JPH0670283B2 - Method for producing high-strength, high-modulus polyvinyl alcohol fiber - Google Patents

Method for producing high-strength, high-modulus polyvinyl alcohol fiber

Info

Publication number
JPH0670283B2
JPH0670283B2 JP59230302A JP23030284A JPH0670283B2 JP H0670283 B2 JPH0670283 B2 JP H0670283B2 JP 59230302 A JP59230302 A JP 59230302A JP 23030284 A JP23030284 A JP 23030284A JP H0670283 B2 JPH0670283 B2 JP H0670283B2
Authority
JP
Japan
Prior art keywords
yarn
pva
polymer
strength
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59230302A
Other languages
Japanese (ja)
Other versions
JPS61108712A (en
Inventor
正春 水野
幸太郎 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59230302A priority Critical patent/JPH0670283B2/en
Publication of JPS61108712A publication Critical patent/JPS61108712A/en
Publication of JPH0670283B2 publication Critical patent/JPH0670283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高強度、高弾性率のポリビニルアルコール
(以下、PVAと略す)系繊維の製造方法、特にその工業
的もしくは商業的な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for producing a polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having high strength and high elastic modulus, particularly an industrial or commercial production method thereof. Regarding

[従来の技術] 従来、超高分子量のポリオレフィン系ポリマの準稀薄溶
液を紡糸し、得られた吐出糸条を冷却してゲル化させ、
このゲル化糸条から溶媒を抽出した後、超延伸を施す
と、強度および弾性率の極めて大きい繊維が得られるこ
とが知られている(特開昭56−15408,特開昭58−5228号
各公報およびJournal of Materials Science Vol.15,50
5〜514頁,1980および同2584〜2590頁,1980)。
[Prior Art] Conventionally, a semi-dilute solution of an ultra-high molecular weight polyolefin-based polymer is spun, and the obtained discharge yarn is cooled to gel,
It is known that when the solvent is extracted from the gelled yarn and then the fibers are subjected to ultra-drawing, fibers having extremely high strength and elastic modulus can be obtained (JP-A-56-15408, JP-A-58-5228). Publications and Journal of Materials Science Vol.15,50
5 to 514, 1980 and 2584 to 2590, 1980).

超高重合度PVAを使用し、上記のゲル紡糸を応用した超
高強度、高弾性率繊維の製造方法として、特開昭59−13
0314号公報には、まず、PVA原料である厳重に精留され
た酢酸ビニルモノマーを−40℃以下の低温下に約100時
間と言う長時間紫外線を照射して重合することにより、
重合度が6000を越える超高重合度PVAを作成し、この超
高重合度PVAを用いて、ゲル紡糸法、すなわち紡糸原液
を紡糸口金から吐出することにより得られた糸条を冷却
してゲル化し、このゲル化糸条から繊維を製造する方法
により高強度高弾性率繊維を製造する方法が開示されて
いる。
As a method for producing ultra high strength and high modulus fibers by applying the above-mentioned gel spinning using ultra high polymerization degree PVA, JP-A-59-13
In the 0314 publication, first, by polymerizing a strictly rectified vinyl acetate monomer, which is a PVA raw material, at a low temperature of −40 ° C. or lower by irradiating with ultraviolet light for a long time of about 100 hours,
An ultra-high degree of polymerization PVA with a degree of polymerization exceeding 6000 was created, and using this ultra-high degree of polymerization PVA, the gel spinning method, that is, the yarn obtained by discharging the spinning dope from the spinneret was used to cool the gel. A method for producing high-strength and high-modulus fibers by the method of producing fibers from this gelled yarn is disclosed.

しかしながら、このようなゲル化紡糸方法においては、
モノフィラメントは別にして、通常一般的に製造されて
いる多数本の単繊維からなるマルチフィラメントヤーン
を製造する場合には、マルチフィラメントヤーンを構成
する単繊維が相互に融着し易いため、得られる繊維は柔
軟性に乏しく、繊維全体の強度も低く、高次加工、たと
えば撚糸などによって強度が低下し、かつ強度利用率も
低いなどという問題がある。
However, in such gelling spinning method,
When a multifilament yarn composed of a large number of monofilaments, which is generally produced, is produced separately from the monofilament, the monofilaments constituting the multifilament yarn are easily fused to each other. There is a problem that the fiber has poor flexibility, the strength of the whole fiber is low, the strength is lowered by high-order processing such as twisting, and the strength utilization rate is low.

また、重合度が6000を越えるような高重合度PVAは、均
一性の良好な高濃度のポリマ溶液の作成が難しく、しか
もポリマ濃度の高い紡糸原液は、粘度が著しく高粘度に
なり、曵糸性が悪化するから、紡糸原液としてはポリマ
濃度の低い溶液を使用せざるを得ないが、ポリマ濃度の
低い紡糸原液は繊維製造における生産性が低く、工業的
な製造法を取り得ないという問題がある。そして、上記
ゲル化紡糸法において、吐出糸条をゲル化するための冷
却浴として水を使用すると、湿潤状態にある該ゲル化糸
条が融着し易く、PVA系ポリマに対する溶解性、取り扱
い、安全性などの点で有利な水を使用できないと言う欠
点がある。
Also, with a high degree of polymerization PVA with a degree of polymerization exceeding 6000, it is difficult to prepare a high-concentration polymer solution with good uniformity, and the spinning stock solution with a high polymer concentration has a remarkably high viscosity. As the spinning stock solution has to be used as a spinning stock solution, a solution having a low polymer concentration must be used.However, a spinning stock solution having a low polymer concentration has a low productivity in fiber production, and there is a problem that an industrial production method cannot be adopted. is there. Then, in the gelling spinning method, when water is used as a cooling bath for gelling the discharged yarn, the gelled yarn in a wet state is easily fused, and the solubility and handling in PVA-based polymer, It has the drawback that water, which is advantageous in terms of safety, cannot be used.

