JP2000248424A - Production of low temperature water-soluble polyvinyl alcohol-based fiber - Google Patents

Production of low temperature water-soluble polyvinyl alcohol-based fiber

Info

Publication number
JP2000248424A
JP2000248424A JP11052132A JP5213299A JP2000248424A JP 2000248424 A JP2000248424 A JP 2000248424A JP 11052132 A JP11052132 A JP 11052132A JP 5213299 A JP5213299 A JP 5213299A JP 2000248424 A JP2000248424 A JP 2000248424A
Authority
JP
Japan
Prior art keywords
water
fiber
pva
spinning
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11052132A
Other languages
Japanese (ja)
Inventor
Masahiro Sato
政弘 佐藤
Isao Tokunaga
勲 徳永
Akio Omori
昭夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP11052132A priority Critical patent/JP2000248424A/en
Publication of JP2000248424A publication Critical patent/JP2000248424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a low temperature water-soluble fiber having <=20 deg.C water dissolving temperature in excellent processability, having extremely low maximum shrinkage of <=20% of the resultant fiber, having excellent dimensional stability under high humidity and high tensile strength. SOLUTION: A spinning raw solution having 25-37 wt.% of polyvinyl alcohol(PVA) concentration and obtained by dissolving a PVA-based polymer having 650-1,350 average polymerization degree and 195-210 deg.C is subjected to wet spinning or dry-wet spinning into a solidifying bath containing >=50 wt.% of an organic solvent having solidifying property to the polymer at from -20 deg.C to 20 deg.C and performing extraction, wet stretching, drying and dry stretching treatments to obtain the objective fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、紡糸原液ポリマーとし
て平均重合度650〜1350の範囲のポリビニルアル
コール(以下PVAと略す)を使用し、PVA濃度を高
濃度にすることで原液溶媒の回収効率が良好となること
や原液が糸状になる時の固化性が強く、原液溶媒の抽出
性良好となり、糸断面斑も少なく工程安定性が良好であ
り、また得られた繊維は低温水での溶解時、低収縮であ
る水溶性PVA系繊維の工業的製造法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention uses a polyvinyl alcohol (hereinafter abbreviated as PVA) having an average degree of polymerization of 650 to 1350 as a spinning dope polymer, and increases the PVA concentration to increase the efficiency of recovering the stock solution solvent. Good solidification when the stock solution becomes thread-like, the extractability of the stock solution becomes good, the yarn cross section is less, the process stability is good, and the obtained fiber is dissolved in low-temperature water. The present invention relates to an industrial production method of a water-soluble PVA-based fiber which has low shrinkage at the time.

【0002】[0002]

【従来技術の説明】従来、水溶性繊維としては、PVA
系繊維、カルボキシメチルセルロースなどのセルロース
系繊維、ポリアルギン酸系繊維、ポリ乳酸系繊維、ポリ
アルキレンオキサイド系繊維などが知られており、ケミ
カルレース用基布、羊毛や麻との混紡糸用などに用いら
れている。なかでもPVA系繊維が引張り強度に優れて
いることから最も多く使用されている。上記性能を満足
する繊維の製造法として、特開平7−90714号公報
には、水中溶解温度が100℃以下のPVA系ポリマ−
をDMSOなどの有機溶媒に溶解した溶液をメタノール
などの固化能を有する固化浴中に湿式あるいは乾湿式紡
糸し、多段の昇温条件下で乾熱収縮処理を施すことによ
り、水中溶解時の収縮が低く、高湿度下に放置しても寸
法収縮安定性に優れ、高引張り強度を有する水溶性繊維
を得ることが記載されているが、使用するPVA系ポリ
マーの鹸化度は88〜99.5モル%(融点では195
〜225℃)の範囲であり、また紡糸原液濃度の明確な
限定が記載されていない。同公報に実施例として記載さ
れている方法を追試したところ、糸断面斑がかなりあ
り、工程安定性の点で問題を有していることを見出し
た。
2. Description of the Prior Art Conventionally, PVA has been used as a water-soluble fiber.
-Based fibers, cellulosic fibers such as carboxymethylcellulose, polyalginic acid-based fibers, polylactic acid-based fibers, polyalkylene oxide-based fibers, and the like are known, and are used for base cloth for chemical lace, for blend spinning with wool or hemp, and the like. Have been. Among them, PVA fibers are most often used because of their excellent tensile strength. As a method for producing a fiber satisfying the above performance, JP-A-7-90714 discloses a PVA polymer having a dissolution temperature in water of 100 ° C. or less.
Is dissolved in an organic solvent such as DMSO by wet or dry-wet spinning in a solidification bath having a solidifying ability such as methanol, and subjected to dry heat shrinkage treatment under multi-step heating conditions, so that shrinkage during dissolution in water is achieved. To obtain a water-soluble fiber having high dimensional shrinkage stability and high tensile strength even when left under high humidity, but the PVA polymer used has a saponification degree of 88 to 99.5. Mole% (195 at melting point)
225 ° C.), and no clear limitation of the spinning dope concentration. When the method described as an example in the publication was repeated, it was found that there was considerable unevenness in the yarn cross-section, which had a problem in terms of process stability.

【0003】また特開平1−229805号公報には、
鹸化度の低いPVAをジメチルスルホキシド(以下DM
SOと略す)などの有機溶媒に溶解した溶液をメタノー
ルなどの固化能を有する固化浴に乾湿式紡糸し、高度に
延伸配向させて高引張り強度の水溶性繊維を得ることが
記載されているが、この公報に記載の技術では、低温水
での溶解時、収縮が激しく起こり、溶解が困難となると
ともに、収縮により製品形態がひずみを生じる等の問題
点を有している。
[0003] Also, Japanese Patent Application Laid-Open No. 1-229805 discloses that
PVA having a low degree of saponification is converted to dimethyl sulfoxide (hereinafter referred to as DM).
It is described that a solution dissolved in an organic solvent such as SO) is dry-wet spinned in a solidification bath having a solidifying ability such as methanol and is highly oriented to obtain a water-soluble fiber having high tensile strength. However, the technology described in this publication has problems such as severe shrinkage when dissolving in low-temperature water, making the dissolution difficult, and causing the product form to be distorted due to the shrinkage.

【0004】[0004]

【発明が解決しようとする課題】従来技術で低温水に溶
解可能な繊維の製造方法の代表例として、平均重合度1
700近辺の低鹸化度などの低融点PVAを紡糸する方
法が用いられる。しかしながら、低鹸化度などの低融点
PVAを紡糸すると、一般に、高融点PVAの紡糸に比
べて原液から糸状になる時の固化が甘く、固化糸からの
原液溶媒の抽出性が悪く、抽出時間が長時間必要である
という問題点を有している。抽出時間が長い場合には、
一般に、糸断面斑が大きく、紡糸工程中で断糸トラブル
が発生し安定した生産が困難となる。さらに従来技術で
は、得られた水溶性PVA系繊維を高密度化した場合、
水中に浸漬しても、PVA系繊維は容易に溶解されない
という欠点も有している。
As a typical example of a conventional method for producing a fiber which can be dissolved in low-temperature water, an average degree of polymerization of 1 is used.
A method of spinning a low melting point PVA having a low saponification degree of around 700 is used. However, when spinning a low melting point PVA having a low degree of saponification or the like, generally, the solidification at the time of spinning from the undiluted solution becomes less sweet than the spinning of the high melting point PVA, and the extractability of the undiluted solvent from the solidified yarn is poor. There is a problem that it requires a long time. If the extraction time is long,
Generally, unevenness in the cross-section of the yarn is large, and a yarn breakage trouble occurs during the spinning process, which makes stable production difficult. Furthermore, in the prior art, when the obtained water-soluble PVA-based fiber is densified,
Even when immersed in water, PVA-based fibers also have a disadvantage that they are not easily dissolved.

