JPS6233328B2 - - Google Patents

Info

Publication number
JPS6233328B2
JPS6233328B2 JP14406680A JP14406680A JPS6233328B2 JP S6233328 B2 JPS6233328 B2 JP S6233328B2 JP 14406680 A JP14406680 A JP 14406680A JP 14406680 A JP14406680 A JP 14406680A JP S6233328 B2 JPS6233328 B2 JP S6233328B2
Authority
JP
Japan
Prior art keywords
stretching
temperature
ratio
fibers
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14406680A
Other languages
Japanese (ja)
Other versions
JPS5771414A (en
Inventor
Yukio Shinkai
Takeji Ootani
Hiroaki Yoneyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP14406680A priority Critical patent/JPS5771414A/en
Publication of JPS5771414A publication Critical patent/JPS5771414A/en
Publication of JPS6233328B2 publication Critical patent/JPS6233328B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアクリロニトリル系合成繊維の新規な
製造方法に関する。更に詳しくはアクリロニトリ
ル系重合体溶液を紡糸し、特定の条件下に延伸す
ることによつて抗ピル性に優れたアクリロニトリ
ル系合成繊維を製造することにある。 衣服の着用時に発生するピルはその美観や風合
を著しく損なうものである。合成繊維が一般にピ
ルの発生が大なことからその改質は重要な課題と
なつている。特にアクリロニトリル(ANと呼称
する)系繊維はその主用途がスパンニツト分野で
あるため、ピルの発生が起り易く抗ピル化が強く
要請される。 AN系繊維のとりわけ原綿段階で抗ピル性を付
与する基本的な考え方としては、(イ)ピル発生の主
因となる毛羽を生ぜしめない条件の選択、(ロ)毛羽
が発生してもそれがピルを形成する以前に脱落せ
しめる方法、の2つの方向があり、前者は一般に
製品の構成・用途が限定され、又その効果も恒久
性に乏しいのに対し、第2の方向は製品化の自由
度も比較的大きくその効果も十分に期待される。
この場合の具体的手段としては、従来より単繊維
の強伸度的性質の低下、殊にループ強伸度あるい
は結節強伸度を低下させる方法が多く試みられて
いる。 結節強伸度は抗ピル性と密接な関係を有し、
AN系合成繊維に限らず、従来抗ピル性の良好な
素材は、結節強度(DKS)と結節伸度(DKE)
の積DKS×DKE値が小さくJIS−L1074に準じて
測定するとほぼ25以下の値となつている。本発明
ではこの積をタフネスと定義する。 かかるタフネスの低い繊維は、分子構造的にあ
るいはもう少しマクロ的にもいわゆる欠陥部分が
発達しており、いいかえれば破断挙動において脆
性点として作用することが伺える。 一方AN系合成繊維に対しては、従来の方法で
は必ずしも十分な抗ピル特性が達成されていな
い。その理由はAN系合成繊維は一般に塑性変形
量が大きく結果として上記タフネスが非常に大き
いことに依る。従つてこのタフネス低下のために
は繊維に極端な脆性点を導入することが必要で、
その結果としてマクロな損傷が発生し紡績・加工
操作性を低下せしめることになる。 本発明者等はかかる脆性点導入法と抗ピル化に
ついて種々検討した結果、新規な手附を見出し本
発明に到達した。 本発明の要旨とするところは、AN系重合体溶
液を紡糸したのち、 40〜60℃の水中に導き式()で規定する実効
延伸比が0.3〜0.8の範囲で延伸し、ついで洗浄
し、然る後緩和熱処理を行なうことを特徴とする
AN系合成繊維の製造法に関する。 実効延伸比=採用延伸倍率/最大延伸倍率………(
) (但し、式中、最大延伸倍率とは延伸により繊維
が破断に至る最大の延伸倍率をいう) 本発明の技術思想は次のようなものである。即
ち、紡糸されたいわゆる未延伸糸は繊維構造上不
完全で強度が極めて低い。一般にはこれを延伸し
て配向度を上げ強度の向上を計る。これによつて
同時にDKSも傾向的に増大する。この際採用さ
れる延伸条件のうち、基本的な条件である温度
は、分子運動性の大きな温度領域、すなわち少く
ともAN系重合体のガラス転移点(Tg)以上の温
度が選択され、その延伸性を利用して十分な倍率
の延伸が採用される。一般にAN系重合体繊維の
製造に於ては、重合体組成によつて若干異なるも
のの、該温度領域として乾熱雰囲気ではほぼ100
℃以上、好ましい延伸温度としては140〜180℃
が、又熱水中等湿熱下に於てはほぼ80℃上、好ま
しい条件として熱水中95〜100℃が採用される。
仮にかかる温度よりも低い条件で若干の延伸を適
用する事があつても、ひき続Tg以上の温度で主
たる延伸を施し繊維構造を決定するのが従来の方
法である。 これに対し本発明はTgより低い温度領域での
延伸特性に着目したものである。すなわちTg以
下の温度領域では、該未延伸糸の分子運動性は半
凍結状態又は凍結状態にある。この凍結未延伸糸
を延伸すると、延伸点は伸び易い構造部分に集中
する傾向を有し、場合によつては典型的なネツキ
ング延伸に類似の延伸挙動を呈すると共に、未延
伸糸構造を保持した部分と比較的延伸配向した構
造要素が形成され、得られる繊維の物性は上記脆
性点を含む破断挙動を示すことが判つた。特に伸
度が低下しタフネスが減少する。かかる低温下で
採用可能な延伸倍率はTgを越える延伸の場合に
比しかなり小さくなるが、その範囲に於ては延伸
倍率の増加と共にDS、DKSが適度に向上するの
に反して、DKEが大きく低下し、目標とする結
節タフネス低下に寄与することが見出した。 以下本発明を実施に則して説明する。 本発明はAN系重合体を出発原料とする。かか
る重合体としてはANホモ重合体及びANと共重合
可能な単量体との共重合体のいずれも使用可能で
ある。共重合体中のANの含存量は少くとも40〜
50wt%以上、本発明の目的とする衣料用繊維の
場合一般には85wt%以上である。AN含有量は前
述したTgに若干の影響を及ぼすので留意しなけ
ばならないが、ANが40wt%以上の場合本発明の
効果は十分に満たされる。又該重合体の製造方法
は特に限定されない。 この重合体の通常の溶剤、例えばジメチルホル
ムアミド(DMFと呼称)、ジメチルアセトアミド
(DMACと呼称)、ジメチルスルホキシド等の有
機溶剤や硝酸、ロダン塩、塩化亜鉛等の無機物の
濃厚水溶液に溶解し紡糸用ドープを調製したの
ち、乾式、半乾−半湿式又は湿式法により紡糸し
て未延伸糸をつくる。得られた未延伸糸は洗浄し
て実質的に脱溶剤したのち本発明の低伸延伸を施
し繊維構造を決定する。 該未延伸糸は、紡糸法によつて異なるが通常繊
維重量に対し5〜50wt%の溶剤を含む。この残
存溶剤は次の延伸性に影響し、実質的に残存溶剤
を除去した繊維、すなわち残存溶剤が2wt%以下
の未延伸糸に比し延伸性がやや大きく、かつこの
延伸性からみた分子構造凍結温度すなわちTgが
后者に比べ約10℃程度低下することが判つた。こ
の様子を第1図に示した。第1図中1はAN/ア
クリル酸メチル/メタクリルスルホン酸ソーダ=
93.5/6/0.5(wt%)のAN系重合体を乾式紡糸
し、溶剤を含む6デニールの未延伸糸を水中で延
伸した際の延伸温度と破断延伸倍率との関係を示
したものであり、2は1の未延伸糸を熱水中定長
下で脱溶剤したものの水中延伸温度と破断延伸倍
率との関係を、3はポリアクリロニトリルの乾式
紡糸の水中延伸倍率と破断延伸倍率との関係を示
したものである。第1図に示した結果より溶剤の
存在する糸条の凍結温度は約60℃以下であり、溶
剤を実質的に含まない糸条は約70℃以下となるこ
とが判る。このことはこの温度は重合体の組成に
余り影響を受けないことを示している。このよう
な現象の解析から本発明の目的とする繊維を得る
いは延伸−洗浄工程の組合せに於て延伸温度とし
て約60℃以下の条件を適用するのがよいことを見
出した。一方、この延伸温度が余り低すぎると取
り得る延伸倍率が極度に小さくなるので通常は約