さらに上記特開昭59−130314号公報に記載されているよ
うな特殊なPVAの製造法は、少くとも工業的なポリマの
製造方法とは言い難く、その工業化を制約する一つの原
因と言える。
Further, the method for producing a special PVA as described in JP-A-59-130314 is not at least an industrial method for producing a polymer, and can be said to be one of the reasons for limiting its industrialization.

[発明が解決しようとする問題点] 本発明者らは、高強度・高弾性率PVA系繊維の製造方法
として、上記特開昭59−130314号公報に記載の超高強度
PVA系繊維に匹敵する高い物性を有するPVA系繊維を工業
的およびコスト的に有利に製造する方法について、鋭意
検討し、本発明を見出すに到ったものである。
[Problems to be Solved by the Invention] As a method for producing a high-strength / high-modulus PVA-based fiber, the present inventors have described the ultrahigh strength described in JP-A-59-130314.
The present invention has been made through intensive studies on a method for industrially and cost-effectively producing a PVA-based fiber having physical properties comparable to those of a PVA-based fiber, and found the present invention.

すなわち、本発明の目的とするところは、強度および弾
性率において卓越した物性を示し、単繊維間融着がな
く、開繊性および柔軟性に富み、高次加工性に優れたPV
A系繊維を生産性良く、かつ技術的に有利に製造する方
法を提供するにある。
That is, the purpose of the present invention is to show excellent physical properties in strength and elastic modulus, without fusion between single fibers, rich in openability and flexibility, PV excellent in high-order processability
It is an object of the present invention to provide a method for producing an A-based fiber with high productivity and technically advantage.

以下、本発明をさらに詳細、かつ具体的に説明する。Hereinafter, the present invention will be described in more detail and specifically.

[問題点を解決するための手段] このような本発明の目的は、重合度が2000以上6000以下
であるPVA系重合体を該重合体の融点以下、80℃以上の
温度範囲で溶解する溶剤であって、水に対して混和性を
有する溶剤に溶解し、この溶液を紡糸原液として紡糸口
金から吐出し、吐出糸条をそのゲル化温度以下に保たれ
た前記紡糸原液の溶剤に対して非混和性の冷却浴中に導
入してゲル化糸条を形成せしめた後、得られたゲル化糸
条をその融点以下の温度で熱延伸した後、水を用いて脱
溶媒処理し、ついで乾燥し、さらに二次延伸して、全延
伸倍率が少くとも15倍で単繊維間融着のない延伸糸条と
することを特徴とする高強度・高弾性率ポリビニルアル
コール系繊維の製造方法によって達成される。
[Means for Solving Problems] An object of the present invention is a solvent which dissolves a PVA polymer having a degree of polymerization of 2000 or more and 6000 or less in a temperature range of 80 ° C. or more and below the melting point of the polymer. Which is dissolved in a solvent that is miscible with water, is discharged from the spinneret as a spinning stock solution, and the discharged yarn is against the solvent of the spinning stock solution kept below its gelling temperature. After introducing into a non-miscible cooling bath to form a gelled yarn, the obtained gelled yarn is hot-stretched at a temperature below its melting point, then desolvated with water, and then According to the method for producing high-strength, high-modulus polyvinyl alcohol-based fibers, which is characterized in that it is dried and secondarily drawn to obtain a drawn yarn having a total draw ratio of at least 15 times and no fusion between single fibers. To be achieved.

本発明に使用されるPVA系ポリマとしては、従来公知のP
VAおよびその誘導体などであり、特に限定されるもので
はないが、具体的には、完全ケン化PVAのみならず、主
鎖中に共重合成分としてたとえばエチレン、プロピレ
ン、ブチレンなどのオレフィン系モノマが少量共重合さ
れたものおよびPVAの製造工程で完全にケン化しないで
部分ケン化されたPVAもしくは化学的に後処理されたPVA
系ポリマ並びに10重量%以下の少量のPVAに対して混和
性を有する他種のポリマとのブレンドなどを挙げること
ができる。
As the PVA-based polymer used in the present invention, conventionally known PVA
Examples of the VA and its derivatives include, but are not particularly limited to, not only fully saponified PVA but also olefinic monomers such as ethylene, propylene and butylene as a copolymerization component in the main chain. Small amount of copolymerized and partially saponified PVA or chemically post-treated PVA without complete saponification in PVA manufacturing process
Examples include polymer-based polymers and blends with other polymers having miscibility with a small amount of PVA of 10% by weight or less.

これらのPVA系ポリマは、その重合度を2000(分子量換
算で8.8万)以上6000(分子量換算で26.4万)以下とす
るものである。重合度が2000よりも小さくなると、本発
明の目的とする超高強度物性を満足する繊維を得ること
ができないし、他方、重合度が6000を越えると、PVA系
ポリマそのものの製造コストが高く、商業的に入手が困
難であるだけでなく、紡糸原液として生産性良く紡糸し
得る濃度および粘度を有する溶液の作製が困難になり、
PVA系繊維の紡糸、製糸の上から工業的な製造が難しく
なる。
These PVA-based polymers have a degree of polymerization of 2000 (88,000 in terms of molecular weight) or more and 6000 (264,000 in terms of molecular weight) or less. When the polymerization degree is less than 2000, it is not possible to obtain a fiber satisfying the ultra-high strength physical properties of the present invention, on the other hand, when the polymerization degree exceeds 6000, the production cost of the PVA polymer itself is high, Not only is it difficult to obtain commercially, but it becomes difficult to produce a solution having a concentration and a viscosity that can be spun with good productivity as a spinning stock solution,
It becomes difficult to industrially manufacture PVA fibers by spinning or spinning.

このような重合度の範囲内にある本発明のPVA系ポリマ
は、ポリマ濃度が5〜25重量%の範囲内になるように溶
解し、紡糸原液が調製される。
The PVA polymer of the present invention having such a degree of polymerization is dissolved so that the polymer concentration is within the range of 5 to 25% by weight to prepare a spinning dope.

ここで、上記ポリマ濃度が5%よりも低くなると、生産
性が劣り溶剤回収のコスト負担が大きくなるし、他方、
25%よりも高くなると、紡糸原液の粘度が高すぎてポリ
マ流路での圧力損失が大きく安定流動しにくくなる欠点
がある。
Here, when the polymer concentration is lower than 5%, the productivity becomes poor and the cost burden of solvent recovery increases, while
If it is higher than 25%, the viscosity of the spinning dope is too high, resulting in a large pressure loss in the polymer channel and a difficulty in stable flow.

上記紡糸原液の調製に用いられるPVA系ポリマの溶剤と
しては、該PVA系ポリマがその融点以下、80℃以上の温
度範囲内で溶解され、得られた溶液が冷却によってゲル
化するもの、具体的には、エチレングリコール、グリセ
リン、ジエチレングリコール、トリメチロールプロパ
ン、ベンゼンスルホアミド、カプロラクタムなど常温で
非揮発性の溶剤のうち、水に対して混和性を有するグリ
セリン、エチレングリコールのいずれかまたはこれらの
混合物を用いるものである。紡糸原液は、ポリマの融点
(約250℃)以下、80℃以上の温度範囲に加熱された上
記溶剤にPVA系ポリマを溶解することによって調製され
る。ポリマの融点より高温の溶媒に溶解すると、ポリマ
が分解するので好ましくないし、80℃よりも低いと例え
ば、常温〜0℃の領域ではゲル化しにくく安定したゲル
糸条を得ることが困難になる。
As the solvent for the PVA-based polymer used in the preparation of the spinning solution, the PVA-based polymer is melted at a temperature not higher than its melting point and 80 ° C. or higher, and the resulting solution is gelated by cooling, specifically, Among the non-volatile solvents at room temperature such as ethylene glycol, glycerin, diethylene glycol, trimethylolpropane, benzenesulfoamide, and caprolactam, glycerin, which has miscibility with water, or ethylene glycol, or a mixture thereof. It is used. The spinning dope is prepared by dissolving the PVA polymer in the above solvent which is heated to a temperature range of 80 ° C. or higher and below the melting point (about 250 ° C.) of the polymer. When the polymer is dissolved in a solvent having a temperature higher than the melting point of the polymer, the polymer is decomposed, which is not preferable, and when the temperature is lower than 80 ° C., for example, it is difficult to gel in a range of normal temperature to 0 ° C. and it becomes difficult to obtain a stable gel yarn.

かくして得られた紡糸原液は、紡糸口金孔から吐出され
るが、紡糸原液は直接冷却浴中に吐出してもよいし、一
旦空気または窒素、ヘリウム、アルゴンなどの不活性気
体中に吐出し、次いで冷却浴中に導入してもよい。空気
または不活性気体中に吐出する場合は、空気または不活
性気体の温度を0〜80℃とし、かつ紡糸口金面と冷却浴
との間の距離を3〜50mm程度にするのがよい。
The spinning stock solution thus obtained is discharged from the spinneret hole, but the spinning stock solution may be directly discharged into the cooling bath, or once discharged into an inert gas such as air or nitrogen, helium or argon, It may then be introduced into the cooling bath. When discharging into air or an inert gas, it is preferable that the temperature of the air or the inert gas is 0 to 80 ° C., and the distance between the spinneret surface and the cooling bath is about 3 to 50 mm.

ここで、冷却浴液は、PVA系ポリマの溶媒に対して相溶
性および混和性を有しない疎水性の液体、たとえばデカ
リン、トリクロルエチレン、四塩化炭素、パラフィンオ
イル、灯油などが用いられ、このような冷却液体を使用
することによって、該冷却液体中でゲル化した糸条は、
そのポリマ濃度が紡糸原液のポリマ濃度と実質的に同一
に保たれ、このようなゲル化糸条によってはじめて本発
明の高強度、高弾性率PVA系繊維を製造することが可能
になるのである。
Here, as the cooling bath liquid, a hydrophobic liquid that is not compatible or miscible with the solvent of the PVA polymer, such as decalin, trichlorethylene, carbon tetrachloride, paraffin oil, or kerosene is used. By using a different cooling liquid, the yarn gelled in the cooling liquid is
The polymer concentration is kept substantially the same as the polymer concentration of the spinning dope, and it becomes possible to produce the high-strength, high-modulus PVA fiber of the present invention only by such gelled yarn.

すなわち、前記冷却液体がポリマの溶媒に対して相溶性
および混和性を有していると、該冷却液体中で吐出糸条
中のポリマ溶剤と冷却液体との間で相互拡散が起り、た
とえばスキン、コアなどのような構造が形成され、緻密
で延伸性に優れたゲル糸条を得ることが困難になるので
ある。
That is, when the cooling liquid is compatible and miscible with the solvent of the polymer, mutual diffusion occurs between the polymer solvent in the discharge yarn and the cooling liquid in the cooling liquid, and, for example, the skin. Thus, a structure such as a core is formed, and it becomes difficult to obtain a dense and highly stretchable gel yarn.

ここで、前記冷却液体の温度は、紡糸原液のゲル化温度
によって定まるが、好ましくは0〜60℃の範囲内にする
のがよい。すなわち、60℃よりも高くなると、吐出糸条
の冷却効率が不充分なために、後続する脱溶媒、延伸な
どの工程で糸条を安定に走行させることが困難になる
し、0℃よりも低くなると特殊な冷却設備を必要とし好
ましくない。
Here, the temperature of the cooling liquid is determined by the gelation temperature of the spinning dope, but is preferably in the range of 0 to 60 ° C. That is, when the temperature is higher than 60 ° C, the cooling efficiency of the discharged yarn is insufficient, so that it becomes difficult to stably run the yarn in the subsequent processes such as desolvation and drawing, and the temperature is higher than 0 ° C. If it becomes lower, special cooling equipment is required, which is not preferable.

たとえば、3000の重合度を有するPVAの15重量%グリセ
リン溶液の場合、そのゲル化温度は約103℃であり、こ
の溶液を紡糸口金ノズルから吐出し、得られた吐出糸条
を冷却するには、冷却浴の温度は40℃以下がよい。
For example, in the case of a 15 wt% glycerin solution of PVA having a degree of polymerization of 3000, its gelling temperature is about 103 ° C, and this solution is discharged from a spinneret nozzle, and the obtained discharged yarn is cooled. The temperature of the cooling bath should be 40 ° C or lower.

また、冷却浴の深さ、長さなどは、特に限定されるもの
ではないが、マルチフィラメントとして吐出する場合
は、マルチフィラメントを構成する単繊維が集束される
前に冷却浴中で十分に冷却され、ゲル化が完了するよう
に冷却浴の温度、深さ、長さを適宜設定すべきである。
Further, the depth, length, etc. of the cooling bath are not particularly limited, but when discharging as a multi-filament, it is sufficiently cooled in the cooling bath before the single fibers constituting the multi-filament are bundled. Therefore, the temperature, depth and length of the cooling bath should be appropriately set so that gelation is completed.

かくして得られたゲル化糸条は、ゲル化糸条を構成する
ポリマの濃度が実質的に紡糸原液におけるポリマ濃度と
同一であると言う特徴を有しており、この特徴は本発明
の前記重合度範囲のPVA系ポリマから高強度・高弾性率
繊維を形成する上で極めて重要である。
The gelled yarn thus obtained has a characteristic that the concentration of the polymer constituting the gelled yarn is substantially the same as the polymer concentration in the spinning dope, and this characteristic is the above-mentioned polymerization of the present invention. It is extremely important for forming high-strength, high-modulus fibers from PVA-based polymers in the range of degrees.

すなわち、このような特徴を有していることが、得られ
たゲル化糸条を熱延伸後、水を用いて脱溶媒処理するこ
とによって少くとも15倍、好ましくは18倍以上と言う高
倍率の延伸を行う上で必須の要件になるのである。
That is, having such characteristics, the obtained gelled yarn is at least 15 times, preferably 18 times or more by hot-drawing and then desolventizing treatment with water. Is an essential requirement for stretching.

かくして得られた未延伸糸条は、脱溶媒処理前に熱延伸
(一次延伸)されるが、この場合の延伸は延伸温度をPV
A系ポリマの融点以下の温度である160〜250℃の範囲と
して、一段もしくは多段のいずれで行ってもよい。
The unstretched yarn thus obtained is hot-stretched (primarily stretched) before the desolvation treatment. In this case, the stretching temperature is PV.
The temperature may be 160 to 250 ° C., which is a temperature equal to or lower than the melting point of the A-based polymer, and either one-stage or multi-stage may be used.

本発明においては、前記脱溶媒処理の前にゲル化糸条を
直ちに延伸する際、延伸温度をPVA系ポリマゲルの融点
以下の温度とするのがよい。この脱溶媒処理前の湿潤状
態にあるゲル化糸条を加熱延伸し、次いで脱溶媒処理す
ることにより、脱溶媒処理に水を使用しても脱溶媒処理
およびそれに続く乾燥工程における単繊維間の融着を実
質的に防止することができ、柔軟で開繊性に富む高強度
・高弾性率PVA系マルチフィラメントヤーンを工業的に
有利に製造することができる。しかしながら、上記ゲル
状糸条の延伸温度は、紡糸原液のゲル化温度によって相
違するが、たとえば紡糸原液のゲル化温度が110〜120℃
付近の場合には、常温で延伸すると延伸性が低く、高々
2倍程度しか延伸できないばかりか、延伸後の熱固定が
されず収縮する。したがって、この場合に繊維を構成す
る高分子鎖が十分に配向し、結晶化した繊維構造及び、
十分な耐水性を有する繊維糸条とするためには、60〜11
0℃の範囲で延伸するのがよい。
In the present invention, when the gelled yarn is immediately stretched before the desolvation treatment, the stretching temperature is preferably set to a temperature not higher than the melting point of the PVA polymer gel. By heating and stretching the gelled yarn in a wet state before the desolvation treatment, and then desolvating the water, even if water is used for the desolvation treatment, the single fibers between the single fibers in the desolvation treatment and the subsequent drying step are Fusing can be substantially prevented, and a high-strength, high-modulus PVA-based multifilament yarn that is flexible and has excellent openability can be industrially produced advantageously. However, the stretching temperature of the gel-like yarn varies depending on the gelling temperature of the spinning dope, but the gelling temperature of the spinning dope is 110 to 120 ° C, for example.
In the vicinity, when stretched at room temperature, the stretchability is low, and it is possible to stretch only at most about 2 times, and it is not heat set after stretching and shrinks. Therefore, in this case, the polymer chains constituting the fiber are sufficiently oriented, and the crystallized fiber structure and
To make a fiber yarn with sufficient water resistance, 60 to 11
It is preferable to stretch in the range of 0 ° C.

また、延伸装置としては、加熱チューブ、熱板、加熱ロ
ーラ、加熱ピン、加熱液体浴、流動床などいずれの手段
でもよく、特に限定されるものではない。
The stretching device may be any means such as a heating tube, a heating plate, a heating roller, a heating pin, a heating liquid bath, and a fluidized bed, and is not particularly limited.

脱溶媒処理としては、ゲル化糸条を熱延伸した後水を用
いて該ゲル化糸条を脱溶媒することにより行われる。
The desolvation treatment is performed by hot drawing the gelled yarn and then using water to remove the solvent.

脱溶媒処理した後の糸条は加熱乾燥され、糸条中に含ま
れる脱溶媒処理に使用した水は除去される。
The yarn after the desolvation treatment is heated and dried, and the water contained in the yarn used for the desolvation treatment is removed.

上記湿潤ゲル状態で延伸した糸条の脱溶媒処理は、水を
溶媒として使用するものであり、前述したように工業的
に有利であるが、この場合の脱溶媒処理条件としては、
繊維を構成するPVA系ポリマの重合度、タクティシテイ
などにより相違するけれども、延伸糸条の単糸間融着が
起こらず、かつ脱溶媒効率のよい条件、好ましくは通常
10〜50℃の温度範囲内で処理すればよい。
The desolvation treatment of the yarn stretched in the wet gel state uses water as a solvent and is industrially advantageous as described above, but the desolvation treatment conditions in this case are:
Although it depends on the degree of polymerization of the PVA-based polymer that constitutes the fiber, the tacticity, etc., it is a condition that does not cause fusion between the single yarns of the drawn yarns and has good desolvation efficiency, preferably normal.
The treatment may be performed within the temperature range of 10 to 50 ° C.

かくして得られた延伸・脱溶媒糸条は、乾燥されるが、
この場合に単糸間融着を緩和し、以降の後処理工程での
金属との摩擦抵抗を減少させ、静電気による単糸の拡が
りを抑制するために、各種の油剤で処理し、乾燥しても
よい。乾燥手段としては、公知の加熱ドラム、加熱チュ
ーブ、熱風などを採用することができる。
The drawn / desolvated yarn thus obtained is dried,
In this case, in order to alleviate the fusion between single yarns, reduce the friction resistance with the metal in the subsequent post-treatment process, and suppress the spread of the single yarns due to static electricity, it is treated with various oil agents and dried. Good. As the drying means, a known heating drum, heating tube, hot air, or the like can be adopted.

乾燥された延伸糸条には、前記加熱チューブ、熱板、加
熱ロール、加熱ピン、加熱液体、流動床などを用いて、
100〜250℃の温度範囲で一段ないし複数段の二次延伸が
施され、得られる糸条の全延伸倍率が少くとも15倍、好
ましくは18〜30倍になるように延伸される。この全延伸
倍率は、本発明のPVA系繊維糸条を構成する高分子鎖を
繊維軸方向に高度に配向せしめ、その強度および弾性率
を高度に増加させるための重要な要件であり、これによ
って引張強度が18g/d以上、引張弾性率が350g/d以上と
いう卓越した繊維にすることが可能になるのである。
The dried drawn yarn, using the heating tube, hot plate, heating roll, heating pin, heating liquid, fluidized bed, etc.,
Secondary stretching is performed in a temperature range of 100 to 250 ° C. in a single step or in a plurality of steps, and the resulting yarn is stretched so that the total draw ratio is at least 15 times, preferably 18 to 30 times. This total draw ratio is an important requirement for highly orienting the polymer chains constituting the PVA-based fiber yarn of the present invention in the fiber axis direction and highly increasing the strength and elastic modulus thereof. It is possible to obtain excellent fibers having a tensile strength of 18 g / d or more and a tensile elastic modulus of 350 g / d or more.

[発明の作用・効果] 本発明によれば、PVA系ポリマとして商業的に入手可能
な重合度が2000〜6000のポリマを用いて極めて機械的強
度の優れたPVA系繊維を製造することができる。
[Operation and Effect of the Invention] According to the present invention, a PVA-based fiber having an extremely high mechanical strength can be produced using a commercially available polymer having a polymerization degree of 2000 to 6000 as a PVA-based polymer. .

上記重合度のPVA系ポリマから引張強度が少くとも18g/
d、弾性率が350g/d以上と言う優れた物性を有する繊維
を得ることに成功したのは、PVA系ポリマの紡糸原液と
して、溶液の安定性、紡糸性のよい濃度範囲のPVA系ポ
リマ溶液を見出し、この紡糸原液から得られるゲル化糸
条のポリマ濃度を該紡糸原液のポリマ濃度と実質的に同
一にすることによって、得られるゲル化糸条の延伸性が
高度に向上することを見出し、湿潤ゲル化糸条を熱処理
することにより、脱溶媒処理するとき、脱溶媒処理の溶
媒として水を使用するものであり、従来のメタノールの
ような引火性で毒性を有する溶媒を使用しなくてもよい
と言うメリットがあり、単に水が安価であると言うだけ
ではなくて、本発明の超高強度PVA系繊維の工業的な製
法を確立したものとしての意義は極めて大きい。
Tensile strength of at least 18g / from PVA polymer with the above degree of polymerization
We have succeeded in obtaining fibers with excellent physical properties such as d and an elastic modulus of 350 g / d or more, because the spinning stock solution of PVA-based polymer is a stable solution of PVA-based polymer solution with a concentration range with good spinnability. And found that by making the polymer concentration of the gelled yarn obtained from this spinning dope substantially the same as the polymer concentration of the spinning dope, the extensibility of the obtained gelled yarn is highly improved. When heat-treating a wet gelling yarn, water is used as a solvent for the desolvation treatment, and it is possible to use a flammable and toxic solvent such as conventional methanol. There is a merit that it is good, and it is not only that water is cheap, but also the significance as an established industrial production method of the ultrahigh strength PVA fiber of the present invention is extremely significant.

さらに本発明によれば、モノフィラメントから総繊度が
約100〜10000dのマルチフィラメントの各種多様な繊維
を容易に製造することができる。
Further, according to the present invention, various kinds of fibers such as multifilaments having a total fineness of about 100 to 10,000 d can be easily produced from monofilaments.

以下、実施例により本発明を具体的に説明する。なお、
実施例中、繊維の物性は、次の条件で測定した値であ
る。
Hereinafter, the present invention will be specifically described with reference to examples. In addition,
In the examples, the physical properties of the fibers are values measured under the following conditions.

測定サンプル :単糸 測定試長 :100mm 測定時の引張り速度:100m/分 測定雰囲気 :20℃,65%相対湿度 実施例 1 重合度2100(分子量換算で9.24万)、ケン化度99.5%の
PVAをグリセリンを溶剤として170℃で溶解し、ポリマ濃
度が17.5重量%の紡糸原液を作製した。この紡糸原液を
170℃に保ち、孔径0.08mm、ホール数10個の紡糸ノズル
から空気中に吐出し、ノズル面から8mm下の15℃のデカ
リンを冷却液とする浴中に導いて冷却した。ノズルから
の紡糸原液の総吐出量は0.97cc/分であり、冷却したゴ
ム状ゲル化糸条は5m/分で引き取った。
Measurement sample: Single yarn Measurement test length: 100 mm Tensile speed during measurement: 100 m / min Measurement atmosphere: 20 ° C, 65% relative humidity Example 1 Polymerization degree 2100 (molecular weight conversion 9240,000), saponification degree 99.5%
PVA was dissolved at 170 ° C. using glycerin as a solvent to prepare a spinning dope having a polymer concentration of 17.5% by weight. This spinning solution
The temperature was maintained at 170 ° C., a spinning nozzle having a hole diameter of 0.08 mm and 10 holes was discharged into the air, and decalin at 15 ° C. 8 mm below the nozzle surface was introduced into a bath as a cooling liquid to cool. The total discharge amount of the spinning dope from the nozzle was 0.97 cc / min, and the cooled rubber-like gelled yarn was collected at 5 m / min.

得られたゲル化糸条を長さ80cmの内気温度が100℃の加
熱チューブ中で4.0倍に延伸し、プラスチックボビンに
巻き取った。巻き取った糸条をボビンごと40℃温水中に
繰り返し浸漬し、糸条中のグリセリンを抽出した。次い
で糸条を乾燥して水分を除去し、表面温度が230℃の熱
板を用いて3.8倍および4.5倍に延伸した。得られた全延
伸倍率がそれぞれ15.2倍および18倍の延伸糸条の物性を
第1表に示した。
The obtained gelled yarn was stretched 4.0 times in a heating tube having a length of 80 cm and an internal air temperature of 100 ° C., and wound on a plastic bobbin. The wound yarn together with the bobbin was repeatedly immersed in warm water at 40 ° C. to extract glycerin in the yarn. Next, the yarn was dried to remove water, and stretched 3.8 times and 4.5 times using a hot plate having a surface temperature of 230 ° C. Table 1 shows the physical properties of the drawn yarns having the total draw ratios of 15.2 times and 18 times, respectively.

また、これらの延伸糸条は、単繊維間に全く融着が認め
られず、柔軟性および開繊性に優れていた。
Further, in these drawn yarns, fusion was not recognized between the single fibers at all, and the flexibility and openability were excellent.

比較例 1 実施例1の脱溶媒処理後の熱板延伸において、延伸倍率
を1(これ以上延伸しないもの)、2.0および2.7に変更
し、他は実施例1と同様にして延伸糸条を作製した。得
られた繊維糸条の物性を第1表に示した。
Comparative Example 1 In the hot plate drawing after the desolvation treatment of Example 1, the draw ratio was changed to 1 (no more drawing), 2.0 and 2.7, and otherwise the same as in Example 1 to prepare a drawn yarn. did. The physical properties of the obtained fiber yarn are shown in Table 1.

表から判るように、全延伸倍率が15倍より低いものは、
得られる繊維糸条の物性も著しく低くなることが判る。
As can be seen from the table, if the total draw ratio is lower than 15 times,
It can be seen that the physical properties of the obtained fiber yarn are significantly reduced.

実施例 2 重合度3900(分子量換算で17.2万)、ケン化度99.6%の
PVAをグリセリンを溶媒として170℃で溶解し濃度が11.0
重量%の紡糸原液を作製した。
Example 2 Polymerization degree 3900 (molecular weight conversion 172,000), saponification degree 99.6%
PVA was dissolved at 170 ° C using glycerin as a solvent to give a concentration of 11.0
A wt% spinning dope was prepared.

この紡糸原液を170℃に保持して孔径0.06mm、孔数20個
の紡糸ノズルから空気中に吐出し、ノズル面の下方10mm
に設置した15℃のデカリンを冷却液とする冷却浴中に導
き、吐出糸条をゲル化させた。ノズルからの紡糸原液の
総吐出量は0.97cc/分であり冷却したゴム状ゲル化糸条
は2m/分で引き取った。
This spinning solution is maintained at 170 ° C and discharged into the air from a spinning nozzle with a hole diameter of 0.06 mm and 20 holes, 10 mm below the nozzle surface.
The discharged yarn was gelated by introducing it into a cooling bath containing decalin at 15 ° C as a cooling liquid. The total discharge amount of the spinning dope from the nozzle was 0.97 cc / min, and the cooled rubber-like gelled yarn was collected at 2 m / min.

得られたゲル化糸条を長さ80cm、内気温度100℃の加熱
チューブ中で4.0倍に延伸し、プラスチックボビンに巻
き取った。巻き取った糸条をボビンごとに40℃の温水中
に繰り返し浸漬し、糸条中の溶剤を抽出した。次いで糸
条を乾燥して水を除去し、表面温度が230℃の熱板を用
いてさらに、5.5倍に延伸した。
The obtained gelled yarn was stretched 4.0 times in a heating tube having a length of 80 cm and an internal air temperature of 100 ° C., and wound on a plastic bobbin. Each wound bobbin was repeatedly immersed in warm water at 40 ° C for each bobbin to extract the solvent in the bobbin. Next, the yarn was dried to remove water, and further stretched 5.5 times using a hot plate having a surface temperature of 230 ° C.

得られた全延伸倍率が22倍の繊維糸条は、単糸間融着の
ない単糸繊維が1.54dのマルチフィラメントヤーンであ
り、強度20.1g/d、伸度4.9%、弾性率430g/dの優れた物
性を示した。
The resulting fiber yarn having a total draw ratio of 22 times is a multi-filament yarn in which the single yarn fibers without fusion between single yarns are 1.54d, and the strength is 20.1 g / d, the elongation is 4.9%, and the elastic modulus is 430 g / It exhibited excellent physical properties of d.

比較例 2 実施例2において、紡糸原液をノズルから吐出し冷却す
ることによって得られたゲル化糸条を加熱チューブで延
伸することなく、直ちに40℃の温水中で繰り返し浸漬し
て溶媒を抽出し、乾燥したところ、単糸間融着の著しい
糸条が形成され、この糸条を230℃の熱板を用いて延伸
した結果、最大延伸倍率が全延伸倍率で15倍であり、そ
れ以上の延伸は困難であった。また、得られた糸条は、
融着が著しく、脆くて開繊性に欠けており、マルチフィ
ラメントヤーンのまま物性を測定したところ、強度13.8
g/d、弾性率327g/dと低い繊維物性を示した。
Comparative Example 2 In Example 2, the gelled yarn obtained by discharging the spinning dope from the nozzle and cooling was immediately immersed repeatedly in warm water at 40 ° C. to extract the solvent without stretching with a heating tube. When dried, a yarn with remarkable fusion between single yarns was formed, and as a result of stretching this yarn using a hot plate at 230 ° C., the maximum draw ratio was 15 times in total draw ratio and Stretching was difficult. In addition, the obtained yarn,
The fusion was remarkable, it was brittle and lacked in openability, and the physical properties of the multifilament yarn were measured.
It showed low fiber physical properties such as g / d and elastic modulus of 327 g / d.

実施例 3 実施例1において、ポリマの溶媒としてエチレングリコ
ールを用い、他は同一の条件で製糸したところ、全延伸
倍率が最高16倍、強度18.3g/d、弾性率384g/dの単糸間
融着のない開繊性の良好な糸条が得られた。
Example 3 In Example 1, ethylene glycol was used as a solvent for the polymer, and the same conditions were applied except that the total draw ratio was 16 times, the strength was 18.3 g / d, and the elastic modulus was 384 g / d. A yarn having good openability without fusion was obtained.

比較例 3 ポリマの重合度が1300(分子量換算で5.72万)、ケン化
度99.5%のPVAを160℃のグリセリンに溶解し、濃度20重
量%の紡糸原液を作製した。得られた紡糸原液を実施例
2と同様に、紡糸、ゲル化、延伸(但し、延伸倍率4
倍)、脱溶媒処理、乾燥、二軸延伸(但し、230℃の熱
板を用いて4.8倍に延伸)した。
Comparative Example 3 PVA having a polymer polymerization degree of 1300 (molecular weight conversion: 572,000) and a saponification degree of 99.5% was dissolved in glycerin at 160 ° C to prepare a spinning dope having a concentration of 20% by weight. The obtained spinning dope was spun, gelled and stretched in the same manner as in Example 2 (with a draw ratio of 4
Fold), desolvation treatment, drying, and biaxial stretching (however, stretching was 4.8 times using a hot plate at 230 ° C).

得られた糸条の全延伸倍率は19.2倍であったが、繊維物
性は、強度13.5g/d、伸度6.1%、弾性率354g/dであっ
た。
The total draw ratio of the obtained yarn was 19.2, but the fiber properties were a strength of 13.5 g / d, an elongation of 6.1% and an elastic modulus of 354 g / d.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−100710(JP,A) 特開 昭59−130314(JP,A) 特開 昭55−107506(JP,A) 特公 昭44−26409(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-59-100710 (JP, A) JP-A-59-130314 (JP, A) JP-A-55-107506 (JP, A) JP-B-44- 26409 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重合度が2000以上6000以下であるポリビニ
ルアルコール系重合体溶液を該重合体の融点以下、80℃
以上の温度で溶解する溶剤であって、水に対して混和性
を有する溶剤に溶解し、この溶液を紡糸原液として紡糸
口金孔から吐出し、吐出糸条をそのゲル化温度以下に保
たれた前記紡糸原液の溶剤に対して非混和性の冷却浴中
に導入してゲル化糸条を形成せしめた後、得られたゲル
化糸条をその融点以下の温度で熱延伸した後、水を用い
て脱溶媒処理し、ついで乾燥し、さらに二次延伸して、
全延伸倍率が少くとも15倍で単繊維間融着のない延伸糸
条とすることを特徴とする高強度・高弾性率ポリビニル
アルコール系繊維の製造方法。
1. A polyvinyl alcohol-based polymer solution having a degree of polymerization of 2000 or more and 6000 or less, the melting point of the polymer is 80 ° C. or less.
It was a solvent that was soluble at the above temperatures and was soluble in a solvent that was miscible with water, and this solution was discharged from the spinneret hole as a spinning stock solution, and the discharged yarn was kept below its gelling temperature. After introducing into a cooling bath that is immiscible with the solvent of the spinning dope to form a gelled yarn, the resulting gelled yarn is hot-stretched at a temperature below its melting point, and then water is added. Desolvation treatment using, followed by drying, further secondary stretching,
A method for producing high-strength, high-modulus polyvinyl alcohol-based fibers, characterized in that a drawn yarn having a total draw ratio of at least 15 and free from fusion between single fibers.
JP59230302A 1984-11-02 1984-11-02 Method for producing high-strength, high-modulus polyvinyl alcohol fiber Expired - Fee Related JPH0670283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59230302A JPH0670283B2 (en) 1984-11-02 1984-11-02 Method for producing high-strength, high-modulus polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230302A JPH0670283B2 (en) 1984-11-02 1984-11-02 Method for producing high-strength, high-modulus polyvinyl alcohol fiber

Publications (2)

Publication Number Publication Date
JPS61108712A JPS61108712A (en) 1986-05-27
JPH0670283B2 true JPH0670283B2 (en) 1994-09-07

Family

ID=16905698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230302A Expired - Fee Related JPH0670283B2 (en) 1984-11-02 1984-11-02 Method for producing high-strength, high-modulus polyvinyl alcohol fiber

Country Status (1)

Country Link
JP (1) JPH0670283B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328911A (en) * 1986-07-14 1988-02-06 Toyobo Co Ltd Production of high-strength and high-elastic modulus polyvinyl alcohol based fiber
JPS63190010A (en) * 1987-01-30 1988-08-05 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol based fiber
JPS63243316A (en) * 1987-03-30 1988-10-11 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPS6452842A (en) * 1987-08-21 1989-02-28 Bridgestone Corp Pneumatic tire
JP2765951B2 (en) * 1989-05-19 1998-06-18 株式会社クラレ Glossy high-strength polyvinyl alcohol fiber and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL177840C (en) * 1979-02-08 1989-10-16 Stamicarbon METHOD FOR MANUFACTURING A POLYTHENE THREAD
US4440711A (en) * 1982-09-30 1984-04-03 Allied Corporation Method of preparing high strength and modulus polyvinyl alcohol fibers
JPS59100710A (en) * 1982-11-25 1984-06-11 Kuraray Co Ltd Production of yarn having high toughness

Also Published As

Publication number Publication date
JPS61108712A (en) 1986-05-27

Similar Documents

Publication Publication Date Title
MXPA97000904A (en) Method for preparing polybenzoxazole opolibenzotia fibers
JP2569352B2 (en) High strength water-soluble polyvinyl alcohol fiber and method for producing the same
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JPH0670283B2 (en) Method for producing high-strength, high-modulus polyvinyl alcohol fiber
JPS59100710A (en) Production of yarn having high toughness
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPS6241341A (en) High speed stretching of gel fiber
EP0327696B1 (en) High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JPS61215708A (en) Production of multifilament yarn
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
JPH07238416A (en) Production of high-strength polyethylene fiber
JPH1181036A (en) High strength polypropylene fiber and its production
JPH0429765B2 (en)
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPH03807A (en) Polyvinyl alcohol monofilament yarn and production thereof
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPS6399315A (en) Production of high-strength and high-initial elastic modulus polyvinyl alcohol fiber
JPH0610210A (en) Polyvinyl alcohol-based fiber excellent in knot strength
JP2765951B2 (en) Glossy high-strength polyvinyl alcohol fiber and method for producing the same
JPS63190010A (en) Production of high-tenacity polyvinyl alcohol based fiber
JP2728737B2 (en) Hot water-resistant polyvinyl alcohol fiber and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees