JP2008240165A - Method for providing nonwoven fabric of electrostatic spinning with strength - Google Patents

Method for providing nonwoven fabric of electrostatic spinning with strength Download PDF

Info

Publication number
JP2008240165A
JP2008240165A JP2007078147A JP2007078147A JP2008240165A JP 2008240165 A JP2008240165 A JP 2008240165A JP 2007078147 A JP2007078147 A JP 2007078147A JP 2007078147 A JP2007078147 A JP 2007078147A JP 2008240165 A JP2008240165 A JP 2008240165A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
strength
temperature
fibers
electrospun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007078147A
Other languages
Japanese (ja)
Other versions
JP5128155B2 (en
Inventor
Rie Watanabe
理恵 渡邊
Takashi Tarao
隆 多羅尾
Masaaki Kawabe
雅章 川部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2007078147A priority Critical patent/JP5128155B2/en
Publication of JP2008240165A publication Critical patent/JP2008240165A/en
Application granted granted Critical
Publication of JP5128155B2 publication Critical patent/JP5128155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for improving strength of a nonwoven fabric of electrostatic spinning composed of fibers of submicron order. <P>SOLUTION: The method for providing a nonwoven fabric of electrostatic spinning with strength comprises keeping the nonwoven fabric at ≥60°C and ≤120°C in an atmosphere at ≥60°C in a state in which the nonwoven fabric of electrostatic spinning is in contact with water. The nonwoven fabric of electrostatic spinning is preferably an acrylic resin. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、サブミクロンオーダーの極めて細い繊維で構成した静電紡糸不織布に対する強度付与技術に関する。   The present invention relates to a technique for imparting strength to an electrospun nonwoven fabric composed of extremely fine fibers of the order of submicrons.

繊維を織らずにシート化する不織布の製造技術は数多く知られており、スパンボンド法やメルトブロー法などに代表される直接紡糸法、或いは、予め紡糸した繊維を短繊維としてカード機によってシート化する乾式法、又はショートファイバーを水などに分散・抄造する湿式法、さらには、繊維を空気流で分散・搬送してシート化するエアレイ法などがある。このうち、直接紡糸法は、得られる不織布の構成繊維として比較的細いものが得られることから、気体や液体を濾過するためのフィルターなどに広く用いられている。   There are many known techniques for producing non-woven fabrics that do not weave the fibers. Direct spinning methods such as the spunbond method and melt-blow method, or pre-spun fibers are made into sheets with a card machine as short fibers. There are a dry method, a wet method in which short fibers are dispersed and formed in water, and an air lay method in which fibers are dispersed and conveyed by an air stream to form a sheet. Among these, the direct spinning method is widely used as a filter for filtering a gas or a liquid because relatively thin fibers can be obtained as constituent fibers of the obtained nonwoven fabric.

一方、繊維を構成するための原料成分を溶媒等に溶解、或いは分散させ、これに静電的な力を作用させてシリンジ等の細管から吐出させて微細な繊維を発生し、これを捕集してシート化する静電紡糸技術は、サブミクロンの繊維で構成された不織布(以下、静電紡糸不織布と称する)を簡便に得ることが可能なため、近年、急速に注目されている。   On the other hand, the raw material components for constituting the fiber are dissolved or dispersed in a solvent or the like, and an electrostatic force is applied to this and discharged from a thin tube such as a syringe to generate fine fibers, which are collected. In recent years, the electrospinning technique for forming a sheet has attracted attention rapidly because a nonwoven fabric composed of sub-micron fibers (hereinafter referred to as an electrospun nonwoven fabric) can be easily obtained.

従前、このような静電紡糸技術として、例えば米国特許第2,048,651号公報(以下、特許文献1)では、高電圧が印加されるか、或いは、接地され、かつ液状ポリマーを紡糸空間に供給できるノズル部を有する液だめと、平板またはロール形状を有する集積用対向電極とを備えた装置並びに製造方法が開示されている。この公報技術では、ノズル部から電界により紡糸された繊維は、集積用対向電極上に集積され、その後、集積された繊維集合体を掻き取り装置等により回収される。   Conventionally, as such an electrospinning technique, for example, in US Pat. No. 2,048,651 (hereinafter referred to as Patent Document 1), a high voltage is applied or the liquid polymer is spun into a spinning space. An apparatus including a liquid reservoir having a nozzle part that can be supplied to the substrate and a counter electrode for accumulation having a flat plate shape or a roll shape, and a manufacturing method are disclosed. In this publication technique, the fibers spun by the electric field from the nozzle portion are collected on the collecting counter electrode, and then the collected fiber aggregate is collected by a scraping device or the like.

しかしながら、上述した特許文献1に係る技術では、繊維が集積用対向電極上に直接電界の力で集積されるため、帯電繊維による集積用対向電極との静電気力によりペーパー状の繊維集合体になり、低密度な綿状の繊維集合体として回収することが難しかった。また、電極上に掻きとり装置を設けた場合も、掻きとり後の繊維集合体は嵩高くはなく、嵩高な繊維集合体としての利用が好ましい分野には、必ずしも満足する特性を発揮することが難しく、例えば集積した繊維同士が強固に接着している場合があった。   However, in the technique according to Patent Document 1 described above, since fibers are directly accumulated on the counter electrode for accumulation by the force of an electric field, a paper-like fiber aggregate is formed by electrostatic force with the counter electrode for accumulation due to charged fibers. It was difficult to recover as a low-density cotton-like fiber aggregate. In addition, even when a scraping device is provided on the electrode, the fiber aggregate after scraping is not bulky, and in a field where it is preferable to use it as a bulky fiber aggregate, it may necessarily exhibit satisfactory characteristics. In some cases, for example, the accumulated fibers are firmly bonded to each other.

