JPS62238812A - Production of polyvinyl alcohol fiber having high strength and elastic modulus - Google Patents

Production of polyvinyl alcohol fiber having high strength and elastic modulus

Info

Publication number
JPS62238812A
JPS62238812A JP8047186A JP8047186A JPS62238812A JP S62238812 A JPS62238812 A JP S62238812A JP 8047186 A JP8047186 A JP 8047186A JP 8047186 A JP8047186 A JP 8047186A JP S62238812 A JPS62238812 A JP S62238812A
Authority
JP
Japan
Prior art keywords
polyvinyl alcohol
glycol
solvent
strength
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8047186A
Other languages
Japanese (ja)
Inventor
Fujio Ueda
上田 富士男
Masahiko Hayashi
政彦 林
Masaharu Mizuno
正春 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8047186A priority Critical patent/JPS62238812A/en
Publication of JPS62238812A publication Critical patent/JPS62238812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To easily produce the titled fiber having mechanical strength and elastic modulus comparable to those of Kevlar, by dissolving a polyvinyl alcohol polymer having ultra-high polymerization degree in a glycol-type solvent and carrying out dry-wet spinning of the obtained spinning dope under specific condition. CONSTITUTION:A polyvinyl alcohol polymer having a polymerization degree of >=5,000, preferably >=7,000 is dissolved in a glycol-type solvent to obtain a spinning dope. The dope is maintained at 150-240 deg.C and subjected to dry-wet spinning into a coagulation bath composed of a solvent miscible with the above glycol-type solvent under a spinning draft of 0.05-1.0, preferably 0.07-0.75 to obtain an undrawn yarn. The objective fiber is produced by drawing the undrawn yarn e.g. with a roller so as to attain a strength of >=18g/d and an elastic modulus of >=350g/d and winding with a winder, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高強度高弾性率ポリビニルアルコール系繊維の
製造法、特に超高重合度ポリビニルアルコール系重合体
を用いた高強度高弾性率ポリビニルアルコール系繊維の
製造法に間する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing high-strength, high-modulus polyvinyl alcohol fibers, particularly high-strength, high-modulus polyvinyl alcohol fibers using ultra-high polymerization degree polyvinyl alcohol-based polymers. The method for manufacturing fibers is discussed.

[従来技術] 近年、超高分子量ポリエチレンの準希薄溶液を冷却浴中
に紡出して−H結晶ゲル化させ、得られたゲル状糸を脱
溶媒した後、高度に延伸することによりケブラー■を越
える機械的性能を有する高強度高弾性率ポリエチレン繊
維が得られる技術が見出さんでより、該製造技術をポリ
エチレン以外の超高重合度可どう性ポリマーに適用する
検討が広く行なわれている。
[Prior art] In recent years, a semi-dilute solution of ultra-high molecular weight polyethylene is spun into a cooling bath to form a -H crystal gel, and after the resulting gel-like thread is desolvated, it is highly stretched to form Kevlar. Since the discovery of a technique for obtaining high-strength, high-modulus polyethylene fibers with superior mechanical performance, studies have been widely conducted to apply this manufacturing technique to ultra-high degree of polymerization flexible polymers other than polyethylene.

これらのなかで、ポリビニルアルコール(以下、PVA
と略記する)は高分子結晶構造がジグザグ構造をとるた
め理論強度、理論弾性率とも他の可どう性ポリマーに比
べ極めて高い値が予想され[T、0HTA  Po1y
+ner Engineering and 5cie
ncevo1.23 No、L3  p、697(19
83)、井口正俊 有機合成化生協会誌 vol、42
  No、11 p、1050(1984)コ、融点も
230〜240°C以上であり、高い機械的性能が要求
される産業用繊維分野において極めて利用価値が高い。
Among these, polyvinyl alcohol (hereinafter referred to as PVA)
) has a zigzag polymer crystal structure, so its theoretical strength and theoretical modulus are expected to be extremely high compared to other flexible polymers [T, 0HTA Poly
+ner Engineering and 5cie
ncevo1.23 No, L3 p, 697 (19
83), Masatoshi Iguchi, Journal of the Organic Synthesis Society, vol. 42
No. 11 p. 1050 (1984).The melting point is also 230 to 240°C or higher, and it has extremely high utility value in the field of industrial textiles where high mechanical performance is required.