【0005】[0005]

【課題を解決するための手段】本発明は、従来の技術で
は得られていない、得られた繊維が断面斑が少なく、工
程安定性に優れ、低温水中での溶脱性に優れた低温水溶
性のPVA系繊維の製造法に関するものである。
DISCLOSURE OF THE INVENTION The present invention provides a low-temperature water-soluble polymer, which has not been obtained by the prior art, and has a low cross-sectional unevenness, excellent process stability, and excellent leaching property in low-temperature water. And a method for producing a PVA-based fiber.

【0006】本発明は、平均重合度が650〜135
0、融点が融点が195〜210℃のPVA系ポリマー
を有機溶媒に溶解して得たPVA濃度25〜35重量%
の紡糸原液を、該ポリマーに対して固化性を有する有機
溶媒を50重量%以上含む−20〜20℃の固化浴に湿
式紡糸又は乾湿式紡糸し、抽出、湿延伸、乾燥後、乾熱
延伸処理を施すことを特徴とする溶解時低収縮な低温水
溶性PVA系繊維の製造法である。本発明は、上記した
ように、平均重合度及び融点が特定のPVA系ポリマー
並びに特定組成で特定温度の固化浴を用いるものであ
り、これら条件はいずれも本発明の目的を達成する上
で、欠くことのできないものであり、これら条件がいず
れも満足されて初めて本発明の目的が達成される。
According to the present invention, the average degree of polymerization is from 650 to 135.
0, a PVA concentration of 25 to 35% by weight obtained by dissolving a PVA-based polymer having a melting point of 195 to 210 ° C in an organic solvent.
The spinning stock solution is wet-spun or dry-wet spun into a solidification bath at -20 to 20 ° C. containing 50% by weight or more of an organic solvent having a solidifying property with respect to the polymer, and is subjected to extraction, wet stretching, drying, and dry heat stretching. This is a method for producing a low-temperature water-soluble PVA-based fiber having a low shrinkage upon melting, which is characterized by performing a treatment. The present invention, as described above, the average degree of polymerization and melting point using a specific PVA-based polymer and a solidification bath of a specific composition and a specific temperature, all of these conditions, in order to achieve the object of the present invention, It is indispensable, and the object of the present invention is achieved only when all of these conditions are satisfied.

【0007】次に本発明の水溶性繊維を製造する方法に
ついて述べる。本発明で用いる原料ポリマーは、PVA
系ポリマーであって、平均重合度としては650〜13
50の範囲であり、好ましくは700〜1000の範囲
であり、特に好ましくは750〜900の範囲である。
平均重合度が650より低いと糸断面の斑が激しく、紡
糸工程中で断糸が頻繁に発生し、安定して生産すること
が不可能であり、1350を越えると得られた繊維の低
温水での収縮率が低くない。繊維化後0〜30℃の水に
低収縮で溶解させるには、融点が225℃の完全鹸化P
VAでは繊維化後の結晶性が高すぎて、本発明の0〜3
0℃の水に溶解する繊維を得ることができない。0〜3
0℃の水に溶解する繊維を得たい場合には、融点が19
5℃〜210℃のPVA系ポリマーを使用することが必
要である。特に0〜20℃の水に溶解する繊維を得たい
場合には、融点が200℃以下の、ビニルアルコールユ
ニット以外のユニット、例えば酢酸ビニルユニットを含
む、いわゆる部分鹸化PVAを使用する。しかし、融点
が195℃未満の部分鹸化PVAでは、得られる繊維間
の膠着がかなり生じると共に、得られる繊維中のポリマ
ーの結晶性が低く高湿度下での寸法安定性が得られず、
また水中溶解時に大きく収縮することとなり、本発明の
繊維を得ることができない。また融点が210℃を越え
る場合には、本発明が目的とする性能を有する低温水溶
性繊維を得ることができない。
Next, a method for producing the water-soluble fiber of the present invention will be described. The raw material polymer used in the present invention is PVA
Based polymer having an average degree of polymerization of 650 to 13
It is in the range of 50, preferably in the range of 700 to 1000, particularly preferably in the range of 750 to 900.
If the average degree of polymerization is lower than 650, the cross section of the yarn is highly uneven, and the yarn frequently breaks during the spinning process, making it impossible to produce the fiber stably. Is not low. In order to dissolve in water of 0 to 30 ° C with low shrinkage after fiberization, complete saponification P having a melting point of 225 ° C
In the case of VA, the crystallinity after fiberization is too high,
Fibers that dissolve in water at 0 ° C. cannot be obtained. 0-3
If one wants to obtain fibers that dissolve in water at 0 ° C.,
It is necessary to use a PVA-based polymer at 5 ° C to 210 ° C. In particular, when it is desired to obtain a fiber that dissolves in water at 0 to 20 ° C, a so-called partially saponified PVA having a melting point of 200 ° C or less and containing a unit other than a vinyl alcohol unit, for example, a vinyl acetate unit is used. However, in the partially saponified PVA having a melting point of less than 195 ° C., considerable sticking occurs between the obtained fibers, and the polymer in the obtained fibers has low crystallinity and dimensional stability under high humidity cannot be obtained.
Also, the fibers of the present invention shrink greatly when dissolved in water, and the fibers of the present invention cannot be obtained. On the other hand, when the melting point exceeds 210 ° C., a low-temperature water-soluble fiber having the performance intended by the present invention cannot be obtained.

【0008】ビニルアルコールユニットと酢酸ビニルユ
ニット以外のユニットを含有する、いわゆる変性PVA
系ポリマーを使用して水中溶解温度が30℃未満の繊維
を得たい場合には、変性ユニットが結晶化阻害効果の大
きいユニットである場合には、変性量が0.5モル%程
度のPVA系ポリマーであっても本発明に好適に使用で
きる場合もあるが、一般的には1モル%以上、特に2モ
ル%以上変性したPVA系ポリマーを用いるのが好まし
い。
A so-called modified PVA containing a unit other than a vinyl alcohol unit and a vinyl acetate unit.
When it is desired to obtain a fiber having a dissolution temperature in water of less than 30 ° C. using a polymer, if the modification unit is a unit having a large crystallization inhibiting effect, a PVA-based polymer having a modification amount of about 0.5 mol% is used. Although a polymer can be suitably used in the present invention in some cases, it is generally preferable to use a PVA-based polymer modified by 1 mol% or more, particularly 2 mol% or more.

【0009】変性ユニットとしては、エチレン、アリル
アルコール、イタコン酸、アクリル酸、無水マレイン酸
とその開環物、アリールスルホン酸、ピバリン酸ビニル
の如く炭素数が4以上の脂肪酸のビニルエステル、ビニ
ルピロリドン、および上記イオン性基の一部または全量
を中和した化合物などが例示できる。変性ユニットの導
入法は共重合による方法でも、後反応による導入方法で
もよい。また変性ユニットのポリマー鎖内での分布はラ
ンダムでもブロックでもグラフトでも特に限定はない。
変性量が5モル%を越えると結晶性の低下が過度とな
り、高湿度下での寸法安定性が得られず、本発明の目的
とする水溶性繊維を得ることができない。
Examples of the modified unit include ethylene, allyl alcohol, itaconic acid, acrylic acid, maleic anhydride and its ring-opened product, arylsulfonic acid, vinyl esters of fatty acids having 4 or more carbon atoms such as vinyl pivalate, and vinylpyrrolidone. And a compound in which a part or all of the ionic group is neutralized. The method of introducing the modified unit may be a method by copolymerization or a method by an after-reaction. The distribution of the modified unit in the polymer chain is not particularly limited, whether it is random, block or graft.
If the amount of modification exceeds 5 mol%, the crystallinity will be excessively reduced, the dimensional stability under high humidity cannot be obtained, and the water-soluble fiber aimed at by the present invention cannot be obtained.

【0010】上記PVA系ポリマーを溶解して紡糸原液
を作製する。本発明に用いる原液溶媒としては、該ポリ
マーに対して溶解能のある有機溶媒であるならば特に制
限はなく、例えばDMSO、ジメチルアセトアミド、ジ
メチルホルムアミド、N−メチルピロリドンなどの極性
溶媒やグリセリン、エチレングリコールなどの多価アル
コール類とこれら溶媒同士、あるいはこれら溶媒と水と
の混合物などが例示される。とりわけDMSOが低温溶
解性、低毒性、低腐食性などの点で最も好ましい。
A stock solution for spinning is prepared by dissolving the PVA-based polymer. The stock solvent used in the present invention is not particularly limited as long as it is an organic solvent capable of dissolving the polymer, and examples thereof include polar solvents such as DMSO, dimethylacetamide, dimethylformamide, and N-methylpyrrolidone, glycerin, and ethylene. Examples thereof include polyhydric alcohols such as glycol and these solvents, or a mixture of these solvents and water. In particular, DMSO is most preferable in terms of low-temperature solubility, low toxicity, low corrosion, and the like.

【0011】本発明において、酢酸ビニルユニットを多
く有する低鹸化度PVA系ポリマーを用いる場合、紡糸
原液のアルカリ性または酸性が強いと、溶解脱泡放置中
に鹸化反応が起こり、水中溶解温度が100℃を越える
温度まで上がる可能性があるので、苛性ソーダなどの強
アルカリ性物質や硫酸などの強酸性物質を限度を越えて
添加することは避けねばならないが、DMSO液中や酢
酸ソーダの添加などによる弱アルカリ性下や同じく弱酸
性下ではケン化反応は起こらない。したがって、原液が
弱アルカリ性〜弱酸性の範囲内に維持されるならば、原
液にアルカリ性物質や酸性物質を添加しても構わない。
またカルボン酸やスルホン酸などのイオン性基を有する
ポリマーを用いる場合には、水素イオンと中和するため
の苛性ソーダを添加することにより紡糸原液の酸度を調
整してもよい。
In the present invention, when a PVA-based polymer having a low degree of saponification having many vinyl acetate units is used, if the spinning solution is strongly alkaline or acidic, a saponification reaction occurs during dissolution and defoaming, and the dissolution temperature in water is 100 ° C. It is necessary to avoid adding excessively strong alkali substances such as caustic soda and strong acid substances such as sulfuric acid.However, weak alkalinity such as in DMSO solution or addition of sodium acetate should be avoided. No saponification reaction takes place under or under weakly acidic conditions. Therefore, an alkaline substance or an acidic substance may be added to the stock solution as long as the stock solution is maintained in the range of weak alkali to weak acid.
When a polymer having an ionic group such as carboxylic acid or sulfonic acid is used, the acidity of the spinning dope may be adjusted by adding caustic soda for neutralizing hydrogen ions.

【0012】紡糸原液中のPVA濃度は、組成、重合
度、溶媒によって異なるが、本発明の水溶性繊維を得る
ためには、PVA濃度を25〜35重量%と高濃度にす
ることが必要であり、好ましくは28〜32重量%であ
る。PVA濃度が25%未満の場合には、使用するPV
A系ポリマーが低重合度のものであるため、分子鎖の絡
まりが少なく固化浴中に紡糸原液をノズルから吐出し押
し出しても固化性が悪く糸状になり難く、また35%を
越える場合には、逆に分子鎖の絡まりが多くなり、粘度
が高くなり紡糸可能な曳糸性を逸してしまう。溶解は窒
素置換後減圧下で撹拌しながら行うのが、酸化、分解、
架橋反応等の防止及び発泡抑制の点で好ましい。紡糸原
液の吐出時の液温としては50〜150℃の範囲でかつ
原液がゲル化しない範囲が好ましい。
The concentration of PVA in the stock solution for spinning varies depending on the composition, the degree of polymerization, and the solvent. However, in order to obtain the water-soluble fiber of the present invention, the concentration of PVA must be as high as 25 to 35% by weight. And preferably 28 to 32% by weight. If the PVA concentration is less than 25%, the PV used
Since the A-based polymer has a low degree of polymerization, there is little entanglement of the molecular chains, and even when the spinning solution is discharged from a nozzle into a solidification bath and extruded, the solidification is poor and it is difficult to form a thread. Conversely, the entanglement of the molecular chains increases, the viscosity increases, and the spinnability that can be spun is lost. Dissolution is carried out with stirring under reduced pressure after replacement with nitrogen.
It is preferable in terms of prevention of a crosslinking reaction and suppression of foaming. The liquid temperature at the time of discharging the spinning stock solution is preferably in a range of 50 to 150 ° C. and a range in which the stock solution does not gel.

【0013】得られた紡糸原液を、該ポリマーに対して
固化能を有する有機溶媒、すなわち固化溶媒を主体とす
る固化浴に湿式あるいは乾湿式紡糸する。本発明で言う
固化とは、流動性のある紡糸原液が流動性のない固体に
変化することを言い、原液組成が変化せずに固化するゲ
ル化と原液組成が変化して固化する凝固の両方を包含す
る。
The obtained spinning dope is subjected to wet or dry-wet spinning in a solidifying bath mainly composed of an organic solvent having a solidifying ability for the polymer, ie, a solidifying solvent. The solidification referred to in the present invention means that a liquid spinning dope changes to a non-fluid solid, and both solidification, which solidifies without changing the composition of the stock solution and solidification, which changes the composition of the stock solution. Is included.

【0014】本発明において使用する固化能を有する固
化溶媒としては、メタノール、エタノール、プロパノー
ル、ブタノールなどのアルコール類、アセトン、メチル
エチルケトン、メチルイソブチルケトンなどのケトン
類、酢酸メチル、酢酸エチルなどの脂肪酸エステル類、
ベンゼン、トルエンなどの芳香族類やこれらの2種以上
の混合物が例示される。また原液溶媒をこれら固化溶媒
に混合して固化浴とすることも可能である。しかしなが
ら、固化速度の点から、さらに糸断面斑を防ぐ上から、
固化浴には、50重量%以上の固化溶媒が含まれている
ことが必要であり、固化溶媒/原液溶媒の混合重量比は
95/5〜50/50が好ましい。90/10〜60/
40であると更に好ましく、85/15〜55/45で
あると最も好ましい。固化浴に原液溶媒を混合すること
により、固化能を調整すると共に、原液溶媒と固化溶媒
の分離回収コスト低下をはかることができる。固化溶媒
としては、メタノールが、固化性の点で優れており、し
たがって固化溶媒と原液溶媒の混合液を固化浴として用
いる場合には、メタノールとDMSOとの混合液が好ま
しいこととなる。
The solidifying solvent having a solidifying ability used in the present invention includes alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and fatty acid esters such as methyl acetate and ethyl acetate. Kind,
Examples thereof include aromatics such as benzene and toluene, and mixtures of two or more thereof. It is also possible to mix an undiluted solvent with these solidifying solvents to form a solidifying bath. However, from the point of solidification speed, and from the viewpoint of preventing unevenness of the yarn cross section,
It is necessary that the solidification bath contains 50% by weight or more of the solidification solvent, and the mixing weight ratio of the solidification solvent / the stock solution solvent is preferably 95/5 to 50/50. 90 / 10-60 /
More preferably, it is 40 and most preferably 85/15 to 55/45. By mixing the undiluted solvent with the solidification bath, the solidification ability can be adjusted, and the cost of separating and recovering the undiluted solvent and the solidified solvent can be reduced. As a solidifying solvent, methanol is excellent in solidifying properties. Therefore, when a mixed solution of a solidifying solvent and a stock solution is used as a solidifying bath, a mixed solution of methanol and DMSO is preferable.

