JP2008013872A - Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric - Google Patents

Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric Download PDF

Info

Publication number
JP2008013872A
JP2008013872A JP2006185483A JP2006185483A JP2008013872A JP 2008013872 A JP2008013872 A JP 2008013872A JP 2006185483 A JP2006185483 A JP 2006185483A JP 2006185483 A JP2006185483 A JP 2006185483A JP 2008013872 A JP2008013872 A JP 2008013872A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
polymetaphenylene isophthalamide
nanofiber nonwoven
producing
nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006185483A
Other languages
Japanese (ja)
Other versions
JP4773901B2 (en
Inventor
Aya Kakazu
あや 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2006185483A priority Critical patent/JP4773901B2/en
Publication of JP2008013872A publication Critical patent/JP2008013872A/en
Application granted granted Critical
Publication of JP4773901B2 publication Critical patent/JP4773901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for increasing the strength of a polymetaphenylene isophthalamide nanofiber nonwoven fabric prepared by an electrospinning method. <P>SOLUTION: The method is to carry out a wet heat-treatment of the nonwoven fabric having a single fiber diameter of 30-500 nm in steam or boiling water. In the method, the nonwoven fabric in a such a state as to be fixed in optional biaxial directions at a constant length without drawing is especially wet heat-treated in steam or boiling water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はエレクトロスピニング法により作製したポリメタフェニレンイソフタルアミドナノファイバー不織布の強度を増大させる方法に関するものである。   The present invention relates to a method for increasing the strength of a polymetaphenylene isophthalamide nanofiber nonwoven fabric produced by electrospinning.

従来よりナノファイバーの作製方法として、海島複合紡糸繊維や海島混合紡糸繊維の海成分を溶剤により除去して島成分をナノファイバー化する方法が知られている。
例えば特開2004−162244号公報の実施例1には、NY6を島成分とし、共重合PETを海成分とする海島型ポリマーブレンド紡糸法により作製されたナノファイバーは、単糸繊度が1×10−7〜2×10−4dtexと非常に細く、単糸繊度のバラツキも少ないものが開示されている。この方式のナノファイバーは通常の繊維と同様の延伸工程を経ているため、分子の結晶化度や配向状態が高く、強度が高いものが得られるが、しかしながら紡糸後或いは不織布化後に多量の海成分を溶剤により除去してナノファイバー化するため、除去した成分の処理が煩雑且つ不経済なものであり、環境問題としても好ましくない。また現状では熱溶融性ポリマーしか用いることができず、溶融紡糸できない樹脂については適用できないという問題点があった。
Conventionally, as a method for producing nanofibers, a method is known in which sea components of sea-island composite spun fibers or sea-island mixed spun fibers are removed with a solvent to convert the island components into nanofibers.
For example, in Example 1 of JP-A No. 2004-162244, nanofibers produced by the sea-island type polymer blend spinning method using NY6 as an island component and copolymerized PET as a sea component have a single yarn fineness of 1 × 10. A very thin film of −7 to 2 × 10 −4 dtex and a small variation in single yarn fineness is disclosed. Since nanofibers of this system are subjected to the same drawing process as normal fibers, high molecular crystallization degree and orientation and high strength can be obtained. Is removed with a solvent to form nanofibers, and the treatment of the removed components is complicated and uneconomical, which is not preferable as an environmental problem. At present, only a hot-melt polymer can be used, and there is a problem that it cannot be applied to a resin that cannot be melt-spun.

又特開2002−249966号公報によれば、エレクトロスピニング法は静電反発作用を利用し、ポリマーの溶剤溶液を口金などから引き出すことによってナノファイバーを作製する方法であり、繊維径は、印加電圧、溶液濃度、スプレーの距離、エレクトロスピニング環境の温湿度を調節することによりコントロールすることが可能であり、海島複合紡糸繊維のように成分の除去や廃棄の問題がなく有利な方法といえる。また適切な溶剤があればどのような樹脂であってもナノファイバー化が可能であるというメリットもある。
しかしながら、エレクトロスピニング法により作製されたナノファイバー不織布は、延伸工程を経ていないため強度が弱く、取扱いが非常に困難であるという欠点があった。
According to Japanese Patent Laid-Open No. 2002-249966, the electrospinning method is a method for producing nanofibers by drawing out a solvent solution of a polymer from a base or the like by utilizing electrostatic repulsion, and the fiber diameter is determined by applying an applied voltage. It can be controlled by adjusting the solution concentration, the spray distance, and the temperature and humidity of the electrospinning environment, and it can be said to be an advantageous method without the problem of component removal and disposal like the sea-island composite spun fiber. In addition, there is an advantage that nanofibers can be formed with any resin as long as an appropriate solvent is present.
However, the nanofiber nonwoven fabric produced by the electrospinning method has a drawback that it has a low strength because it has not undergone a stretching process and is very difficult to handle.

特開2005−097753号公報にはエレクトロスピニング法によって作製したナノファイバーからなる繊維シートを、ガラス転移温度付近の温度で一軸方向に延伸することによって、延伸軸方向の強度を向上させて取扱い性を向上させる方法が提案されている。確かに延伸軸方向の強度は向上し、破れにくくなって取扱い性が向上するものの、延伸軸方向とは異なる軸方向については物性や機能、特に強度が改善されないという問題点や、又目付けが3.0g/m以下の低目付では、延伸倍率を2倍以上で延伸すると、延伸時にシートの破断が生じるという問題点があった。
こういった現状に鑑み、エレクトロスピニング法により作製されたナノファイバー不織布の高強度化の方法が大いに望まれていた。
In JP-A-2005-097553, a fiber sheet made of nanofibers produced by an electrospinning method is stretched in a uniaxial direction at a temperature near the glass transition temperature, thereby improving the strength in the stretching axis direction and improving the handling property. A way to improve it has been proposed. Certainly, the strength in the direction of the stretching axis is improved and the handling property is improved because it is difficult to break, but the physical properties and functions, particularly the strength, are not improved in the axial direction different from the stretching axis direction, and the basis weight is 3 With a low basis weight of 0.0 g / m 2 or less, there was a problem that when the stretching ratio was stretched by 2 times or more, the sheet was broken during stretching.
In view of these circumstances, a method for increasing the strength of nanofiber nonwoven fabrics produced by electrospinning has been highly desired.

特開2004−162244号公報JP 2004-162244 A 特開2002−249966号公報JP 2002-249966 A 特開2005−097753号公報Japanese Patent Laying-Open No. 2005-097553

本発明の目的は、上記従来技術の有する問題点を解決し、エレクトロスピニング法によって作製したポリメタフェニレンイソフタルアミドナノファイバー不織布の強度を増大させる方法に関するものである。   The object of the present invention relates to a method for solving the above-mentioned problems of the prior art and increasing the strength of a polymetaphenylene isophthalamide nanofiber nonwoven fabric produced by electrospinning.

エレクトロスピニング法により作製した単繊維径の直径が30〜500nmからなるポリメタフェニレンイソフタルアミドナノファイバーよりなる不織布を水蒸気中もしくは沸水中で湿熱処理すること、好ましくは任意の直交二軸方向に一定長に固定した状態で行うことにより達成される。   A non-woven fabric made of polymetaphenylene isophthalamide nanofibers having a single fiber diameter of 30 to 500 nm prepared by electrospinning is wet-heated in water vapor or boiling water, preferably in a fixed length in any orthogonal biaxial direction This is achieved by performing the operation in a fixed state.

本発明により、薄手でありながら強度の高いナノファイバー不織布が得られるので、取り扱い性も向上し、特に耐熱用途として使用実績のあるポリメタフェニレンイソフタルアミドのナノファイバー不織布であるため、様々な用途に拡大できる。   According to the present invention, a thin nanofiber nonwoven fabric that is thin but has high strength can be obtained, so that the handleability is improved, and in particular, it is a polymetaphenylene isophthalamide nanofiber nonwoven fabric that has been used as a heat-resistant application. Can be expanded.