40℃以上とするのが好ましい。 一方、採用される延伸倍率については、かかる
低温下に於てもある程度以上の倍率を採用し性能
のバランスをとることが肝要で、これによつては
じめて繊維に脆性点が導入されかつ強度特性も維
持できる。延伸倍率は実効延伸比で0.3〜0.8の範
囲がよい。実効延伸比が0.3より小さいと得られ
る最終繊維の物性が極度に低く実用性が与えられ
ない。一方0.8を越えると延伸時毛羽の発生等
種々のトラブルの原因となる。好ましくは0.4〜
0.65の範囲を採用する。なお実効延伸比が計算上
0.3以上の範囲でも採用延伸倍率が1.0より小さい
場合が生ずるが、この場合は採用延伸倍率1.0以
上を適用する。 かくして得られた延伸糸は、更に洗浄し残存溶
剤を除去する。ついで一旦乾燥するかあるいはそ
のまま緩和熱処理を適用する。この熱処理によつ
て延伸歪を緩和し、形態安定性を付与すると共に
染色性の向上を計る。このため通常はこの工程で
繊維に10%程度以上の収縮を許すことが望まし
く、このため熱処理は一般に無緊張湿熱又は蒸熱
下100〜140℃といつた温度で行なわれる。この際
結節タフネスは傾向的に増大するが、この点を前
提にしても本発明の抗ピル特性は十分に保持され
る。 以上が本発明のプロセス条件の基本的なもので
あるが、必要ならば上記延伸后乾燥した繊維又は
緩和熱処理を施した繊維を更に2次的に該低温延
伸温度よりも高い温度、いいかえればTgより高
い温度で若干の延伸を適用することもできる。こ
の場合は前記低温延伸構造が熱処理によりほぼ固
定できており基本的に脆性点の寄与を消失せしめ
ず、その配向効果により原綿の糸質、とりわけ強
度の向上を図ることができる。 以上の如く本発明はAN系重合体から繊維を製
造するプロセスに於て、延伸工程を特定化するこ
とを特徴とするものであり、紡糸方式に拘わらず
有用な基本的技術となる。殊に本発明の効用は乾
式紡糸法による繊維において顕著である。すなわ
ち乾式紡糸法によつて作られた繊維は一般に構造
的に緻密で結節タフネスも高く、従来から抗ピル
の達成は非常に困難とされてきたが、本発明の方
法によつて比較的容易に改質することが可能とな
つた。本発明は又通常の複合繊維の製造にも適用
される。 以下実施例を挙げて更に具体的に説明する。 実施例 1 組成がAN/アクリル酸メチル/メタリルスル
ホン酸ソーダ=93.5/6/0.5(wt%)で、その
比粘度(重合体0.1gを0.1Nのロダンソーダを含
有するDME100mlに溶解し、25℃で測定)が0.15
のAN系重合体を、濃度30wt%になるように常法
によりDMFに溶解し過・脱泡して紡糸ドープ
とした。このドープを吐出温度135℃に於て185℃
の熱風中に孔径0.15mmφ、孔数500の防糸ノズル
から乾式紡糸し、形成されたフイラメントに少量
の水を添加し300cm/分で捲きとつて、単繊維繊
度6デニールの未延伸糸を得た。得られた未延伸
糸の残存溶剤量は17.5wt%であつた。この未延伸
糸を用いて下記の如く延伸実験を行なつた。 下記第1表に示すように延伸温度を種々変更し
たカスケード水中に導き、いずれも実効延伸比
0.6の延伸を適用し、ついで更に80℃の熱水中で
定長下に洗浄したのち油剤処理し、機械捲縮を与
え、ついで露点90℃、処理空気温度140℃の湿潤
空気中で乾燥及び緩和処理を行なつて最終繊維と
した。延伸条件及び得られた繊維の物性を第1表
に示す。なお糸質測定はJIS L−1074に基き、テ
ンシロン型引張試験機を用い、糸長2cm、引張
速度2cm/分で行なつた。その値は測定本数20本
の平均値による。
The present invention relates to a novel method for producing acrylonitrile synthetic fibers. More specifically, the purpose is to produce acrylonitrile synthetic fibers with excellent pill resistance by spinning an acrylonitrile polymer solution and stretching it under specific conditions. Pills generated when clothing is worn significantly impair its beauty and texture. Synthetic fibers generally generate a large amount of pill, so their modification has become an important issue. In particular, since acrylonitrile (referred to as AN) fibers are mainly used in the spannitting field, pilling is likely to occur, and anti-pilling is strongly required. The basic idea of imparting anti-pilling properties to AN-based fibers, especially at the raw cotton stage, is to (a) select conditions that do not produce fuzz, which is the main cause of pill formation, and (b) to ensure that even if fuzz does occur, it will not occur. There are two ways to make the pill fall off before it is formed.The first method generally limits the composition and use of the product, and its effects are also poor in permanence, while the second method allows for freedom in commercialization. The effect is also expected to be relatively large.
As a specific means in this case, many attempts have been made to reduce the strength and elongation properties of single fibers, particularly to reduce the loop strength and elongation or knot strength and elongation. Nodule strength and elongation have a close relationship with pill resistance,
Not limited to AN-based synthetic fibers, conventional materials with good pill resistance are characterized by knot strength (DKS) and knot elongation (DKE).
The product DKS x DKE is small, and when measured according to JIS-L1074, it is approximately 25 or less. In the present invention, this product is defined as toughness. It can be seen that such fibers with low toughness have developed so-called defective parts in terms of molecular structure or more macroscopically, and in other words, they act as brittle points in the fracture behavior. On the other hand, for AN-based synthetic fibers, sufficient anti-pilling properties have not always been achieved using conventional methods. The reason for this is that AN-based synthetic fibers generally have a large amount of plastic deformation, and as a result, the above-mentioned toughness is extremely large. Therefore, in order to reduce this toughness, it is necessary to introduce extreme brittle points into the fiber.
