JPS63120107A - High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof - Google Patents

High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof

Info

Publication number
JPS63120107A
JPS63120107A JP26202686A JP26202686A JPS63120107A JP S63120107 A JPS63120107 A JP S63120107A JP 26202686 A JP26202686 A JP 26202686A JP 26202686 A JP26202686 A JP 26202686A JP S63120107 A JPS63120107 A JP S63120107A
Authority
JP
Japan
Prior art keywords
hot water
water resistance
pva
spinning
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26202686A
Other languages
Japanese (ja)
Inventor
Fujio Ueda
上田 富士男
Masahiko Hayashi
政彦 林
Masaharu Mizuno
正春 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP26202686A priority Critical patent/JPS63120107A/en
Publication of JPS63120107A publication Critical patent/JPS63120107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain PVA based fibers having excellent tensile strength, elastic modulus and hot water resistance, by spinning a high-molecular weight PVA based polymer solution, drawing the resultant coagulated yarn at a high draw ratio and acetalizing the drawn yarn at a specific stretching ratio. CONSTITUTION:A solution of a PVA based polymer having at least 2500 polymerization degree is spun by a dry jet-wet spinning or gel spinning method. The resultant coagulated yarn is drawn at a draw ratio of at least 15 and then subjected to acetalization treatment at -10-7% stretching ratio so that the acetalization degree may be 5-15mol%. Thereby the aimed fibers having >=18g/d tensile strength, >=250g/d elastic modulus and >=120 deg.C hot water resistance are obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐熱水性に優れた高強度高弾性率ポリビニルア
ルコール(以下、PVAと略記する)系繊維d′3よび
その製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-strength, high-modulus polyvinyl alcohol (hereinafter abbreviated as PVA) fiber d'3 having excellent hot water resistance and a method for producing the same.

[従来技術] 従来、PVA系繊維はその優れた機械的性質によりロー
プ、漁網、縫糸、帆布、ゴム補強月利などの工業もしく
は産業分野に広く用いられている。
[Prior Art] Conventionally, PVA-based fibers have been widely used in industrial fields such as ropes, fishing nets, sewing threads, canvases, and rubber reinforcements due to their excellent mechanical properties.

しかしながら、PVA系繊維はポリマ自体が本質的に水
に可溶性でおるため、耐熱水性の要求される分野への展
開が大巾に制約されていた。
However, since the polymer itself of PVA-based fibers is essentially water-soluble, its application to fields requiring hot water resistance has been severely restricted.

ところで、本発明者らは先に耐熱水性1機械的性能とも
に優れたPVA系繊維として、重合度1500以上の高
重合度PVAを乾湿式紡糸し、その糸条に201’E以
上の延伸を施すことによって。
By the way, the present inventors previously wet-dry spun PVA with a high polymerization degree of 1500 or more as a PVA-based fiber with excellent hot water resistance and mechanical performance, and then subjected the yarn to drawing of 201'E or more. By that.

清水中でも溶解し難いPVA系繊維が得られることを提
案(特開昭60−126312号公報)したが、その後
の(σ]究によって、高配向けしめた前記P V A系
繊維であっても、残存する非晶部分のため耐熱水性が充
分でなく、該繊維を105〜110℃の熱水中に長時間
放置すると、やはり溶解することがわかった。
It was proposed (Japanese Unexamined Patent Publication No. 126312/1982) that PVA fibers that are difficult to dissolve even in fresh water could be obtained, but subsequent (σ) research revealed that even with the PVA fibers that were designed for high distribution, It was found that hot water resistance was insufficient due to the remaining amorphous portion, and that if the fiber was left in hot water of 105 to 110° C. for a long time, it would still dissolve.

かかるPVA系繊維の本質的欠点である耐熱水性の改良
手段としては、該繊維にホルマリンのようなアルデヒド
類を反応ゼしめ不溶化(アセタール化)する方法が一般
に知られているが、単なるPVA系繊維にアセタール化
度20〜30モル%以上のアセタール化処理を施すと、
耐熱水性が向上する反面、前記高アセタール化度に関連
して。
As a means of improving hot water resistance, which is an essential drawback of such PVA-based fibers, a method is generally known in which the fibers are insolubilized (acetalized) by reacting with aldehydes such as formalin. When subjected to acetalization treatment with an acetalization degree of 20 to 30 mol% or more,
Although the hot water resistance is improved, it is related to the high degree of acetalization.

PVA繊維自体の結晶性、配向度が低下し、その結果機
械的性能の低下が顕著でおる。従って、この種の機械的
性能の低下を伴うような耐熱水性改良手段は、高水準の
機械的性能を必要とする産業用繊維には到底適せず、衣
料用繊維の場合に限られていた。
The crystallinity and degree of orientation of the PVA fiber itself decreases, resulting in a significant decrease in mechanical performance. Therefore, this kind of hot water resistance improvement method that involves a decrease in mechanical performance is completely unsuitable for industrial fibers that require a high level of mechanical performance, and has been limited to textile fibers for clothing. .

[発明が解決しようとする問題点] 本発明は上記従来技術の欠点に鑑み、機械的性能、およ
び耐熱水性ともに優れたPVA系繊維と、その製造法を
提供することを目的とする。
[Problems to be Solved by the Invention] In view of the above-mentioned drawbacks of the prior art, an object of the present invention is to provide a PVA-based fiber having excellent mechanical performance and hot water resistance, and a method for producing the same.