このような従前技術の問題を解決するため、例えば、本出願人が提案する特開2004−238749号公報(以下、特許文献2)では、静電紡糸方法であって、紡糸するポリマー溶液を紡糸空間へ供給するステップと、当該供給形成された繊維とは反対極性のイオンを照射するステップと、及び紡糸した繊維を回収するステップとを含む技術を提案している。さらに、この文献技術は、ポリマー溶液を紡糸空間へ供給できるポリマー供給部と、当該ポリマー溶液に対して電荷を与えることのできる電荷付与手段と、上述したポリマー供給部に対向しており、ポリマー溶液の供給により形成された繊維を電気的に吸引することのできる対向電極と、前述のポリマー供給部と対向電極との間を飛翔中の繊維に対して、当該繊維の電荷と反対極性のイオンを照射できる手段と、及び紡糸した繊維を回収できる繊維回収装置とを備えた静電紡糸装置をも開示するものである。   In order to solve such problems of the prior art, for example, in Japanese Patent Application Laid-Open No. 2004-238799 (hereinafter referred to as Patent Document 2) proposed by the present applicant, an electrospinning method, in which a polymer solution to be spun is spun It proposes a technique including a step of supplying to a space, a step of irradiating ions having a polarity opposite to that of the supplied and formed fiber, and a step of collecting the spun fiber. Further, this document technology is opposed to the polymer supply unit that can supply the polymer solution to the spinning space, the charge applying unit that can apply a charge to the polymer solution, and the polymer supply unit described above. The opposite electrode that can electrically attract the fibers formed by the supply of, and the fibers flying between the polymer supply unit and the opposite electrode, ions of the opposite polarity to the charge of the fibers An electrostatic spinning device including means capable of irradiating and a fiber recovery device capable of recovering the spun fiber is also disclosed.

また、上述した特許文献2の技術を適用し得るポリマーとして、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン− ヘキサフルオロプロピレン共重合体、ポリアクリロニトリル(PAN)、ポリアクリロニトリル−メタクリレート共重合体、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン− アクリレート共重合体、ポリエチレン、ポリプロピレン、ナイロン12、ナイロン−4,6などのナイロン系、アラミド、ポリベンズイミダゾール、ポリビニルアルコール、セルロース、酢酸セルロース、酢酸セルロースブチレート、ポリビニルピロリドン−酢酸ビニル、ポリ(ビス−(2−(2−メトキシ−エトキシエトキシ))ホスファゼン)(poly(bis−(2−(2−methoxy−ethoxyethoxy))phosphazene);MEEP)、ポリプロピレンオキサイド、ポリエチレンイミド(PEI)、ポリこはく酸エチレン(poly(ethylenesuccinate))、ポリアニリン、ポリエチレンサルファイド、ポリオキシメチレン−オリゴ−オキシエチレン(poly(oxymethylene−oligo−oxyethylene))、SBS共重合体、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリエチレンテレフタレート、ポリエチレンオキサイド、コラーゲン、ポリ乳酸、ポリグリコール酸、ポリD,L−乳酸−グリコール酸共重合体、ポリアリレート、ポリプロピレンフマラート(poly(propylene fumalates))、ポリカプロラクトンなどの生分解性高分子、ポリペプチド、タンパク質などのバイオポリマー、コールタールピッチ、石油ピッチなどのピッチ系などの溶融または適正溶媒に溶解可能な様々なポリマー、これらの共重合体及び混合物など、さらには種々の金属アルコキシドを加水分解した曳糸性のゾル溶液を用いることが可能であるとの開示がある。   Moreover, as a polymer which can apply the technique of the patent document 2 mentioned above, a polyvinylidene fluoride (PVDF), a polyvinylidene fluoride-hexafluoropropylene copolymer, a polyacrylonitrile (PAN), a polyacrylonitrile-methacrylate copolymer, a polymethacryl Methyl acid, polyvinyl chloride, polyvinylidene chloride-acrylate copolymer, polyethylene, polypropylene, nylon 12, nylon-4,6 and other nylons, aramid, polybenzimidazole, polyvinyl alcohol, cellulose, cellulose acetate, cellulose acetate butyrate Rate, polyvinylpyrrolidone-vinyl acetate, poly (bis- (2- (2-methoxy-ethoxyethoxy)) phosphazene) (poly (bis- (2- (2-methoxy-ethyetheth xy)) phosphazene); MEEP), polypropylene oxide, polyethyleneimide (PEI), polysuccinic acid ethylene (poly (ethylene succinate)), polyaniline, polyethylene sulfide, polyoxymethylene-oligo-oxyethylene (poly (oxymethylene-oligo-oxyethylene) )), SBS copolymer, polyhydroxybutyric acid, polyvinyl acetate, polyethylene terephthalate, polyethylene oxide, collagen, polylactic acid, polyglycolic acid, poly D, L-lactic acid-glycolic acid copolymer, polyarylate, polypropylene fumarate (Poly (propylene fumarates)), biodegradable polymers such as polycaprolactone, polypeptides Various polymers such as biopolymers such as proteins, coal tar pitch, pitch systems such as petroleum pitch, etc. that can be melted or dissolved in an appropriate solvent, copolymers and mixtures thereof, and various metal alkoxides are hydrolyzed. There is a disclosure that a threadable sol solution can be used.