本発明において使用するポリメタフェニレンイソフタルアミド樹脂としては、特に限定は無く、公知のポリメタフェニレンイソフタルアミド樹脂を用いることができる。
ポリメタフェニレンイソフタルアミドを溶解させる溶媒は特に限定されるものではないが、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、1−メチル−2ピロリドン等を挙げることが出来、これらを単独又は混合して用いることができる。
The polymetaphenylene isophthalamide resin used in the present invention is not particularly limited, and a known polymetaphenylene isophthalamide resin can be used.
The solvent for dissolving polymetaphenylene isophthalamide is not particularly limited, and examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and 1-methyl-2-pyrrolidone. These can be used alone or in combination.

更に、上記ポリメタフェニレンイソフタルアミド溶液にアルカリ金属塩を添加することが好ましく、特に限定はないが、塩化リチウム、塩化ナトリウム、塩化カルシウム、塩化カリウム、塩化マグネシウムなどが挙げられる。   Furthermore, it is preferable to add an alkali metal salt to the polymetaphenylene isophthalamide solution, and there is no particular limitation, and examples thereof include lithium chloride, sodium chloride, calcium chloride, potassium chloride, and magnesium chloride.

これらを好ましく用いてポリメタフェニレンイソフタルアミドの紡糸溶液を作成する。好ましい実施態様としては、ポリメタフェニレンイソフタルアミド樹脂を主成分とする粉末状体を、塩化リチウムが0.1〜5.0wt%添加された溶媒N,N−ジメチルアセトアミドに0.1〜20.0wt%の重量比で溶解させたものを挙げることが出来る。   These are preferably used to prepare a spinning solution of polymetaphenylene isophthalamide. As a preferred embodiment, a powdery body mainly composed of polymetaphenylene isophthalamide resin is added to a solvent N, N-dimethylacetamide containing 0.1 to 5.0 wt% of lithium chloride in an amount of 0.1 to 20. What was melt | dissolved by the weight ratio of 0 wt% can be mentioned.

エレクトロスピニング法によるナノファイバー不織布の作製は適宜な装置を用いて行うことができるが、ノズルなどの紡糸溶液吐出部から、上記紡糸液を電界によって曳糸することが一般的であり、特に限定するものではないが、電圧は5.0〜50kV、紡糸距離は5.0〜50cm、単位距離あたりの電圧に換算すると、0.5〜5.0kv/cmであるのが好ましい。   The nanofiber nonwoven fabric can be produced by an electrospinning method using an appropriate apparatus. However, the spinning solution is generally spun by an electric field from a spinning solution discharge section such as a nozzle, and is particularly limited. Although not intended, the voltage is preferably 5.0 to 50 kV, the spinning distance is 5.0 to 50 cm, and the voltage per unit distance is preferably 0.5 to 5.0 kv / cm.

曳糸したナノファイバーを均一に積層方法として特に限定はないが、例えば、ノズル部やナノファイバーのコレクター部をトラバースさせる方法が挙げられる。
こうして作製される本発明のポリメタフェニレンイソフタルアミドナノファイバーの繊維径、即ち単繊維の直径としては、30〜500nmの範囲とするのが好ましい。30nm未満の単繊維径の場合、不織布はビーズ(節糸状のポリマーの塊)が多く発生し好ましくない。又該不織布の単繊維径が500nmを超えるの場合は、繊維径のバラツキが大きくなり、均一な積層ができない。好ましいポリメタフェニレンイソフタルアミドナノファイバーの単繊維径は50〜300nmである。
Although there is no particular limitation on the method for uniformly laminating the nanofibers that have been twisted, for example, a method of traversing the nozzle portion or the collector portion of the nanofiber can be mentioned.
The fiber diameter of the polymetaphenylene isophthalamide nanofiber of the present invention thus produced, that is, the diameter of the single fiber is preferably in the range of 30 to 500 nm. In the case of a single fiber diameter of less than 30 nm, the nonwoven fabric is not preferable because a large number of beads (node-like polymer lump) are generated. When the single fiber diameter of the nonwoven fabric exceeds 500 nm, the fiber diameter varies greatly and uniform lamination cannot be performed. A preferable single fiber diameter of the polymetaphenylene isophthalamide nanofiber is 50 to 300 nm.