【0015】固化浴の温度は−20〜+20℃の間で行
う。均質固化および省エネルギーの点から固化浴温度は
−10〜+15℃が好ましく、−5〜+10℃であると
更に好ましく、0〜+5℃であると最も好ましい。固化
浴の温度がこの温度範囲より高くても、またこの温度範
囲より低くても、得られる繊維の本発明で規定する性能
が低下する。上記したように紡糸原液はかなり高温に加
熱されており、そのような紡糸原液を固化浴に導入する
と、固化浴温度は通常30℃を上回る温度となる。した
がって固化浴温度を20℃以下に保つためには、固化浴
を冷却することが必要である。
The temperature of the solidification bath is between -20 and + 20 ° C. The solidification bath temperature is preferably from -10 to + 15 ° C, more preferably from -5 to + 10 ° C, and most preferably from 0 to + 5 ° C from the viewpoints of homogenous solidification and energy saving. If the temperature of the solidification bath is above or below this temperature range, the performance of the resulting fibers as defined in the present invention is reduced. As described above, the spinning dope is heated to a considerably high temperature, and when such a spinning dope is introduced into the solidification bath, the temperature of the solidification bath is usually higher than 30 ° C. Therefore, it is necessary to cool the solidification bath in order to keep the solidification bath temperature at 20 ° C. or lower.

【0016】また本発明の紡糸方法としては、湿式紡糸
方法と乾湿式紡糸方法のいずれでもよく、各紡糸方法に
適した紡糸条件を設定すればよい。しかしながら多ホー
ルから紡糸原液を吐出する場合には、吐出時の繊維同士
の膠着を防ぐためには、乾湿式紡糸方法よりも湿式紡糸
方法の方が好ましい。なお、湿式紡糸方法とは、紡糸口
金から直接に固化浴に紡糸原液を吐出する方法のことで
あり、一方乾湿式紡糸方法とは、紡糸口金から一旦、空
気や不活性ガス中に紡糸原液を吐出し、それから固化浴
に導入する方法のことである。
The spinning method of the present invention may be any of a wet spinning method and a dry-wet spinning method, and spinning conditions suitable for each spinning method may be set. However, when the spinning dope is discharged from multiple holes, the wet spinning method is more preferable than the dry-wet spinning method in order to prevent the fibers from sticking at the time of discharging. In addition, the wet spinning method is a method of directly discharging a spinning solution from a spinneret to a solidification bath, while the dry-wet spinning method is a method of temporarily spinning a spinning solution from the spinneret into air or an inert gas. It is a method of discharging and then introducing into a solidification bath.

【0017】得られた糸篠を、固化溶媒又はそれと原液
溶媒の混合液からなる湿延伸浴中で1.5〜4倍湿延伸
する。糸篠の膠着抑制のため、毛羽の出ない範囲で湿延
伸倍率を大きくするのが好ましい。湿延伸倍率が1.5
倍未満では繊維同士が膠着し易く、4倍を越えると毛羽
が出易い。湿延伸倍率を大きくするためには、湿延伸浴
の温度を沸点近くまで昇温することが有効である。また
湿延伸を2段以上の多段に分けて行うことも有効であ
る。なお、湿延伸浴に用いる液としては、上記した固化
浴溶媒と同様のものが挙げられる。好ましくは湿延伸倍
率2.0〜3.5倍である。
The obtained itoshino is stretched by 1.5 to 4 times in a wet stretching bath comprising a solidifying solvent or a mixture of the solidifying solvent and a stock solution. It is preferable to increase the wet stretching ratio within a range in which fluff does not appear, in order to suppress sticking of the yarn. The wet stretching ratio is 1.5
If the ratio is less than twice, the fibers tend to stick together, and if it exceeds four times, fluff is likely to appear. In order to increase the wet stretching ratio, it is effective to raise the temperature of the wet stretching bath to near the boiling point. It is also effective to perform wet stretching in two or more stages. In addition, as the liquid used for the wet stretching bath, the same as the above-described solidification bath solvent can be used. Preferably, the wet stretching ratio is 2.0 to 3.5 times.

【0018】湿延伸後の糸篠を、固化溶媒を主体とする
抽出浴に接触させて糸篠から原液溶媒を抽出除去する。
この抽出処理は、純粋な固化溶媒を糸篠の走行方向とは
向流方向で連続的に流すことに抽出浴での滞留時間を短
縮することができる。この抽出処理により、糸篠中に含
まれている紡糸原液溶媒の量を糸篠重量の1%以下、好
ましくは0.1%以下にする。接触させる時間としては
5秒以上、特に15秒以上が好ましい。抽出速度を高
め、抽出を向上させるためには、抽出浴溶媒の温度を沸
点近くまで昇温するのが好ましい。本発明のように、繊
維間膠着を生じ易いポリマーからなる繊維の場合には、
最終抽出浴(置換浴)にアセトン、メチルエチルケト
ン、メチルイソブチルケトンのようなケトン類とメタノ
ールを混合重量比80/20〜20/80の割合にした
混合浴に通すことで、固化はさらに強固となり、乾燥時
に生じ易い繊維間膠着を防止することができる。
The wet-stretched Ishino is brought into contact with an extraction bath mainly comprising a solidifying solvent to extract and remove the undiluted solvent from the Itoshino.
In this extraction treatment, the residence time in the extraction bath can be shortened by continuously flowing the pure solidified solvent in the countercurrent direction to the traveling direction of Itoshino. By this extraction treatment, the amount of the spinning dope solvent contained in the yarn is reduced to 1% or less, preferably 0.1% or less of the weight of the yarn. The contact time is preferably 5 seconds or more, particularly preferably 15 seconds or more. In order to increase the extraction speed and improve the extraction, it is preferable to raise the temperature of the extraction bath solvent to near the boiling point. As in the present invention, in the case of a fiber made of a polymer that easily causes inter-fiber sticking,
By passing a ketone such as acetone, methyl ethyl ketone and methyl isobutyl ketone and methanol through a mixed bath having a mixing weight ratio of 80/20 to 20/80 in the final extraction bath (replacement bath), the solidification is further strengthened. Adhesion between fibers, which tends to occur during drying, can be prevented.

【0019】抽出後の糸篠を150℃以下の気体浴中で
乾燥する。乾燥前に鉱物油系、シリコン系、フッ素系な
どの疎水性油剤を付着させたりすることは、乾燥時の膠
着防止の上でさらにに有効である。
The extracted itoshino is dried in a gas bath at 150 ° C. or lower. Attachment of a hydrophobic oil such as a mineral oil, silicone, or fluorine before drying is more effective in preventing sticking during drying.

【0020】このようにして得た乾燥原糸に、必要に応
じて、80〜150℃で1.1〜5.0倍の乾熱延伸や
80〜150で定長熱処理することで水溶解時低収縮な
水溶性繊維を得ることができる。このような乾熱延伸、
定長熱処理に複雑な条件を設定せずとも低収縮水溶性繊
維の製造が可能な理由は、低重合度PVA系ポリマーが
潜在的に収縮率および収縮応力が低い性質を有している
ことに起因している。
The dried raw yarn thus obtained is subjected to dry heat drawing at 1.1 to 5.0 times at 80 to 150 ° C. or heat treatment at a constant length at 80 to 150 if necessary for dissolving in water. Water-soluble fibers with low shrinkage can be obtained. Such dry heat stretching,
The reason that low-shrinkage water-soluble fibers can be produced without setting complicated conditions for constant-length heat treatment is that the low-polymerization degree PVA-based polymer has the property of potentially low shrinkage and shrinkage stress. Is due.

【0021】本発明の製造法の最大の特徴は、低重合度
PVAを使用することにより、原液濃度を高濃度化する
ことが可能となり、このことが原液固化性の向上をもた
らし、かつ糸篠からの溶媒抽出性が向上し、さらに工程
通過性も向上する。また原液溶媒使用量も少ないことか
ら溶剤回収コストが低減される。
The most important feature of the production method of the present invention is that the use of PVA having a low degree of polymerization makes it possible to increase the concentration of the stock solution, which leads to an improvement in the solidification of the stock solution, The solvent extractability from the solvent is improved, and the process passability is also improved. Further, since the amount of the undiluted solvent used is small, the cost for solvent recovery is reduced.