このような高強度高弾性率PVA系繊維の製法に関して
、特開昭59−1530314号公報には、重合度60
00以上のPVAのグリセリン溶液をパラフィン油浴中
へ紡出して冷却ゲル化せしめ、得られたゲル状糸を脱溶
媒乾燥した後、3倍以上に延伸する方法が開示されてい
る。しかしながらこの方法では冷却ゲル化時あるいは乾
燥中に融着をおこしやすいうえ、延伸性も低く、繊度が
10デニール以下のマルチフィラメントを工業的に生産
することは困難であった。
Regarding the manufacturing method of such high-strength, high-modulus PVA-based fibers, Japanese Patent Application Laid-open No. 1530314/1983 describes
A method is disclosed in which a glycerin solution of 00 or higher PVA is spun into a paraffin oil bath, cooled and gelled, and the resulting gel-like thread is removed from the solvent, dried, and then stretched three times or more. However, this method tends to cause fusion during cooling gelling or drying, and has low drawability, making it difficult to industrially produce multifilaments with a fineness of 10 deniers or less.

ざらLこ特開昭60−126312号公報には、重合度
3000以上のPVAのジメチルスルホキシド溶液をメ
タノール凝固浴中に乾湿式紡糸し、高度に延伸配向させ
ることにより高強度高弾性率PVA繊維を製造する方法
が開示されている。しかしながら紡糸溶媒としてジメチ
ルスルホキシドを用いた場合、溶媒が強い塩基性である
ため(pH≧12) 100°C以上で紡糸を行なうと
重合度が5000以上のPvAはアルカリ分解により重
合度が著しく低下したり[内藤ら、高分子化学 第16
巻 第168号217頁(1959)] 、繊維が褐色
に着色するなどの問題があった。
Zara Lko JP-A No. 60-126312 discloses that a dimethyl sulfoxide solution of PVA with a degree of polymerization of 3000 or more is wet-dry spun in a methanol coagulation bath and highly stretched and oriented to produce high-strength, high-modulus PVA fibers. A method of manufacturing is disclosed. However, when dimethyl sulfoxide is used as a spinning solvent, the solvent is strongly basic (pH ≧ 12), so if spinning is carried out at 100°C or higher, the degree of polymerization of PvA with a degree of polymerization of 5000 or more will decrease significantly due to alkaline decomposition. [Naito et al., Polymer Chemistry Vol. 16]
Vol. 168, p. 217 (1959)], there were problems such as the fibers being colored brown.

本発明者らは超高重合度PVA系ポリマーを用いた高強
度高弾性率PVA系繊維の工業的な製造法について鋭意
検討を進めた結果、本発明を見出したものである。
The inventors of the present invention have discovered the present invention as a result of intensive studies on an industrial method for producing high-strength, high-modulus PVA-based fibers using ultra-high polymerization degree PVA-based polymers.

[発明が解決しようとする問題点コ 即ち、本発明の目的とするところは、超高重合度PVA
系重合体からなり、ケブラ゛−■に匹敵する機械的強度
と弾性率を有する高強度高弾性率PVA系繊維を工業的
に有利に製造する方法を提供するにある。
[Problems to be solved by the invention, that is, the object of the present invention is to
The object of the present invention is to provide an industrially advantageous method for producing high-strength, high-modulus PVA-based fibers having mechanical strength and elastic modulus comparable to those of Kevlar (2).

口問題点を解決するための手段] 上記した本発明の目的は、前記特許請求の範囲に記載し
た発明によって達成することができる。
Means for Solving Problems] The above-described objects of the present invention can be achieved by the invention described in the claims.

本発明の特徴の一つは、PVA系重合体として重合度が
5000以上、好ましくは7000以上、さらに好まし
くは8000以上の超高重合度重合体を用いることであ
る。このような極めて高い重合度のポリマーを用いるこ
とにより、強度が18 g/d以上、好ましくは20 
g/c1以上、さらに好ましくは22 g/d以上、弾
性率が350g/d以上、好ましくは400g/d以上
、さらに好ましくは450g/d以上の高強度高弾性率
PVA系繊維を製造することができるのである。
One of the features of the present invention is that an ultra-high polymerization degree polymer having a polymerization degree of 5000 or more, preferably 7000 or more, and more preferably 8000 or more is used as the PVA-based polymer. By using such a polymer with an extremely high degree of polymerization, the strength can be increased to 18 g/d or more, preferably 20 g/d or more.
It is possible to produce high-strength, high-modulus PVA-based fibers with a g/c of 1 or more, more preferably 22 g/d or more, and an elastic modulus of 350 g/d or more, preferably 400 g/d or more, and even more preferably 450 g/d or more. It can be done.