次に不織布の強度をアップする方法について説明する。本発明は上記不織布を水蒸気中もしくは沸水中で湿熱処理することにより、好ましくは不織布を任意の直交二軸方向に、延伸することなく、一定長に固定した状態で上記湿熱処理することにより強度がアップするという知見に基づき完成された。   Next, a method for increasing the strength of the nonwoven fabric will be described. In the present invention, the non-woven fabric is subjected to wet heat treatment in water vapor or boiling water, and preferably the non-woven fabric is stretched in the predetermined length without stretching in any orthogonal biaxial direction, so that the strength can be increased. It was completed based on the knowledge of up.

湿熱処理の条件としては、沸水中に浸漬する、又は100℃水蒸気中で処理することが好ましい。なかでも沸水処理が好ましい。ポリメタフェニレンイソフタルアミドのフィラメントを紡糸する際、急激な結晶化を防ぐために100℃以下の低温における湿熱延伸工程を行うが、ポリメタフェニレンイソフタルアミドナノファイバー不織布においても同様の湿熱処理を実施することで、乾熱処理を伴わずとも、物性を改善させることが可能である。とくに湿熱処理温度の限定はないが、100℃とすることが好ましい。   As conditions for the wet heat treatment, it is preferable to immerse in boiling water or to treat in 100 ° C. water vapor. Of these, boiling water treatment is preferred. When spinning a filament of polymetaphenylene isophthalamide, a wet heat stretching process is performed at a low temperature of 100 ° C. or lower in order to prevent rapid crystallization, but the same wet heat treatment should also be performed on the polymetaphenylene isophthalamide nanofiber nonwoven fabric. Thus, physical properties can be improved without dry heat treatment. There is no particular limitation on the wet heat treatment temperature, but it is preferably 100 ° C.

更に上記湿熱処理は不織布の任意の直交二軸方向で、延伸することなく、一定長に固定して行うことが好ましい。エレクトロスピニング法では繊維軸が無配向に積層されているため、ほぼすべての方向を固定して行うことが好ましいが、実用性からいって、任意の直交二軸方向で一定長に固定して熱処理を行うことが好ましい。不織布を直交する二軸方向に、延伸することなく、一定長に固定して熱処理するとは、例えば不織布の長さ方向と幅方向に不織布の長さが固定されて変化しない状態で熱処理することをさす。また同等の効果が得られるのであれば、不織布は弛んだ状態、又は弛みの生じない状態で固定されていても良い。このように延伸することなく、一定長に固定された状態で処理するため、目付の低い不織布においても延伸によって破断が生じることなく処理が可能である。特に積層されているナノファイバー量が少なく、1.0g/m程度の低目付のナノファイバー不織布では効果的である。本方法に適用できるポリメタフェニレンイソフタルアミドナノファイバー不織布の目付は特に限定するものではないが、好ましくは0.5〜5.0g/mである。更に連続式に処理を行う場合には不織布の進行方向(長さ方向)とそれと直交方向(幅方向)で固定して熱処理することが好ましい。工業的に二軸方向で、延伸することなく、一定長に固定して熱処理を実施する方法としては、コレクターを回転ドラム等とし、それに捕集した不織布を連続的に直接ピンテンターやクリップテンターに導入し、長さ方向、幅方向を一定長に固定して湿熱処理を行うか、又は一旦コレクターから連続的に巻き取った後に、ピンテンターやクリップテンターに導入し、長さ方向、幅方向を一定に固定して湿熱処理を行うことができる。又必要に応じてナノファイバー不織布をニードルパンチして軽く絡合させた後行うことも好ましい。 Further, the wet heat treatment is preferably carried out in any orthogonal biaxial direction of the non-woven fabric and fixed to a certain length without stretching. In the electrospinning method, since the fiber axes are laminated in a non-oriented manner, it is preferable to carry out fixing in almost all directions, but for practical reasons, it is fixed to a fixed length in any orthogonal biaxial direction and heat treated. It is preferable to carry out. Fixing a non-woven fabric in a biaxial direction perpendicular to it and fixing it to a certain length and heat-treating means, for example, heat-treating the non-woven fabric in the length direction and width direction so that the length of the non-woven fabric is fixed and does not change. Sure. Moreover, as long as an equivalent effect is acquired, the nonwoven fabric may be fixed in a slack state or in a state where no slack occurs. Thus, since it processes in the state fixed to fixed length, without extending | stretching, even if it is a nonwoven fabric with a low fabric weight, it can process, without a fracture | rupture arising by extending | stretching. In particular, the amount of laminated nanofibers is small, and a nanofiber nonwoven fabric with a low basis weight of about 1.0 g / m 2 is effective. The basis weight of the polymetaphenylene isophthalamide nanofiber nonwoven fabric applicable to this method is not particularly limited, but is preferably 0.5 to 5.0 g / m 2 . Furthermore, when processing in a continuous type, it is preferable to heat-process by fixing in the advancing direction (length direction) and the orthogonal direction (width direction) of a nonwoven fabric. Industrially, in a biaxial direction, without stretching, the heat treatment is carried out with a fixed length. The collector is a rotating drum and the nonwoven fabric collected is continuously introduced directly into the pin tenter and clip tenter. Then, moist heat treatment is performed with the length direction and width direction fixed to a certain length, or after continuous winding from the collector, it is introduced into a pin tenter or clip tenter to make the length direction and width direction constant. It can be fixed and wet heat treated. Moreover, it is also preferable to carry out after nanofiber nonwoven fabric is needle-punched and lightly entangled as necessary.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、実施例における各物性は、以下の方法により求めたものである。
(1)目付
21.0cm×25.0cmにおける重量を量り、1mあたりに換算した。結果を表1に示す。
(2)引張強度
テンシロン万能試験機で、試長30×50mm、引張速度20mm/分で伸長し、破断時の強度を測定した。5回の測定を行い、その平均値をポリメタフェニレンイソフタルアミドナノファイバーの目付で除したものを強度とした。
Hereinafter, the present invention will be described in more detail based on examples. In addition, each physical property in an Example is calculated | required with the following method.
(1) Weight per unit area 21.0 cm × 25.0 cm was measured and converted per 1 m 2 . The results are shown in Table 1.
(2) Tensile strength Using a Tensilon universal testing machine, the sample was stretched at a test length of 30 × 50 mm and a tensile speed of 20 mm / min, and the strength at break was measured. The measurement was performed five times, and the average value was divided by the basis weight of the polymetaphenylene isophthalamide nanofibers to determine the strength.

[実施例1]
ポリメタフェニレンイソフタルアミドパウダーが10重量%、塩化リチウムが1重量%となるようにN,N−ジメチルアセトアミドに溶解させたものを紡糸溶液とした。該溶液を、電圧は20kV、コレクターまでの距離を10cmとし、ナノファイバーを積層した。エレクトロスピニングを実施した。得られたナノファイバー不織布を走査型電子顕微鏡で測定したところ、繊維径は50〜100nmであり、平均繊維径が30nm以下と500nm以上の不織布は存在しなかった。
[Example 1]
A solution in which polymetaphenylene isophthalamide powder was dissolved in N, N-dimethylacetamide so that the content of polymetaphenylene isophthalamide powder was 10% by weight and lithium chloride was 1% by weight was used as a spinning solution. The solution was laminated with nanofibers with a voltage of 20 kV and a distance to the collector of 10 cm. Electrospinning was performed. When the obtained nanofiber nonwoven fabric was measured with a scanning electron microscope, the fiber diameter was 50 to 100 nm, and nonwoven fabrics having an average fiber diameter of 30 nm or less and 500 nm or more did not exist.

このようにして得られた不織布を、100mm×180mmのステンレス製枠に固定し、水蒸気を充満させ、100℃に加熱したプレッシャークッカーを用い、湿熱処理を行った後、30mm×50mmの試験片を採取し、引張強度を測定した。得られた結果を表1に示す。   The nonwoven fabric thus obtained was fixed to a 100 mm × 180 mm stainless steel frame, filled with water vapor, subjected to wet heat treatment using a pressure cooker heated to 100 ° C., and then a 30 mm × 50 mm test piece was obtained. The sample was collected and the tensile strength was measured. The obtained results are shown in Table 1.

[実施例2]
水蒸気を充満させ、100℃に加熱したプレッシャークッカーの代わりに、沸水に充たされたバットを用い、湿熱処理をした以外は実施例1の操作を行った。得られた結果を表1に示す。
[Example 2]
The operation of Example 1 was performed except that a wet vat was used instead of the pressure cooker that was filled with water vapor and heated to 100 ° C., and was subjected to wet heat treatment. The obtained results are shown in Table 1.

[実施例3]
実施例1のエレクトロスピニングにより作製した不織布を150mm×180mmに切断し、一方の長軸をステンレスの棒に固定させ、他の軸はどこにも接触しないように弛緩した状態で、水蒸気を充満させ、100℃に加熱したプレッシャークッカー中にて5分間の湿熱処理を行った。その後、30mm×50mmの試験片を採取し、引張強度を測定した。得られた結果を表1に示す。
[Example 3]
The non-woven fabric produced by electrospinning in Example 1 was cut into 150 mm × 180 mm, one long axis was fixed to a stainless steel rod, and the other axis was relaxed so as not to touch anywhere, and was filled with water vapor, Wet heat treatment was performed for 5 minutes in a pressure cooker heated to 100 ° C. Thereafter, a test piece of 30 mm × 50 mm was collected and measured for tensile strength. The obtained results are shown in Table 1.

[実施例4]
水蒸気を充満させ、100℃に加熱したプレッシャークッカーの代わりに、沸水に充たされたバットを用いた以外は実施例3の操作を行った。得られた結果を表1に示す。
[Example 4]
The operation of Example 3 was performed except that a vat filled with boiling water was used instead of the pressure cooker filled with water vapor and heated to 100 ° C. The obtained results are shown in Table 1.

[比較例1]
湿熱処理しなかった以外は実施例1と同様の操作を行った。得られた結果を表1に示す。
[Comparative Example 1]
The same operation as in Example 1 was performed except that the wet heat treatment was not performed. The obtained results are shown in Table 1.

[比較例2]
水蒸気を充満させ、100℃に加熱したプレッシャークッカーの代わりに、200℃に加熱された電気炉を用い、乾熱処理を行った以外は実施例3の操作を行った。得られた結果を表1に示す。
[Comparative Example 2]
The operation of Example 3 was performed except that a dry heat treatment was performed using an electric furnace heated to 200 ° C. instead of a pressure cooker filled with water vapor and heated to 100 ° C. The obtained results are shown in Table 1.

[比較例3]
水蒸気を充満させ、100℃に加熱したプレッシャークッカーの代わりに、300℃に加熱された電気炉を用い、乾熱処理を行った以外は実施例3の操作を行った。得られた結果を表1に示す。
[Comparative Example 3]
The operation of Example 3 was performed except that a dry heat treatment was performed using an electric furnace heated to 300 ° C. instead of the pressure cooker filled with water vapor and heated to 100 ° C. The obtained results are shown in Table 1.

Figure 2008013872
Figure 2008013872

不織布全体で均一な強度のナノファイバー不織布が得られ、特に耐熱用途として使用実績のあるポリメタフェニレンイソフタルアミドのナノファイバー不織布であるため、耐熱性フィルター、電子基板材料や支持体などに好適に適用できる。   A nanofiber nonwoven fabric with uniform strength can be obtained throughout the nonwoven fabric. Especially, it is a polymetaphenylene isophthalamide nanofiber nonwoven fabric that has been used for heat-resistant applications, so it is suitable for heat-resistant filters, electronic substrate materials and supports. it can.

Claims (3)

エレクトロスピニング法により作製した単繊維径が30〜500nmのポリメタフェニレンイソフタルアミドナノファイバーからなる不織布を、水蒸気中もしくは沸水中で湿熱処理することを特徴とするポリメタフェニレンイソフタルアミドナノファイバー不織布の製造方法。   Production of a polymetaphenylene isophthalamide nanofiber nonwoven fabric characterized by wet-heat-treating a nonwoven fabric made of polymetaphenylene isophthalamide nanofibers having a single fiber diameter of 30 to 500 nm produced by electrospinning in water vapor or boiling water Method. 湿熱処理を、上記不織布の任意の直交二軸方向に、延伸することなく、一定長に固定した状態で行う請求項1記載のポリメタフェニレンイソフタルアミドナノファイバー不織布の製造方法。   The method for producing a polymetaphenylene isophthalamide nanofiber nonwoven fabric according to claim 1, wherein the wet heat treatment is performed in a state of being fixed to a certain length without stretching in any orthogonal biaxial direction of the nonwoven fabric. 不織布の目付が0.5〜5g/mである請求項1〜2いずれか記載のポリメタフェニレンイソフタルアミドナノファイバー不織布の製造方法。 The method for producing a polymetaphenylene isophthalamide nanofiber nonwoven fabric according to any one of claims 1 to 2 , wherein the basis weight of the nonwoven fabric is 0.5 to 5 g / m2.
JP2006185483A 2006-07-05 2006-07-05 Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric Expired - Fee Related JP4773901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185483A JP4773901B2 (en) 2006-07-05 2006-07-05 Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185483A JP4773901B2 (en) 2006-07-05 2006-07-05 Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2008013872A true JP2008013872A (en) 2008-01-24
JP4773901B2 JP4773901B2 (en) 2011-09-14

Family

ID=39071166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185483A Expired - Fee Related JP4773901B2 (en) 2006-07-05 2006-07-05 Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4773901B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240165A (en) * 2007-03-26 2008-10-09 Japan Vilene Co Ltd Method for providing nonwoven fabric of electrostatic spinning with strength
KR101275058B1 (en) 2011-08-17 2013-06-17 웅진케미칼 주식회사 Electro spinning method of Meta Aramid and Meta Aramid fiber manufactured therefrom
JP2017061120A (en) * 2015-09-25 2017-03-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Prepreg and manufacturing method therefor, printed circuit board using the same and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240165A (en) * 2007-03-26 2008-10-09 Japan Vilene Co Ltd Method for providing nonwoven fabric of electrostatic spinning with strength
KR101275058B1 (en) 2011-08-17 2013-06-17 웅진케미칼 주식회사 Electro spinning method of Meta Aramid and Meta Aramid fiber manufactured therefrom
JP2017061120A (en) * 2015-09-25 2017-03-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Prepreg and manufacturing method therefor, printed circuit board using the same and manufacturing method therefor

Also Published As

Publication number Publication date
JP4773901B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4695644B2 (en) Method for producing polybenzazole fiber by removing polyphosphoric acid
KR101206562B1 (en) Spun isotropic pitch-based carbon fiber yarn, composite yarn and woven fabric made by using the same, and processes for the production of them
JP2011500977A5 (en)
JP2011153397A (en) Method for producing separately openable nano-filament or microfiber
JP2010229582A (en) Method for producing para-type wholly aromatic copolyamide fiber
JP4773901B2 (en) Method for producing polymetaphenylene isophthalamide nanofiber nonwoven fabric
JP4773902B2 (en) Nanofiber nonwoven fabric and method for producing the same
JP2008013864A (en) Method for producing nanofiber nonwoven fabric
KR20160012225A (en) Organic resin non-crimped staple fiber
JP2015508459A (en) Method for removing sulfur from fibers using halogenate ion exchange
JP5960284B2 (en) Sulfur-containing imidazole fiber with ion-bonded halide
JP2011202308A (en) Para-type whole aromatic copolyamide fiber and method for producing the same
JP2011226023A (en) Stretch-broken spun yarn composed of meta-type wholly aromatic polyamide
JP6013510B2 (en) Method for removing sulfur from fibers using aqueous acid
JP6013511B2 (en) Method for removing sulfur from fibers using ion exchange of monovalent salts
JP5955981B2 (en) Process for preparing yarns obtained from aramid copolymer fibers having low residual sulfur
JP2012229509A (en) Meta-type whole aromatic polyamide fiber fabric
JP2010240581A (en) Filter material
JP2009001917A (en) Method for producing lyotropic liquid crystal polymer multifilament
JP7267821B2 (en) Method for producing recycled meta-type wholly aromatic polyamide fiber
JP2015506421A (en) Method for removing sulfur from fibers using halogen salt ion exchange
TWI573906B (en) Elastic nonwoven fabric and method for producing thereof
JP2010260006A (en) Filter material
JP2004339627A (en) Method for producing carbonaceous fiber, and carbonaceous fiber and activated carbon fiber
JP2010227839A (en) High-strength filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees