fiber base material for wet friction material
JP2003049884A (en) * 2001-08-03 2003-02-21 Japan Exlan Co Ltd Fiber base material for wet type friction material
US7309725B2 (en) 2001-08-03 2007-12-18 Japan Exlan Company Limited Fiber base material for wet friction material
JP2008240165A (en) * 2007-03-26 2008-10-09 Japan Vilene Co Ltd Method for providing nonwoven fabric of electrostatic spinning with strength
KR101777180B1 (en) * 2013-11-08 2017-09-11 미쯔비시 케미컬 주식회사 High-shrinkage acrylic fiber, spun yarn containing same, and step pile fabric using said yarn

Also Published As

Publication number Publication date
JP4168542B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP3737969B2 (en) Acrylonitrile fiber bundle for carbon fiber precursor and method for producing the same
US4663232A (en) Acrylic fiber having excellent durability and dyeability and process for preparation thereof
JP2001055620A (en) Acrylic fiber suitable for production of nonwoven fabric
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
JPS6342910A (en) Production of acrylonitrile yarn bundle for manufacturing carbon yarn
WO2001086040A1 (en) Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof
JP3945888B2 (en) Acrylic fiber tow material and manufacturing method thereof
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JPH04119114A (en) Quickly skrinkable acrylic synthetic fiber and its production
JPH06101129A (en) Acrylic spun yarn
JP3756886B2 (en) High shrinkable acrylic fiber
JP3431694B2 (en) Method for producing highly shrinkable acrylic fiber for high pile
JPH0364605B2 (en)
JPH11200141A (en) Production of pilling-resistant acrylic fiber
JPH0138885B2 (en)
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JPS6233328B2 (en)
JPH0457911A (en) Porous actylic yarn having excellent water retention and its production
JPH04272213A (en) Acrylic yarn having pilling resistance and production thereof
JPS6018333B2 (en) Manufacturing method of heat-resistant acrylonitrile fiber
JPH0299609A (en) Production method for novel acrylic synthetic fiber
JPH08284020A (en) Acrylic fiber good in thermal form stability
JPS5947725B2 (en) Manufacturing method of acrylonitrile mixed single yarn continuous filament yarn of different fineness
JPS5843482B2 (en) Acrylic Keigousei Senino Seizou Hohou
JPS6156328B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4168542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term