JPS61108711A - Production of polyvinyl alcohol fiber of high strength and high elastic modulus - Google Patents

Production of polyvinyl alcohol fiber of high strength and high elastic modulus

Info

Publication number
JPS61108711A
JPS61108711A JP23030184A JP23030184A JPS61108711A JP S61108711 A JPS61108711 A JP S61108711A JP 23030184 A JP23030184 A JP 23030184A JP 23030184 A JP23030184 A JP 23030184A JP S61108711 A JPS61108711 A JP S61108711A
Authority
JP
Japan
Prior art keywords
yarn
fibers
polyvinyl alcohol
pva
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23030184A
Other languages
Japanese (ja)
Other versions
JPH0696807B2 (en
Inventor
Masaharu Mizuno
正春 水野
Kotaro Fujioka
藤岡 幸太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59230301A priority Critical patent/JPH0696807B2/en
Publication of JPS61108711A publication Critical patent/JPS61108711A/en
Publication of JPH0696807B2 publication Critical patent/JPH0696807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:A solution of a PVA polymer of a specific polymerization degree is extruded through a spinneret with a plurality of nozzles under specific conditions, converted into gel without change in the concentration of the fibrous polymer solution, then desolvation and drawing are effected to produce the titled fibers of high uniformity and high strength and elasticity in high productivity. CONSTITUTION:A solution of polyvinyl alcohol of more than 1,500 polymerization degree is extruded through a spinneret having a plurality of nozzles under such conditions as the equation: 0.05<=V1/V0<=1.0 (V0 is the linear speed of the yarn extruded out of the spinneret; V1 is the yarn taking-up speed) and the resultant fibrous polymer solution is converted into gel without change in the concentration of the polymer solution. The resultant gel fibers are subjected to desolvation and drawing or drawing and desolvation at a total draw ratio of at least 13 into fibers of less than 10 denier each filament to give the objective fibers.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高強度、高弾性率のポリビニルアルコール(
以下PVAと略す)系繊維、特に、繊維物性に優れたP
VA系繊維を工業的に効率良く製造する方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides high strength, high modulus polyvinyl alcohol (
(hereinafter abbreviated as PVA) type fibers, especially PVA, which has excellent fiber properties.
The present invention relates to a method for industrially and efficiently producing VA fibers.

(従来の技術) 従来、超高分子量のポリオレフィン系ポリマの準稀薄溶
液を口金孔から吐出し、吐出糸条を冷却させて−Hゲル
化せしめた後、得られたゲル化糸条をIB2溶媒し、超
延伸すると、強度および弾性率の著しく高い繊維が得ら
れることは公知であり[たとえば、特開昭56−154
08、周58−5228号各公報、J ournal 
 of  M aterialsScience  v
ol 、 15.0505〜514 (1980)]、
PVAを対象とする繊維についても知られている(特開
昭59−130314号公報)。
(Prior art) Conventionally, a semi-diluted solution of an ultra-high molecular weight polyolefin polymer was discharged from a spinneret hole, the discharged yarn was cooled to form a -H gel, and the resulting gelled yarn was then treated with an IB2 solvent. However, it is known that fibers with extremely high strength and elastic modulus can be obtained by ultra-stretching [for example, Japanese Patent Application Laid-Open No. 56-154
08, Shu 58-5228 publications, Journal
of M materialsScience v
ol, 15.0505-514 (1980)],
Fibers made of PVA are also known (Japanese Unexamined Patent Publication No. 130314/1983).

このPVA系ポリマを対象とする高強度、高弾性率繊維
は、その高融点および耐候性などによって工業ま、たは
産業用分野における高度の有用性が期待されるが、特公
昭59−130314号公報に開示されているような特
殊な重合法(酢酸ビニルモノマの厳重な精留と一40℃
以下での長時間に及ぶ紫外線重合)は工業的に実施が困
難であり、得られる超高重合度PVAを商業的に入手す
ることができ難いし、また、このような高度の重合度を
有するPVAは、溶媒に対する溶解性が低く、しかも該
高重合度ポリマを溶剤に溶解した場合のポリマ溶液すな
わち紡糸原液は均一性に欠け、かつ紡糸原液の溶液粘度
と曳糸性との関係からポリマ濃度を相当に低くせざるを
得ず、生産性の低下を避けることができない。
High-strength, high-modulus fibers made from PVA-based polymers are expected to be highly useful in industrial and industrial fields due to their high melting point and weather resistance. A special polymerization method as disclosed in the official gazette (strict rectification of vinyl acetate monomer and -40℃
It is difficult to carry out industrially the ultraviolet polymerization (UV polymerization for a long time under PVA has low solubility in solvents, and when the high polymerization degree polymer is dissolved in a solvent, the polymer solution, that is, the spinning stock solution, lacks uniformity, and the polymer concentration is low due to the relationship between the solution viscosity of the spinning stock solution and the spinnability. This results in an unavoidable drop in productivity.

(発明が解決しようとする問題点〉 本発明の目的は上記特開昭59−130314号公報の
発明に使用されているような超高重合度PVAではなく
て、商業的に入手可能なまたは工業的に製造可能な程度
の重合度を有するPVAを使用して、前記特開昭59−
130314号公報に開示されている繊維物性に匹敵す
る性能を有するPVA系繊維の製造法を提供するにある
。他の目的は、このような超高強度、高弾性率PVA系
繊維の工業的な製造法を提供するにある。
(Problems to be Solved by the Invention) The purpose of the present invention is not to use ultra-high polymerization degree PVA as used in the invention of JP-A-59-130314, but to use commercially available Using PVA having a degree of polymerization that can be produced manually,
The object of the present invention is to provide a method for producing PVA-based fibers having properties comparable to those disclosed in Japanese Patent No. 130314. Another object is to provide an industrial method for producing such ultra-high strength, high modulus PVA fibers.