[問題点を解決するための手段] 本発明の上記目的は、 (1)重合度が少なくとも2500のポリビニルアルコ
ール系重合体からなり、引張強度が18g/d以上、弾
性率が2501J/d以上、および耐熱水性が120°
C以上である耐熱水性に優れた高強度・高弾性率ポリビ
ニルアルコール系繊維。
[Means for Solving the Problems] The above objects of the present invention are as follows: (1) A polyvinyl alcohol polymer having a degree of polymerization of at least 2500, a tensile strength of 18 g/d or more, and an elastic modulus of 2501 J/d or more; and hot water resistance of 120°
High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance of C or higher.

(2)重合度が少なくとも2500のポリビニルアルコ
ール系重合体溶液を乾湿式紡糸またはゲル紡糸し、得ら
れた凝固糸条を少なくとも15倍に延伸し、しかる後、
該延伸糸条を一10〜7%のストレッチ率下でアセター
ル化度が5モル%以上15モル%以下になるようにアセ
タール化処理することを特徴とする耐熱水性に優れた高
強度・高弾性率ポリビニルアルコール系繊維の製造法。
(2) Dry-wet spinning or gel spinning a polyvinyl alcohol polymer solution having a degree of polymerization of at least 2500, stretching the resulting coagulated yarn at least 15 times, and then
High strength and high elasticity with excellent hot water resistance, characterized in that the drawn yarn is acetalized so that the degree of acetalization is 5 mol% or more and 15 mol% or less under a stretch rate of -10 to 7%. Production method of polyvinyl alcohol fiber.

によって達成することができる。This can be achieved by

すなわち、本発明になるPVA系繊維は少なくとも25
00.好ましくは3000以上、ざらに好ましくは35
00以上の高重合度ポリマから構成されている。このよ
うな極めて高い重合度のポリマを用いることが、後述す
る紡糸手段の特定化と相俟って、得られる繊維は引張強
度が18g/d以上、好ましくは20q/d以上、さら
に好ましくは21 g/d以上、弾性率が250g/d
以上、好ましくは280g/d以上、さらに好ましくは
300g/d以上という、高強度化・高弾性率化の達成
が初めて可能になるのでおる。
That is, the PVA fiber according to the present invention has at least 25
00. Preferably 3000 or more, more preferably 35
It is composed of a polymer with a high polymerization degree of 0.00 or more. The use of such a polymer with an extremely high degree of polymerization, together with the specification of the spinning means described below, allows the resulting fibers to have a tensile strength of 18 g/d or higher, preferably 20 q/d or higher, and more preferably 21 g/d or higher. g/d or more, elastic modulus is 250 g/d
As described above, it becomes possible for the first time to achieve high strength and high elastic modulus, preferably 280 g/d or more, more preferably 300 g/d or more.

該PVA系ポリマには、完全ケン化PVA、主鎖中にエ
チレン、プロピレン、スチレン、アクリル酸、およびそ
のアルキルエステル、メタクリル酸、およびそのアルキ
ルエステル、イタコン酸などのオレフィン爪上ツマ−が
少量共重合されたPVAポリマを挙げることができるが
、特に好ましいPVA系ポリマとしてはケン化度99モ
ル%以上の完全ケン化PVAがよい。
The PVA-based polymer contains completely saponified PVA, and a small amount of olefin additives such as ethylene, propylene, styrene, acrylic acid and its alkyl esters, methacrylic acid and its alkyl esters, and itaconic acid in the main chain. Polymerized PVA polymers can be mentioned, and a particularly preferred PVA-based polymer is completely saponified PVA with a degree of saponification of 99 mol% or more.

また前記高重合度ポリマから得られた本発明繊維はその
耐熱水性が少なくとも120℃,好ましくは125〜1
60℃であることか不可欠の要件となる。
Further, the fiber of the present invention obtained from the above-mentioned highly polymerized polymer has a hot water resistance of at least 120°C, preferably 125-120°C.
The essential requirement is that the temperature be 60°C.

ここでいう耐熱水性とは、外径iQmm、内径8mmの
pyrexガラスアンプル中に長さ約5mmに切断した
PVA系繊維100mgと水5mlを封じ込んだ後、シ
リコン浴中で昇温速度1°C/分で昇温し、該!1i維
が完全に溶解する温度(℃)でもって示される。
Hot water resistance here means that 100 mg of PVA fibers cut to about 5 mm in length and 5 ml of water are sealed in a Pyrex glass ampoule with an outer diameter of iQ mm and an inner diameter of 8 mm, and then placed in a silicon bath at a heating rate of 1°C. The temperature rises in / minute, and the corresponding! It is indicated by the temperature (°C) at which the 1i fiber completely melts.

PVA系繊維は既に述べたように本来ポリマ自体が水に
可溶性でおるため、耐熱水性の要求される分野への展開
が大巾に制限される。これに対して、上述した本発明繊
維は高強度化・高弾性率化のみならず、耐熱水性が12
0℃以上と、大巾に向上したため、特に耐熱水性を必要
とする産業用繊維として顕著な効果が発揮されることに
なる。
As already mentioned, since the polymer itself of PVA fibers is inherently soluble in water, its application to fields where hot water resistance is required is severely limited. In contrast, the above-mentioned fibers of the present invention not only have high strength and high elastic modulus, but also have hot water resistance of 12
Since the temperature has been significantly improved to 0°C or higher, it will be particularly effective as an industrial fiber that requires hot water resistance.

次に本発明繊維の製造手段の一例について述べる。Next, an example of the means for producing the fiber of the present invention will be described.