本発明者らの検討によると、かかる超高重合度PVA系
重合体は、溶剤に対する溶解性が極めて低いうえ、溶液
粘性が極めて高くなるため、一般のPVA系繊維の製法
として知られる湿式紡糸法では紡糸が困難であり、15
0°C以上の高温下で超高重合度PVAを熱分解させず
に溶解可能な特定の溶媒を紡糸溶媒として用いた乾湿式
紡糸法によつてのみ工業的に生産性よく、かつ安定に紡
糸できることがわかった。
According to studies conducted by the present inventors, such ultra-high polymerization degree PVA-based polymers have extremely low solubility in solvents and have extremely high solution viscosity, so wet spinning, which is known as a general method for producing PVA-based fibers, It is difficult to spin with 15
Industrially productive and stable spinning can only be achieved by a dry-wet spinning method that uses a specific solvent as a spinning solvent that can dissolve ultra-high polymerization degree PVA without thermally decomposing it at high temperatures of 0°C or higher. I found out that it can be done.

すなわぢ、本発明に用いられるPVA系重合体としては
、少なくとも5000、好ましくは7000、さらに好
ましくは8000以上の重合度を有する完全ケン化もし
くは部分ケン化PVA系ポリマー、主鎖中に共重合成分
としてたとえばエチレン、プロピレン、スチレンなどの
オレフィン系モノマーが少量共重合されたPVA系ポリ
マーをあげることができるが、好ましくは8000以上
の重合度を有するケン化度が99モル%以上の完全ケン
化PVAがよい。
In other words, the PVA polymer used in the present invention is a fully saponified or partially saponified PVA polymer having a polymerization degree of at least 5000, preferably 7000, more preferably 8000 or more, and a copolymerized PVA polymer in the main chain. As a component, for example, a PVA-based polymer copolymerized with a small amount of olefinic monomers such as ethylene, propylene, and styrene can be mentioned, but preferably a completely saponified polymer with a degree of saponification of 99 mol% or more and a degree of polymerization of 8,000 or more. PVA is good.

本発明において、紡糸溶媒としては、PVAに対して溶
解性がよく、イオン的に中性であ条グリコール系溶媒を
用いることが不可欠であり、これによって前記超高重合
度PVA系重合体を、150°C以上の高温でも熱分解
させずに溶解することができるばかりでなく、溶液粘性
も低べすることができるのである。かかるグリコール系
溶媒として具体的には、グリセリン、エチレングリコー
ル、プロピレンゲリコール、テトラメチレングリコール
、ジエチレングリコール、トリエチレングリコールから
選ばれた単独、またはこれらの混合溶媒をあげることが
できるが、 好ましくはグリセリン、エチレングリコー
ルがよい。
In the present invention, it is essential to use a glycol-based solvent that is ionically neutral and has good solubility in PVA as the spinning solvent. Not only can it be dissolved without thermal decomposition even at high temperatures of 150°C or higher, but the viscosity of the solution can also be lowered. Specific examples of such glycol-based solvents include glycerin, ethylene glycol, propylene gelylcol, tetramethylene glycol, diethylene glycol, and triethylene glycol, singly or in combination, but preferably glycerin, Ethylene glycol is good.

本発明において、紡糸溶液のPVA系重合体瀾度は、3
重量%以上20重量%以下、好ましくは5重量%以上1
5重量%以下である。このとき、重合体濃度が3重量%
を下回ると、溶液粘性が著しく低くなって、紡糸が困難
になるうえ、得られる凝固糸の構造が粗になるため繊維
物性が低下し易い傾向がある。また、重合体濃度が20
重量%を越えると、溶液粘性が著しく高くなり、PVA
系重合体の溶解が困難になったり、紡糸が困難になる等
の問題点が生じ易い。
In the present invention, the PVA-based polymer purity of the spinning solution is 3.
% by weight or more and 20% by weight or less, preferably 5% by weight or more1
It is 5% by weight or less. At this time, the polymer concentration was 3% by weight.
If it is less than this, the solution viscosity becomes extremely low, making spinning difficult, and the resulting coagulated yarn has a rough structure, which tends to deteriorate the fiber properties. Also, the polymer concentration is 20
If it exceeds % by weight, the solution viscosity becomes significantly high and PVA
Problems such as difficulty in dissolving the polymer and difficulty in spinning tend to occur.

本発明において紡糸溶液は、150℃以上240°C以
下、好ましくは170℃以上230℃以下に保つ必要が
ある。150℃を下回る温度では、PVA系重合体が析
出相分離して溶液がゲル化を起こし紡糸不可能になり、
240℃を上回る温度では、PVA系重合体が熱分解を
起こすようになる。
In the present invention, the spinning solution must be maintained at a temperature of 150°C or higher and 240°C or lower, preferably 170°C or higher and 230°C or lower. At temperatures below 150°C, the PVA polymer will precipitate and phase separate, causing the solution to gel and become impossible to spin.
At temperatures above 240°C, PVA-based polymers begin to undergo thermal decomposition.