As a result, macroscopic damage occurs, reducing the operability of spinning and processing. As a result of various studies on the method of introducing brittle points and anti-pilling, the present inventors found a new technique and arrived at the present invention. The gist of the present invention is that after spinning an AN-based polymer solution, it is introduced into water at 40 to 60°C and stretched at an effective stretching ratio defined by formula () in the range of 0.3 to 0.8, and then washed. It is characterized in that it is then subjected to a relaxing heat treatment.
Concerning the manufacturing method of AN-based synthetic fibers. Effective stretching ratio = Adopted stretching ratio / Maximum stretching ratio……(
) (However, in the formula, the maximum draw ratio refers to the maximum draw ratio at which the fibers break due to stretching.) The technical idea of the present invention is as follows. That is, the spun so-called undrawn yarn has an incomplete fiber structure and extremely low strength. Generally, this is stretched to increase the degree of orientation and improve strength. As a result, DKS also tends to increase at the same time. Among the stretching conditions adopted at this time, the basic temperature is selected in a temperature range where molecular mobility is large, that is, at least a temperature higher than the glass transition point (Tg) of the AN polymer. Stretching at a sufficient magnification is adopted by taking advantage of the properties of the film. In general, in the production of AN-based polymer fibers, the temperature range is approximately 100% in a dry heat atmosphere, although it varies slightly depending on the polymer composition.
℃ or higher, the preferred stretching temperature is 140 to 180℃
However, in hot water or other humid heat conditions, the temperature is about 80°C or above, and the preferred condition is 95 to 100°C in hot water.
Even if some stretching is applied at conditions lower than this temperature, the conventional method is to subsequently perform main stretching at a temperature higher than Tg to determine the fiber structure. In contrast, the present invention focuses on the stretching properties in a temperature range lower than Tg. That is, in the temperature range below Tg, the molecular mobility of the undrawn yarn is in a semi-frozen state or a frozen state. When this frozen undrawn yarn is drawn, the drawing points tend to concentrate in the easily stretchable structural parts, and in some cases exhibit a drawing behavior similar to typical netting drawing, while maintaining the undrawn yarn structure. It was found that a structural element with a relatively stretch orientation was formed, and the physical properties of the resulting fiber showed fracture behavior including the brittle point described above. In particular, elongation and toughness decrease. The draw ratio that can be adopted at such low temperatures is considerably smaller than that for stretching above Tg, but in that range, DS and DKS moderately improve as the draw ratio increases, while DKE increases. It was found that this significantly reduced the toughness of the nodule and contributed to the target reduction of nodule toughness. The present invention will be explained below based on its implementation. The present invention uses an AN-based polymer as a starting material. As such a polymer, both an AN homopolymer and a copolymer of a monomer copolymerizable with AN can be used. The content of AN in the copolymer is at least 40 ~