【0022】次に、本発明の製造法により得られた繊維
について述べる。上記製造法で得られた水溶性繊維の水
中溶解温度(T℃)は好適には0〜30℃である。30
℃を越えると、溶解するのに作業上の危険性が高くなる
とともに溶解するのに要するエネルギーの量が多くな
り、溶解費用が高くなる。また完全に溶解除去すること
も困難となる。また水溶解温度が高いと、本発明で得た
水溶性繊維と他の水不溶性繊維の混合物より本発明で得
た水溶性繊維を溶解除去する際に、他の水不溶性繊維が
収縮したり損傷したり劣化したりすることとなる。これ
らの点より、水中溶解温度は30℃以下が好ましい。
Next, the fiber obtained by the production method of the present invention will be described. The water-soluble fiber (T ° C) of the water-soluble fiber obtained by the above production method is preferably 0 to 30 ° C. 30
Exceeding ° C. increases the operational risk of dissolution and increases the amount of energy required for dissolution, increasing dissolution costs. Also, it is difficult to completely dissolve and remove. When the water dissolution temperature is high, when the water-soluble fiber obtained by the present invention is dissolved and removed from the mixture of the water-soluble fiber obtained by the present invention and the other water-insoluble fiber, the other water-insoluble fiber shrinks or is damaged. And will deteriorate. From these points, the dissolution temperature in water is preferably 30 ° C or lower.

【0023】また、本発明で得られた水溶性繊維からな
るウェブを熱エンボスして高密度不織布とした場合であ
っても、低温で容易に完全溶解できる点からも、水中溶
解温度(T℃)が30℃以下であることが好ましく、2
0℃以下であると更に好ましく、10℃以下であると更
に一層好ましい。なお、本発明で言う水中溶解温度(T
℃)は、試長10cmの繊維に0.01mg/dtex
の荷重を吊り下げ、0℃の水に浸漬し、水を2℃/分の
昇温速度で昇温したときに、繊維が溶断する温度を言
う。
In addition, even when the web made of the water-soluble fiber obtained in the present invention is hot-embossed into a high-density nonwoven fabric, the water dissolution temperature (T ° C.) ) Is preferably 30 ° C. or less,
The temperature is more preferably 0 ° C or lower, and even more preferably 10 ° C or lower. In the present invention, the dissolution temperature in water (T
° C) is 0.01 mg / dtex for a fiber with a test length of 10 cm.
Is a temperature at which fibers are melted when the load is suspended, immersed in water at 0 ° C., and the water is heated at a rate of 2 ° C./min.

【0024】また、本発明の製造法で得られた水溶性繊
維は、水中での最大収縮率が好適には20%以下と小さ
く、水溶解時に寸法安定性に優れている点である。水中
での最大収縮率とは、完全溶解するまでに収縮した長さ
/試長の最大の収縮率である。最大収縮率が20%を越
えると、本発明の製造法で得られた水溶性繊維と他の水
不溶性繊維との混合物よりなる繊維製品から本発明の製
造法で得られた水溶性繊維のみを水により溶解除去する
際に、繊維製品の寸法変化が大きくて繊維製品の形状や
物性を損なうという問題点が生じるほかに、本発明の水
溶性繊維が吸水して収縮しゲル状となり、比表面積が小
さくなり完全溶解するのに長時間を要するという問題点
も生じる。特に水中溶解時の最大収縮率の高い水溶性繊
維を繊細なデザインのケミカルレース用基布に使用する
と、溶解時にレースの形状が変形しやすいこととなる。
基布に使用する水溶性繊維の最大収縮率が20%以下の
場合には、基布の溶解時収縮率がほぼ0%となり、繊細
なデザインのレースに使用し得ることとなるため極めて
工業的価値が高い。また毛混紡や麻混紡用として水溶性
繊維を使用する場合、水溶性繊維の最大収縮率が20%
以下であると、混紡糸を溶解処理する際に、混紡糸が殆
ど収縮しないため、水溶性繊維を容易に完全溶解除去す
ることができ、柔軟で嵩高な混紡糸が得られる。
The water-soluble fiber obtained by the production method of the present invention has a small maximum shrinkage in water of preferably 20% or less, and is excellent in dimensional stability when dissolved in water. The maximum shrinkage ratio in water is the maximum shrinkage ratio of the length shrunk to complete dissolution / test length. When the maximum shrinkage exceeds 20%, only the water-soluble fiber obtained by the production method of the present invention is converted from a fiber product comprising a mixture of the water-soluble fiber obtained by the production method of the present invention and another water-insoluble fiber. When dissolving and removing with water, in addition to the problem that the dimensional change of the fiber product is large and the shape and physical properties of the fiber product are impaired, the water-soluble fiber of the present invention absorbs water and shrinks into a gel, resulting in a specific surface area. And it takes a long time to completely dissolve it. In particular, when a water-soluble fiber having a high maximum shrinkage rate when dissolved in water is used for a delicately designed base cloth for a chemical lace, the shape of the lace tends to be deformed when dissolved.
When the maximum shrinkage of the water-soluble fiber used for the base fabric is 20% or less, the shrinkage upon dissolution of the base fabric becomes almost 0%, which is extremely industrial because it can be used for a lace of a delicate design. High value. When water-soluble fiber is used for wool blending or hemp blending, the maximum shrinkage of the water-soluble fiber is 20%.
When the content is below, since the mixed spun yarn hardly shrinks when the mixed spun yarn is subjected to the dissolution treatment, the water-soluble fiber can be easily completely dissolved and removed, and a soft and bulky mixed spun yarn can be obtained.

【0025】水中での最大収縮率は15%以下であると
更に好ましく、10%以下であると更に一層好ましい。
従来高倍率で延伸配向した繊維では、溶解前に配向分子
が緩和されて無配向となるため、最大収縮率は70%に
も達し、水溶性が悪化することとなるが、本発明の製造
法で得られた水溶性繊維では、繊維製造工程で配向と緩
和をうまく組み合わせることにより、溶解時の配向緩和
を抑制し、低収縮を達成したものである。
The maximum shrinkage in water is more preferably 15% or less, and even more preferably 10% or less.
Conventionally, in a fiber stretched and oriented at a high magnification, since the oriented molecules are relaxed and become non-oriented before melting, the maximum shrinkage reaches 70% and the water solubility is deteriorated. In the water-soluble fiber obtained in the above, orientation relaxation during dissolution is suppressed and low shrinkage is achieved by well combining orientation and relaxation in the fiber production process.

【0026】次に本発明の製造法で得られた水溶性繊維
は、引張り強度が2.5cN/dtex以上であること
も本発明の好適な特長の一つである。引張り強度が2.
5cN/dtex未満であると、編織化工程や不織布化
工程などの後工程でトラブルとなり易かったり、高速生
産性に劣る傾向があるばかりでなく、得られた編織物や
不織布などの製品の物性が劣り、幅広い用途に対応でき
ないという欠点が生じる。なお本発明でいう引張り強度
は、繊維を20℃×RH65%で調湿後、JIS L
1015号に準じて引張り試験を行い、乾強度を測定
し、cN/dtexで表示したものである。
Next, one of the preferred features of the present invention is that the water-soluble fiber obtained by the production method of the present invention has a tensile strength of 2.5 cN / dtex or more. 1. Tensile strength
When it is less than 5 cN / dtex, not only tends to cause troubles in a post-process such as a knitting process or a non-woven fabric process, or it tends to be inferior in high-speed productivity, but also the physical properties of the obtained knitted fabric or non-woven fabric are poor. It is inferior and cannot be used for a wide range of applications. Note that the tensile strength in the present invention is determined by JIS L after moisture conditioning a fiber at 20 ° C. × 65% RH.
A tensile test is performed in accordance with No. 1015, and the dry strength is measured, and is expressed in cN / dtex.