さらに、本出願人は特開2005−194675号公報(以下、特許文献3)において、水への溶解性が100g/100ml以上のものを主体とする紡糸原液の溶媒を用いた静電紡糸技術であって、相対湿度40%以下かつ湿度変動の幅が±2%以下の所定湿度に制御された雰囲気下で紡糸することで、繊維径のバラツキが少ない繊維集合体を安定に製造し得る技術を提案した。   Further, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 2005-194675 (hereinafter referred to as Patent Document 3) an electrostatic spinning technique using a solvent of a spinning stock solution mainly having a solubility in water of 100 g / 100 ml or more. A technology capable of stably producing a fiber assembly with less variation in fiber diameter by spinning in an atmosphere controlled to a predetermined humidity with a relative humidity of 40% or less and a humidity fluctuation range of ± 2% or less. Proposed.

一方、繊維自体の強度を向上させる技術として、例えば特開2001−55620号公報(以下、特許文献4)では、アクリロニトリルを少なくとも98重量%以上含有するアクリロニトリル系重合体からなり、3g/dを超える引張強度、50%以上の引張伸度、0.9以上の結節強度/引張強度を有するアクリル繊維が提案されている。また、この公報では、アクリロニトリルを少なくとも98重量%以上含有するアクリロニトリル系重合体を、湿式あるいは乾湿式紡糸法で紡糸し、水洗、延伸処理を施した後、先ず110〜130℃の湿熱雰囲気中で弛緩湿熱処理を施し、次いで弛緩乾燥処理を施すことによりトータルとして25〜40%の収縮を与えることを要旨とするアクリル繊維の製造方法も開示されている。   On the other hand, as a technique for improving the strength of the fiber itself, for example, in Japanese Patent Application Laid-Open No. 2001-55620 (hereinafter referred to as Patent Document 4), it is composed of an acrylonitrile-based polymer containing at least 98% by weight of acrylonitrile, and exceeds 3 g / d. Acrylic fibers having a tensile strength, a tensile elongation of 50% or more, and a knot strength / tensile strength of 0.9 or more have been proposed. In this publication, an acrylonitrile-based polymer containing at least 98% by weight of acrylonitrile is spun by a wet or dry-wet spinning method, washed with water and stretched, and then first in a wet and heat atmosphere at 110 to 130 ° C. There is also disclosed a method for producing acrylic fibers, which is characterized by giving a total shrinkage of 25 to 40% by performing a relaxation wet heat treatment and then a relaxation drying treatment.

米国特許第2,048,651号公報(第2〜3頁、並びに第2図)US Pat. No. 2,048,651 (pages 2 and 3 and FIG. 2) 特開2004−238749号公報([特許請求の範囲]、[0026]並びに[図1])Japanese Patent Laying-Open No. 2004-238749 ([Claims], [0026] and [FIG. 1]) 特開2005−194675号公報([特許請求の範囲]、[0006]、[実施例]並びに[図4])JP-A-2005-194675 ([Claims], [0006], [Example] and [FIG. 4]) 特開2001−55620号公報([特許請求の範囲])JP 2001-55620 A ([Claims])

上述したように、静電紡糸技術は、その用途拡大と共に、種々の特性を有する静電紡糸不織布として様々な提案が為されている。また、特許文献4に開示される様に、繊維自体に強度を付与する技術も知られているが、静電紡糸不織布を構成する繊維は、例えば数百nm程度といったサブミクロンオーダーの繊維径であるが故に、単繊維としての後処理を行うことは不可能である。このため、極めて細い繊維径に由来する静電紡糸不織布の強度付与に際しては、未だ、未解決な問題点が残されていた。   As described above, various proposals have been made for the electrospinning technology as an electrospun nonwoven fabric having various characteristics as its application expands. In addition, as disclosed in Patent Document 4, a technique for imparting strength to the fiber itself is also known, but the fiber constituting the electrospun nonwoven fabric has a fiber diameter on the order of submicrons, for example, about several hundred nm. For this reason, it is impossible to perform post-treatment as a single fiber. For this reason, in providing the strength of the electrospun nonwoven fabric derived from an extremely thin fiber diameter, unsolved problems still remain.

本出願に係る発明は、上述した技術背景に鑑み、本出願人が鋭意検討した結果為されたものであり、従って、本発明の目的は、静電紡糸不織布の強度向上を図り得る技術を提供することにある。   The invention according to the present application has been made as a result of intensive studies by the present applicant in view of the above-described technical background. Therefore, the object of the present invention is to provide a technique capable of improving the strength of an electrospun nonwoven fabric. There is to do.

この目的の達成を図るため、本発明に係る静電紡糸不織布の強度付与方法によれば、静電紡糸不織布と水分とが接触する状態で、60℃以上の温度雰囲気下において、当該不織布を60℃以上120℃以下の温度に保持することを特徴としている。   In order to achieve this object, according to the method for imparting strength to an electrospun nonwoven fabric according to the present invention, the nonwoven fabric is subjected to 60 ° C. in a temperature atmosphere of 60 ° C. or more in a state where the electrospun nonwoven fabric is in contact with moisture. It is characterized in that it is maintained at a temperature not lower than 120 ° C. and not higher than 120 ° C.

また、上述した本発明の実施に当たり、前述した静電紡糸不織布がアクリル系樹脂とするのが好適である。   In carrying out the above-described present invention, it is preferable that the above-described electrospun nonwoven fabric is an acrylic resin.

本発明の構成を採用することにより、優れた強度を有する静電紡糸不織布を提供することができる。   By adopting the configuration of the present invention, an electrospun nonwoven fabric having excellent strength can be provided.