The content is 50wt% or more, and in the case of clothing fibers which are the object of the present invention, it is generally 85wt% or more. The AN content has a slight effect on the above-mentioned Tg, so care must be taken, but when the AN content is 40 wt% or more, the effects of the present invention are fully achieved. Moreover, the method for producing the polymer is not particularly limited. This polymer can be used for spinning by dissolving it in conventional solvents such as organic solvents such as dimethylformamide (DMF), dimethylacetamide (DMAC), and dimethyl sulfoxide, as well as concentrated aqueous solutions of inorganic substances such as nitric acid, rhodan salt, and zinc chloride. After preparing the dope, it is spun using a dry method, a semi-dry-semi-wet method, or a wet method to produce an undrawn yarn. The obtained undrawn yarn is washed to substantially remove the solvent, and then subjected to low elongation drawing according to the present invention to determine the fiber structure. The undrawn yarn usually contains 5 to 50 wt% of solvent based on the weight of the fiber, although this varies depending on the spinning method. This residual solvent affects the subsequent drawability, and the drawability is slightly higher than that of fibers from which the residual solvent has been substantially removed, that is, undrawn yarns with residual solvent of 2wt% or less, and the molecular structure from the viewpoint of this drawability. It was found that the freezing temperature, or Tg, was lower by about 10°C compared to the latter. This situation is shown in Figure 1. 1 in Figure 1 is AN/methyl acrylate/sodium methacrylsulfonate =
This graph shows the relationship between the drawing temperature and the stretch ratio at break when a 6-denier undrawn yarn containing a solvent was drawn in water by dry spinning an AN-based polymer of 93.5/6/0.5 (wt%). , 2 shows the relationship between the underwater stretching temperature and the breaking stretch ratio of the undrawn yarn of 1 after desolvation under a fixed length in hot water, and 3 shows the relationship between the underwater drawing ratio and the breaking stretch ratio of dry spinning of polyacrylonitrile. This is what is shown. From the results shown in FIG. 1, it can be seen that the freezing temperature of the yarn in the presence of a solvent is approximately 60°C or lower, and that of the yarn substantially free of solvent is approximately 70°C or lower. This indicates that this temperature is not significantly affected by the composition of the polymer. From an analysis of such phenomena, it has been found that it is best to apply a stretching temperature of about 60 DEG C. or lower in obtaining the target fiber of the present invention or in the combination of stretching and washing steps. On the other hand, if this stretching temperature is too low, the possible stretching ratio will be extremely small, so it is usually about
The temperature is preferably 40°C or higher. On the other hand, regarding the draw ratio to be adopted, it is important to adopt a draw ratio higher than a certain level even at such low temperatures to balance the performance.This will introduce brittle points into the fiber and improve its strength properties. Can be maintained. The effective stretching ratio of the stretching ratio is preferably in the range of 0.3 to 0.8. If the effective stretching ratio is less than 0.3, the physical properties of the final fiber obtained will be extremely low and will not be of practical use. On the other hand, if it exceeds 0.8, it may cause various problems such as the generation of fluff during stretching. Preferably 0.4~
Adopt a range of 0.65. Note that the effective stretch ratio is
Even in the range of 0.3 or more, there may be cases where the employed stretch ratio is smaller than 1.0, but in this case, the employed stretch ratio of 1.0 or more is applied. The drawn yarn thus obtained is further washed to remove residual solvent. Then, it is either dried once or subjected to a relaxing heat treatment. This heat treatment alleviates stretching strain, imparts shape stability, and improves dyeability. For this reason, it is usually desirable to allow the fibers to shrink by about 10% or more in this step, and for this reason, the heat treatment is generally carried out at a temperature of 100 to 140° C. under stress-free moist heat or steam heat. At this time, the nodule toughness tends to increase, but even on this premise, the anti-pilling properties of the present invention are sufficiently maintained. The above are the basic process conditions of the present invention, but if necessary, the fibers dried after stretching or the fibers subjected to relaxation heat treatment are further heated at a temperature higher than the low-temperature stretching temperature, in other words, the Tg Some stretching can also be applied at higher temperatures. In this case, the low-temperature stretched structure can be almost fixed by heat treatment, and the contribution of brittle points is basically not eliminated, and the orientation effect can improve the yarn quality, especially the strength of the raw cotton. As described above, the present invention is characterized by specifying the drawing step in the process of producing fibers from AN polymers, and is a useful basic technology regardless of the spinning method. The effects of the present invention are particularly remarkable in fibers produced by dry spinning. In other words, fibers made by dry spinning are generally dense in structure and have high knot toughness, and although it has traditionally been considered extremely difficult to achieve pill resistance, the method of the present invention has made it relatively easy to achieve pill resistance. It became possible to modify it. The invention also applies to the production of conventional composite fibers. The present invention will be described in more detail below with reference to Examples. Example 1 The composition was AN/methyl acrylate/sodium methallyl sulfonate = 93.5/6/0.5 (wt%), and its specific viscosity (0.1 g of polymer was dissolved in 100 ml of DME containing 0.1 N of Rodan soda, 25 (measured in °C) is 0.15
The AN-based polymer was dissolved in DMF in a conventional manner to a concentration of 30 wt%, and the mixture was degassed and degassed to obtain a spinning dope. This dope was discharged at 185°C at a discharge temperature of 135°C.
The filament was dry-spun in hot air from a yarn-proof nozzle with a hole diameter of 0.15 mmφ and 500 holes, a small amount of water was added to the formed filament, and the filament was wound at a speed of 300 cm/min to obtain an undrawn yarn with a single fiber fineness of 6 denier. Ta. The amount of residual solvent in the obtained undrawn yarn was 17.5 wt%. Using this undrawn yarn, a drawing experiment was conducted as described below. As shown in Table 1 below, the stretching temperature was varied in cascade water, and the effective stretching ratio was
0.6 stretch, then further washed to a fixed length in hot water at 80°C, treated with oil, mechanically crimped, then dried and dried in humid air with a dew point of 90°C and a processing air temperature of 140°C. A relaxation treatment was performed to obtain the final fiber. Table 1 shows the stretching conditions and the physical properties of the obtained fibers. The yarn quality was measured in accordance with JIS L-1074 using a Tensilon type tensile tester at a yarn length of 2 cm and a tensile speed of 2 cm/min. The value is based on the average value of 20 measurements.

【表】 実施例 2 実施例1中の第1表中の実験No.3(60℃水中延
伸)の方法で、実効延伸比を変更する実験を行な
つた。延伸条件と得られる繊維の物性を第2表に
示す。なお延伸后の処理は実施例1と同様である
が、それぞれの緩和収縮率は第2表に示す通りで
ある。
[Table] Example 2 An experiment was conducted in which the effective stretching ratio was changed using the method of Experiment No. 3 (60° C. underwater stretching) in Table 1 of Example 1. Table 2 shows the stretching conditions and the physical properties of the resulting fibers. Note that the treatment after stretching was the same as in Example 1, but the respective relaxation shrinkage rates are as shown in Table 2.

【表】 第2表から明らかなように抗ピル性の点から、
実効延伸比の広い範囲に亘つて効果があるが、実
効延伸比が0.3程度より小さくなると極端に物性
が低く実用性が得られない。 実施例 3 実施例1と同様に乾式紡糸して得た未延伸糸
を、50m/分の速度で導糸し一旦98℃の熱水中で
定長下に十分洗浄し、糸条の残存溶剤を1wt%以
下とした。ひき続き60℃の温水中で1.8倍(実効
延伸比0.6)延伸し、ついで油剤を適用し実施例
1と同様に乾燥・熱処理を行なつた。一方比較の
ために上記60℃の温水延伸の代りに通常工業的に
行なわれている沸水中(98℃)で延伸する方法を
適用し第3表の結果を得た。
[Table] As is clear from Table 2, from the viewpoint of anti-pilling properties,
Although it is effective over a wide range of effective stretching ratios, when the effective stretching ratio is less than about 0.3, the physical properties are extremely poor and practicality cannot be obtained. Example 3 An undrawn yarn obtained by dry spinning in the same manner as in Example 1 was introduced at a speed of 50 m/min and thoroughly washed in hot water at 98°C to a fixed length to remove any remaining solvent in the yarn. was set to 1wt% or less. Subsequently, it was stretched 1.8 times (effective stretching ratio 0.6) in hot water at 60°C, and then an oil agent was applied and drying and heat treatment were performed in the same manner as in Example 1. On the other hand, for comparison, instead of the above-mentioned hot water stretching at 60°C, a method of stretching in boiling water (98°C), which is usually carried out industrially, was applied, and the results shown in Table 3 were obtained.

【表】 上表の如く、98℃の延伸においては延伸倍率に
拘らず結節タフネスが極めて大きく抗ピル性も又
達成できない。 実施例 4 組成がAN/アクリル酸メチル/メタリルスル
ホン酸ソーダ=91.5/8/0.5(wt%)、その比粘
度0.160のAN系重合体をDMACに溶解し重合体濃
度24wt%の紡糸ドープを調製した。孔径0.075mm
φ、孔数200の紡糸ノズルから、40℃に保持され
たDMAC50wt%水溶液中に湿式紡糸し、15m/
分の速度で引き取つた后、連続的に50℃の温水中
で2.8倍の延伸を適用し(実効延伸比0.6)ついで
沸水中定長下に洗浄した后、油剤を付与し、表面
温度120℃の乾燥ロール上を通過せしめ乾燥緻密
化処理を行なつた。ついで130℃の加圧蒸気中で
緩和処理して30%の収縮を与えて単繊維繊度3デ
ニールの繊維とした(実験No.15)。 一方、実験No.15に於て乾燥緻密化后の繊維に更
に表面温度170℃の1対の熱ロール間で延伸倍率
1.5倍の乾熱延伸を施し、緩和処理を行なつて繊
維を得た(実験No.16)。 又参考のために上記50℃温水中延伸にかえて沸
水中5.2倍の延伸(実効延伸比0.6)を行なつた場
合の同様の繊維(実験No.17)を含めて各繊維の物
性をまとめると第4表のようになる。
[Table] As shown in the above table, when stretched at 98°C, the knot toughness is extremely large regardless of the stretching ratio, and pill resistance cannot be achieved either. Example 4 An AN polymer with a composition of AN/methyl acrylate/sodium methallylsulfonate = 91.5/8/0.5 (wt%) and a specific viscosity of 0.160 was dissolved in DMAC to form a spinning dope with a polymer concentration of 24 wt%. Prepared. Hole diameter 0.075mm
Wet-spun the yarn into a DMAC 50wt% aqueous solution kept at 40℃ from a spinning nozzle with φ and 200 holes, and
After being drawn at a speed of 10 minutes, it was continuously stretched 2.8 times in hot water at 50°C (effective stretching ratio 0.6), then washed in boiling water at a constant length, and then an oil agent was applied and the surface temperature was 120°C. The material was passed through a drying roll for drying and densification. Then, it was subjected to relaxation treatment in pressurized steam at 130°C to give it 30% shrinkage to produce a single fiber with a fineness of 3 denier (Experiment No. 15). On the other hand, in Experiment No. 15, the fiber after drying and densification was further stretched between a pair of heated rolls with a surface temperature of 170°C.
A fiber was obtained by dry heat stretching 1.5 times and relaxation treatment (Experiment No. 16). Also, for reference, we have summarized the physical properties of each fiber, including a similar fiber (experiment No. 17) when stretching 5.2 times in boiling water (effective stretching ratio 0.6) instead of stretching in hot water at 50°C. and as shown in Table 4.

【表】 第4表から明らかな如く、実験No.15及び16の低
温延伸繊維の抗ピル性は良好である。又実験No.15
の繊維は若干強度水準が低いが、2次延伸の追加
(実験No.16)はこれを改質する方向であり、抗ピ
ル性とのパランスによつては后加工性向上の点で
意義がある。
[Table] As is clear from Table 4, the anti-pilling properties of the low-temperature drawn fibers of Experiment Nos. 15 and 16 are good. Also experiment No.15
The strength level of the fibers is slightly low, but the addition of secondary stretching (Experiment No. 16) is intended to improve this, and depending on the balance with anti-pilling properties, it may be significant in terms of improving processability. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は糸条の水中延伸温度と破断延伸倍率と
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the yarn drawing temperature in water and the breaking drawing ratio.

Claims (1)

【特許請求の範囲】 1 アクリロニトリル系重合体溶液を紡糸したの
ち、40〜60℃の水中に導き式()で規定する実
効延伸比が0.3〜0.8の範囲で延伸し、ついで洗浄
し、然る後緩和熱処理を行なうことを特徴とする
アクリロニトリル系合成繊維の製造法。 実効延伸比=採用延伸倍率/最大延伸倍率………(
) (但し、式中、最大延伸倍率とは延伸により繊維
が破断に至る最大の延伸倍率をいう) 2 紡糸を乾式紡糸法で行なう特許請求の範囲第
1項記載のアクリロニトリル系合成繊維の製造
法。
[Claims] 1. After spinning an acrylonitrile polymer solution, it is introduced into water at 40 to 60°C and stretched at an effective stretching ratio defined by formula () in the range of 0.3 to 0.8, then washed, and then A method for producing acrylonitrile-based synthetic fibers, characterized by performing post-relaxation heat treatment. Effective stretching ratio = Adopted stretching ratio / Maximum stretching ratio……(
) (However, in the formula, the maximum draw ratio refers to the maximum draw ratio at which the fiber breaks due to stretching.) 2. A method for producing acrylonitrile synthetic fiber according to claim 1, in which spinning is performed by a dry spinning method. .
JP14406680A 1980-10-15 1980-10-15 Preparation of acrylyonitrile synthetic fiber Granted JPS5771414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14406680A JPS5771414A (en) 1980-10-15 1980-10-15 Preparation of acrylyonitrile synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14406680A JPS5771414A (en) 1980-10-15 1980-10-15 Preparation of acrylyonitrile synthetic fiber

Publications (2)

Publication Number Publication Date
JPS5771414A JPS5771414A (en) 1982-05-04
JPS6233328B2 true JPS6233328B2 (en) 1987-07-20

Family

ID=15353500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14406680A Granted JPS5771414A (en) 1980-10-15 1980-10-15 Preparation of acrylyonitrile synthetic fiber

Country Status (1)

Country Link
JP (1) JPS5771414A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112909A (en) * 1984-06-22 1986-01-21 Toray Ind Inc Acrylic fiber having antipilling property and high shrinkage
JP6390216B2 (en) * 2014-07-04 2018-09-19 三菱ケミカル株式会社 Acrylic fiber bundle manufacturing method

Also Published As

Publication number Publication date
JPS5771414A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
JPH10110329A (en) Polybenzazole fiber and production thereof
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JPH03167309A (en) Fiber, filament and yarn based on cellulose and polyvinyl chloride and production thereof
JPH01229805A (en) High-strength water-soluble polyvinyl alcohol-based fiber and production thereof
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JPS6233328B2 (en)
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
JPS6342910A (en) Production of acrylonitrile yarn bundle for manufacturing carbon yarn
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JP4102582B2 (en) Acrylic modified cross-section fine fiber manufacturing method
JPH04119114A (en) Quickly skrinkable acrylic synthetic fiber and its production
JP3609851B2 (en) Water-soluble polyvinyl alcohol fiber
JP3048449B2 (en) Acrylonitrile precursor fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JP4168542B2 (en) Acrylic fiber suitable for nonwoven fabric processing
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JPS5837411B2 (en) Carbon fiber manufacturing method
JP2000248424A (en) Production of low temperature water-soluble polyvinyl alcohol-based fiber
CN116103777A (en) Method for preparing regenerated silk fiber and regenerated silk fiber
JPH11200141A (en) Production of pilling-resistant acrylic fiber
JPH0533212A (en) Production of acrylic precursor yarn for carbon fiber
JPS6050883B2 (en) Novel acrylonitrile synthetic fiber and its manufacturing method
JP2001288613A (en) Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber
JPS6035445B2 (en) Manufacturing method of acrylonitrile synthetic fiber