【0027】本発明の製造法で得られた繊維は、熱圧着
することにより繊維同士が強固に接着するという性質も
有している。この性質を利用して、この繊維をウエッブ
化したのち熱エンボスすることによりウエッブの形状を
固定して直ちに不織布とすることができ、例えば、本発
明で得られた単繊維をローラーカード法によりウエッブ
化し、そして熱エンボスして得られた不織布は、水溶性
でかつ吸湿時及び水中溶解時の寸法安定性に優れ、さら
に引張り強度にも優れているため、ケミカルレース基布
に好適である。さらに熱エンボスすることにより繊維同
士を接着できるため、この性質を利用して本発明で得ら
れた繊維からなる織編物や不織布を2枚以上重ねて熱プ
レスすることにより、さらには熱接着性のフィルムと重
ね合わせて熱プレスすることにより接合することがで
き、広幅の物や袋状物や積層物を容易に作ることができ
る。
The fiber obtained by the production method of the present invention also has a property that fibers are firmly adhered to each other by thermocompression bonding. Utilizing this property, the fiber can be formed into a web and then hot-embossed to fix the shape of the web and immediately form a non-woven fabric. For example, the single fiber obtained in the present invention can be formed into a web by a roller card method. The nonwoven fabric obtained by heat-embossing is suitable for use as a chemical lace base fabric because it is water-soluble, has excellent dimensional stability when absorbing moisture and dissolving in water, and has excellent tensile strength. Further, since the fibers can be bonded to each other by hot embossing, by utilizing this property, two or more woven or knitted fabrics or nonwoven fabrics made of the fiber obtained by the present invention are stacked and hot-pressed to further improve the heat bonding property. It can be joined by superimposing it on a film and hot-pressing it, and a wide object, bag-like object or laminate can be easily made.

【0028】以上述べたごとく本発明は、平均重合度が
650〜1100、融点が195〜210℃(鹸化度8
8〜92mol%)のPVA系ポリマーを有機溶媒に溶
解して得たPVA濃度25〜37重量%の紡糸原液を、
該ポリマーに対して固化性を有する有機溶媒)を50重
量%以上含む−20〜20℃の固化浴に湿式紡糸又は乾
湿式紡糸し、抽出、湿延伸、乾燥後、乾熱延伸処理を施
すことで、従来の技術では得ることができない、断面斑
が少なく、工程安定性に優れ、低温水中での溶脱性に優
れた低温水溶性のPVA系繊維が得られることとなる。
As described above, the present invention has an average degree of polymerization of 650 to 1100 and a melting point of 195 to 210 ° C. (saponification degree of 8
8 to 92 mol%) of a PVA-based polymer dissolved in an organic solvent, and a spinning dope having a PVA concentration of 25 to 37% by weight,
Wet spinning or dry-wet spinning in a solidification bath at -20 to 20 ° C. containing 50% by weight or more of an organic solvent having solidifying property with respect to the polymer, followed by extraction, wet stretching, drying, and dry heat stretching. Thus, low-temperature water-soluble PVA-based fibers, which cannot be obtained by the conventional technology, have less cross-sectional unevenness, have excellent process stability, and have excellent leaching properties in low-temperature water, can be obtained.

【0029】以下本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されるものでは
ない。実施例中%は、特にことわりのない限り重量に基
づく値である。PVAの重合度はJIS K−6726
に基づき30℃におけるPVA希薄水溶液の比粘度ηs
pを5点測定し、下記式1より極限粘度[η]を求め、
さらに下記式2より平均重合度を求める。 [η]=lim ηsp/C(C→0)‥‥1 平均重合度=([η]×104/8.29)1.613 ‥‥2
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the examples,% is a value based on weight unless otherwise specified. The polymerization degree of PVA is JIS K-6726.
Viscosity ηs of PVA dilute aqueous solution at 30 ° C based on
p was measured at five points, the intrinsic viscosity [η] was determined from the following equation 1,
Further, the average degree of polymerization is determined by the following equation (2). [Η] = lim η sp / C (C → 0) ‥‥ 1 Average polymerization degree = ([η] × 10 4 /8.29) 1.613 ‥‥ 2

【0030】実施例1 重合度800、融点205℃(鹸化度91モル%の部分
ケン化PVA)のPVAとDMSOを混合し、窒素置換
し、110Torrの減圧下90℃で8時間撹拌溶解
し、その後同じ110Torr下90℃で8時間脱泡
し、PVAが32%のDMSO溶液を得た。この紡糸原
液を90℃に保ち、孔数3000、孔径0.06mmφ
のノズルを通して、0℃のメタノール/DMSOの混合
重量比が70/30の混合液よりなる固化浴中に湿式紡
糸した。得られた糸篠をメタノール/DMSO=96/
4よりなる50℃の湿延伸浴で2.5倍湿延伸を施し、
加熱メタノールと向流接触させてDMSOを抽出除去
し、鉱物油系油剤を1%/ポリマー付与後、120℃熱
風乾燥機で乾燥し、16000dr/3000fのマル
チフィラメント状紡糸原糸を得た。得られた紡糸原糸を
ガスクロマトグラフィーでDMSOの含有量を測定した
ところ検出されなかった。この紡糸原糸を次いで80℃
−100℃−120℃の3セクションよりなる熱風炉で
3段の昇温乾熱延伸処理を行い、トータル延伸倍率6倍
を施した。得られた繊維の水中溶解温度(T)は15℃
と低くかった。また、引張り3.5cN/dtex、水
溶解時の最大収縮率は7%であった。得られた繊維の断
面形状を顕微鏡で観察し直径を測定したところ、100
本中の平均直径から40%以上外れた繊維径のものは3
本であり、極めて糸断面の斑が少なかった。また上記紡
糸を12時間連続して行ったが、断糸等の工程トラブル
は全くなく、工程安定性に優れていた。
Example 1 A mixture of PVA and DMSO having a degree of polymerization of 800 and a melting point of 205 ° C. (partially saponified PVA having a saponification degree of 91 mol%) was replaced with nitrogen, and dissolved by stirring at 90 ° C. for 8 hours under a reduced pressure of 110 Torr. Thereafter, defoaming was performed at 90 ° C. for 8 hours under the same 110 Torr to obtain a DMSO solution containing 32% PVA. This spinning solution is kept at 90 ° C., the number of holes is 3000, and the hole diameter is 0.06 mmφ.
Was wet-spun into a solidification bath consisting of a mixture of methanol / DMSO at a mixing weight ratio of 70/30 at 0 ° C. The obtained Itoshino is methanol / DMSO = 96 /
2.5 times wet stretching in a 50 ° C. wet stretching bath consisting of
DMSO was extracted and removed by countercurrent contact with heated methanol, and a mineral oil-based oil agent was added at 1% / polymer, and dried with a hot air drier at 120 ° C. to obtain a multifilament spun yarn of 16000 dr / 3000f. The content of DMSO in the obtained spun yarn was measured by gas chromatography and was not detected. The spun yarn is then heated to 80 ° C.
In a hot air furnace consisting of three sections at −100 ° C. to 120 ° C., a three-stage heating / dry heat stretching process was performed, and a total stretching ratio of 6 times was performed. The dissolution temperature (T) of the obtained fiber in water is 15 ° C.
It was low. Further, the tensile strength was 3.5 cN / dtex, and the maximum shrinkage upon dissolution in water was 7%. The cross-sectional shape of the obtained fiber was observed with a microscope and the diameter was measured.
If the fiber diameter deviated by more than 40% from the average diameter in the book is 3
It was a book, and there was very little unevenness in the yarn cross section. The spinning was performed continuously for 12 hours, but there was no process trouble such as thread breakage, and the process stability was excellent.