(問題点を解決するための手段) このような本発明の目的は、重合度が1500以上であ
るPVA系重合体溶液を多ホール口金孔を通して下式を
満足する条件下に吐出し、この繊維状ポリマ溶液の濃度
を実質的に変化させることなくゲル化せしめた後、得ら
れたゲル化糸条を脱溶媒後延伸または延伸後説溶媒し、
全延伸倍率が少くとも13倍であり、単糸繊度が10デ
ニール以下である延伸糸条にすることを特徴とする高強
度、高弾性率PVA系繊維の製造法によって達成するこ
とができる。
(Means for Solving the Problems) The object of the present invention is to discharge a PVA polymer solution having a degree of polymerization of 1500 or more through a multi-hole nozzle under conditions that satisfy the following formula, After gelling the polymer solution without substantially changing the concentration thereof, the resulting gelled thread is stretched after removing the solvent or is subjected to a post-stretching solvent,
This can be achieved by a method for producing a high-strength, high-modulus PVA-based fiber, which is characterized in that the total draw ratio is at least 13 times and the single filament fineness is 10 deniers or less.

0.05≦V 1/ V、≦1.0 [上式中、■oは口金から吐出されるときの吐出糸条の
線速度、V1は紡糸引き取り速度である。]本発明に使
用するPVAは、通常商業的に入手可能または工業的に
製造可能なポリマであるけれども、超高強度、高弾性率
dPvA系繊維合繊維ためには、その重合度は数平均重
合度(P)で1500以上、好ましくは3000以上で
あることが必要であり、1500よりも低い重合度のP
VA系ポリマでは、得られる繊維の物性を前記特開昭5
9−’130314号公報に記載されているPVA系繊
維に匹敵する物性を有する繊維にすることが難しい。ま
た、重合度の上限はできる限り高いことが好ましいが、
商業的に入手可能または工業的に製造可能な範囲である
6000程度を一応の目安とすることができる。600
0を越える重合度のPVA系ポリマは、酢酸ビニルをP
VA系ポリマの製造原料とする場合、前記工業的に実施
不可能な低温で、かつ長時間の光重合法などの特殊な方
法を採用しなければならず、かつ得られたポリマの重合
度が余りに高すぎると、前述したように紡糸原液として
生産性の低下を避けることが難しくなるので好ましくな
い。
0.05≦V 1/V, ≦1.0 [In the above formula, ■o is the linear velocity of the discharged yarn when it is discharged from the spinneret, and V1 is the spinning take-off speed. ] The PVA used in the present invention is usually a commercially available or industrially producible polymer, but in order to obtain ultra-high strength, high elastic modulus dPvA fiber composite fiber, its degree of polymerization must be number average polymerization. Polymerization degree (P) is required to be 1500 or more, preferably 3000 or more, and P with a polymerization degree lower than 1500.
For VA polymers, the physical properties of the resulting fibers are determined according to the
It is difficult to make fibers with physical properties comparable to those of the PVA-based fibers described in Japanese Patent No. 9-'130314. In addition, it is preferable that the upper limit of the degree of polymerization is as high as possible,
A rough guideline can be approximately 6,000, which is within the range that is commercially available or industrially manufacturable. 600
PVA-based polymers with a degree of polymerization exceeding 0 are
When used as a raw material for producing VA polymers, special methods such as photopolymerization at low temperatures and for long periods of time, which are industrially impractical, must be used, and the degree of polymerization of the resulting polymer is low. If it is too high, it becomes difficult to avoid a decrease in productivity as a spinning dope as described above, which is not preferable.

本発明のPVA系ポリマとしては、PvA単独ポリマに
限られるものではなく、主鎖中に他の共重合性の七ツマ
、たとえばエチレン、ブOピレン、ブチレンなどのオレ
フィン系モノマを少量共重合したもの、PVAを製造す
る過程で完全にケン化していない部分ケン化PVA、お
よび化学的に処理された変性PVAなと並びにこれらの
P V、A系ポリマに対して混和性の他種ポリマを10
%以下程度混合し、たちのを挙げることができる。
The PVA-based polymer of the present invention is not limited to a single PvA polymer, but may also be one in which a small amount of other copolymerizable monomers, such as olefinic monomers such as ethylene, pyrene, and butylene, are copolymerized in the main chain. Partially saponified PVA that has not been completely saponified during the PVA manufacturing process, modified PVA that has been chemically treated, and other types of polymers that are miscible with these PV and A-based polymers.
% or less, it is possible to list the amount of water.

上記PVA系ポリマの溶剤としては、該ポリマを高温で
加熱、溶解し、得られた溶液を冷却するとゲル化する溶
剤が使用され、かつ該溶剤は紡糸口金孔から紡糸原液を
吐出し、吐出糸条を冷却したとき、形成されたゲル化糸
条のポリマ濃度を吐出される前の紡糸原液のポリマ濃度
と実質的に同一にするために、該紡糸原液の紡糸条件下
で不揮発性であることが必要である。また、PVA系ポ
リマはその融点(約250℃)以上の温度では、ポリマ
自体が熱的に分解するから、前記溶媒はPVA系ポリマ
の融点以下の温度で溶解するものが選択される。
As the solvent for the above-mentioned PVA-based polymer, a solvent is used that heats and dissolves the polymer at a high temperature, and when the resulting solution is cooled, it becomes a gel. be non-volatile under the spinning conditions of the spinning dope so that when the yarn is cooled, the polymer concentration of the gelled yarn formed is substantially the same as the polymer concentration of the spinning dope before being discharged; is necessary. Furthermore, since the PVA-based polymer itself thermally decomposes at temperatures above its melting point (approximately 250° C.), the solvent is selected to be one that dissolves at a temperature below the melting point of the PVA-based polymer.