以下、本発明の方法技術について、具体的な態様を挙げて詳細に説明する。まず、本出願に言う静電紡糸不織布とは、例えば特許文献2等に開示された種々の樹脂の構成繊維からなり、同公報あるいは前述の特許文献3等に開示した周知の装置を利用し得る。詳細には、本発明者が鋭意検討の結果、湿熱下において繊維強化される下記の樹脂が好適であることが見出された。中でもポリアクリロニトリルを主鎖に主成分として有するポリマー、例えばホモ重合ポリアクリロニトリル、酢酸ビニルやカルボン酸エステルを共重合成分とする共重合ポリマー等が好適である。共重合成分の化学種は特に限定するものではないが、たとえば以下のモノマーが挙げられる。すなわち、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピルなどに代表されるアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチルなどに代表されるメタクリル酸エステル類、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどの不飽和モノマー類である。さらに、染色性改良などの副次的効果を期待して、p−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸及びこれらのアルカリ金属塩などを用いても良い。上述したアクリロニトリルに共重合させる化学種の割合は、40重量%以下、好ましくは20重量%以下、より好ましくは10重量%とすることができ、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体等、任意の規則性を有する共重合体とし得る。   Hereinafter, the method technique of the present invention will be described in detail with specific embodiments. First, the electrospun non-woven fabric referred to in the present application includes, for example, constituent fibers of various resins disclosed in Patent Document 2 and the like, and a known device disclosed in the same publication or the above-mentioned Patent Document 3 can be used. . Specifically, as a result of intensive studies by the present inventors, it has been found that the following resins that are fiber reinforced under wet heat are suitable. Among them, a polymer having polyacrylonitrile as a main component in the main chain, such as homopolymerized polyacrylonitrile, a copolymer having vinyl acetate or a carboxylic acid ester as a copolymerization component, and the like are preferable. The chemical species of the copolymer component is not particularly limited, and examples thereof include the following monomers. That is, acrylic acid esters represented by methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, and the like, methyl methacrylate , Ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, diethylaminoethyl methacrylate, etc. Methacrylic acid esters, acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, N-methylol acrylamide, diacetone acrylamide, styrene, vinyl toluene Emissions, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, unsaturated monomers such as vinyl fluoride, vinylidene fluoride. Furthermore, p-sulfophenyl methallyl ether, methallyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and alkalis thereof are expected in the hope of secondary effects such as dyeability improvement. A metal salt or the like may be used. The proportion of the chemical species to be copolymerized with acrylonitrile described above can be 40% by weight or less, preferably 20% by weight or less, and more preferably 10% by weight. Random copolymers, alternating copolymers, periodic copolymers can be used. It may be a copolymer having an arbitrary regularity such as a polymer or a block copolymer.

次いで、本発明では、静電紡糸不織布と水分とが接触する状態で所定の温度雰囲気に曝すことを要旨としている。まず、静電紡糸不織布と水分とが接触する状態とは、前述の装置で得られた直後の静電紡糸不織布を予め室温程度の水に浸漬した後に所定の温度雰囲気に曝す場合、或いは、強度付与処理前の静電紡糸不織布に、所定の温度条件とした水蒸気に曝す場合の何れであっても良い。この際、上記接触状態にある静電紡糸不織布が所定の温度に曝された時点で強度付与が為されるものであるが、本出願に係る発明者の実験によれば、この暴露時間は極めて短時間で目的が達成されるものであって、主として暴露される温度に依存するが、1分以上好ましくは3分以上とすることができる。   Next, the gist of the present invention is that the electrospun non-woven fabric and moisture are exposed to a predetermined temperature atmosphere in contact with each other. First, the state where the electrospun nonwoven fabric is in contact with moisture means that the electrospun nonwoven fabric immediately after being obtained by the above-mentioned apparatus is immersed in water at room temperature in advance and then exposed to a predetermined temperature atmosphere, or strength. Any of the cases in which the electrospun nonwoven fabric before the application treatment is exposed to water vapor having a predetermined temperature condition may be used. At this time, strength is given when the electrospun nonwoven fabric in the contact state is exposed to a predetermined temperature, but according to the experiments of the inventors of the present application, this exposure time is extremely high. The purpose is achieved in a short time and depends mainly on the temperature to be exposed, but it can be 1 minute or more, preferably 3 minutes or more.

また、本発明者の実証によれば、上述した水分との接触状態で、静電紡糸不織布が曝される温度条件は60℃以上120℃以下の範囲とするのが好ましい。60℃未満の温度では十分な強度付与を図ることが難しく、120℃より高温でも同様に強度向上を期待することが難しい。しかしながら、水と接触させた後、静電紡糸不織布の構成繊維表面に充分な水分が付着保持された状態で高温雰囲気にさらす場合、当該構成繊維を成すポリマーの熱分解温度以下、一例として前述したアクリル系樹脂をポリマーとした場合には、約180℃以下の温度条件とすることが出来る。つまり、上記繊維に付着した水分の蒸発によって曝露雰囲気の温度条件が、実質的に100℃程度に保たれるため、前述した好適温度の範囲内と同様な強度付与が可能となる。   Further, according to the verification by the present inventor, it is preferable that the temperature condition to which the electrospun nonwoven fabric is exposed in the above contact state with moisture is in the range of 60 ° C. or more and 120 ° C. or less. It is difficult to give sufficient strength at a temperature below 60 ° C., and it is difficult to expect improvement in strength at temperatures higher than 120 ° C. However, after exposure to water, when exposed to a high temperature atmosphere with sufficient moisture adhered to the surface of the constituent fibers of the electrospun non-woven fabric, the heat decomposition temperature of the polymer forming the constituent fibers is equal to or lower than the thermal decomposition temperature described above as an example. When the acrylic resin is a polymer, the temperature can be about 180 ° C. or lower. That is, the temperature condition of the exposure atmosphere is substantially maintained at about 100 ° C. due to the evaporation of the moisture adhering to the fibers, so that it is possible to impart the same strength as in the above-described preferable temperature range.