【0031】比較例1 重合度1700、融点195℃(鹸化度88モル%の部
分ケン化PVA)を使用し、原液濃度21%にする以外
は実施例1と同様な方法で繊維を得た。得られた紡糸原
糸をガスクロマトグラフィーでDMSOの含有量を測定
した結果、0.1%含有しており、溶媒の抽出性が悪い
ことがわかった。また水中溶解温度は15℃と低かった
が、水溶解時の最大収縮率が30%と大きかった。得ら
れた繊維の断面形状を顕微鏡で観察し直径を測定したと
ころ、100本中の平均直径から40%以上外れた繊維
径のものは30本あり、糸断面の斑が激しかった。また
上記紡糸を12時間連続して行ったが、断糸等の工程ト
ラブルが頻繁に発生した。
Comparative Example 1 Fibers were obtained in the same manner as in Example 1 except that a polymerization degree of 1700 and a melting point of 195 ° C. (partially saponified PVA having a saponification degree of 88 mol%) were used and the stock solution concentration was 21%. As a result of measuring the content of DMSO in the obtained spun yarn by gas chromatography, it was found that it contained 0.1%, indicating that the solvent extractability was poor. Although the dissolution temperature in water was as low as 15 ° C., the maximum shrinkage upon dissolution in water was as large as 30%. The cross-sectional shape of the obtained fiber was observed with a microscope, and the diameter was measured. As a result, there were 30 fibers having a fiber diameter deviating by 40% or more from the average diameter of 100 fibers, and the yarn cross-section was highly uneven. In addition, when the above-mentioned spinning was performed continuously for 12 hours, process troubles such as thread breakage frequently occurred.

【0032】比較例2 重合度1700、融点210℃(鹸化度93.5モル%
の部分ケン化PVA)のPVAを使用し、PVA濃度を
22%とし、湿延伸倍率3.0倍とする以外は実施例1
と同様に16000d/3000fの紡糸原糸を得た。
次いで140℃−170℃の2セクションよりなる熱風
炉で2.0倍の乾熱延伸を施した。得られた繊維の水中
溶解温度(T)は20℃以下と低かったが、水中溶解時
の最大収縮率が40%と大きかった。
Comparative Example 2 Polymerization degree 1700, melting point 210 ° C. (Saponification degree 93.5 mol%
Example 1 except that a partially saponified PVA) was used, the PVA concentration was 22%, and the wet stretching ratio was 3.0 times.
In the same manner as in the above, a spun yarn of 16000d / 3000f was obtained.
Then, dry heat stretching of 2.0 times was performed in a hot blast stove consisting of two sections at 140 ° C to 170 ° C. Although the dissolution temperature (T) in water of the obtained fiber was as low as 20 ° C. or less, the maximum shrinkage upon dissolution in water was as large as 40%.

【0033】実施例2 重合度1000、融点195℃(鹸化度88モル%の部
分ケン化PVA)のPVAとDMSOを混合し、窒素置
換し、110Torrの減圧下90℃で8時間撹拌溶解
し、その後同じ110Torr下90℃で8時間脱泡
し、PVAが28%のDMSO溶液を得た。この紡糸原
液を90℃に保ち、孔数400、孔径0.10mmφの
ノズルを通して、5℃のメタノール/DMSOの混合重
量比が70/30の混合液よりなる固化浴中に湿式紡糸
した。得られた糸篠をメタノール/DMSO=95/5
よりなる45℃の湿延伸浴で3.0倍湿延伸を施し、加
熱メタノールと向流接触させてDMSOを抽出除去し、
120℃熱風乾燥機で乾燥し、1670dr/400f
のマルチフィラメント(紡糸原糸)を得た。得られた紡
糸原糸をガスクロマトグラフィーでDMSOの含有量を
測定したところ検出されなかった。この紡糸原糸を次い
で80℃−120℃の2セクションよりなる熱風炉で2
段の乾熱延伸処理を行い、トータル延伸倍率6倍施し
た。得られた繊維の水中溶解温度(T)は20℃以下で
あり、水中での最大収縮率は15%であった。また引張
り強度は5.5cN/dtex、破断伸度は20%で、
タフネスは120cN/dtex×%であった。得られ
た繊維の断面形状を顕微鏡で観察し直径を測定したとこ
ろ、100本中の平均直径から40%以上外れた繊維径
のものは2本であり、極めて糸断面の斑が少なかった。
また上記紡糸を12時間連続して行ったが、断糸等の工
程トラブルは全くなく、工程安定性に優れていた。
Example 2 PVA having a degree of polymerization of 1000 and a melting point of 195 ° C. (partially saponified PVA having a degree of saponification of 88 mol%) and DMSO were mixed, the atmosphere was replaced with nitrogen, and the mixture was stirred and dissolved at 90 ° C. under a reduced pressure of 110 Torr for 8 hours. Thereafter, degassing was performed at 90 ° C. for 8 hours under the same 110 Torr, to obtain a DMSO solution containing 28% PVA. This spinning dope was kept at 90 ° C., and was wet-spun through a nozzle having 400 holes and a hole diameter of 0.10 mmφ into a solidification bath consisting of a mixed solution of methanol / DMSO at a mixing weight ratio of 70/30 at 5 ° C. The obtained Itoshino is methanol / DMSO = 95/5
And then subjected to 3.0-fold wet stretching in a 45 ° C. wet stretching bath, and brought into countercurrent contact with heated methanol to extract and remove DMSO.
Dry at 120 ° C hot air dryer, 1670dr / 400f
Was obtained. The content of DMSO in the obtained spun yarn was measured by gas chromatography and was not detected. The spun yarn is then passed through a hot-air stove consisting of two sections at 80 ° C. to 120 ° C. for 2 hours.
A dry heat stretching process was performed at the stage, and a total stretching ratio of 6 times was applied. The dissolution temperature (T) in water of the obtained fiber was 20 ° C. or less, and the maximum shrinkage in water was 15%. The tensile strength is 5.5 cN / dtex, the elongation at break is 20%,
Toughness was 120 cN / dtex ×%. The cross-sectional shape of the obtained fiber was observed with a microscope, and the diameter was measured. As a result, there were two fibers having a fiber diameter deviated by 40% or more from the average diameter in 100 fibers, and the unevenness in the yarn cross section was extremely small.
The spinning was performed continuously for 12 hours, but there was no process trouble such as thread breakage, and the process stability was excellent.

【0034】比較例3 重合度1750、融点225℃(鹸化度99.9モル%
の完全ケン化PVA)のPVAを用い、PVA濃度21
%にした以外は実施例2と同様にして、1670dte
x/400fの紡糸原糸を得た。次いで170−230
℃で、トータル延伸倍率15倍まで乾熱延伸を施した。
得られた繊維は100℃の水には溶解しなかった。
Comparative Example 3 Polymerization degree 1750, melting point 225 ° C. (saponification degree 99.9 mol%
Of completely saponified PVA) and a PVA concentration of 21
% And 1670 dte in the same manner as in Example 2.
An x / 400f spun yarn was obtained. Then 170-230
Dry heat stretching was performed at 15 ° C. to a total stretching ratio of 15 times.
The obtained fiber did not dissolve in water at 100 ° C.

【0035】実施例3 実施例1で得られた紡糸原糸を120℃−150℃の熱
風炉で2段の昇温条件下で定長熱処理を施した。得られ
た繊維は、水中溶解温度(T)が20℃以下であり、水
中での最大収縮率は6%と小さく、引張り強度は2.6
cN/dtexであり、破断伸度は10%であり、タフ
ネスは26cN/dtex×%であった。またRH93
%での寸法変化率は0.8%と低く、寸法安定性に優れ
ていた。
Example 3 The spun yarn obtained in Example 1 was subjected to a constant-length heat treatment in a hot-air oven at 120 ° C. to 150 ° C. under a two-stage heating condition. The obtained fiber has a dissolution temperature (T) in water of 20 ° C. or less, a maximum shrinkage in water as small as 6%, and a tensile strength of 2.6.
cN / dtex, elongation at break was 10%, and toughness was 26 cN / dtex ×%. Also RH93
% Was as low as 0.8%, indicating excellent dimensional stability.

【0036】実施例4 重合度が750、融点が200℃(鹸化度が90モル
%)のPVAを用いること以外は実施例1と同様に紡糸
原糸を得た。この紡糸原糸を100℃−120℃−15
0℃の3セクションよりなる熱風炉で3段の昇温条件で
トータル延伸倍率5.5倍施した。得られた繊維は、水
中溶解温度(T)が12℃であり、水中での最大収縮率
が6%と小さく、また引張り強度は3.6cN/dte
x、破断伸度は8%で、タフネスは29cN/dtex
であった。またRH93%での寸法変化率は1.7%と
低く、寸法安定性に優れていた。得られた繊維の断面形
状を顕微鏡で観察したところ得られた繊維の断面形状を
顕微鏡で観察し直径を測定したところ、100本中の平
均直径から40%以上外れた繊維径のものは7本であ
り、極めて糸断面の斑が少なかった。また上記紡糸を1
2時間連続して行ったが、断糸等の工程トラブルは全く
なく、工程安定性に優れていた。
Example 4 A spun yarn was obtained in the same manner as in Example 1, except that PVA having a degree of polymerization of 750 and a melting point of 200 ° C. (a degree of saponification of 90 mol%) was used. This spun yarn is kept at 100 ° C.-120 ° C.-15
In a hot blast stove consisting of three sections at 0 ° C., a total stretching ratio of 5.5 times was performed under three-stage heating conditions. The obtained fiber has a water dissolution temperature (T) of 12 ° C., a maximum shrinkage in water as small as 6%, and a tensile strength of 3.6 cN / dte.
x, elongation at break is 8%, toughness is 29 cN / dtex
Met. The dimensional change at RH 93% was as low as 1.7%, and the dimensional stability was excellent. When the cross-sectional shape of the obtained fiber was observed with a microscope, the cross-sectional shape of the obtained fiber was observed with a microscope, and the diameter was measured. And the unevenness of the yarn cross section was extremely small. In addition, the above spinning is
The test was carried out continuously for 2 hours, but there was no process trouble such as thread breakage, and the process stability was excellent.

【0037】実施例5 実施例4で定長熱処理を120℃とした以外は全く同じ
方法で得られた繊維は、水中溶解温度(T)が10℃で
あり、水中での最大収縮率は9%と小さく、また引張り
強度は2.5cN/dtex、破断伸度は10%で、タ
フネスは25cN/dtex×%であった。またRH9
3%での寸法変化率は2.5%と低く、寸法安定性に優
れていた。
Example 5 A fiber obtained in exactly the same manner as in Example 4 except that the constant-length heat treatment was changed to 120 ° C. had a water dissolution temperature (T) of 10 ° C. and a maximum shrinkage in water of 9%. %, The tensile strength was 2.5 cN / dtex, the elongation at break was 10%, and the toughness was 25 cN / dtex ×%. Also RH9
The dimensional change at 3% was as low as 2.5%, and the dimensional stability was excellent.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L035 BB03 BB04 BB06 BB11 BB15 BB17 BB18 BB66 BB69 BB74 BB79 BB85 BB90 BB91 EE04 EE06 EE08 EE20 HH10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L035 BB03 BB04 BB06 BB11 BB15 BB17 BB18 BB66 BB69 BB74 BB79 BB85 BB90 BB91 EE04 EE06 EE08 EE20 HH10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】平均重合度が650〜1350、融点が1
95〜210℃のポリビニルアルコール系ポリマーを有
機溶媒に溶解して得たポリビニルアルコール濃度25〜
35重量%の紡糸原液を、該ポリマーに対して固化性を
有する有機溶媒)を50重量%以上含む−20〜20℃
の固化浴に湿式紡糸又は乾湿式紡糸し、抽出、湿延伸、
乾燥後、乾熱延伸処理を施すことを特徴とする低温水溶
性ポリビニルアルコール系繊維の製造法。
An average degree of polymerization of 650 to 1350 and a melting point of 1
Polyvinyl alcohol concentration of 25 to 210 ° C. obtained by dissolving a polyvinyl alcohol polymer in an organic solvent at 25 to 210 ° C.
35% by weight of a spinning dope containing 50% by weight or more of an organic solvent having a solidifying property with respect to the polymer;
Wet spinning or dry-wet spinning in a solidification bath, extraction, wet drawing,
A method for producing a low-temperature water-soluble polyvinyl alcohol-based fiber, which comprises performing a dry heat drawing treatment after drying.
JP11052132A 1999-03-01 1999-03-01 Production of low temperature water-soluble polyvinyl alcohol-based fiber Pending JP2000248424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052132A JP2000248424A (en) 1999-03-01 1999-03-01 Production of low temperature water-soluble polyvinyl alcohol-based fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052132A JP2000248424A (en) 1999-03-01 1999-03-01 Production of low temperature water-soluble polyvinyl alcohol-based fiber

Publications (1)

Publication Number Publication Date
JP2000248424A true JP2000248424A (en) 2000-09-12

Family

ID=12906353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052132A Pending JP2000248424A (en) 1999-03-01 1999-03-01 Production of low temperature water-soluble polyvinyl alcohol-based fiber

Country Status (1)

Country Link
JP (1) JP2000248424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320544C (en) * 2003-09-22 2007-06-06 日本胜利株式会社 Disc drive apparatus
CN103060929A (en) * 2011-10-18 2013-04-24 中国石油化工集团公司 Raw material processing method for producing 80 DEG C water soluble fibers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320544C (en) * 2003-09-22 2007-06-06 日本胜利株式会社 Disc drive apparatus
CN103060929A (en) * 2011-10-18 2013-04-24 中国石油化工集团公司 Raw material processing method for producing 80 DEG C water soluble fibers

Similar Documents

Publication Publication Date Title
WO1999018267A1 (en) Flame-retardant polyvinyl alcohol base fiber
JP2569352B2 (en) High strength water-soluble polyvinyl alcohol fiber and method for producing the same
JP2000248424A (en) Production of low temperature water-soluble polyvinyl alcohol-based fiber
JP2002061063A (en) Heat-resistant nonwoven fabric
JPS6197415A (en) Polyacrylonitrile fiber having high strength and modulus
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JP3609851B2 (en) Water-soluble polyvinyl alcohol fiber
JP3345110B2 (en) Multifilament or staple fiber composed of water-soluble polyvinyl alcohol fiber
JP2008190063A (en) Method for producing soft spun raw yarn having excellent feeling and textile product obtained from the same
JP4102582B2 (en) Acrylic modified cross-section fine fiber manufacturing method
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JP3048449B2 (en) Acrylonitrile precursor fiber
JPS6233328B2 (en)
JP4591281B2 (en) Umijima fiber, method for producing the same, and method for producing ultrafine acrylic fiber
JPH0670283B2 (en) Method for producing high-strength, high-modulus polyvinyl alcohol fiber
JP2001192930A (en) Polyvinyl alcohol-based binder fiber, and method of producing the same
JPH0586503A (en) Method for producing polyvinyl alcohol yarn
JP2869137B2 (en) Method for producing polyvinyl alcohol fiber excellent in hot water resistance
JP2010116651A (en) Sea-island conjugate fiber and method for producing polyacrylonitrile-based polymer fiber using the same
JPH03193910A (en) High-shrinkage polyvinyl alcohol fiber having excellent water resistance and production thereof
JP2003041429A (en) Multifilament and staple fiber each comprising water- soluble polyvinyl alcohol fiber
JPH0533212A (en) Production of acrylic precursor yarn for carbon fiber
JPS636108A (en) Production of poly(p-phenylene terephthalamide) fiber
JP2001055620A (en) Acrylic fiber suitable for production of nonwoven fabric
JPH09268426A (en) Production of fiber