上記の高重合度PVA系ポリマは通常の湿式紡糸法、即
ち、PVA系ポリマを熱水に溶解せしめて1qた紡糸原
液を紡糸口金を介してボウ硝おるいはアルカリ性塩類水
溶液からなる凝固浴中に吐出せしめる方法では、紡糸溶
液の安定性、および(qられた;疑固糸の延伸性、緻密
性が極端に低下するため、上記本発明の目的とする高物
性を有するPVA系繊維を得ることが困難となる。
The above-mentioned highly polymerized PVA-based polymer is produced using a normal wet spinning method, in which 1 q of the PVA-based polymer is dissolved in hot water and a spinning stock solution of 1 q is passed through a spinneret into a coagulation bath consisting of sulfur salt or an aqueous alkaline salt solution. In the method of discharging the spinning solution, the stability of the spinning solution and the stretchability and denseness of the pseudo-rigid yarn are extremely reduced. This becomes difficult.

かかる高重合度PVA系ポリマを緻密で延伸性の高い凝
固糸とするためには、乾湿式紡糸法、またはゲル紡糸法
の採択が効果的でおり、このような特定の紡糸方法によ
って、初めて本発明の目的とする高強度・高弾性率ポリ
ビニルアルコール系繊維を得ることができるのである。
In order to make such a highly polymerized PVA-based polymer into a dense and highly extensible coagulated thread, it is effective to adopt a dry-wet spinning method or a gel spinning method. This makes it possible to obtain high-strength, high-modulus polyvinyl alcohol fibers, which are the object of the invention.

そこで、本発明における乾湿式紡糸法およびゲル紡糸法
について説明する。
Therefore, the dry-wet spinning method and the gel spinning method in the present invention will be explained.

先ず、乾湿式紡糸法とは、紡糸原液を直接凝固浴中に吐
出しないで、−旦空気などの不活性雰囲気の微小空間に
吐出し、次に吐出糸条を凝固浴に導入して凝固させる紡
糸法である。
First, the dry-wet spinning method means that the spinning stock solution is not directly discharged into a coagulation bath, but is first discharged into a microscopic space in an inert atmosphere such as air, and then the discharged yarn is introduced into a coagulation bath and coagulated. This is a spinning method.

この際、紡糸原液の溶媒としては、ジメチルスルホキシ
ド(DMSO>、グリセリン、エチレングリコール、プ
ロピレングリコール、ジエチレングリコール、トリエチ
レングリコール、テトラエチレングリコール、トリメチ
ロールプロパンなどの多価アルコール類、エチレンジア
ミン、ジエチレン1〜リアミンなどのアミン類、レゾル
シン、ホルムアミド、尿素の飽和水溶液などの有機系溶
剤、または臭化リチウム、塩化リチウムなどのハロゲン
化リチウム、塩化亜鉛、塩化アルミニウム、塩化アルミ
ニウム、塩化マグネシウムなどの無ハ塩の水溶液、また
はこれらの混合溶媒などを挙げることができるが、好ま
しくはPVA系ポリマに対する溶解力の大きい溶剤、特
にDMSO,エチレングリコール、グリセリン、エチレ
ンジアミン。
At this time, as a solvent for the spinning stock solution, dimethyl sulfoxide (DMSO), glycerin, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyhydric alcohols such as trimethylolpropane, ethylene diamine, diethylene amine organic solvents such as saturated aqueous solutions of amines such as resorcinol, formamide, and urea, or salt-free aqueous solutions such as lithium halides such as lithium bromide and lithium chloride, zinc chloride, aluminum chloride, aluminum chloride, and magnesium chloride. , or a mixed solvent thereof, preferably a solvent having a high dissolving power for PVA-based polymers, particularly DMSO, ethylene glycol, glycerin, and ethylene diamine.

ジエチレン1〜リアミンがよい。Diethylene 1 to liamine are preferable.

また凝固剤としては、紡糸原液の溶剤に対して相溶性を
有し、PVA系ポリマに対して非溶媒のもの、例えばメ
タノール、エタノール、アセトン。
The coagulant is compatible with the solvent of the spinning dope and is a non-solvent for the PVA polymer, such as methanol, ethanol, and acetone.

ベンゼン、トルエン、またはこれらと紡糸原液の溶剤と
の混合溶媒並びに無機塩類水溶液が用いられる。
Benzene, toluene, a mixed solvent of these and the solvent of the spinning dope, and an aqueous solution of inorganic salts are used.

次にゲル紡糸法とは、紡糸原液を紡糸口金から不活性雰
囲気の微小空間に吐出し、次に吐出糸条を紡糸原液の溶
剤に対して非混和性の冷却浴中に導いてそのまま(吐出
糸条のポリマ濃度を実質的に変化させることなく)冷却
ゲル化させる紡糸法である。
Next, in the gel spinning method, the spinning dope is discharged from a spinneret into a microscopic space in an inert atmosphere, and then the discharged yarn is introduced into a cooling bath that is immiscible with the solvent of the spinning dope. This spinning method involves cooling and gelling the yarn (without substantially changing the polymer concentration of the yarn).

このゲル紡糸法における紡糸原液の溶媒としては、PV
A系ポリマを高温で加熱、溶解して得られる溶液を冷却
するとゲル化するものが好ましい。
As a solvent for the spinning dope in this gel spinning method, PV
It is preferable to use a polymer that gels when the solution obtained by heating and dissolving the A-based polymer at a high temperature is cooled.

具体的にはグリセリン、エチレングリコール。Specifically, glycerin and ethylene glycol.

プロピレングリコール、ジエチレングリコール。Propylene glycol, diethylene glycol.

トリエヂレングリコール、テトラエチレングリコール、
トリメチロールプロパンなどの多価アルコール類、ベン
ゼンスルホンアミド、カプロラクタムなど常温で非揮発
性の溶剤を例示することができるが、好ましくはグリセ
リン、およびエチレングリコールがよい。
triethylene glycol, tetraethylene glycol,
Examples include polyhydric alcohols such as trimethylolpropane, benzenesulfonamide, caprolactam, and other solvents that are nonvolatile at room temperature, but glycerin and ethylene glycol are preferred.

また冷却浴としては、上記紡糸原液の溶剤に対して、混
和性を有せず、PVA系ポリマに対して非溶剤のもの、
例えばデカリン、トリクロルエチレン、四塩化炭素、パ
ラフィンオイルなどが用いられる。
In addition, as a cooling bath, one that is not miscible with the solvent of the above-mentioned spinning dope and is non-solvent for the PVA-based polymer;
For example, decalin, trichlorethylene, carbon tetrachloride, paraffin oil, etc. are used.

上記乾湿式紡糸またはゲル紡糸において、紡糸原液の粘
度は、ポリマの重合度、紡糸原液のポリマ濃度および紡
糸温度に依存するが、吐出部の紡糸原液の粘度が約20
0〜5000ポイズ、好ましくは500〜2000ポイ
ズの範囲になるように紡糸原液のポリマ濃度と温度をコ
ントロールするのがよい。該吐出部の紡糸原液の粘度が
200ポイズよりも低かったり、5000ボイズを越え
ると紡糸原液の曳糸性の低下が著しく、安定した紡糸が
難しくなるので好ましくない。
In the above-mentioned dry-wet spinning or gel spinning, the viscosity of the spinning dope depends on the degree of polymerization of the polymer, the polymer concentration of the spinning dope, and the spinning temperature, but the viscosity of the spinning dope at the discharge part is approximately 20%.
It is preferable to control the polymer concentration and temperature of the spinning dope so that the range is 0 to 5000 poise, preferably 500 to 2000 poise. If the viscosity of the spinning dope in the discharge section is lower than 200 poise or exceeds 5000 poise, the spinnability of the spinning dope will drop significantly and stable spinning will become difficult, which is not preferred.

このような紡糸原液は、乾湿式紡糸あるいはゲル紡糸の
いずれにおいても、凝固浴あるいは冷却浴の液面上鉤2
〜200mmの位置に設けられた紡糸口金を通して吐出
され、吐出糸条は空気や窒素。
Such a spinning stock solution is used in both dry and wet spinning or gel spinning, when it is heated above the liquid level of a coagulation bath or a cooling bath.
It is discharged through a spinneret installed at a position of ~200 mm, and the discharged yarn is air or nitrogen.

ヘリウム、アルゴンなどの不活性雰囲気中を走行した後
、該凝固浴おるいは冷却浴中に導入される。
After running through an inert atmosphere such as helium or argon, it is introduced into the coagulation bath or cooling bath.

該吐出糸条が上記空気または不活性雰囲気中を走行する
距離が約2mm未満になると液面の変動に伴う吐出糸条
の糸切れが生じ易く、紡糸安定性が悪化するし、200
 mmを越えると吐出糸条を構成する単糸相互間の接着
が生じ易くなるために好ましくない。
If the distance that the discharged yarn travels in the air or inert atmosphere is less than about 2 mm, the discharged yarn is likely to break due to fluctuations in the liquid level, and spinning stability deteriorates.
If it exceeds mm, it is not preferable because adhesion between the single yarns constituting the discharged yarn tends to occur.

また、凝固浴の温度は通常O〜30℃の範囲である。Further, the temperature of the coagulation bath is usually in the range of 0 to 30°C.

一方、冷却浴の温度は、紡糸原液のゲル化温度によって
定まるが、好ましくは0〜60°Cの範囲にするのがよ
い。すなわち、60℃よりも高くなると、吐出糸条の冷
却効率が不充分なためにゲル化糸条が柔かく、後続する
脱溶媒、延伸などの工程で糸条を安定に走行させること
が困難になるし、0℃よりも低くなると特殊な冷fJl
設備を必要とし好ましくない。
On the other hand, the temperature of the cooling bath is determined by the gelation temperature of the spinning dope, and is preferably in the range of 0 to 60°C. In other words, when the temperature is higher than 60°C, the cooling efficiency of the discharged yarn is insufficient and the gelled yarn becomes soft, making it difficult to run the yarn stably in subsequent steps such as desolvation and stretching. However, when the temperature drops below 0℃, a special cold fJl
It requires equipment and is not desirable.

例えば、3000の重合度を有するPVAの15巾Q%
グリセリン溶液の場合、そのゲル化温度は約103°C
でおり、この溶液を紡糸口金ノズルから吐出し、得られ
た吐出糸条を冷却するには、冷却浴の温度は30°C以
下がよい。
For example, 15 width Q% of PVA with a degree of polymerization of 3000
In the case of glycerin solution, its gelation temperature is approximately 103°C
In order to discharge this solution from a spinneret nozzle and cool the resulting discharged yarn, the temperature of the cooling bath is preferably 30° C. or lower.

また冷却浴の深さ、長さなどは特に限定されるものでは
ないが、マルチフィラメントとして吐出する場合は、マ
ルチフィラメントを構成する単繊維が集束される前に冷
却浴中で充分に冷却し、ゲル化が完了するように冷却浴
の温度、深さ、長さを適宜設定すべきである。
The depth and length of the cooling bath are not particularly limited, but when discharging as a multifilament, the single fibers that make up the multifilament are sufficiently cooled in the cooling bath before being bundled. The temperature, depth, and length of the cooling bath should be appropriately set so that gelation is completed.

得られた凝固糸条またはゲル化糸条は、脱溶媒後、加熱
チューブ、熱媒浴、熱板など各種の手段を採用して、延
伸される。この場合に延伸倍率は未延伸糸条に対して全
延伸倍率が少なくとも15倍、好ましくは18倍以上が
必要である。このような高倍率の延伸は上記屹湿式紡糸
またはゲル紡糸という特定の紡糸法の採用で初めて可能
となり、ざらに高重合度ポリマの使用により本発明の目
的とする高物性のPVA系繊維が得られるのでおる。
The obtained coagulated thread or gelled thread is stretched after removing the solvent by employing various means such as a heating tube, a heating medium bath, and a hot plate. In this case, the total stretching ratio must be at least 15 times, preferably 18 times or more, relative to the undrawn yarn. Stretching at such a high magnification becomes possible only by using the above-mentioned specific spinning methods such as wet spinning or gel spinning, and by using a highly polymerized polymer, PVA fibers with high physical properties, which is the object of the present invention, can be obtained. I'm here because I can.

かくして得られたPVA系1!維は高度に延伸配向がな
されているため精品性に優れ、沸騰水中でも溶解しない
程度に耐熱水性は向上するが、該延伸後の繊維を110
℃以上の加圧水然気中で処理すると、溶解ないし大巾な
強度低下をもたらす等、耐熱水性の点では未だ不充分で
あった。
Thus obtained PVA type 1! Since the fibers are highly drawn and oriented, they have excellent quality and have improved hot water resistance to the extent that they do not dissolve even in boiling water.
When treated in pressurized water at temperatures above .degree. C., it resulted in dissolution or a significant decrease in strength, and was still insufficient in terms of hot water resistance.

それ故、本発明においてはPVA系繊維の耐熱水性を少
なくとも120℃に維持するための具体的手段として1
例えば高度に延伸配向されたPVA系繊維に対して、ア
セタール化度が5モル%以上15モル%以下になるよう
にアセタール処理を施し、これによって機械的特性およ
び耐熱水性ともに優れたPVA系繊維とせしめる。 こ
の際、アセタール化度が5モル%を下まわると耐熱水性
が充分でなく、一方、15モル%を越えると強度。
Therefore, in the present invention, as a specific means for maintaining the hot water resistance of PVA fiber at at least 120°C,
For example, highly drawn and oriented PVA fibers are subjected to acetal treatment such that the degree of acetalization is 5 mol% or more and 15 mol% or less, thereby producing PVA fibers with excellent mechanical properties and hot water resistance. urge At this time, if the degree of acetalization is less than 5 mol%, the hot water resistance will be insufficient, while if it exceeds 15 mol%, the strength will be poor.

弾性率の低下がやはり表面化し、機械的性能が阻害され
易くなる。
The decrease in elastic modulus also becomes apparent, and mechanical performance is likely to be impaired.

またアセクール処理時に機械的性能の低下を可能な限り
抑えるためには、延伸糸条に対して−10〜・7%、好
ましくは一5〜5%のストレッチ率下で処理することが
効果的でおる。アセタール処理時のストレッチ率が7%
を上回ると、アセタール処理時の糸切れが多くなって、
安定な操業が困難になり、ストレッチ率が一10%を下
回ると繊維の機械的性能、特に弾性率の低下が大きくな
る。
In addition, in order to suppress the decrease in mechanical performance as much as possible during the acecool treatment, it is effective to process the drawn yarn at a stretch rate of -10 to 7%, preferably -5 to 5%. is. Stretch rate during acetal treatment is 7%
If it exceeds , thread breakage during acetal treatment will increase,
Stable operation becomes difficult, and when the stretch rate is less than 110%, the mechanical performance of the fibers, especially the elastic modulus, decreases significantly.

このアレタール処理に用いるアルデヒド化合物としては
、特に限定されないが、目的の引張強度。
The aldehyde compound used for this aretal treatment is not particularly limited, but has a desired tensile strength.

弾性率を達成するためにはホルマリン、ベンズアルデヒ
ドが好ましく用いられる。
In order to achieve the elastic modulus, formalin and benzaldehyde are preferably used.

このようにPVA系繊維において、アセタール化度が5
モル%以上で、120℃以上の熱水中でも溶解しない程
の耐熱水性を有する繊維が1qられることは、従来のP
VA系繊維から全く予期し得ない点であり、本発明のよ
うにPVAポリマの高重合度化と、紡糸手段の特定化と
の一体的な結合によるからこそ初めて達成し得たものと
言える。
In this way, in PVA fiber, the degree of acetalization is 5.
Conventional P
This is completely unexpected from VA fibers, and can be said to have been achieved for the first time because of the integral combination of a high degree of polymerization of the PVA polymer and a specialized spinning means, as in the present invention.

また耐熱水性向上のために必要とされるアセタール化度
を低下ざVることが可能になったがため。
Furthermore, it has become possible to reduce the degree of acetalization required to improve hot water resistance.

アセタール処理時の殿械的性能の低下が大巾に抑えられ
、引張強度1弾性率とも*めで優れたPVA系繊維が得
られることになる。
Deterioration in mechanical performance during acetal treatment is greatly suppressed, and PVA-based fibers with excellent tensile strength and elastic modulus can be obtained.

もちろん、本発明繊維における耐熱水性改良手段として
は上記したアルデヒド化合物によるアセタール化処理に
限ったものではない。
Of course, the means for improving the hot water resistance of the fibers of the present invention is not limited to the above-mentioned acetalization treatment using an aldehyde compound.

[発明の効宋コ 本発明になるPVA系繊維は、120℃以上の耐熱水性
を有し、かつ引張強度が18CI/d以上。
[Effects of the Invention] The PVA-based fiber of the present invention has hot water resistance of 120° C. or higher and a tensile strength of 18 CI/d or higher.

弾[1率が250g/d以上という、従来のPVA系繊
維に比べて著しく優れた耐熱水性と機械的性能とを有す
るため、これまで耐熱水性の点で展開が困難であったタ
イヤコード、■ベルト、ホース等のゴム補強用、ロープ
、コンベアーベルト、FRP用など、PVA系繊維の新
しい用途分野への展開を可能にするものであり、その有
用性は極めて大きい。
Tire cord, which had previously been difficult to develop in terms of hot water resistance, has extremely superior hot water resistance and mechanical performance compared to conventional PVA fibers, with a bullet [1 modulus of 250 g/d or more]. It is extremely useful as it enables the development of new application fields for PVA-based fibers, such as rubber reinforcement for belts, hoses, etc., ropes, conveyor belts, and FRP.

以下、実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

なお、本例中のPVAの重合度、およびPVA系繊維の
引張強度、初期弾性率は次のようにして求めた。
In this example, the degree of polymerization of PVA, the tensile strength, and the initial elastic modulus of the PVA-based fibers were determined as follows.

(1)PVAの重合度 JIS  K6726に基づき、30°Cにおける水溶
液の極限粘度[η]から次式により重合度(pn)を算
出した。
(1) Degree of polymerization of PVA Based on JIS K6726, the degree of polymerization (pn) was calculated from the intrinsic viscosity [η] of the aqueous solution at 30°C using the following formula.

too(Pn)=1 、613XIO(1([77] 
x 10′1/8.29) ただし、[η]:ml/g (2)PVA系繊維の引張強度および初期弾性率繊維を
予め20℃、65%の相対湿度の下に24時間調湿し、
単糸を取り出して試長2Qmm。
too(Pn)=1 , 613XIO(1([77]
x 10'1/8.29) However, [η]: ml/g (2) Tensile strength and initial modulus of PVA fiber The fibers were conditioned in advance at 20°C and 65% relative humidity for 24 hours. ,
Take out the single yarn and make a trial length of 2Qmm.

引張速度100mm/分の条件で引張試験殿を用いて単
糸強度および初期弾性率を測定した。
Single yarn strength and initial elastic modulus were measured using a tensile test chamber at a tensile speed of 100 mm/min.

実施例1 アゾビスイソブチロニトリルを用い、温度50°Cで酢
酸ビニルの跣状重合を行ない、重合度3800の完全ケ
ン化PVAを得たく重合率20%)。
Example 1 Vinyl acetate was polymerized using azobisisobutyronitrile at a temperature of 50°C to obtain completely saponified PVA with a degree of polymerization of 3800 (polymerization rate 20%).

PVAを80℃のDMSOに溶解し、ポリマ濃度が12
重量%の紡糸原液を作成し、孔径O0OBmmφ、孔数
50の口金を用いて空気中に吐出し、約5mm(口金面
と凝固浴液面間の距離)の空気中を走行さけた後、20
℃のDMSOを5千m%含むメタノール1疑固浴中に導
入して凝固せしめ、引取速度10m/分で引取った。
PVA was dissolved in DMSO at 80°C, and the polymer concentration was 12
% by weight of the spinning stock solution was prepared, and it was discharged into the air using a nozzle with a hole diameter of 00OBmmφ and 50 holes, and after running through the air at a distance of about 5 mm (distance between the nozzle surface and the coagulation bath liquid level), 20
It was introduced into a methanol 1 pseudo-solid bath containing 5,000 m% of DMSO at a temperature of 0.degree.

得られた未延伸糸条をメタノールで洗浄し、二連ローラ
により4倍に冷延伸を行ない、80℃の加熱ローラで乾
燥した。乾燥糸条を235℃の窒素気流を有する加熱筒
に通して5倍に延伸し、ワインダーにて巻き取った。
The obtained undrawn yarn was washed with methanol, cold-stretched by a factor of 4 using double rollers, and dried using heated rollers at 80°C. The dried yarn was passed through a heating tube with a nitrogen stream at 235° C., stretched five times, and wound up using a winder.

得られた延伸糸条の全延伸倍率は20倍であり、単糸繊
度は2.0d、単糸強度は21.89/d。
The total stretching ratio of the obtained drawn yarn was 20 times, the single yarn fineness was 2.0 d, and the single yarn strength was 21.89/d.

伸度は6.0%2弾性率は350g〆dでおった。The elongation was 6.0%2 and the modulus of elasticity was 350g〆d.

この延伸糸条をステンレス・フレームに固定し、ホルマ
リン50g/l、硫酸ナトリウム100g/I。
This drawn thread was fixed on a stainless steel frame and treated with formalin 50g/l and sodium sulfate 100g/l.

硫酸200g/lからなるホルマール化浴中、60°C
で緊張ホルマール化処理(ストレッチ率;0%)を行っ
た。このとき、処理時間を変更することにより、ホルマ
ール化度を変更した糸条を作成し、各糸条の引張強度1
弾性率、ホルマール化度、および耐熱水性を測定した。
in a formalization bath consisting of 200 g/l sulfuric acid at 60°C.
Tension formalization treatment (stretch rate: 0%) was performed. At this time, by changing the processing time, yarns with different degrees of formalization are created, and the tensile strength of each yarn is 1
Elastic modulus, degree of formalization, and hot water resistance were measured.

その結果を第1表に示した。The results are shown in Table 1.

(以下、余白) 実施例2 ピバリン酸ジメヂルホスフィネートを開始剤として、−
30℃の温度下で酢酸ビニルの低温光重合を行ない、重
合度11500の完全ケン化PVAを1qた(重合率1
8%)。
(Hereinafter, blank space) Example 2 Using pivalic acid dimyl phosphinate as an initiator, -
Low-temperature photopolymerization of vinyl acetate was carried out at a temperature of 30°C, and 1q of completely saponified PVA with a degree of polymerization of 11,500 was obtained (polymerization rate of 1
8%).

得られたP−V Aを180℃のエヂレングリコールに
溶解し、ポリマ濃度が6重量%の紡糸原液を作成した。
The obtained P-VA was dissolved in ethylene glycol at 180°C to prepare a spinning stock solution having a polymer concentration of 6% by weight.

この紡糸原液を180℃に保って、孔径0.15mmφ
、孔数20の口金を用いて空気中に吐出し、口金面の下
方約20mmの10℃のデカリンからなる冷却浴中に導
入して冷却・ゲル化せしめ、引取速度10m/分で引取
った。
This spinning stock solution was kept at 180°C and the pore diameter was 0.15mmφ.
It was discharged into the air using a nozzle with 20 holes, introduced into a cooling bath made of decalin at 10° C. approximately 20 mm below the nozzle surface, cooled and gelled, and taken off at a take-up speed of 10 m/min. .

得られた未延伸ゲル化糸条をメタノールで洗浄し、エヂ
レングリコールを除いた後、60℃の乾燥ローラにて乾
燥を行ない、次に255℃の窒素気流雰囲気の加熱筒中
で19倍に延伸し、ワインダーにて巻き取った。
The resulting undrawn gelled yarn was washed with methanol to remove ethylene glycol, dried with a drying roller at 60°C, and then stretched 19 times in a heating cylinder at 255°C in a nitrogen atmosphere. Then, it was wound up with a winder.

17られた延伸糸条の単糸強度は24.0!11/d 
The single yarn strength of the drawn yarn was 24.0!11/d.
.

弾性率は480g/dでおった。The elastic modulus was 480 g/d.

この延伸糸条をステンレス・フレームに固定し、実施例
1と同様のホルマール化処理を行ない、ホルマール化度
13.5モル%の糸条を19だ。
This drawn yarn was fixed to a stainless steel frame and subjected to the same formalization treatment as in Example 1, resulting in a yarn with a degree of formalization of 13.5 mol %.

得られた糸条の引張強度は23.89/d 、弾性率は
420g/d、耐熱水性は140℃であった。
The obtained yarn had a tensile strength of 23.89/d, an elastic modulus of 420 g/d, and a hot water resistance of 140°C.

実rJ反例3 α、α゛−アゾビスジメヂルバレロニトリルを開始剤と
して用い、温度30°Cで酢酸ビニルの塊状重合を行な
い、重合度6500の完全ケン化PVAを1qた(重合
率20%)。
Actual rJ Counterexample 3 Using α,α゛-azobisdimedylvaleronitrile as an initiator, bulk polymerization of vinyl acetate was carried out at a temperature of 30°C, yielding 1q of completely saponified PVA with a degree of polymerization of 6500 (polymerization rate 20%). ).

得られたPV八をポリマ温度が10重二%、口金孔径o
、iommφである以外は実施例1と同様の方法で繊維
化し、250℃の加熱筒で全延伸倍率18.5倍に延伸
した。
The obtained PV8 has a polymer temperature of 10% and a mouth hole diameter of o.
, iommφ, and was made into fibers in the same manner as in Example 1, and stretched to a total stretching ratio of 18.5 times in a heating cylinder at 250°C.

得られた延伸糸条の単糸強度は23,2(1/d 。The single yarn strength of the obtained drawn yarn was 23.2 (1/d).

弾性率は390g/dであった。The elastic modulus was 390 g/d.

この延伸糸条を実施例1で用いたのと同様のホルマール
化浴中にローラを用いて導入し、ざらに連続してローラ
により引取り、ワインダーに巻き取った後、水洗、乾燥
した。
This drawn yarn was introduced into a formalizing bath similar to that used in Example 1 using a roller, and was taken up by the roller in a rough and continuous manner, wound up in a winder, washed with water, and dried.

この際、ホルマール化浴出側のローラ速度によってスト
レッチ率を変更し、ホルマール化処理した。
At this time, the stretching rate was changed depending on the speed of the roller on the exit side of the formalizing bath, and the formalizing process was performed.

得られた糸条の引張強度2弾性率、ホルマール化度、お
よび耐熱水性を測定し、その結果を第2表に示した。
The tensile strength 2 elastic modulus, degree of formalization, and hot water resistance of the obtained yarn were measured, and the results are shown in Table 2.

(以下、余白)(Hereafter, margin)

Claims (2)

【特許請求の範囲】[Claims] (1)重合度が少なくとも2500のポリビニルアルコ
ール系重合体からなり、引張強度が18g/d以上、弾
性率が250g/d以上、および耐熱水性が120℃以
上である耐熱水性に優れた高強度・高弾性率ポリビニル
アルコール系繊維。
(1) High strength and excellent hot water resistance, consisting of a polyvinyl alcohol polymer with a degree of polymerization of at least 2500, a tensile strength of 18 g/d or more, an elastic modulus of 250 g/d or more, and a hot water resistance of 120°C or more. High modulus polyvinyl alcohol fiber.
(2)重合度が少なくとも2500のポリビニルアルコ
ール系重合体溶液を乾湿式紡糸またはゲル紡糸し、得ら
れた凝固糸条を少なくとも15倍に延伸し、しかる後、
該延伸糸条を−10〜7%のストレッチ率下でアセター
ル化度が5モル%以上15モル%以下になるようにアセ
タール化処理することを特徴とする耐熱水性に優れた高
強度・高弾性率ポリビニルアルコール系繊維の製造法。
(2) Dry-wet spinning or gel spinning a polyvinyl alcohol polymer solution having a degree of polymerization of at least 2500, stretching the resulting coagulated yarn at least 15 times, and then
High strength and high elasticity with excellent hot water resistance, characterized in that the drawn yarn is acetalized so that the degree of acetalization is 5 mol% or more and 15 mol% or less under a stretch rate of -10 to 7%. Production method of polyvinyl alcohol fiber.
JP26202686A 1986-11-05 1986-11-05 High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof Pending JPS63120107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26202686A JPS63120107A (en) 1986-11-05 1986-11-05 High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26202686A JPS63120107A (en) 1986-11-05 1986-11-05 High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof

Publications (1)

Publication Number Publication Date
JPS63120107A true JPS63120107A (en) 1988-05-24

Family

ID=17369992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26202686A Pending JPS63120107A (en) 1986-11-05 1986-11-05 High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof

Country Status (1)

Country Link
JP (1) JPS63120107A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133605A (en) * 1988-06-02 1990-05-22 Toray Ind Inc Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
JPH02169709A (en) * 1988-12-16 1990-06-29 Kuraray Co Ltd Method for drawing polyvinyl alcohol-based fiber
JPH02210015A (en) * 1989-02-08 1990-08-21 Kuraray Co Ltd High-tenacity polyvinyl alcohol fiber
JPH0327111A (en) * 1989-06-23 1991-02-05 Toray Ind Inc Crimped high-tenacity polyvinyl alcohol fiber and production thereof
JPH0340808A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
US5340650A (en) * 1992-02-18 1994-08-23 Kuraray Company Limited Vinyl alcohol units-containing polymer composite fiber having resistance to hot water and wet heat and process for its production
US5380588A (en) * 1991-06-24 1995-01-10 Kuraray Company Limited Polyvinyl alcohol-based synthetic fiber
JP2007303104A (en) * 2006-05-09 2007-11-22 Shingo Kizai Kk Insulating plate for rail joint
JP2016030862A (en) * 2014-07-28 2016-03-07 株式会社クラレ Fibrillated fiber and method for producing the same
JP2019026990A (en) * 2017-08-03 2019-02-21 国立大学法人北陸先端科学技術大学院大学 Production method of polyvinyl alcohol-based fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126312A (en) * 1983-12-12 1985-07-05 Toray Ind Inc High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
JPS60126311A (en) * 1983-12-12 1985-07-05 Toray Ind Inc Novel polyvinyl alcohol based fiber
JPS60215711A (en) * 1984-04-10 1985-10-29 Nippon Steel Corp Production of carbon steel having good cold workability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126312A (en) * 1983-12-12 1985-07-05 Toray Ind Inc High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
JPS60126311A (en) * 1983-12-12 1985-07-05 Toray Ind Inc Novel polyvinyl alcohol based fiber
JPS60215711A (en) * 1984-04-10 1985-10-29 Nippon Steel Corp Production of carbon steel having good cold workability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133605A (en) * 1988-06-02 1990-05-22 Toray Ind Inc Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
JPH02169709A (en) * 1988-12-16 1990-06-29 Kuraray Co Ltd Method for drawing polyvinyl alcohol-based fiber
JPH02210015A (en) * 1989-02-08 1990-08-21 Kuraray Co Ltd High-tenacity polyvinyl alcohol fiber
JPH0327111A (en) * 1989-06-23 1991-02-05 Toray Ind Inc Crimped high-tenacity polyvinyl alcohol fiber and production thereof
JPH0340808A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
US5380588A (en) * 1991-06-24 1995-01-10 Kuraray Company Limited Polyvinyl alcohol-based synthetic fiber
US5340650A (en) * 1992-02-18 1994-08-23 Kuraray Company Limited Vinyl alcohol units-containing polymer composite fiber having resistance to hot water and wet heat and process for its production
JP2007303104A (en) * 2006-05-09 2007-11-22 Shingo Kizai Kk Insulating plate for rail joint
JP2016030862A (en) * 2014-07-28 2016-03-07 株式会社クラレ Fibrillated fiber and method for producing the same
JP2019026990A (en) * 2017-08-03 2019-02-21 国立大学法人北陸先端科学技術大学院大学 Production method of polyvinyl alcohol-based fiber

Similar Documents

Publication Publication Date Title
JPH0415287B2 (en)
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JP2569352B2 (en) High strength water-soluble polyvinyl alcohol fiber and method for producing the same
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JP4172888B2 (en) Monofilament and method for producing the same
JPH0696807B2 (en) High-strength, high-modulus polyvinyl alcohol fiber manufacturing method
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JPS6353286B2 (en)
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPH08158149A (en) Production of polyvinyl alcohol-based fiber
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
JPH08218221A (en) Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production
JPH0733604B2 (en) High-strength polyvinyl alcohol fiber with excellent knot strength
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JPH0657523A (en) Production of polyvinyl alcoholic fiber excellent in quality
JP3023918B2 (en) Polyvinyl alcohol-based synthetic fiber with excellent heat resistance
JPS636108A (en) Production of poly(p-phenylene terephthalamide) fiber
JPH05247719A (en) High-strength polyvinyl alcohol fiber and its production
JPH06235117A (en) Production of high strength polyvinyl alcohol fiber