このような溶剤としては、エチレングリコール、グリセ
リン、ジエチレングリコール、トリメチロールプロパン
、ベンゼンスルホンアミド、カプロラクタムなどを例示
することができる。
Examples of such solvents include ethylene glycol, glycerin, diethylene glycol, trimethylolpropane, benzenesulfonamide, and caprolactam.

このような溶剤に溶解して得られる紡糸原液のポリマ濃
度は、3〜25重量%がよい。
The polymer concentration of the spinning dope obtained by dissolving in such a solvent is preferably 3 to 25% by weight.

紡糸原液は、加熱して紡糸口金孔から吐出され、一旦空
気または不活性気体中を経由して冷却浴中に導入される
。紡糸口金面と冷却浴の液面との間の距離は3〜100
mg+の範囲がよい。
The spinning stock solution is heated and discharged from the spinneret hole, and once introduced into a cooling bath via air or an inert gas. The distance between the spinneret surface and the liquid level of the cooling bath is between 3 and 100
A range of mg+ is preferable.

冷却浴液の冷却媒体としては、紡糸口金から吐出された
吐出糸条のポリマ組成を変化させることなく、該糸条を
単に冷却するだけの効果を秦するものがよい。すなわち
、湿式紡糸法に使用さる凝固浴のように凝固浴中で吐出
糸条と凝固液との間に溶剤の相互拡散が起こる場合には
、得られる繊維の断面にスキン・コア構造が形成され、
後続する延伸工程での繊維の高倍率の延伸が困難になり
、結果として本発明の目的とする高強度、高弾性率のP
VA系繊維を得ることができなくなる。
The cooling medium for the cooling bath liquid is preferably one that has the effect of simply cooling the yarn discharged from the spinneret without changing the polymer composition of the yarn. In other words, when mutual diffusion of solvent occurs between the discharged yarn and the coagulating liquid in the coagulating bath, such as in the coagulating bath used in wet spinning, a skin-core structure is formed in the cross section of the resulting fiber. ,
It becomes difficult to draw the fiber at a high ratio in the subsequent drawing step, and as a result, it becomes difficult to draw the fiber at a high ratio, which is the purpose of the present invention.
VA fibers cannot be obtained.

したがって、前記本発明に使用する溶剤は親水性を有し
ているから、冷却媒体としては該ポリマの溶剤に対して
混和性を有していない疎水性の液体、たとえばデカリン
、トリクロロエチレン、四塩化炭素、パラフィンオイル
などが好ましい。
Therefore, since the solvent used in the present invention is hydrophilic, the cooling medium may be a hydrophobic liquid that is not miscible with the solvent for the polymer, such as decalin, trichloroethylene, or carbon tetrachloride. , paraffin oil, etc. are preferred.

このような冷却媒体の冷却浴中に導入された吐出糸条は
、冷却されてゲル化されればよいから、冷却温度で繊維
状ゲル化糸条を溶解しないポリマの溶剤そのものを冷却
媒体として使用してもよい。
The discharged yarn introduced into the cooling bath of such a cooling medium only needs to be cooled and gelled, so the polymer solvent itself, which does not dissolve the fibrous gelled yarn at the cooling temperature, is used as the cooling medium. You may.

該冷却浴の温度としては、紡糸原液のゲル化温度により
定まるが、冷却によって形成されたゲル化糸条が後続す
る工程で十分に安定に走行し得る程度まで冷却−可能な
湿度であり、かつ冷却そのものの効率を向上させるため
にゲル化温度よりも約50℃以上低い温度に保持するの
がよい。
The temperature of the cooling bath is determined by the gelling temperature of the spinning dope, and the humidity is such that the gelled yarn formed by cooling can be cooled to a sufficient degree to run stably in the subsequent process, and In order to improve the efficiency of cooling itself, it is preferable to maintain the temperature at about 50° C. or more lower than the gelling temperature.

例えば、グリセリンをポリマの溶剤とする重合度が30
00のPVA系重合体の15重量%溶液   )のゲル
化温度は約103℃付近にあるが、この紡糸原液を紡糸
口金孔から吐出し、冷却するには冷却浴の温度を50℃
以下にするのがよい。特にマルチフィラメントヤーンの
製造においては、紡糸口金孔から吐出されたゲル化糸条
の各々一本(単糸)ずつが互いに集束する前に冷却され
るように冷却浴液の深さ、長さなどを適宜設定すべきで
ある。
For example, the degree of polymerization using glycerin as a polymer solvent is 30.
The gelation temperature of a 15% by weight solution of PVA-based polymer 00) is around 103°C, but in order to discharge this spinning stock solution from the spinneret hole and cool it, the temperature of the cooling bath must be set to 50°C.
It is best to do the following. In particular, in the production of multifilament yarn, the depth and length of the cooling bath liquid must be adjusted so that each gelled yarn (single yarn) discharged from the spinneret hole is cooled before being bundled together. should be set appropriately.

かくして得られるゲル化糸条のポリマ濃度は、紡糸原液
におけるポリマ濃度と実質的に同じであって、このこと
は本発明の目的とする高強度、高弾性率PVA系繊維、
特に前述した重合度が1500以上のPVA系ポリマか
らなる高物性繊維を製造する上で重要な要件である。
The polymer concentration of the gelled yarn thus obtained is substantially the same as the polymer concentration in the spinning dope, which means that the high strength, high modulus PVA fiber, which is the object of the present invention,
In particular, this is an important requirement in producing the high-property fiber made of PVA-based polymer having a degree of polymerization of 1,500 or more.

本発明において、紡糸原液の吐出線速度(Vo)とゲル
化糸条の引き取り速度(■1)とは連動して設定される
が、その範囲は 0.05≦V1/V0≦1.0 好ましくは 0.05≦V 1/ Vo≦0.5 にするのがよい。
In the present invention, the discharge linear velocity (Vo) of the spinning stock solution and the take-up speed (■1) of the gelled yarn are set in conjunction with each other, and the range thereof is preferably 0.05≦V1/V0≦1.0. is preferably set to 0.05≦V 1/Vo≦0.5.

すなわち、本発明おいて、紡糸口金孔から空気または窒
素、ヘリュウム、アルゴンなどの不活性気体中に吐出さ
れた吐出糸条が該冷却液体で冷却され、該冷却浴中でゲ
ル化する過程で強い張力が加わると、得られるゲル化糸
条を構成する高分子鎖の繊維軸方向の配向が進行したり
、ゲル化構造が安定化し難くなるために、後述する本発
明の特徴である高倍率延伸が困難になるのである。すな
わち、上式は、紡糸引取り速度を吐出速度よりも低くす
ることを意味するが、このような条件とは反対に、吐出
速度よりも紡糸引取り速度を大きくするような紡糸条件
を採用するときはくたとえば、特開昭59−13031
4号公報実施例)、本発明のように重合度が1500以
上のPVA系ポリマを使用する場合にあっては、本発明
の目的とする高物性のPVA系繊維を製造することがで
きなくなるのである。
That is, in the present invention, the discharged yarn discharged from the spinneret hole into air or an inert gas such as nitrogen, helium, or argon is cooled by the cooling liquid, and in the process of gelling in the cooling bath, When tension is applied, the orientation of the polymer chains constituting the resulting gelled yarn in the fiber axis direction progresses, and the gelled structure becomes difficult to stabilize. becomes difficult. That is, the above formula means that the spinning take-off speed is lower than the discharge speed, but contrary to such conditions, the spinning conditions are adopted such that the spinning take-off speed is higher than the discharge speed. For example, JP-A-59-13031
No. 4 Publication Example), when using a PVA-based polymer with a degree of polymerization of 1500 or more as in the present invention, it becomes impossible to produce PVA-based fibers with high physical properties as the object of the present invention. be.

もちろん、紡糸引取り速度についても、冷却浴における
走行糸条に対する冷却浴液の抵抗を少くするために該引
取り速度を低くすることは有利であるが、このような冷
却浴液の抵抗の低下i冷却浴液を走行糸条の進行方向に
沿って流すことによって達成可能である。
Of course, it is advantageous to lower the spinning take-off speed in order to reduce the resistance of the cooling bath liquid against the running yarn in the cooling bath. This can be achieved by flowing the cooling bath liquid along the traveling direction of the running yarn.

かくして得られるゲル化糸条は脱溶媒処理後延伸するか
、または延伸機脱溶媒処理されるが、該ゲル化糸条は高
分子鎖の繊維軸方向における配向度が小さく、均質な繊
維構造を有しており、延伸性に極めて優れている。しか
しながら、延伸倍率は、吐出糸条の原長に対して少くと
も13倍以上、好ましくは16倍以上に延伸し、単糸m
度が10デニール(d )以下、好ましくは5d以下に
することが必要であり、このような延伸を施すことによ
ってはじめて高強度、高弾性率のPVA系繊維であって
、製糸工程における取り扱いが容易で、高次加工性のよ
い、多様な製品に加工できる繊維糸条を得ることが可能
になるのである。
The gelled yarn thus obtained is stretched after being subjected to solvent removal treatment, or is subjected to solvent removal treatment in a drawing machine, but the degree of orientation of the polymer chains in the fiber axis direction of the gelled yarn is small, and a homogeneous fiber structure cannot be obtained. It has extremely excellent stretchability. However, the stretching ratio is at least 13 times or more, preferably 16 times or more, with respect to the original length of the discharged yarn, and the single yarn m
It is necessary to make the polygon fiber 10 denier (d) or less, preferably 5 d or less, and by performing such stretching, it is possible to obtain a PVA-based fiber with high strength and high elastic modulus, which is easy to handle in the spinning process. This makes it possible to obtain fiber yarns that have good high-order processability and can be processed into a variety of products.

また、単糸繊度は、紡糸直後の未延伸糸条の繊度に左右
されるが、該未延伸糸条の単糸繊度が太いと冷却ゲル化
時や後続する脱溶媒処理工程で単糸断面内に大きな構造
差が形成され易くなり、内、外構造差のない単糸全体が
均一な、高延伸倍率の延伸を行うことが困難となるから
、かかる点からも単糸繊度は106以下が好ましい。
In addition, the fineness of the single filament depends on the fineness of the undrawn yarn immediately after spinning, but if the fineness of the undrawn yarn is thick, the fineness of the single filament during cooling gelling or the subsequent desolvation treatment process will increase the fineness of the undrawn yarn. A large structural difference is likely to be formed between the inner and outer structures, making it difficult to uniformly draw the entire single yarn at a high draw ratio with no difference in inner and outer structures.From this point of view as well, the single yarn fineness is preferably 106 or less. .

なお、脱溶媒処理は、ポリマの溶剤に対して混和性を有
し、ポリマに対しては非溶剤である液体を用いて抽出処
理することにより行われる。十分に脱溶媒され、抽出剤
を含有する糸条は、ざらに乾燥して抽出剤を除去した後
延伸工程に供される。
Note that the solvent removal treatment is performed by extraction treatment using a liquid that is miscible with the solvent of the polymer and is a non-solvent for the polymer. The yarn, which has been thoroughly desolvated and contains the extractant, is roughly dried to remove the extractant, and then subjected to a drawing process.

延伸機脱溶媒処理する工程を取る場合は、ゲル化糸条の
融点以下の温度で熱延伸するのがよいし、脱溶媒後、後
延伸する場合は、PVA系ポリマの融点よりも低い温度
、たとえば160〜250℃の範囲で熱延伸するのがよ
い。また、前記の延伸はそれぞれ一段延伸および複数段
の延伸のいずれをも採用することができる。
When using a drawing machine to remove solvent, it is preferable to carry out hot drawing at a temperature below the melting point of the gelled yarn, and when post-stretching is performed after removing solvent, draw at a temperature lower than the melting point of the PVA polymer. For example, it is preferable to carry out hot stretching at a temperature in the range of 160 to 250°C. Further, the above-mentioned stretching can be either one-stage stretching or multiple-stage stretching.

熱延伸に使用する装置としては、加熱チューブ、熱板、
加熱ロール、加熱ビン、加熱液体、流動床などを加熱手
段とする各種の装置を使用することができる。
Equipment used for hot stretching includes heating tubes, hot plates,
Various devices can be used that use heating rolls, heated bottles, heated liquids, fluidized beds, etc. as heating means.

(発明の効果) 本発明によれば、商業的に入手可能なまたは工業的に製
造可能な1500以上6000以下の重合度を有するP
VA系ポリマを使用して、引張強度が少くとも約16a
 /d 、引張弾性率が約300a /d以上と言う高
強度、高弾性率のPVA系繊維を工業的に製造すること
ができる。
(Effects of the Invention) According to the present invention, commercially available or industrially producible P having a degree of polymerization of 1,500 or more and 6,000 or less
Using VA-based polymer, the tensile strength is at least about 16a
/d, and a tensile modulus of about 300a/d or more, which makes it possible to industrially produce high-strength, high-modulus PVA fibers.

しかも本発明によって得られるPVA系繊維は、前記特
開昭59−130314号公報に提案されているような
モノフィラメントとは異なり、単糸繊度が10d以下の
マルチフィラメントであり、単に紡糸および製糸工程に
おける取り扱い性に優れているのみならず、高次加工が
容易で、各種多様な製品を提供できるから、その有用性
は極めて大きい。
Moreover, the PVA-based fiber obtained by the present invention is a multifilament with a single filament fineness of 10 d or less, unlike the monofilament proposed in JP-A-59-130314. It is extremely useful because it is not only easy to handle, but also easy to perform high-order processing and can provide a wide variety of products.

以下、実施例および比較例に基づいて本発明の効果をさ
らに具体的に説明する。
Hereinafter, the effects of the present invention will be explained in more detail based on Examples and Comparative Examples.

なお、以下の実施例、比較例において、式■1/ V、
を紡糸ドラフトという。また、繊維の物性は次の条件で
測定した値である。
In addition, in the following examples and comparative examples, the formula ■1/V,
This is called a spinning draft. In addition, the physical properties of the fibers are values measured under the following conditions.

測定サンプル:      単糸 試   長 :          ・100ffll
引張速度:    10(1m/分 雰囲気= 20℃、65%相対湿度 実施例1 重合度2100のPVA重合体(ケン化度99.5%)
をグリセリンを溶媒として170℃で溶解し、重合体濃
度が17.5重量%の紡糸原゛液を作成した。該原液を
170℃で孔径0.08+111゜孔数10のノズルか
ら空気中に押し出し、ノズルから8III11下の15
℃のデカリンからなる液体浴に通し冷却した。ノズルか
らの原液の総吐出量は0.97CO/分であり、冷却し
たゴム状ゲル糸″条を5111/分で引き取った。この
ときの紡糸ドラフトは0.26であった。
Measurement sample: Single yarn trial length: ・100ffll
Tensile speed: 10 (1 m/min Atmosphere = 20°C, 65% relative humidity Example 1 PVA polymer with a degree of polymerization of 2100 (degree of saponification 99.5%)
was dissolved at 170° C. using glycerin as a solvent to prepare a spinning solution having a polymer concentration of 17.5% by weight. The stock solution was extruded into the air at 170°C through a nozzle with a hole diameter of 0.08 + 111° and a number of holes of 10.
It was cooled by passing through a liquid bath consisting of decalin at °C. The total discharge rate of the stock solution from the nozzle was 0.97 CO/min, and the cooled rubbery gel yarn was taken off at 5111/min. The spinning draft at this time was 0.26.

該ゴム状ゲル糸条を引き続き長さ8Qcmの内気温度が
100℃に設定された加熱チューブで4゜0倍に延伸し
、プラスチックボビンに巻き取った。
The rubbery gel thread was then stretched 4.0 times in a heating tube having a length of 8 Qcm and whose internal air temperature was set to 100° C., and wound onto a plastic bobbin.

巻き取った糸条をボビンごと繰り返し40℃の温水につ
け、繊維中に含まれる溶媒のグリセリンを抽出した。次
いで乾燥して水を除去し、表面温度が230℃の熱板で
熱延伸した。
The wound yarn was repeatedly soaked in warm water at 40° C. along with the bobbin to extract glycerin, which is a solvent contained in the fibers. The film was then dried to remove water, and hot-stretched using a hot plate with a surface temperature of 230°C.

得られた繊維の物性を第1表に示す。Table 1 shows the physical properties of the obtained fibers.

第1表において、全延伸倍率を13倍以上にすることに
よってはじめて16a /dを上まわる強度と300o
/dを上まわる弾性率を有するI維が得られることがわ
かる。
In Table 1, the strength exceeds 16a/d and 30o
It can be seen that I fibers having an elastic modulus exceeding /d can be obtained.

実施例2 重合度3900のPVA重合体(ケン化度99.6%)
を溶媒のグリセリンに170℃で溶解し、重合体濃度が
11.0重量%の紡糸原液を作成した。170℃に保た
れた該原液を孔径0.061111孔数20のノズルか
ら空気中に押し出し、ノズルから’IQIIIII下の
15℃のデカリンからなる液体浴に通し冷却した。ノズ
ルからの原液の総吐出量は0.97cc/分であり、冷
却したゴム状ゲル糸条を2m/分で引き取った。このと
きの紡糸ドラフトは0.12であった。
Example 2 PVA polymer with a polymerization degree of 3900 (saponification degree 99.6%)
was dissolved in glycerin as a solvent at 170°C to prepare a spinning dope having a polymer concentration of 11.0% by weight. The stock solution maintained at 170° C. was extruded into air through a nozzle with a hole diameter of 0.061111 and 20 holes, and passed through the nozzle into a liquid bath of decalin at 15° C. under 'IQIII' for cooling. The total discharge rate of the stock solution from the nozzle was 0.97 cc/min, and the cooled rubbery gel thread was drawn off at a rate of 2 m/min. The spinning draft at this time was 0.12.

該ゴム状ゲル糸条を引き続き長さ800m+の内気温度
が100℃に設定された加熱チューブ中で4.0倍に延
伸しプラスチックボビンに巻き取った。
The rubbery gel thread was then stretched 4.0 times in a heating tube having a length of 800 m+ and whose internal air temperature was set to 100° C., and then wound onto a plastic bobbin.

巻き取った糸条をボビンごと繰り返し40℃の温水につ
け、繊維中に含まれる溶媒のグリセリンを抽出した。次
いで乾燥して水を除去し、表面温度が230℃の熱板を
用い、さらに5.5倍延伸した。
The wound yarn was repeatedly soaked in warm water at 40° C. along with the bobbin to extract glycerin, which is a solvent contained in the fibers. The film was then dried to remove water, and further stretched 5.5 times using a hot plate with a surface temperature of 230°C.

全延伸倍率は22倍となり、繊度1.54d。The total stretching ratio was 22 times, and the fineness was 1.54 d.

強度20.1/d1伸度4.9%、弾性率430Q/d
のPVA繊維を得た。この物性値は、これまでに知られ
ているPVA繊維のそれを大幅に上まわるものであり、
前記特開昭59−130314号公報に記載されている
ような粘度平均分子量で270万という著しく高い分子
量の重合体を用いなくても、工業的に生産、入手可能な
PVAを原料として同等以上の物性を有する繊維が得ら
れる。
Strength 20.1/d1 Elongation 4.9%, Modulus of elasticity 430Q/d
PVA fibers were obtained. This physical property value significantly exceeds that of previously known PVA fibers,
Even if you do not use a polymer with a significantly high viscosity average molecular weight of 2.7 million as described in JP-A-59-130314, it is possible to use industrially produced and available PVA as a raw material. Fibers with physical properties are obtained.

比較例1 実施例1と同じ紡糸原液を用いて、170℃、孔径0.
30m11、孔数12のノズルから空気中に押し出し、
ノズルから8■下の15℃のデカリンからなる液体浴に
通し冷却した。ノズルからの原液の総吐出量は3.8C
C/分であり、冷却したゴム状ゲル糸条は5m/分で引
き取った。このときの紡糸ドラフトは1.12であった
。該ゴム状ゲル糸条を引き続き、長さ80C11の内気
温度が80℃に設定された加熱チューブ中で4.0倍に
延伸しプラスチックボビンに巻き取った。巻き取った糸
条をボビンごと40℃の温水に浸漬し、脱溶媒し乾燥し
た後、表面温度が230’Cの熱板で延伸した。その結
果、全延伸倍率が12倍、繊度1゜、15d1強Fm1
1.80 /d 、伸[4,0%、弾性率315q/d
の繊維が得られた。
Comparative Example 1 Using the same spinning dope as in Example 1, the temperature was 170°C and the pore size was 0.
Extruded into the air from a 30m11 nozzle with 12 holes,
It was cooled by passing it through a liquid bath consisting of decalin at 15° C. 8 cm below the nozzle. The total amount of liquid discharged from the nozzle is 3.8C.
C/min, and the cooled rubbery gel thread was drawn off at 5 m/min. The spinning draft at this time was 1.12. The rubbery gel thread was then stretched 4.0 times in a heating tube having a length of 80C11 and whose internal air temperature was set to 80°C, and then wound onto a plastic bobbin. The wound yarn was immersed together with the bobbin in warm water at 40°C, the solvent was removed, and the yarn was dried, and then stretched on a hot plate with a surface temperature of 230°C. As a result, the total stretching ratio was 12 times, the fineness was 1°, and a little over 15d1 Fm1.
1.80/d, elongation [4.0%, elastic modulus 315q/d
of fibers were obtained.

このことは、紡糸ドラフトが高いと、延伸倍率が十分上
がず機械的強度の大きい繊維が形成されないことを示す
This indicates that when the spinning draft is high, the draw ratio cannot be increased sufficiently and fibers with high mechanical strength cannot be formed.

実施例3 実施例1において、ポリマの溶媒としてエチレングリコ
ールを用い、他は同一の条件で製糸したところ、全延伸
倍率は最高16倍に止まり、繊度2.25d、強度18
.39 /d 1弾性率384Q/dの物性を有する繊
維が得られた。
Example 3 In Example 1, when ethylene glycol was used as the polymer solvent and yarn was spun under the same conditions as above, the total draw ratio remained at the maximum of 16 times, the fineness was 2.25 d, and the strength was 18.
.. A fiber having physical properties of 39/d 1 elasticity modulus of 384Q/d was obtained.

比較例2 実施例1と同じ紡糸原液を170’C1孔径0゜301
11I111孔数12のノズルから空気中に押し出し、
ノズルから5mm下の15℃のデカリンからなる液体浴
に通し冷却した。ノズルからの原液の総吐出mは3.8
CC/分であり、冷却したゴム状ゲル糸条を3rtr1
分で引き取った。このときの紡糸ドラフトは0.67で
あった。該ゴム状ゲル糸条を引き続き、長さ80c+a
の内気温度が80℃に設定された加熱チューブ中で4.
0倍に延伸しプラスチックボビンに巻き取った。巻き取
った糸条をボビンごと40℃の渇水に浸漬し、脱溶媒し
乾燥した後、表面温度が230℃の熱板で延伸した。そ
の結果、全延伸倍率は14倍となったが、繊維物性は、
繊度16.2d、強度12.2o/d、伸度4.1%、
弾性率297g/dであった。
Comparative Example 2 The same spinning dope as in Example 1 was used with a 170'C1 pore diameter of 0°301
11I111 Pushed into the air from a nozzle with 12 holes,
It was cooled by passing it through a liquid bath consisting of decalin at 15° C. 5 mm below the nozzle. The total discharge m of the stock solution from the nozzle is 3.8
CC/min, and the cooled rubbery gel thread was
I picked it up in minutes. The spinning draft at this time was 0.67. The rubbery gel thread was then cut to a length of 80c+a.
4. in a heating tube with an internal air temperature set at 80°C.
It was stretched 0 times and wound up on a plastic bobbin. The wound yarn was immersed together with the bobbin in dry water at 40°C, the solvent was removed, and the yarn was dried, and then stretched on a hot plate with a surface temperature of 230°C. As a result, the total stretching ratio was 14 times, but the fiber physical properties were
Fineness 16.2d, strength 12.2o/d, elongation 4.1%,
The elastic modulus was 297 g/d.

比較例3 重合度1300のPVA重合体(ケン化度″99.5%
)をグリセリンを溶媒として160℃で溶解し、重合体
濃度が20重量%の紡糸原液を作成した。該原液を16
0℃で孔径o、osn+s、孔数10のノズルから空気
中に押し出し、ノズルから8ml1l下の15℃のデカ
リンからなる液体浴に通し、冷却した。ノズルからの原
液の総吐出量は0.97 cc/分であり、冷部したゴ
ム状ゲル糸条は5m/分で引き取った。このときの紡糸
ドラフトは0126であった。
Comparative Example 3 PVA polymer with a degree of polymerization of 1300 (degree of saponification 99.5%
) was dissolved at 160° C. using glycerin as a solvent to prepare a spinning dope having a polymer concentration of 20% by weight. 16% of the stock solution
It was extruded into air at 0°C through a nozzle with a hole diameter of o, osn+s, and number of holes of 10, and passed through a liquid bath of decalin at 15°C under 8 ml of 1 liter of the nozzle to cool it. The total discharge rate of the stock solution from the nozzle was 0.97 cc/min, and the cooled rubbery gel thread was drawn off at a rate of 5 m/min. The spinning draft at this time was 0126.

該ゲル糸条を引き続き加熱チューブ中で4倍に延伸し、
脱溶媒、乾燥して、230’Cの熱板上でさらに4.8
倍に延伸し、全延伸倍率が19.2の延伸繊維糸条をi
だ。
The gel thread is then stretched 4 times in a heated tube,
Desolvent, dry, and heat on a hot plate at 230'C for another 4.8
A drawn fiber yarn with a total draw ratio of 19.2 is
is.

得られた繊維は使用した重合体の重合度が低く、従来の
PVAwA雑の物性の水準に止まり、繊度2.3d1強
度13.5a/d、伸度6.1%、弾性率354g/d
の繊維であった。
The obtained fiber had a low degree of polymerization of the polymer used, and its physical properties remained at the level of conventional PVAwA miscellaneous materials, with a fineness of 2.3 d, strength of 13.5 a/d, elongation of 6.1%, and elastic modulus of 354 g/d.
The fibers were

Claims (1)

【特許請求の範囲】[Claims] (1)重合度が1500以上であるポリビニルアルコー
ル系重合体溶液を多ホール口金孔を通して下式を満足す
る条件下に吐出し、この繊維状ポリマ溶液の濃度を実質
的に変化させることなくゲル化せしめた後、得られたゲ
ル化糸条を脱溶媒後延伸または延伸後脱溶媒し、全延伸
倍率が少くとも13倍であり、単糸繊度が10デニール
以下である延伸糸条にすることを特徴とする高強度、高
弾性率ポリビニルアルコール系繊維の製造法。 0.05≦V_1/V_0≦1.0 [上式中、V_0は口金から吐出されるときの吐出糸条
の線速度、V_1は紡糸引き取り速度である。](2)
特許請求の範囲第1項において、ポリビニルアルコール
系重合体の重合度が3000以上であり、V_1/V_
0が次式を満足し、 0.05≦V_1/V_0≦0.5 かつ全延伸倍率が16倍以上、単糸繊度が5デニール以
下である高強度、高弾性率ポリビニルアルコール系繊維
の製造法。
(1) A polyvinyl alcohol polymer solution with a degree of polymerization of 1500 or more is discharged through a multi-hole nozzle under conditions that satisfy the following formula, and the fibrous polymer solution is gelled without substantially changing its concentration. After stretching, the obtained gelled yarn is stretched after desolvation or desolvated after stretching to obtain a drawn yarn having a total stretching ratio of at least 13 times and a single filament fineness of 10 deniers or less. A method for manufacturing polyvinyl alcohol-based fibers featuring high strength and high modulus of elasticity. 0.05≦V_1/V_0≦1.0 [In the above formula, V_0 is the linear velocity of the discharged yarn when it is discharged from the spinneret, and V_1 is the spinning take-off speed. ](2)
In claim 1, the degree of polymerization of the polyvinyl alcohol polymer is 3000 or more, and V_1/V_
0 satisfies the following formula, 0.05≦V_1/V_0≦0.5, the total draw ratio is 16 times or more, and the single fiber fineness is 5 denier or less. A method for producing high strength, high elastic modulus polyvinyl alcohol fiber. .
JP59230301A 1984-11-02 1984-11-02 High-strength, high-modulus polyvinyl alcohol fiber manufacturing method Expired - Lifetime JPH0696807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59230301A JPH0696807B2 (en) 1984-11-02 1984-11-02 High-strength, high-modulus polyvinyl alcohol fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230301A JPH0696807B2 (en) 1984-11-02 1984-11-02 High-strength, high-modulus polyvinyl alcohol fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS61108711A true JPS61108711A (en) 1986-05-27
JPH0696807B2 JPH0696807B2 (en) 1994-11-30

Family

ID=16905680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230301A Expired - Lifetime JPH0696807B2 (en) 1984-11-02 1984-11-02 High-strength, high-modulus polyvinyl alcohol fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH0696807B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125010A (en) * 1985-11-19 1987-06-06 Kuraray Co Ltd High tenacity and high modulus pva fiber and production thereof
JPS6328911A (en) * 1986-07-14 1988-02-06 Toyobo Co Ltd Production of high-strength and high-elastic modulus polyvinyl alcohol based fiber
JPS63165508A (en) * 1986-12-26 1988-07-08 Kuraray Co Ltd Production of polyvinyl alcohol fiber with high polymerization degree
JPS63190010A (en) * 1987-01-30 1988-08-05 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol based fiber
JPS63243316A (en) * 1987-03-30 1988-10-11 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
DE3828251A1 (en) * 1987-08-21 1989-03-02 Bridgestone Corp TIRE
JPH01272814A (en) * 1988-04-21 1989-10-31 Kuraray Co Ltd Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
US4971861A (en) * 1986-12-27 1990-11-20 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof
US5717026A (en) * 1995-05-22 1998-02-10 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and method of manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method
JPS59100710A (en) * 1982-11-25 1984-06-11 Kuraray Co Ltd Production of yarn having high toughness
JPS59130314A (en) * 1982-09-30 1984-07-26 アライド・コ−ポレ−シヨン High strength elastic polyvinyl alcohol fiber andproduction thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method
JPS59130314A (en) * 1982-09-30 1984-07-26 アライド・コ−ポレ−シヨン High strength elastic polyvinyl alcohol fiber andproduction thereof
JPS59100710A (en) * 1982-11-25 1984-06-11 Kuraray Co Ltd Production of yarn having high toughness

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125010A (en) * 1985-11-19 1987-06-06 Kuraray Co Ltd High tenacity and high modulus pva fiber and production thereof
JPS6328911A (en) * 1986-07-14 1988-02-06 Toyobo Co Ltd Production of high-strength and high-elastic modulus polyvinyl alcohol based fiber
JPS63165508A (en) * 1986-12-26 1988-07-08 Kuraray Co Ltd Production of polyvinyl alcohol fiber with high polymerization degree
US4971861A (en) * 1986-12-27 1990-11-20 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof
JPS63190010A (en) * 1987-01-30 1988-08-05 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol based fiber
JPH0457769B2 (en) * 1987-01-30 1992-09-14 Kuraray Co
JPS63243316A (en) * 1987-03-30 1988-10-11 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH0457770B2 (en) * 1987-03-30 1992-09-14 Kuraray Co
DE3828251A1 (en) * 1987-08-21 1989-03-02 Bridgestone Corp TIRE
JPH01272814A (en) * 1988-04-21 1989-10-31 Kuraray Co Ltd Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
US5717026A (en) * 1995-05-22 1998-02-10 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and method of manufacture

Also Published As

Publication number Publication date
JPH0696807B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JPS6385107A (en) Production of filament high in modulus and tensile strength
WO1986004936A1 (en) Polyethylene multifilament yarn
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPH01229805A (en) High-strength water-soluble polyvinyl alcohol-based fiber and production thereof
JP4172888B2 (en) Monofilament and method for producing the same
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPS61215708A (en) Production of multifilament yarn
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPH07238416A (en) Production of high-strength polyethylene fiber
JPH02210013A (en) Dry and wet spinning process
US5091254A (en) Polyvinyl alcohol monofilament yarns and process for producing the same
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
US5264173A (en) Polyvinyl alcohol monofilament yarns and process for producing the same
JPH02300308A (en) Polyvinyl alcohol fiber and production thereof
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPH1181036A (en) High strength polypropylene fiber and its production
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
JPS63190010A (en) Production of high-tenacity polyvinyl alcohol based fiber
JP2765951B2 (en) Glossy high-strength polyvinyl alcohol fiber and method for producing the same
JPH02229208A (en) Production of multifilament yarn
JPH0428804B2 (en)
JPH01162819A (en) Production of novel polyethylene fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term