以下、本発明の実施例につき説明する。尚、以下に挙げる数値条件、配置関係並びに、その他の態様は、本発明の理解が容易となる程度に挙げた具体例に過ぎず、本発明は、これら特定の条件にのみ限定されるものではない。   Examples of the present invention will be described below. It should be noted that the following numerical conditions, arrangement relations, and other aspects are only specific examples given to the extent that the present invention can be easily understood, and the present invention is not limited to these specific conditions. Absent.

(静電紡糸不織布の調製)
本発明に係る方法を検証するため、前述の特許文献3に開示した装置(同公報[図4]参照)と同様な装置を用いた。即ち、シリンジにポリテトラフルオロエチレン製チューブの一端を接続し、当該チューブの他端に内径0.5mmφのステンレス製ノズルを取り付けた。次いで、前記ノズルに高電圧電源を接続し、前記ノズルと対向し、約8cm離れた位置に、導電性シリコーンゴムで表面加工を施し、接地されたメタルドラム(直径20cmφ)を設置した。尚、このシリンジには、紡糸溶液を一定速度で吐出供給するためのマイクロフィーダーを接続可能とし、静電紡糸装置を構成した。
(Preparation of electrospun nonwoven fabric)
In order to verify the method according to the present invention, an apparatus similar to the apparatus disclosed in Patent Document 3 (see FIG. 4) is used. That is, one end of a polytetrafluoroethylene tube was connected to the syringe, and a stainless steel nozzle having an inner diameter of 0.5 mmφ was attached to the other end of the tube. Next, a high-voltage power source was connected to the nozzle, and a metal drum (diameter 20 cmφ) grounded with conductive silicone rubber was installed at a position facing the nozzle and about 8 cm away from the nozzle. The syringe can be connected to a microfeeder for discharging and supplying the spinning solution at a constant speed to constitute an electrostatic spinning device.

また、重量平均分子量50万のポリアクリロニトリル(ホモ重合体)を溶媒としてのジメチルホルムアミド(DMF)に溶解させ、濃度10質量%の紡糸溶液Aを用意した。この紡糸溶液Aを前述したシリンジに入れ、重力方向と直角な方向に紡糸溶液を1(mL/時間)の速度で吐出させた。この半凝固状態の繊維を、表面における周速度6(m/分)で定速回転する前述のメタルドラムで集積回収した。この際、高電圧電源からノズルに+15kVの電圧を印加することによって紡糸溶液に電界を作用させて繊維を極細化した。このようにメタルドラム表面に集積、調製された静電紡糸不織布Aは、平均繊維径が350(nm)(電子顕微鏡による観察結果として)、面密度5(g/m)に統一した。尚、当該不織布を集積形成する際、前記ノズルとメタルドラムとの距離と直交する方向に、20(cm/分)の速度で往復揺動させることにより、繊維分布の均一化を図った。この不織布の調製は、温度25℃、相対湿度23%±2%の環境下で行ない、以下に説明する測定評価に当たっては、上述した装置により同一条件で静電紡糸不織布Aを調製して用いた。 Further, polyacrylonitrile (homopolymer) having a weight average molecular weight of 500,000 was dissolved in dimethylformamide (DMF) as a solvent to prepare a spinning solution A having a concentration of 10% by mass. This spinning solution A was put in the above-described syringe, and the spinning solution was discharged at a rate of 1 (mL / hour) in a direction perpendicular to the direction of gravity. This semi-solidified fiber was collected and collected by the above-mentioned metal drum rotating at a constant speed at a peripheral speed of 6 (m / min) on the surface. At this time, by applying a voltage of +15 kV from a high voltage power source to the nozzle, an electric field was applied to the spinning solution to make the fibers extremely fine. The electrospun non-woven fabric A thus accumulated and prepared on the surface of the metal drum was unified to an average fiber diameter of 350 (nm) (as observed by an electron microscope) and an area density of 5 (g / m 2 ). In addition, when the nonwoven fabric was integrated and formed, the fiber distribution was made uniform by reciprocatingly swinging at a speed of 20 (cm / min) in a direction orthogonal to the distance between the nozzle and the metal drum. The nonwoven fabric was prepared in an environment at a temperature of 25 ° C. and a relative humidity of 23% ± 2%. In the measurement evaluation described below, the electrospun nonwoven fabric A was prepared and used under the same conditions using the above-described apparatus. .

さらに、アクリル酸エステルとアクリロニトリルとを共重合した市販の共重合PANからなる繊維『ボンネル MVPD122』(三菱レイヨン(株)製,商品名)に対してアルコール並びに水で油剤除去を行い、DMFを溶媒として濃度14質量%の紡糸溶液Bを用意した。この紡糸溶液Bを用いて、上述と同一の条件で静電紡糸を行い、平均繊維径並びに面密度も前述と同一の静電紡糸不織布Bを調製した。   Furthermore, the oil “Bonnel MVPD122” (trade name, manufactured by Mitsubishi Rayon Co., Ltd.) made of a commercially available copolymerized PAN obtained by copolymerizing an acrylic ester and acrylonitrile is removed with alcohol and water, and DMF is used as a solvent. A spinning solution B having a concentration of 14% by mass was prepared. Electrospinning was performed using this spinning solution B under the same conditions as described above, and an electrospun nonwoven fabric B having the same average fiber diameter and surface density as described above was prepared.

(引張強さの測定)
本実施例における強化方法の評価を行うため、後段で述べる種々の処理条件とした後の静電紡糸不織布の強度評価は以下の方法で行った。まず、静電紡糸不織布サンプルから、縦50(mm)×横15(mm)の寸法条件で長方形の測定試料を採取した。尚、測定試料の寸法条件に言う「縦」とは、前述したメタルドラムの円筒外周面に沿った方向である。この試料を引張強度試験機『テンシロン TM−111−100』(オリエンテック社製,商品名)のチャックに固定し、チャック間距離20(mm)、引張速度を50(mm/分)として定速引張し、破断に至るまでの最大張力(引張強さ)を測定した。評価結果として、この引張強さを静電紡糸不織布の面密度で割り、各静電紡糸不織布間の強度比較を行った。
(Measurement of tensile strength)
In order to evaluate the reinforcing method in this example, the strength evaluation of the electrospun nonwoven fabric after various processing conditions described later was performed by the following method. First, a rectangular measurement sample was collected from an electrospun nonwoven fabric sample under the condition of 50 (mm) × 15 (mm) width. Note that “vertical” in the dimension conditions of the measurement sample is a direction along the cylindrical outer peripheral surface of the metal drum described above. This sample is fixed to a chuck of a tensile strength tester “Tensilon TM-111-100” (Orientec Co., Ltd., trade name), and the constant distance is 20 mm between chucks and the tensile speed is 50 (mm / min). The maximum tension (tensile strength) up to rupture was measured. As an evaluation result, this tensile strength was divided by the surface density of the electrospun nonwoven fabric, and the strength of each electrospun nonwoven fabric was compared.

以下、実際の評価に供した各実施例並びに比較例の各サンプルへの処理条件について説明する。まず、上述した静電紡糸不織布Aに対し、市販のオートクレーブを用い、60〜120℃の温度範囲で、20℃ずつの設定温度差を設けた4水準の飽和水蒸気環境に10分間曝すことによって湿熱処理を行い、強度向上効果の評価を行った。また、これら湿熱処理の後、紡糸溶媒であるDMF並びに水分を除去する目的で、熱風乾燥機によって150℃、30分間にわたって乾燥を行い。実施例1〜実施例4の測定サンプルを得た。また、この湿熱処理時間による影響を評価するため、100℃で30分間、オートクレーブにより湿熱に曝した実施例5の評価サンプルを得ると共に、対照用として、静電紡糸不織布Aに上記乾燥のみを行った比較例1の評価サンプルを得た。さらに、比較例2として、上記一連の実施例よりも低い40℃の温度条件で30分間に渡るオートクレーブ処理を行ない、評価サンプルとした。   Hereinafter, processing conditions for each sample of each example and comparative example subjected to actual evaluation will be described. First, the electrospun non-woven fabric A described above is moistened by exposing it to a 4-level saturated steam environment with a set temperature difference of 20 ° C. in a temperature range of 60 to 120 ° C. for 10 minutes using a commercially available autoclave. Heat treatment was performed to evaluate the strength improvement effect. In addition, after these wet heat treatments, drying is performed at 150 ° C. for 30 minutes with a hot air drier for the purpose of removing the spinning solvent DMF and moisture. Measurement samples of Example 1 to Example 4 were obtained. In addition, in order to evaluate the influence of the wet heat treatment time, an evaluation sample of Example 5 exposed to wet heat by an autoclave at 100 ° C. for 30 minutes was obtained, and only the above drying was performed on the electrospun nonwoven fabric A as a control. An evaluation sample of Comparative Example 1 was obtained. Furthermore, as Comparative Example 2, an autoclave treatment was performed for 30 minutes under a temperature condition of 40 ° C. lower than that in the series of examples, and an evaluation sample was obtained.

また、本発明の好適温度範囲を超える140℃の湿熱条件処理を検証するため、比較例3として、ステンレス製の密閉可能な耐圧容器を別途作製し、当該容器内に水と静電紡糸不織布Aとが直接接触せず、かつ繊維表面に蒸気の形で水分接触が可能な配置関係とし、係る密閉耐圧容器ごと、恒温乾燥機内に収納、140℃まで昇温した。この際の処理時間は、圧力容器内温度をモニターし、目的の温度である140℃に達してから10分間とした。   Further, in order to verify the wet heat condition treatment at 140 ° C. exceeding the preferred temperature range of the present invention, a stainless steel sealable pressure resistant container is separately prepared as Comparative Example 3, and water and the electrospun nonwoven fabric A are contained in the container. Were placed in a constant temperature dryer, and the temperature was raised to 140 ° C. The treatment time at this time was 10 minutes after the temperature inside the pressure vessel was monitored and the target temperature reached 140 ° C.

上記オートクレーブに代えて、上記ノズルから噴出する高温水蒸気で静電紡糸不織布Aを湿熱処理したことを除いては、実施例1〜実施例4、並びに実施例5と同一の条件で実施例6に係る評価サンプルを得た。この際、静電紡糸不織布に接触した蒸気温度は84℃であり、当該蒸気との接触時間は30分とした。   Instead of the autoclave, Example 6 was performed under the same conditions as in Examples 1 to 4 and Example 5, except that the electrospun nonwoven fabric A was wet-heat treated with high-temperature steam ejected from the nozzle. Such an evaluation sample was obtained. At this time, the steam temperature in contact with the electrospun nonwoven fabric was 84 ° C., and the contact time with the steam was 30 minutes.

次いで、オートクレーブ並びに高温水蒸気による処理に代えて、室温とした蒸留水に静電紡糸不織布Aを浸漬した後、熱風乾燥機によって100℃の温度で10分加熱し、さらに、前述した150℃で30分の乾燥処理を行うことにより、実施例7に係るサンプルを得た。また、熱風乾燥機の温度を150℃とし、熱処理を行ったことを除いては、実施例7と同一の条件で実施例8に係るサンプルを得た。また、当該サンプルの対照として、上記蒸留水への浸漬後、室温で風乾したことを除いては同一の条件で比較例4のサンプルを得た。   Next, instead of the treatment with autoclave and high-temperature steam, the electrospun nonwoven fabric A was immersed in distilled water at room temperature, then heated with a hot air dryer at a temperature of 100 ° C. for 10 minutes, and further at 150 ° C. described above for 30 minutes. The sample which concerns on Example 7 was obtained by performing the drying process of a minute. Moreover, the sample which concerns on Example 8 was obtained on the conditions same as Example 7 except having set the temperature of the hot air dryer to 150 degreeC, and performing heat processing. Moreover, as a control for the sample, a sample of Comparative Example 4 was obtained under the same conditions except that it was air-dried at room temperature after being immersed in the distilled water.

続いて、上記静電紡糸不織布Aに代えて、前述した共重合PANで調製された静電紡糸不織布Bを用いたことを除いては、実施例3と同一の条件で実施例9のサンプルを調製した。さらに、このサンプルの対照として、比較例5のサンプルを得た。   Subsequently, instead of the electrospun nonwoven fabric A, the sample of Example 9 was prepared under the same conditions as in Example 3 except that the electrospun nonwoven fabric B prepared by the copolymerized PAN was used. Prepared. Further, a sample of Comparative Example 5 was obtained as a control for this sample.

以上に述べた14種類の評価用サンプルの調製条件、処理条件、並びに測定結果について、下記の表1に示す。尚、同図中、強度測定結果の欄には、前述した単位面密度当たりの引張強さを明示すると共に、相対的な強度付与効果の理解を容易とするため、構成樹脂の異なる静電紡糸不織布ごとに対照となる比較例サンプルの測定結果に対する百分率をカッコ内に算出して示す。   Table 1 below shows the preparation conditions, processing conditions, and measurement results of the 14 types of evaluation samples described above. In the figure, in the column of strength measurement results, the tensile strength per unit surface density is clearly shown, and in order to facilitate understanding of the relative strength imparting effect, different electrostatic spinning of constituent resins The percentage of the measurement result of the comparative example sample that serves as a reference for each nonwoven fabric is calculated and shown in parentheses.

Figure 2008240165
Figure 2008240165

上記[表1]から理解できるように、構成樹脂がホモ重合体であるポリアクリロニトリルの場合、水分と接触させずに、DMFの溶媒除去に係る熱処理のみを実施した比較例1に対して、実施例1〜実施例5の全てに強度の向上が認められた。また、本発明の方法を適用した、これら5つの実施例サンプルに対して、水分との接触時に40℃の温度条件とした比較例2のサンプルでは実質的な強度向上は認められなかった。さらに、実施例3と実施例5との比較から、オートクレーブを利用した場合には、本発明の方法による熱処理は10分間で充分であることが明らかとなった。加えて比較例3からは、前述した好適温度範囲よりも高温とした場合には強度向上効果が認められず、先に述べた好適温度範囲が妥当な条件であることが理解できる。即ち、本発明の方法としてオートクレーブを利用した場合、効率的な強度付与を行い得る条件として、水と接触した状態での加熱温度は、少なくとも60〜120℃の範囲であり、かつ、10分以上、当該温度雰囲気とするのが好ましいことが確認された。   As can be understood from the above [Table 1], in the case of polyacrylonitrile in which the constituent resin is a homopolymer, it was carried out for Comparative Example 1 in which only the heat treatment relating to the solvent removal of DMF was performed without contacting with moisture. Strength improvement was recognized in all of Examples 1 to 5. Moreover, with respect to these five example samples to which the method of the present invention was applied, no substantial improvement in strength was observed in the sample of Comparative Example 2 in which the temperature condition was 40 ° C. when contacted with moisture. Furthermore, from a comparison between Example 3 and Example 5, when an autoclave was used, it became clear that the heat treatment by the method of the present invention was sufficient for 10 minutes. In addition, it can be understood from Comparative Example 3 that when the temperature is higher than the above-described preferable temperature range, the effect of improving the strength is not recognized, and the above-described preferable temperature range is an appropriate condition. That is, when an autoclave is used as the method of the present invention, the heating temperature in the state of contact with water is at least in the range of 60 to 120 ° C. and 10 minutes or more as a condition for providing efficient strength. It was confirmed that the temperature atmosphere is preferable.

また、大気圧下で開放された系として水蒸気処理を行った実施例6、並びに、室温の水に浸漬させることによって水分と繊維との接触を図った後に所定の温度雰囲気とした実施例7では、比較例3との対比から、オートクレーブのような密閉、加圧雰囲気と同等の強度付与を行い得ることが確認できた。さらに、水と接触させて加熱した場合は120℃以上の高温でも良いことが実施例8により分かった。このことは周囲温度が120℃以上の恒温であっても、静電紡糸繊維シートに浸透した水の蒸発による潜熱の影響で静電紡糸不織布自体が、概ね100℃に保持されるためと考えられる。   Further, in Example 6 in which steam treatment was performed as a system opened under atmospheric pressure, and Example 7 in which the moisture and fibers were brought into contact with each other by being immersed in water at room temperature, the atmosphere was at a predetermined temperature. From comparison with Comparative Example 3, it was confirmed that the same strength as that of a sealed and pressurized atmosphere such as an autoclave could be imparted. Further, Example 8 shows that when heated in contact with water, the temperature may be as high as 120 ° C. or higher. This is considered to be because the electrospun nonwoven fabric itself is maintained at approximately 100 ° C. due to the influence of latent heat due to the evaporation of water that has permeated the electrospun fiber sheet even when the ambient temperature is a constant temperature of 120 ° C. or higher. .

さらに、静電紡糸不織布の樹脂構成を共重合PANとした実施例9と比較例5との対比から、本発明の効果は、所謂、ホモ重合によるPANに限定されるものではなく、アクリロニトリルとアクリル酸との共重合PANでも確認された。これらのことから、本発明の方法は、これら特定のPANを含む、種々のアクリル系樹脂に応用し得るものである。   Further, from the comparison between Example 9 and Comparative Example 5 in which the resin composition of the electrospun nonwoven fabric is copolymerized PAN, the effect of the present invention is not limited to so-called homopolymerized PAN, but acrylonitrile and acrylic. It was also confirmed by PAN copolymerized with acid. From these facts, the method of the present invention can be applied to various acrylic resins containing these specific PANs.

Claims (2)

静電紡糸不織布と水分とが接触する状態で、60℃以上の温度雰囲気下で前記静電紡糸不織布を60℃以上120℃以下の温度に保持することを特徴とする静電紡糸不織布の強度付与方法。 Strength imparting of an electrospun nonwoven fabric, characterized in that the electrospun nonwoven fabric is maintained at a temperature of 60 ° C. or higher and 120 ° C. or lower in a temperature atmosphere of 60 ° C. or higher in a state where the electrospun nonwoven fabric is in contact with moisture. Method. 前記静電紡糸不織布がアクリル系樹脂からなることを特徴とする請求項1に記載の静電紡糸不織布の強度付与方法。 The method for imparting strength to an electrospun nonwoven fabric according to claim 1, wherein the electrospun nonwoven fabric is made of an acrylic resin.
JP2007078147A 2007-03-26 2007-03-26 Method for imparting strength to electrospun nonwoven fabric Active JP5128155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078147A JP5128155B2 (en) 2007-03-26 2007-03-26 Method for imparting strength to electrospun nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078147A JP5128155B2 (en) 2007-03-26 2007-03-26 Method for imparting strength to electrospun nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2008240165A true JP2008240165A (en) 2008-10-09
JP5128155B2 JP5128155B2 (en) 2013-01-23

Family

ID=39911835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078147A Active JP5128155B2 (en) 2007-03-26 2007-03-26 Method for imparting strength to electrospun nonwoven fabric

Country Status (1)

Country Link
JP (1) JP5128155B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913252A (en) * 1995-06-28 1997-01-14 Japan Vilene Co Ltd Composite nonwoven fabric and interlining cloth using the same
JP2001055620A (en) * 1999-08-11 2001-02-27 Japan Exlan Co Ltd Acrylic fiber suitable for production of nonwoven fabric
JP2002088639A (en) * 2000-09-18 2002-03-27 Unitika Ltd Heating roll
JP2006507428A (en) * 2003-02-24 2006-03-02 ハ−ヨン キム Method for producing continuous filament made of nanofiber
JP2007063683A (en) * 2005-08-29 2007-03-15 Hyogo Prefecture Silica nonwoven fabric spun by electrostatic spray method and method for producing the same
JP2008013872A (en) * 2006-07-05 2008-01-24 Teijin Techno Products Ltd Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913252A (en) * 1995-06-28 1997-01-14 Japan Vilene Co Ltd Composite nonwoven fabric and interlining cloth using the same
JP2001055620A (en) * 1999-08-11 2001-02-27 Japan Exlan Co Ltd Acrylic fiber suitable for production of nonwoven fabric
JP2002088639A (en) * 2000-09-18 2002-03-27 Unitika Ltd Heating roll
JP2006507428A (en) * 2003-02-24 2006-03-02 ハ−ヨン キム Method for producing continuous filament made of nanofiber
JP2007063683A (en) * 2005-08-29 2007-03-15 Hyogo Prefecture Silica nonwoven fabric spun by electrostatic spray method and method for producing the same
JP2008013872A (en) * 2006-07-05 2008-01-24 Teijin Techno Products Ltd Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric

Also Published As

Publication number Publication date
JP5128155B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5124616B2 (en) Method for producing nanofilament or microfiber capable of separation and opening
JP5738928B2 (en) Electrospinning of PTFE containing high viscosity materials
JP4076556B2 (en) Nonwoven fabric and method for producing the same
Niu et al. Upward needleless electrospinning of nanofibers
Carrizales et al. Thermal and mechanical properties of electrospun PMMA, PVC, Nylon 6, and Nylon 6, 6
EP2484431A2 (en) Nanofiber membrane for western blot and preparation method thereof
US20080261043A1 (en) Method for Producing Nanofibres and Mesofibres by the Electrospinning of Colloidal Dispersions
US20060057377A1 (en) Electrospun electroactive polymers
US20150315724A1 (en) Method for production of polymeric nanofibers by spinning of solution or melt of polymer in electric field, and a linear formation from polymeric nanofibers prepared by this method
JP2008303521A (en) Conjugate fiber structure
CN103924384A (en) Preparation method of constant-hydrophilic graft-modified chlorinated polymer micro/nano fiber film
BR112014025720B1 (en) non-woven article grafted with copolymer and process for its preparation
Lee et al. Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis
Raghavan et al. Control of Inter-fiber Fusing for nanofiber Webs via Electrospinning
JP5277109B2 (en) Method for producing ultrafine fiber nonwoven fabric and ultrafine fiber nonwoven fabric
JP5128155B2 (en) Method for imparting strength to electrospun nonwoven fabric
Zubir et al. Electrospinning of PLA with DMF: Effect of polymer concentration on the bead diameter of the electrospun fibre
JP2011052337A (en) Electrospinning apparatus
JP4773902B2 (en) Nanofiber nonwoven fabric and method for producing the same
JP4056361B2 (en) Polyglycolic acid fiber structure and method for producing the same
JP4773901B2 (en) Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric
JP5791195B2 (en) Nanofiber structure and method for producing the same
SIRIN et al. Polymer nanofibers via electrospinning: Factors affecting nanofiber quality
JP3487722B2 (en) Composite fibers that can be made into fine fibers
JP7153826B1 (en) fiber sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3