かかる高温の超高重合度PVA系重合体溶液は通常の湿
式紡糸法では紡糸不可能であり、本発明に用いられる乾
湿式紡糸法、すなわち紡糸溶液を紡糸口金から直接凝固
浴中に吐出するのではなくて、紡糸溶液を紡糸口金から
一旦空気、窒素、ヘリウム、アルゴン等の不活性雰囲気
中に吐出し、次いてこの吐出糸条を紡糸溶媒に対して混
和性を有する溶剤からなる凝固浴中に導入して、脱溶媒
凝固する方法によってのみ紡糸可能になるのである。ま
た、かかる乾湿式紡糸法を採用することにより、脱溶媒
凝固時に凝固糸にかかる凝固張力が不活性雰囲気中の溶
液状態にある吐出糸条に吸収緩和されるため、得られる
凝固糸は緻密で高度に延伸することが可能になるばかり
でなく、高温の超高重合度PVA溶液の冷却と脱溶媒が
同時に進行するため、単糸間の接着がなく、10デニー
ル以下、好ましくは6デニール以下のマ゛ルチフィラメ
ントを工業的に生産することが可能になるのである。
Such a high-temperature ultra-high polymerization degree PVA-based polymer solution cannot be spun by a normal wet spinning method, and the dry-wet spinning method used in the present invention, that is, the spinning solution is directly discharged from a spinneret into a coagulation bath. Rather, the spinning solution is once discharged from a spinneret into an inert atmosphere such as air, nitrogen, helium, argon, etc., and then this discharged yarn is placed in a coagulation bath consisting of a solvent that is miscible with the spinning solvent. Spinning can only be achieved by introducing the material into a solvent, removing the solvent, and coagulating it. In addition, by employing such a dry-wet spinning method, the coagulation tension applied to the coagulated yarn during desolvation and coagulation is absorbed and relaxed by the discharged yarn in a solution state in an inert atmosphere, resulting in a dense coagulated yarn. Not only does it become possible to draw to a high degree, but because the cooling and desolvation of the high-temperature ultra-high polymerization degree PVA solution proceed simultaneously, there is no adhesion between single filaments, and the fibers can be stretched to 10 deniers or less, preferably 6 deniers or less. This makes it possible to industrially produce multifilaments.

本発明においては、凝固糸の緻密性および延伸性を向上
させるために下記(1)式で示される紡糸ドラフトを0
.05以上1.0以下、好ましくは帆07以上帆75以
下にする必要がある。
In the present invention, in order to improve the density and stretchability of the coagulated yarn, the spinning draft shown by the following formula (1) is set to 0.
.. It is necessary to set the sail value to 05 or more and 1.0 or less, preferably sail 07 or more and sail 75 or less.

凝固糸の引き取り速度(m/分) 紡糸ドラフト=□ 紡糸溶液の吐出線速度(m/分) ・・・・・・・・・・・・・・・・・・・・・(1)紡
糸ドラフトが0.05を下回ると凝固糸の引き取り速度
が紡糸溶液の口金孔からの吐出線速度に比べてあまりに
も遅くなりすぎるため、凝固浴中て糸条がたるんだり、
単糸間の繊度のばらつきが大きくなったりして、安定な
紡糸ができなくなる。また、紡糸ドラフトが1.0を上
回ると、得られる凝固糸の緻密性が低下したり、延伸性
が低下するため、強度の高い繊維を得ることができなく
なる。
Take-up speed of coagulated yarn (m/min) Spinning draft = □ Linear speed of spinning solution discharge (m/min) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ (1) Spinning If the draft is less than 0.05, the take-up speed of the coagulated yarn will be too slow compared to the linear velocity of the spinning solution discharged from the spinneret hole, and the yarn will become slack in the coagulation bath.
The variation in fineness between single yarns becomes large, making stable spinning impossible. Furthermore, if the spinning draft exceeds 1.0, the resulting coagulated yarn will have lower density and drawability, making it impossible to obtain high-strength fibers.

本発明において、凝固浴として用いられる溶剤としては
、前記グリコール系溶媒ζビ対して混和性を有する溶剤
であればよいが、好ましくはPVA系重合体に対して沈
殿効果を有するメタノール、エタノール、アセトン、ま
たはメタノール、エタノール、アセトンから選ばれた一
種とグリコール系溶媒との混合溶剤がよい。
In the present invention, the solvent used as the coagulation bath may be any solvent as long as it is miscible with the glycol-based solvent, but preferably methanol, ethanol, or acetone has a precipitation effect on the PVA-based polymer. or a mixed solvent of one selected from methanol, ethanol, and acetone and a glycol solvent.

また凝固浴の温度としては凝固糸条の緻密性をあげるた
め、および融着を防止するため30℃以下、好ましくは
20℃以下の低温にするのがよい。
The temperature of the coagulation bath is preferably 30° C. or lower, preferably 20° C. or lower, in order to increase the density of the coagulated yarn and to prevent fusion.

・  得られた凝固糸条は、乾燥され、引き続いて加熱
チューブ、熱媒浴、熱板など各種の手段を採用して、延
伸される。この場合に延伸倍率は未延伸糸条に対して全
延伸倍率が少なくとも12倍、好ましくは15倍以上に
延伸する必要がある。乾湿式紡糸によって得られた緻密
性の高い超高重合度PVA系重合体の凝固糸条をこのよ
うな高倍率に延伸することにより強度が183/d、好
ましくは20g/d、さらに好ましくは22g/d以上
、弾性率が350g/d以上、好ましくは400g/d
以上、さらに好ましくは450g/d以上の従来公知の
PVA系繊維に比べて卓越した繊維性能を有する高強度
高弾性・率PVA系繊維が得られるのである。
- The obtained coagulated yarn is dried and subsequently stretched using various means such as a heating tube, a heating medium bath, and a hot plate. In this case, the stretching ratio must be such that the total stretching ratio is at least 12 times, preferably 15 times or more, relative to the undrawn yarn. By drawing the coagulated yarn of highly dense ultra-high polymerization degree PVA-based polymer obtained by dry-wet spinning to such a high magnification, the strength is 183/d, preferably 20 g/d, more preferably 22 g. /d or more, elastic modulus is 350 g/d or more, preferably 400 g/d
As described above, it is possible to obtain a high-strength, high-modulus PVA-based fiber that has excellent fiber performance compared to conventionally known PVA-based fibers, preferably 450 g/d or more.

[発明の作用・効果] 上述したように、本発明は重合度5000以上の超高重
合度PVAに対して、熱安定性、溶液粘性の点て極めて
有利なグリコール系溶媒を紡糸溶媒とし、特定の紡糸条
件下で乾湿式紡糸を行なうことにより、従来公知のPV
A系繊維とは全く異な゛す、ケブラー3を越えるほどの
すぐれた繊維性能を有する高強度高弾性率PVA系マル
チフィラメントを工業的に安定に生産する手段を提供す
るばかりでなく、得られたPVA系繊維はすぐれた機械
的性能に加えて、PVA系ポリマーの本来有す、る耐候
性の良好な特徴を活かして、一般産業資材関係への広い
展開が可能となるなどその有用性は極めて大きい。
[Operations and Effects of the Invention] As described above, the present invention uses a glycol solvent, which is extremely advantageous in terms of thermal stability and solution viscosity, as a spinning solvent for ultra-high polymerization degree PVA having a polymerization degree of 5000 or more, and By performing wet-dry spinning under the spinning conditions, conventionally known PV
The present invention not only provides a means for industrially stably producing a high-strength, high-modulus PVA-based multifilament that has excellent fiber performance exceeding Kevlar 3, which is completely different from A-based fibers, but also In addition to its excellent mechanical performance, PVA-based fibers are extremely useful, as they can be widely used in general industrial materials by taking advantage of the good weather resistance inherent to PVA-based polymers. big.

以下、実施例に基づき、本発明をさらに具体的に説明す
る。
Hereinafter, the present invention will be explained in more detail based on Examples.

なお、以下の実施例において、PVAの重合度、繊維の
機械的特性は以下に述べる測定方法によって測定した値
である。
In the following examples, the degree of polymerization of PVA and the mechanical properties of fibers are values measured by the measurement method described below.

■ の Δ゛の′l″ JIS K6726に基づ・き、30℃における水溶液
の極限粘度([ηコ)から次式により重合度(Pn)を
算出した。
(2) Δ゛'l'' Based on JIS K6726, the degree of polymerization (Pn) was calculated from the limiting viscosity ([η) of the aqueous solution at 30°C using the following formula.

log(Pn) = 1.613 X log([7t
 ] X 104/8.29)但し、[ηコ :  (
ml/g) 豊菫迫二皿 繊維をあらかじめ20℃、65%の相対湿度下に24時
間調湿し、繊維を構成する単糸の試長2On+ m、引
っばり速度100+n+n/分の条件で引張試験機を用
いて単糸強度および初期弾性率を測定した。
log(Pn) = 1.613 X log([7t
] X 104/8.29) However, [ηko: (
ml/g) The Toyosumi Sako two-plate fiber was conditioned in advance at 20°C and 65% relative humidity for 24 hours, and then stretched at a sample length of 2 On+ m and a pulling speed of 100+n+n/min. Single yarn strength and initial elastic modulus were measured using a testing machine.

実施例1 ピバリン酸ジメチルホスフィネート(PDME)を開始
剤として、−40℃で酢酸ビニルの塊状紫外線重合を行
ない、得られたポリ酢酸ビニルをナトリウムメチラート
で完全ケン化し、重合度11000のPVAを得た(重
合率13%)。
Example 1 Bulk ultraviolet polymerization of vinyl acetate was carried out at -40°C using dimethylphosphinate pivalate (PDME) as an initiator, and the resulting polyvinyl acetate was completely saponified with sodium methylate to produce PVA with a polymerization degree of 11,000. (polymerization rate 13%).

得られたPVAをグリセリン中に温度2000Cで加温
溶解し、PVA濃度が8重量%の紡糸溶液を作成した。
The obtained PVA was heated and dissolved in glycerin at a temperature of 2000C to prepare a spinning solution having a PVA concentration of 8% by weight.

得られた紡糸溶液を温度190℃に保って、孔径0.1
2叫nφ、孔数20の口金を通じて7.3ccZ分の吐
出量で空気中に吐出し、約I Q m n+の空気中(
口金面と凝固浴液面間の距離)を走行させた後、10℃
の、グリセリンを5正瓜%含むメタノール凝固浴中に導
入して凝固せしめ、引き取り速度10 m7分で引き取
った(紡糸トラフl−;0.31)。
The resulting spinning solution was kept at a temperature of 190°C and the pore size was adjusted to 0.1.
A discharge amount of 7.3 ccZ was discharged into the air through a nozzle with 2 mm diameter and 20 holes, and in the air of approximately I Q m n+ (
After running the distance (distance between the mouthpiece surface and the coagulation bath liquid level),
It was introduced into a methanol coagulation bath containing 5 % of glycerin and coagulated, and taken off at a take-up speed of 10 m/7 min (spinning trough l-: 0.31).

得られた未延伸糸条をメタノールで洗浄し、二連ローラ
により3倍にローラ延伸を行ない、80℃の加熱ローラ
で乾燥した。乾燥糸条を255°Cの窒素気流を有する
加熱筒に通して5.5倍に延伸し、ワインダーに巻取っ
た。得られた延伸糸条の全延伸倍率は16.5倍であり
、単糸繊度は2.Od、単糸強度は23.8 g/d、
初期弾性率は550g/d、伸度は4.7%であった。
The resulting undrawn yarn was washed with methanol, stretched three times with double rollers, and dried with heated rollers at 80°C. The dried yarn was passed through a heating tube with a nitrogen stream at 255°C, stretched 5.5 times, and wound up on a winder. The total drawing ratio of the obtained drawn yarn was 16.5 times, and the single yarn fineness was 2. Od, single yarn strength is 23.8 g/d,
The initial elastic modulus was 550 g/d and the elongation was 4.7%.

実施例2,3、比較例1 表1に示す重合条件により、3種類の重合度の異なる完
全ケン化PVAを作成した。
Examples 2 and 3, Comparative Example 1 Under the polymerization conditions shown in Table 1, three completely saponified PVAs having different degrees of polymerization were produced.

表1 ADVN・・・アゾビスジメチルバレロニ、トリルAI
BN・・・アゾビスイソブチロニトリル得られたPVA
は重合体濃度が重合度3500のPVAは12重ffi
%、重合度6300(7) P V Aは10重里%、
重合度9500のPVAは8重量%になるように、グリ
セリン中に各々加温溶解し、実施例1と同様の方法で乾
湿式紡糸を行なった。得られた未延伸糸をメタノールで
洗浄してグリセリンを除いた後、250°Cの加熱筒中
で熱延伸した。それぞれの最高延伸倍率で延伸した繊維
について、強度、弾性率の測定を行ない、得られた結果
を表2にまとめた。
Table 1 ADVN...Azobisdimethylvaleroni, tolyl AI
BN...Azobisisobutyronitrile Obtained PVA
PVA with a polymer concentration of 3500 is 12-polyffi
%, degree of polymerization 6300 (7) PVA is 10%,
PVA having a degree of polymerization of 9500 was dissolved in glycerin by heating to a concentration of 8% by weight, and dry-wet spinning was performed in the same manner as in Example 1. The obtained undrawn yarn was washed with methanol to remove glycerin, and then hot-stretched in a heating cylinder at 250°C. The strength and elastic modulus of the fibers drawn at each maximum draw ratio were measured, and the results are summarized in Table 2.

(以下、余白) 表2 実施例4、比較例2 実施例1で用いたPVAを、180℃のエチレングリコ
ール中に溶解し、重合体濃度が9重量%の紡糸溶液を作
成した。比較として、同じPVAを130℃のジメチル
スルホキシド中に溶解して重合体濃度が6重量%の溶液
を作成した。ジメチルスルホキシド溶液は、窒素パージ
したにもかかわらず赤褐色に着色し、粘性も極めて高い
状態であった。
(Hereinafter, blank spaces) Table 2 Example 4, Comparative Example 2 The PVA used in Example 1 was dissolved in ethylene glycol at 180°C to create a spinning solution with a polymer concentration of 9% by weight. As a comparison, the same PVA was dissolved in dimethyl sulfoxide at 130° C. to create a solution with a polymer concentration of 6% by weight. The dimethyl sulfoxide solution was colored reddish brown and had extremely high viscosity even though it was purged with nitrogen.

各々の溶液について、実施例1と同様の方法で紡糸、延
伸を行ない、全延伸倍率16倍の糸条を得た。得られた
糸条の物性を測定したところ、エチレングリコールを溶
媒としたものは、繊度が2.3d、強度が23.4g/
d 、弾性率は510g/dであったが、ジメチルスル
ホキシドを溶媒としたものは糸条が褐色になり、繊度が
2.2d、強度は17.13/d、弾性率も470g/
lJてあった。また各々の延伸前の凝固糸を乾燥して重
合度を測定したところ、エチレングリコール溶媒からの
凝固糸の重合度は10300てあったが、ジメチルスル
ホキシド溶媒からのものは5800と大巾に重合度が低
下していた。
Each solution was spun and drawn in the same manner as in Example 1 to obtain a yarn with a total draw ratio of 16 times. When the physical properties of the obtained yarn were measured, the yarn using ethylene glycol as a solvent had a fineness of 2.3 d and a strength of 23.4 g/
d, the elastic modulus was 510 g/d, but when dimethyl sulfoxide was used as a solvent, the yarn became brown, the fineness was 2.2 d, the strength was 17.13/d, and the elastic modulus was 470 g/d.
There was lJ. In addition, when we dried each coagulated thread before drawing and measured the polymerization degree, the polymerization degree of the coagulated thread from ethylene glycol solvent was 10,300, but that of the coagulated thread from dimethyl sulfoxide solvent was 5,800, which was significantly higher. was decreasing.

実施例5、比較例3 実施例1で作成した紡糸溶液を用いて、使用する口金の
孔径を0.15u+mφ、0.30n圃φに変更した以
外は実施例1と同様の方法で紡糸を行なった。得られた
凝固糸の最大延伸倍率および延伸糸条の物性を表3に示
す。
Example 5, Comparative Example 3 Using the spinning solution prepared in Example 1, spinning was carried out in the same manner as in Example 1, except that the hole diameter of the spinneret used was changed to 0.15 u + mφ, 0.30 n field φ. Ta. Table 3 shows the maximum stretching ratio of the obtained coagulated yarn and the physical properties of the drawn yarn.

表3Table 3

Claims (6)

【特許請求の範囲】[Claims] (1)重合度が少なくとも5000のポリビニルアルコ
ール系重合体をグリコール系溶媒に溶解して得た紡糸溶
液を、150℃以上240℃以下の温度に保ち、該グリ
コール系溶媒に対して混和性を有する溶剤からなる凝固
浴中に紡糸ドラフトが0.05以上1.0以下になるよ
うに乾湿式紡糸し、得られた未延伸糸を強度が18g/
d以上、弾性率が350g/d以上になるように延伸す
ることを特徴とする高強度高弾性率ポリビニルアルコー
ル系繊維の製造法。
(1) A spinning solution obtained by dissolving a polyvinyl alcohol polymer having a degree of polymerization of at least 5000 in a glycol solvent is kept at a temperature of 150°C or more and 240°C or less, and is miscible with the glycol solvent. Wet-dry spinning is performed in a coagulation bath containing a solvent so that the spinning draft is 0.05 or more and 1.0 or less, and the resulting undrawn yarn has a strength of 18 g/
A method for producing high-strength, high-modulus polyvinyl alcohol fibers, which comprises stretching the fibers so that the elastic modulus is 350 g/d or more and the elastic modulus is 350 g/d or more.
(2)特許請求の範囲第(1)項において、ポリビニル
アルコール系重合体の重合度が7000以上である高強
度高弾性率ポリビニルアルコール系繊維の製造法。
(2) A method for producing a high-strength, high-modulus polyvinyl alcohol fiber according to claim (1), wherein the polyvinyl alcohol polymer has a degree of polymerization of 7,000 or more.
(3)特許請求の範囲第(1)項において、紡糸溶液の
重合体濃度が3重量%以上20重量%以下である高強度
高弾性率ポリビニルアルコール系繊維の製造法。
(3) A method for producing a high-strength, high-modulus polyvinyl alcohol fiber according to claim (1), wherein the polymer concentration of the spinning solution is 3% by weight or more and 20% by weight or less.
(4)特許請求の範囲第(1)項において、グリコール
系溶媒がグリセリン、エチレングリコール、プロピレン
グリコール、テトラメチレングリコール、ジエチレング
リコール、トリエチレングリコールから選ばれた単独、
または混合溶媒である高強度高弾性率ポリビニルアルコ
ール系繊維の製造法。
(4) In claim (1), the glycol solvent is selected from glycerin, ethylene glycol, propylene glycol, tetramethylene glycol, diethylene glycol, and triethylene glycol;
Or a method for producing high-strength, high-modulus polyvinyl alcohol fibers using a mixed solvent.
(5)特許請求の範囲第(1)項において、グリコール
系溶媒と相溶性を有する溶剤がメタノール、エタノール
、アセトンから選ばれた少なくとも一種、あるいはメタ
ノール、エタノール、アセトンから選ばれた少なくとも
一種とグリコール系溶媒との混合溶剤である高強度高弾
性率ポリビニルアルコール系繊維の製造法。
(5) In claim (1), the solvent compatible with the glycol solvent is at least one selected from methanol, ethanol, and acetone, or at least one selected from methanol, ethanol, and acetone and glycol A method for producing high-strength, high-modulus polyvinyl alcohol-based fibers using a mixed solvent with a polyvinyl alcohol-based solvent.
(6)特許請求の範囲第(1)項において、延伸が延伸
倍率12倍以上の延伸である高強度高弾性率ポリビニル
アルコール系繊維の製造法。
(6) A method for producing a high-strength, high-modulus polyvinyl alcohol fiber according to claim (1), wherein the stretching is performed at a stretching ratio of 12 times or more.
JP8047186A 1986-04-08 1986-04-08 Production of polyvinyl alcohol fiber having high strength and elastic modulus Pending JPS62238812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8047186A JPS62238812A (en) 1986-04-08 1986-04-08 Production of polyvinyl alcohol fiber having high strength and elastic modulus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8047186A JPS62238812A (en) 1986-04-08 1986-04-08 Production of polyvinyl alcohol fiber having high strength and elastic modulus

Publications (1)

Publication Number Publication Date
JPS62238812A true JPS62238812A (en) 1987-10-19

Family

ID=13719176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8047186A Pending JPS62238812A (en) 1986-04-08 1986-04-08 Production of polyvinyl alcohol fiber having high strength and elastic modulus

Country Status (1)

Country Link
JP (1) JPS62238812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192813A (en) * 1988-01-26 1989-08-02 Kuraray Co Ltd Polyvinyl alcohol based fiber excellent in flexing fatigue property
JPH02307908A (en) * 1989-05-19 1990-12-21 Kuraray Co Ltd High-gloss, high-strength polyvinyl alcohol-based yarn and production thereof
CN112226840A (en) * 2020-08-04 2021-01-15 东华大学 High-strength high-modulus PVA fiber and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192813A (en) * 1988-01-26 1989-08-02 Kuraray Co Ltd Polyvinyl alcohol based fiber excellent in flexing fatigue property
JPH02307908A (en) * 1989-05-19 1990-12-21 Kuraray Co Ltd High-gloss, high-strength polyvinyl alcohol-based yarn and production thereof
CN112226840A (en) * 2020-08-04 2021-01-15 东华大学 High-strength high-modulus PVA fiber and preparation method thereof
CN112226840B (en) * 2020-08-04 2021-07-23 东华大学 High-strength high-modulus PVA fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
KR930000561B1 (en) Method of preparing high strength and modulus poly (vinyl alcohol) fibers
US4698194A (en) Process for producing ultra-high-tenacity polyvinyl alcohol fiber
JPH04228613A (en) Polyketone fiber and its manufacture
JPS63165509A (en) Polyvinyl alcohol fiber with high crystal fusion energy and production thereof
JP2569352B2 (en) High strength water-soluble polyvinyl alcohol fiber and method for producing the same
EP0338534A2 (en) Polyvinyl alcohol fiber having excellent resistance to hot water and process for producing the same
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JP4172888B2 (en) Monofilament and method for producing the same
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
JPS6197415A (en) Polyacrylonitrile fiber having high strength and modulus
JPS6241341A (en) High speed stretching of gel fiber
JPS62289606A (en) Production of polyvinyl alcohol fiber having high tenacity and elastic modulus
JPH0670283B2 (en) Method for producing high-strength, high-modulus polyvinyl alcohol fiber
JP3508876B2 (en) High modulus polybenzazole fiber
JPS61252313A (en) Polyvinyl alcohol yarn having improved knot strength and production thereof
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JP2001055622A (en) Polyketone dope, fiber and fiber production
JPH10280228A (en) Production of spinning dope and production of fiber
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JPS63190010A (en) Production of high-tenacity polyvinyl alcohol based fiber
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber