JPH08218221A - Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production - Google Patents

Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production

Info

Publication number
JPH08218221A
JPH08218221A JP7026337A JP2633795A JPH08218221A JP H08218221 A JPH08218221 A JP H08218221A JP 7026337 A JP7026337 A JP 7026337A JP 2633795 A JP2633795 A JP 2633795A JP H08218221 A JPH08218221 A JP H08218221A
Authority
JP
Japan
Prior art keywords
fiber
resin
pva
strength
dimensional stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7026337A
Other languages
Japanese (ja)
Inventor
Hirofumi Sano
洋文 佐野
Toshimi Yoshimochi
駛視 吉持
Shunpei Naramura
俊平 楢村
Satoru Kobayashi
悟 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7026337A priority Critical patent/JPH08218221A/en
Publication of JPH08218221A publication Critical patent/JPH08218221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE: To obtain a fiber, excellent in durability and dimensional stability and useful for rubber reinforcing materials or usual industrial materials by thermally shrinking a fiber drawn at a high temperature and a high draw ratio, coating the resultant fiber with a polyamide-based or a polyurethane-based resin and applying an oil agent having a low friction coefficient thereto. CONSTITUTION: A fiber drawn at a high temperature and a high draw ratio is thermally shrunk to provide a highly crystalline fiber having a high elongation. A polyamide-based or a polyurethane-based resin in an amount of 0.5-8wt.% is then applied to the fiber surface and an oil agent having <=0.28 F/F static friction coefficient is subsequently applied to afford a PVA-based fiber having >=6% yarn elongation and <=2% dry heat shrinkage factor at 180 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温で長時間くり返し
屈曲や摩擦を受けるタイヤ、オイルブレーキホース、ラ
ジエーターホース、消防ホース、コンベアベルト、タイ
ミングベルト、Vベルトなどのゴム補強材や漁網、ロー
プ、ネット、テント、帆布、土木シート経糸などの一般
産業資材に適した、耐久性と寸法安定性に優れるポリビ
ニルアルコール(以下PVAと略記する)系繊維および
その製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber reinforcing material such as a tire, an oil brake hose, a radiator hose, a fire hose, a conveyor belt, a timing belt, a V-belt, a fishing net, and a rope which are repeatedly bent or rubbed at high temperature for a long time. The present invention relates to a polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having excellent durability and dimensional stability, which is suitable for general industrial materials such as a net, a tent, a canvas, and a civil engineering sheet warp, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、PVA系繊維は、強度、弾性率や
耐候性、耐薬品性、接着性などの点でポリアミド、ポリ
エステル、ポリアクリロニトリル系繊維に比べて優れて
おり、産業資材分野を中心に独自の用途を開拓してき
た。最近では耐アルカリ性の特徴を生かしたセメント補
強用繊維(アスベスト代替)やアルカリ電池用セパレー
ターなどに注目されている。しかしながら、長時間くり
返し使用する場合、繊維同志が摩耗したり、屈曲により
キンクが発生して強力低下を起こす問題があった。ま
た、使用時の発熱により繊維が収縮して寸法安定性に欠
ける場合も生じた。このような長時間高温使用時の耐久
性や寸法安定性が改良されればゴム補強材や一般産業資
材として付加価値の高い繊維が期待できる。高強力で高
弾性率なPVA系繊維を得る方法は公知であるが、これ
らの方法で得られる繊維は耐疲労性や耐摩耗性は十分で
なく寸法安定性も不足していた。また延伸後のPVA系
繊維に熱収縮を施して耐疲労性を高める方法が特開平1
−192813号公報や特開平2−169709号公報
などに開示されているが、いずれも高温で長時間の屈曲
摩耗に対し、十分満足される性能を有していなかった。
一方繊維や撚糸コードにエポキシ樹脂や液状ゴムを含浸
させて接着性や耐疲労性を向上させる方法が特開昭61
−146876号、特開昭63−66382号、特開昭
63−196778号などの公報で公知であるが、本発
明の如く、高伸度の繊維や低摩擦係数の油剤を用いない
為、耐久性や寸法安定性が十分とは言い難かった。
2. Description of the Related Art Conventionally, PVA-based fibers are superior to polyamide, polyester and polyacrylonitrile-based fibers in strength, elastic modulus, weather resistance, chemical resistance, adhesiveness, etc., and are mainly used in the field of industrial materials. Has pioneered its own unique uses. Recently, attention has been focused on cement-reinforcing fibers (substitute for asbestos) and alkaline battery separators that take advantage of alkali resistance. However, when it is repeatedly used for a long time, there is a problem that the fibers are worn out or a kink is generated due to bending, resulting in a decrease in strength. In addition, there was a case in which the fiber contracted due to heat generated during use and lacked dimensional stability. If the durability and dimensional stability when used at high temperature for a long time is improved, fibers with high added value can be expected as a rubber reinforcing material or a general industrial material. Although methods for obtaining PVA-based fibers having high strength and high elastic modulus are known, the fibers obtained by these methods have insufficient fatigue resistance and abrasion resistance, and lack dimensional stability. Further, there is a method in which the stretched PVA fiber is subjected to heat shrinkage to enhance fatigue resistance.
Although disclosed in Japanese Patent Laid-Open No. 192813 and Japanese Patent Laid-Open No. 169709/1990, none of them have sufficiently satisfactory performance against bending wear for a long time at high temperature.
On the other hand, there is a method of impregnating fibers or twisted cords with epoxy resin or liquid rubber to improve the adhesiveness and fatigue resistance.
No. 146876, JP-A-63-66382, JP-A-63-196778 and the like are known, but unlike the present invention, since a fiber having a high elongation and an oil agent having a low friction coefficient are not used, the durability is improved. It was hard to say that the stability and dimensional stability were sufficient.

【0003】[0003]

【発明が解決しようとする課題】以上の背景を踏まえ
て、本発明者らは如何に耐疲労性や耐摩耗性、さらには
寸法安定性に優れたPVA系繊維を得るかについて鋭意
検討した結果、高温、高倍率に延伸した繊維を熱収縮さ
せ、高伸度で高結晶性の繊維を得たあと、さらに繊維表
面に比較的被膜強度の高い耐熱性のポリアミド系又はポ
リウレタン系樹脂をコートし、その後低摩擦係数の油剤
を付与する手段が有効であることを見出した。
Based on the above background, the present inventors have earnestly studied how to obtain a PVA-based fiber having excellent fatigue resistance, abrasion resistance and dimensional stability. After heat-shrinking the fiber stretched at high temperature and high magnification to obtain the fiber with high elongation and high crystallinity, the fiber surface is further coated with heat-resistant polyamide-based or polyurethane-based resin having relatively high film strength. Then, it was found that a means for applying an oil agent having a low friction coefficient was effective.

【0004】[0004]

【課題を解決するための手段】本発明は、繊維表面にポ
リアミド系又はポリウレタン系の樹脂が0.5〜8重量
%付着しており、さらにF/F静摩擦係数が0.28以
下の油剤が付着しており、ヤーン伸度が6%以上、18
0℃乾熱収縮率が2%以下であることを特徴とするPV
A系繊維であり、そしてそのようなPVA系繊維の製造
方法として、PVA系ポリマーの溶液を紡糸して得た紡
糸原糸に、以下の工程〜、 220℃以上で総延伸倍率が16倍以上となるように
延伸を行う工程、 1〜15%の熱収縮を施す工程、 繊維表面にポリアミド系又はポリウレタン系の樹脂を
0.5〜8重量%付与する工程、 F/F静摩擦係数が0.28以下の油剤を付与する工
程、 を順次行い、PVA系繊維を製造するものである。
According to the present invention, a polyamide-based or polyurethane-based resin is attached to the fiber surface in an amount of 0.5 to 8% by weight, and an oil agent having an F / F static friction coefficient of 0.28 or less is used. Adhered, yarn elongation of 6% or more, 18
PV characterized by 0 ° C dry heat shrinkage of 2% or less
A fiber, and as a method for producing such a PVA-based fiber, a spinning raw yarn obtained by spinning a solution of a PVA-based polymer is subjected to the following steps, and a total draw ratio of at least 220 ° C. is 16 times or more. So as to achieve the following: a step of subjecting it to a heat shrinkage of 1 to 15%; a step of applying 0.5 to 8% by weight of a polyamide-based or polyurethane-based resin on the fiber surface; and a F / F static friction coefficient of 0. The steps of applying an oil agent of 28 or less are sequentially performed to produce PVA-based fibers.

【0005】すなわち、本発明はPVA系の紡糸原糸を
220℃以上の高温で総延伸倍率が16倍以上になるよ
うに乾熱延伸し、さらに1〜10%の熱収縮を施し、次
いで該繊維表面に耐熱性のポリアミド系又はポリウレタ
ン系の樹脂を0.5〜8重量%付着させ、比較的弱い張
力で熱処理したあと、さらにF/F摩擦係数が0.28
以下の油剤を付与して、ヤーン伸度が6%以上、180
℃乾熱収縮率が1.5%以下とする、耐久性と寸法安定
性に優れたPVA系繊維を提供するものである。
That is, in the present invention, a PVA-based spun raw yarn is dry-heat drawn at a high temperature of 220 ° C. or more so that the total draw ratio is 16 times or more, and further heat-shrinked by 1 to 10%, and then the After heat-resistant polyamide-based or polyurethane-based resin was attached to the fiber surface in an amount of 0.5 to 8% by weight and heat-treated under a relatively weak tension, the F / F friction coefficient was 0.28.
The following oil agents are added to give a yarn elongation of 6% or more, 180
The present invention provides a PVA-based fiber having a dry heat shrinkage rate of 1.5% or less and excellent in durability and dimensional stability.

【0006】以下本発明の内容をさらに詳細に説明す
る。本発明に言うPVAは粘度平均重合度が1,500
以上のものであり、好ましくはケン化度が98モル%以
上で分岐度の低い直鎖状のものである。PVAの重合度
が高いほどネットワーク構造で多くの結晶を貫通するタ
イ分子の数が多くなり、高強度、高弾性率で摩耗や屈曲
疲労性に耐えるものが得やすく、好ましくは3,000
以上、さらに好ましくは6,000以上である。PVA
系重合体には5重量%以下の顔料、酸化防止剤、紫外線
吸収剤、結晶化抑制剤、架橋剤、界面活性剤などを必要
に応じて添加しても支障ない。また5モル%以下の改質
剤を共重合したものも含まれる。
The contents of the present invention will be described in more detail below. The PVA referred to in the present invention has a viscosity average degree of polymerization of 1,500.
The above is preferable, and the linear one having a saponification degree of 98 mol% or more and a low branching degree is preferable. The higher the degree of polymerization of PVA, the greater the number of tie molecules penetrating many crystals in the network structure, and it is easy to obtain a tie molecule with high strength and high elastic modulus that can withstand abrasion and bending fatigue, and preferably 3,000.
Or more, more preferably 6,000 or more. PVA
If necessary, 5% by weight or less of a pigment, an antioxidant, an ultraviolet absorber, a crystallization inhibitor, a crosslinking agent, a surfactant, etc. may be added to the system polymer. It also includes those obtained by copolymerizing 5 mol% or less of a modifier.

【0007】PVA系重合体の溶剤としては、グリセリ
ン、エチレングリコール、ジエチレングリコール、トリ
エチレングリコール、3−メチルペンタン−1,3,5
−トリオールなどの多価アルコールやジメチルスルホキ
シド(DMSO)、ジメチルホルムアミド、ジメチルア
セトアミド、N−メチルピロリドン、1,3−ジメチル
−2−イミダゾリジノン、エチレンジアミン、ジエチレ
ントリアミンおよび水などが単独または混合して使用さ
れる。さらに塩化亜鉛、塩化マグネシウム、ロダンカル
シウム、臭化リチウムなどの無機塩水溶液など該重合体
を溶解するものも使用可能である。冷却でゲル化するよ
うな多価アルコールやそれらと水との混合溶剤あるいは
ジメチルスルホキシド、ジメチルホルムアミドやそれら
と水との混合溶剤などが紡糸安定となり易いので好まし
い。
Solvents for PVA type polymers include glycerin, ethylene glycol, diethylene glycol, triethylene glycol, 3-methylpentane-1,3,5.
-A polyhydric alcohol such as triol, dimethyl sulfoxide (DMSO), dimethylformamide, dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, ethylenediamine, diethylenetriamine and water are used alone or in combination. To be done. Further, it is also possible to use a solution that dissolves the polymer, such as an aqueous solution of an inorganic salt such as zinc chloride, magnesium chloride, calcium rhodanide or lithium bromide. A polyhydric alcohol that gels upon cooling, a mixed solvent of them and water, dimethyl sulfoxide, dimethylformamide, a mixed solvent of them and water, and the like are preferable because spinning stability tends to occur.

【0008】紡糸方式としては湿式、乾式、乾湿式など
一般に用いられるいずれの方式でも何ら支障ない。中で
も、湿式法や乾湿式法を用い、PVA系重合体の溶液を
紡糸ノズルより吐出させ、直ちに低温のメタノールやエ
タノールなどアルコール類あるいはそれらと該溶剤との
混合液さらには無機塩やアルカリを含む水溶液に浸漬し
て急冷し均質で透明なゲル繊維を得る方法が好ましい。
またゲル繊維の断面変形や膠着を防止し、かつ紡糸時の
微結晶を破壊して延伸倍率を向上させるために溶剤を含
んだままで2倍以上、好ましくは4倍以上湿延伸するの
が良い。続いてメタノール、エタノールなどのアルコー
ル類やアセトン、水などの抽出剤で該溶剤のほとんど全
部を除去したあと、乾燥により該抽出剤を蒸発させる。
As the spinning method, any generally used method such as a wet method, a dry method and a dry-wet method can be used without any problem. Among them, a wet method or a dry-wet method is used to discharge a solution of a PVA-based polymer from a spinning nozzle and immediately contain alcohols such as low-temperature methanol or ethanol or a mixed solution thereof with the solvent, and further an inorganic salt or an alkali. A method of obtaining a homogeneous and transparent gel fiber by immersing in an aqueous solution and rapidly cooling is preferable.
Further, in order to prevent the cross-sectional deformation and sticking of the gel fiber and to break the fine crystals during spinning to improve the draw ratio, it is preferable to wet-draw at least 2 times, preferably at least 4 times while containing the solvent. Then, after removing almost all of the solvent with an extracting agent such as alcohols such as methanol and ethanol and acetone and water, the extracting agent is evaporated by drying.

【0009】得られた紡糸原糸を常法により220℃以
上の高温で総延伸倍率16倍以上の乾熱延伸を施す。総
延伸倍率は湿延伸倍率と乾熱延伸倍率の積で表される
が、16倍未満ではPVA分子鎖の配向が不十分となり
高強度、高弾性率繊維が得難い。また220℃未満では
倍率が低下し、結晶化も不十分となって、寸法安定性が
減少し易い。なお高温での延伸を行ったり、延伸時及び
その後の熱処理時にPVAが着色したり、分解するのを
抑える為に延伸前までに油剤や酸化防止剤などを付着し
ても何ら問題ない。
The obtained spun raw yarn is subjected to dry heat drawing at a high temperature of 220 ° C. or more and a total draw ratio of 16 times or more by an ordinary method. The total draw ratio is represented by the product of the wet draw ratio and the dry heat draw ratio, but if it is less than 16 times, the orientation of the PVA molecular chain is insufficient and it is difficult to obtain a high-strength, high-modulus fiber. If the temperature is lower than 220 ° C, the magnification is lowered and the crystallization is insufficient, so that the dimensional stability is likely to decrease. It should be noted that there is no problem even if an oil agent, an antioxidant or the like is attached before the stretching in order to prevent the PVA from being colored at the time of stretching at a high temperature, coloring of the PVA during stretching and subsequent heat treatment, and decomposition.

【0010】次いで本発明では、耐疲労性、耐摩耗性及
び寸法安定性を向上させる為に、1〜15%の熱収縮処
理を施す。この目的は、非晶部の配向を乱して摩耗や屈
曲における外力を緩和させること及び結晶化をさらに進
めてその後使用時の熱収縮率を低下させ、寸法安定性の
良いものにすることにある。従って1%未満の熱収縮で
は上記の目的達成が不十分となり好ましくない。また1
5%以上を超える場合は繊維の強度や弾性率の低下が激
しく問題であり、好ましい収縮率は2〜10%である。
一方収縮処理時の温度は180℃以上、好ましくは20
0℃以上であり、180℃未満では高収縮のものや高結
晶のものを作るのが難しくなり、本発明に言うヤーン伸
度6%以上、180℃乾熱収縮率2%以下のものが得難
い。但し、高温すぎてもPVA分子鎖の着色分解や溶融
が生じるので好ましいくない。従って収縮処理温度は、
PVA重合度及び延伸倍率により異なるが、200〜2
60℃が望ましい。また耐湿熱性や耐オイルブレーキ液
性を向上させる為リン酸、硫酸あるいは塩化クロム、塩
化銅など一般に用いられる架橋剤を収縮処理をするまで
に付着して熱処理により架橋を施しても何ら支障ない。
Next, in the present invention, a heat shrinkage treatment of 1 to 15% is applied in order to improve fatigue resistance, wear resistance and dimensional stability. The purpose of this is to disturb the orientation of the amorphous part to relax the external force during wear and bending, and to further promote crystallization to reduce the heat shrinkage rate during subsequent use and to improve dimensional stability. is there. Therefore, heat shrinkage of less than 1% is not preferable because the above-mentioned object is not sufficiently achieved. Again 1
When it exceeds 5%, the strength and elastic modulus of the fiber are seriously deteriorated, and a preferable shrinkage is 2 to 10%.
On the other hand, the temperature during the shrinking treatment is 180 ° C. or higher, preferably 20
When the temperature is 0 ° C or higher and the temperature is lower than 180 ° C, it becomes difficult to produce a highly shrinkable material or a highly crystalline material, and it is difficult to obtain a yarn elongation of 6% or more and a 180 ° C dry heat shrinkage ratio of 2% or less according to the present invention. . However, if the temperature is too high, color decomposition and melting of the PVA molecular chain occur, which is not preferable. Therefore, the shrinkage treatment temperature is
200-2 depending on the degree of PVA polymerization and the draw ratio
60 ° C is desirable. Further, in order to improve resistance to moist heat and oil brake fluid, a crosslinking agent generally used such as phosphoric acid, sulfuric acid, chromium chloride, or copper chloride may be attached before the shrinking treatment and subjected to heat treatment for crosslinking.

【0011】その後、本発明ではさらに、耐疲労性、耐
摩耗性を向上させる為に得られたPVA繊維に0.5〜
8重量%の樹脂をコートする必要がある。樹脂は比較的
耐熱性がありPVAと相溶性が良いポリアミド系又はポ
リウレタン系のものである。例えば融点が80〜200
℃のナイロン6,66,12などが共重合した共重合ポ
リアミド系樹脂や、ハードセグメントが多くビカット軟
化温度が80〜180℃のエーテル系又はエステル系の
ポリウレタン樹脂である。融点や軟化温度が低い樹脂は
くり返し屈曲や摩擦時の発熱により被膜強度が低下して
効果を失い易く、高すぎる樹脂は繊維を硬くし、外力の
集中を受けて疲労や摩耗が激しく好ましい。好ましくは
融点が100〜170℃のポリアミド系樹脂又はビカッ
ト軟化温度が110〜160℃のポリウレタン系樹脂で
ある。一方樹脂の付着量は1〜6重量%が好ましく、
0.5重量%未満では耐疲労性や耐摩耗性が十分満足で
きなくなり、8重量%を超えると、強度低下を招いた
り、繊維が硬くなって、折れ易く、逆に屈曲などでキン
クバンドを集中的に誘発増長させて好ましくない。該樹
脂は、水や有機溶剤に溶解又は乳化させて、ローラータ
ッチ方式のディップニップ方式、ギヤポンプオイリング
方式などにて繊維表面にコートされる。
Thereafter, in the present invention, the PVA fiber obtained in order to further improve fatigue resistance and wear resistance is added with 0.5 to 0.5%.
It is necessary to coat 8% by weight of resin. The resin is a polyamide-based or polyurethane-based resin that is relatively heat resistant and has good compatibility with PVA. For example, the melting point is 80 to 200
Examples thereof include a copolyamide-based resin obtained by copolymerizing nylon 6,66,12, etc. at 0 ° C., and an ether-based or ester-based polyurethane resin having many hard segments and a Vicat softening temperature of 80 to 180 ° C. A resin having a low melting point or a low softening temperature is likely to lose its effect due to a decrease in coating strength due to repeated bending or heat generation during friction, and a resin which is too high hardens the fiber and is subject to concentration of external force and is highly fatigued and worn, which is preferable. A polyamide resin having a melting point of 100 to 170 ° C. or a polyurethane resin having a Vicat softening temperature of 110 to 160 ° C. is preferable. On the other hand, the amount of resin attached is preferably 1 to 6% by weight,
If it is less than 0.5% by weight, fatigue resistance and wear resistance cannot be sufficiently satisfied, and if it exceeds 8% by weight, strength is reduced or the fiber becomes hard and easily broken, and conversely, a kink band is formed by bending. It is not desirable because it induces and proliferates intensively. The resin is dissolved or emulsified in water or an organic solvent and coated on the fiber surface by a roller touch type dip nip system, a gear pump oiling system or the like.

【0012】次いで樹脂付着後、乾燥を含めて熱処理を
施し、樹脂と繊維を反応させたり、樹脂の被膜を形成さ
せるが、その場合伸長率1%以下で処理するのが良い。
伸長率が1%を越える場合には本発明に言うヤーン伸度
6%以上、好ましくは7〜10%を維持するのが難し
く、また高張力では単糸切れや、樹脂被膜の破壊が起こ
り易く好ましくない。
Next, after the resin is attached, heat treatment including drying is performed to react the resin with the fibers or form a resin film. In that case, it is preferable to treat the resin at an elongation rate of 1% or less.
When the elongation ratio exceeds 1%, it is difficult to maintain the yarn elongation of 6% or more, preferably 7 to 10%, which is referred to in the present invention, and high tension tends to cause single yarn breakage and resin film breakage. Not preferable.

【0013】本発明では樹脂付着−熱処理後に、後述す
る方法で測定した繊維−繊維間の静摩擦係数が0.28
以下の油剤を付着させる。この目的は、それ以降の工程
通過性を良好にさせること、タイヤコードやロープ、漁
網などの撚糸コードを作製した時の強力利用率(ヤーン
強度に対するコード強度の比)を高めて強度低下を抑え
ることにある。従って樹脂のみで油剤がない場合、又は
静摩擦係数が0.28を超える油剤を付着した場合は上
記の効果が期待できない。低摩擦油剤としては、例えば
鉱物油系、ポリプロピレンオキサイドとポリエチレンオ
キサイドの共重合物(PO/EO系)多価アルコールの
脂肪酸エステル系、シリコン系、フッ素系などが挙げら
れる。付着量は0.1〜1重量%が良い。本発明により
ヤーン強度が10g/d以上と比較的強度が高く、伸度
が6%以上の高伸度を有し、かつ180℃乾熱収縮率が
2%以下と低い樹脂コートのPVA系繊維が得られ、タ
イヤ、ホース、ベルトなどのゴム補強材や漁網、ロー
プ、ネット、テント、土木シートなどの一般産業資材に
適した耐久性と寸法安定性に優れるものとなった。
In the present invention, the coefficient of static friction between fibers measured by the method described below after resin adhesion-heat treatment is 0.28.
Apply the following oil agent. The purpose of this is to improve the process passability after that, and to increase the strength utilization ratio (ratio of the cord strength to the yarn strength) when manufacturing twisted cords such as tire cords, ropes, fishing nets, etc. to suppress strength reduction. Especially. Therefore, the above effect cannot be expected when only the resin is used and there is no oil agent, or when an oil agent having a static friction coefficient exceeding 0.28 is attached. Examples of the low friction oil include mineral oils, copolymers of polypropylene oxide and polyethylene oxide (PO / EO), fatty acid ester of polyhydric alcohol, silicone, and fluorine. The adhesion amount is preferably 0.1 to 1% by weight. According to the present invention, a resin-coated PVA fiber having a yarn strength of 10 g / d or more, a relatively high strength, a high elongation of 6% or more, and a low 180 ° C. dry heat shrinkage of 2% or less. Thus, it has excellent durability and dimensional stability suitable for rubber reinforcing materials such as tires, hoses and belts and general industrial materials such as fishing nets, ropes, nets, tents and civil engineering sheets.

【0014】[0014]

【実施例】以下実施例により本発明をさらに具体的に説
明するが、本発明は実施例のみに限定されるものではな
い。なお実施例中における各種の物性値は以下の方法に
より測定された。 (1)PVA系重合体の粘度平均重合度(PA) JIS K−6726に準じて、PVA系重合体を熱水
に溶かして希薄水溶液を作製し、30℃における比粘度
を3点測定し、それらの値から固有粘度〔η〕を求め、
PA=(〔η〕×104/8.29)1.63により粘度平
均重合度を求めた。 (2)繊維対繊維静摩擦係数(F/Fμs) 油剤を固形分で1.0重量%付与した繊維を用いて、J
IS L−1015に準拠して測定。但し、ステープル
による円筒スラスバーの代わりに両ツバ針付ボビンにフ
ィラメントを平行に鼓状に捲き付けたものを用いた。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples. Various physical properties in the examples were measured by the following methods. (1) Viscosity average degree of polymerization (PA) of PVA-based polymer According to JIS K-6726, the PVA-based polymer is dissolved in hot water to prepare a dilute aqueous solution, and the specific viscosity at 30 ° C is measured at 3 points. Obtain the intrinsic viscosity [η] from these values,
The viscosity average degree of polymerization was determined by PA = ([η] × 10 4 /8.29) 1.63 . (2) Fiber-to-fiber static friction coefficient (F / Fμs) Using a fiber to which an oil agent is applied in an amount of 1.0% by weight in solid content, J
Measured in accordance with IS L-1015. However, instead of the cylindrical slass bar by staple, a bobbin with both brim needles and filaments wound in parallel in a drum shape was used.

【0015】(3)樹脂付着量 試料約5gを精秤し、熱水にて繊維のみを溶解してその
残渣重量より算出するか、又は樹脂のみを溶解して試料
の重量減少より求めた。 (4)ヤーン引張強度、初期弾性率 JIS−L1013に準じ、ヤーンに予め80回/mの
撚りをかけ、20℃、65%RHにて24時間放置後、
20℃、65%RHの標準状態で、試長20cm、引張
速度10cm/min、初荷重1/20g/dにて、イ
ンストロンTN−M型エアー式コード用グリップを用い
て、切断強力及び伸度を測定した。さらに該80回/m
撚りのヤーンを1/20g/d張力下で90m長のかせ
捲きを作り、重量測定によりヤーンデニールを算出し、
該切断強力をデニールで除して強度(g/dr)を求め
た。また、強力−伸度曲線の初期勾配より伸度100%
に相当する強力を求め、それを該デニールで除して初期
弾性率を求めた。いずれもn=10の平均値を採用し
た。高温性能は100℃又は150℃の熱風炉中で上記
20℃の場合と同様に測定した。
(3) Adhesion amount of resin About 5 g of a sample was precisely weighed, and only the fiber was dissolved in hot water to calculate the residual weight, or only the resin was dissolved to determine the weight reduction of the sample. (4) Yarn Tensile Strength, Initial Elastic Modulus According to JIS-L1013, the yarn is pre-twisted 80 times / m and left at 20 ° C. and 65% RH for 24 hours.
Using a Grip for Instron TN-M type pneumatic cord at a test length of 20 cm, a pulling speed of 10 cm / min, and an initial load of 1/20 g / d in a standard condition of 20 ° C. and 65% RH, the cutting strength and elongation are increased. The degree was measured. Further 80 times / m
Making a 90 m long skein winding of twisted yarn under 1/20 g / d tension, and calculating the yarn denier by weight measurement,
The breaking strength was divided by denier to obtain the strength (g / dr). Also, 100% elongation from the initial gradient of the strength-elongation curve
The tenacity corresponding to was calculated | required, it was divided by this denier, and the initial elastic modulus was calculated | required. In each case, the average value of n = 10 was adopted. The high temperature performance was measured in a hot air oven at 100 ° C or 150 ° C in the same manner as at 20 ° C.

【0016】(5)熱収縮率(DSr) JISL−1013に準じ試料に1/30g/dの初荷
重をかけて正確に長さ1mのところに印2点をつける。
次いで初荷重を除去して、180×30分間乾燥機内に
放置後、室温まで冷却してから初荷重をかけて試料の長
さ(2点距離)lを測定し、次式により算出した。 乾熱収縮率=100×(1000−l)/1000
(%)(l=2点間距離mm) (6)耐ゴム疲労性 1500drの樹脂付着PVAヤーンを10〜50t/
10cmZ方向に下撚したあと2本合わせて下撚と同じ
撚数でS方向に上撚して生コードを作成する。次いでR
FL(レゾルシン、ホルマリン、ゴム乳液)を付着し
て、ディップコードを作成する。次いで圧縮側と伸長側
に該コードを20本並べた2つのコード層を作成し、そ
の中間及び外側にゴム層を配して、サンドイッチ状の巾
25.4mm×長420mm×厚さ約8mmのゴムシー
トを作成したあと、150℃×45分90kg/cm2
で加硫してベルトを作成する。該ベルトをプーリー径2
5mmのベルト屈曲試験機で室温、20万回屈曲させた
あと、圧縮側のコードをベルトより取出し、屈曲前後の
コード強力より、保持率を求め耐ゴム疲労性を評価し
た。 (7)耐摩耗性(撚合せ摩耗) 1500drの樹脂付着PVAヤーンを80t/mZ方
向に撚をかけて輪を作成したあと、輪の中央部で3回S
方向に撚をかけ、室温で上下糸同志を摩耗させ、切断す
る時の回数を読んだ。
(5) Heat Shrinkage (DSr) According to JISL-1013, an initial load of 1/30 g / d is applied to a sample and two marks are accurately placed at a length of 1 m.
Next, the initial load was removed, the sample was allowed to stand in a dryer for 180 × 30 minutes, cooled to room temperature, and then the initial load was applied to measure the sample length (two-point distance) l, which was calculated by the following formula. Dry heat shrinkage = 100 x (1000-l) / 1000
(%) (L = distance between 2 points mm) (6) Rubber fatigue resistance 10 to 50 t / t for resin-adhered PVA yarn of 1500 dr
After twisting in the 10 cm Z direction, the two cords are combined and twisted in the S direction with the same number of twists as the lower twist to prepare a raw cord. Then R
FL (resorcin, formalin, rubber emulsion) is attached to prepare a dip code. Next, two cord layers are formed by arranging 20 cords on the compression side and the extension side, and a rubber layer is arranged in the middle and outside of the cord layer, and a sandwich-shaped width of 25.4 mm × length of 420 mm × thickness of about 8 mm. After making a rubber sheet, 150 ℃ x 45 minutes 90kg / cm 2
And vulcanize to make a belt. Use a belt with a pulley diameter of 2
After being bent 200,000 times at room temperature with a belt bending tester of 5 mm, the cord on the compression side was taken out from the belt, and the retention rate was obtained from the cord strength before and after bending to evaluate the rubber fatigue resistance. (7) Wear resistance (twisting wear) 1500 dr of resin-adhered PVA yarn is twisted in the direction of 80 t / mZ to form a ring, and then S is repeated three times at the center of the ring.
Twisted in the same direction, the upper and lower yarns were worn at room temperature, and the number of times of cutting was read.

【0017】実施例1、2および比較例1 粘度平均重合度が2000(実施例1)と4000(実
施例2)でケン化度がいずれも99.4モル%のPVA
をそれぞれ濃度14重量%と10重量%になるようにジ
メチルスルホキシド(以下DMSOと略記)に100℃
で溶解し、得られた各溶液を500ホールのノズルより
吐出させてメタノール/DMSO=7/3重量比、10
℃の凝固浴で湿式紡糸した。さらに40℃メタノール浴
で4倍湿延伸したあと、メタノールで該溶剤をほとんど
全部除去した。最後にリン酸0.2%とエステル系油剤
0.5%を付着させて120℃で乾燥した。
Examples 1 and 2 and Comparative Example 1 PVA having a viscosity average degree of polymerization of 2000 (Example 1) and 4000 (Example 2) and a saponification degree of 99.4 mol%.
Dimethylsulfoxide (hereinafter abbreviated as DMSO) at 100 ° C. so that the concentration becomes 14% by weight and 10% by weight, respectively.
The resulting solution was discharged from a nozzle having 500 holes and methanol / DMSO = 7/3 weight ratio, 10
Wet spinning was carried out in a coagulation bath at 0 ° C. Further, the film was wet-stretched 4 times in a 40 ° C. methanol bath, and then almost all the solvent was removed with methanol. Finally, 0.2% of phosphoric acid and 0.5% of ester oil were attached and dried at 120 ° C.

【0018】得られた紡糸原糸を実施例1は170℃、
200℃、235℃の3セクションからなる熱風炉で総
延伸倍率18.0倍になるように乾熱延伸した。実施例
2は170℃、200℃、240℃にて総延伸倍率1
7.5倍の延伸を施した。いずれの延伸糸も紫色に着色
し、熱水溶断温度がリン酸なしの場合に比べて約20℃
高く、架橋により耐熱性が向上しているのが判った。次
いで実施例1で得た延伸糸を230℃にて5%収縮さ
せ、実施例2の延伸糸は240℃にて10%収縮させ
た。その後、両繊維に、ローラータッチ方式でナイロン
6、ナイロン66、ナイロン12の3者が共重合し、融
点が110℃のグリルテックス1P(EMSジャパン社
製)の2%メタノール液を付着せしめ、張力0.5g/
dで、210℃×30秒熱処理を施した。樹脂付着量は
実施例1が3.8重量%、実施例2が3.2重量%であ
った。次いで引続き、摩擦係数が0.21のシリコン系
油剤を0.6重量%付着させ、120℃にて乾燥した。
The spun yarn obtained in Example 1 was 170 ° C.,
Dry hot drawing was performed in a hot air oven consisting of three sections at 200 ° C. and 235 ° C. so that the total draw ratio was 18.0. Example 2 has a total draw ratio of 1 at 170 ° C, 200 ° C and 240 ° C.
It was stretched 7.5 times. All drawn yarns are colored purple, and the hot water cutoff temperature is about 20 ° C compared to the case without phosphoric acid.
It was found to be high, and the heat resistance was improved by crosslinking. Next, the drawn yarn obtained in Example 1 was shrunk by 5% at 230 ° C, and the drawn yarn of Example 2 was shrunk by 10% at 240 ° C. Then, 3 fibers of nylon 6, nylon 66, and nylon 12 were copolymerized on both fibers by a roller touch method, and a 2% methanol solution of Grilltex 1P (made by EMS Japan) having a melting point of 110 ° C. was adhered to the fiber, and the tension was applied. 0.5 g /
At d, heat treatment was performed at 210 ° C. for 30 seconds. The amount of resin adhered was 3.8% by weight in Example 1 and 3.2% by weight in Example 2. Then, subsequently, 0.6% by weight of a silicon-based oil having a friction coefficient of 0.21 was attached and dried at 120 ° C.

【0019】実施例1で得た樹脂付着ヤーンは1200
d/500fで強度11.5g/d、伸度は7.8%、
180℃乾熱収縮率(DSr)は1.6%を示し、実施
例2では1200d/500f、強度13.7g/d、
伸度9.2%、180℃DSr0.8%を示し、いずれ
も高伸度で低収縮の繊維であった。また耐ゴム疲労性を
評価すべく1200d/1×2 20×20t/10c
mの生コードをRFL処理してディップコードを作成し
た。100℃、25φ×3万回ベルト屈曲後の強力保持
率は、実施例1が88%、実施例2が95%で屈曲疲労
性に優れていた。また撚合せ摩耗の切断回数は、実施例
1が4810回、実施例2が5146回と耐摩耗性も良
好であった。さらにオイルブレーキホースの補強材に用
いたところ、架橋と樹脂付着により130℃の蒸気加硫
や耐ブレーキオイル液性にも優れ、かつ寸法変化が少な
く、疲労、摩耗、耐オイル性、耐蒸気性、寸法安定性な
どオイルブレーキホースの補強材として従来に見られな
い高付加価値のPVA繊維であった。
The resin-adhered yarn obtained in Example 1 was 1200.
Strength is 11.5 g / d at d / 500f, elongation is 7.8%,
180 ° C. dry heat shrinkage (DSr) shows 1.6%, and in Example 2, 1200 d / 500 f, strength 13.7 g / d,
Elongation was 9.2% and 180 ° C DSr was 0.8%, both of which were fibers with high elongation and low shrinkage. Also, to evaluate rubber fatigue resistance, 1200d / 1 × 2 20 × 20t / 10c
The raw code of m was RFL processed to create a dip code. The strength retention after bending the belt at 100 ° C. and 25φ × 30,000 times was 88% in Example 1 and 95% in Example 2, and the bending fatigue resistance was excellent. The number of cuts due to twisting wear was 4810 times in Example 1 and 5146 times in Example 2, showing good wear resistance. Furthermore, when used as a reinforcing material for oil brake hoses, it is excellent in steam vulcanization at 130 ° C due to cross-linking and resin adhesion and has excellent resistance to brake oil liquids, and has little dimensional change, fatigue, wear, oil resistance, and steam resistance. It was a high value-added PVA fiber that has never been seen before as a reinforcing material for oil brake hoses such as dimensional stability.

【0020】なお比較例1として、実施例2で収縮処理
を施さずに行ったが樹脂付着後のヤーンは1320d/
500fで強度17.8g/d、伸度5.1%、180
℃DSrは2.4%を示し、高強度低伸度タイプで収縮
も高いものであった。また実施例2と同様にベルト屈曲
疲労性をみたが、強力保持率は83%に低下し、撚合せ
摩耗も3155回で切断し、実施例2より耐久性や寸法
安定性に劣るものであった。
Comparative Example 1 was carried out in Example 2 without shrinkage treatment, but the yarn after resin adhesion was 1320 d /
Strength of 17.8 g / d at 500f, elongation of 5.1%, 180
The DSC at 2.4 ° C. was 2.4%, which was a high-strength and low-elongation type with high shrinkage. Further, the belt bending fatigue resistance was observed as in Example 2, but the strength retention decreased to 83%, and the twisting abrasion was cut at 3155 times, which was inferior to Example 2 in durability and dimensional stability. It was

【0021】実施例3及び比較例2 粘度平均重合度が8000、ケン化度が99.8モル%
のPVAを用い濃度7重量%になるようにDMSOにて
110℃で溶解し、得られた溶液を400ホールのノズ
ルより吐出させ、メタノール/DMSO=7/3、7℃
の凝固浴で湿式紡糸した。さらに40℃メタノール浴で
4倍湿延伸したあとメタノールで該溶剤をほとんど全部
除去した。得られた紡糸原糸を170℃と250℃の2
つの輻射炉を用いて総延伸倍率18.3倍になるように
乾熱延伸したあと、続いて245℃で3%の収縮処理を
して捲取った。さらに、該繊維を、ディップニップ方式
で125℃のビカット軟化温度を有するポリエーテル系
ポリウレタン(クラミロン9196 クラレ製)の3%
DMF溶液を付着させ、張力0.3g/d下で100℃
乾燥−160℃熱処理を施した。該ウレタン樹脂付着量
は2.4重量%であった。引続き摩擦係数が0.25の
鉱物油系油剤を0.7重量%付着させて110℃で乾燥
した。得られた樹脂付着ヤーンは1500d/400f
で強度が17.9g/d、伸度が6.6%、180℃D
Srが1.3%であった。
Example 3 and Comparative Example 2 Viscosity average degree of polymerization 8000, saponification degree 99.8 mol%
Of PVA was dissolved in DMSO at 110 ° C. to a concentration of 7% by weight, and the resulting solution was discharged from a nozzle of 400 holes, methanol / DMSO = 7/3, 7 ° C.
Wet spinning was performed in the coagulation bath. Further, the film was wet-stretched 4 times in a 40 ° C. methanol bath, and then almost all of the solvent was removed with methanol. The obtained spun raw yarn was heated at 170 ° C. and 250 ° C.
After performing dry heat drawing using one radiation furnace so as to have a total draw ratio of 18.3 times, subsequently, shrinkage treatment of 3% was performed at 245 ° C. and winding was performed. Further, 3% of the fiber is made of polyether polyurethane (made by Kuramiron 9196 Kuraray) having a Vicat softening temperature of 125 ° C. by a dip nip method.
DMF solution is attached and 100 ° C under tension of 0.3g / d.
Dry-160 degreeC heat processing was given. The amount of the urethane resin attached was 2.4% by weight. Subsequently, 0.7% by weight of a mineral oil-based oil having a friction coefficient of 0.25 was adhered and dried at 110 ° C. The obtained resin-adhered yarn is 1500d / 400f
Strength is 17.9 g / d, elongation is 6.6%, 180 ° C D
Sr was 1.3%.

【0022】該樹脂付着ヤーンを用い、1500d/1
×2 50×50t/10cmの生コードを作成したあ
とRFL処理によりディップコードを得た。100℃2
5φ×50万回ベルト屈曲後の強力保持率は96%と高
く、撚合せ摩耗の切断回数は6211回を示した。この
繊維は自動車タイヤのカーカス補強材として、耐久性と
寸法安定性に優れた高付加価値のものであった。比較例
2として、実施例3で樹脂付着をしない場合を行った。
強伸度、180℃DSrは実施例3と大差ないものであ
ったが、ベルト屈曲後の強力保持率は84%、摩耗切断
回数は4770回と耐久性が低下する事が判明した。
Using the resin-adhered yarn, 1500 d / 1
After forming a raw cord of × 250 × 50t / 10 cm, a dip code was obtained by RFL treatment. 100 ° C 2
The strength retention after bending the belt 5φ × 500,000 times was as high as 96%, and the number of cuts due to twisting abrasion was 6211 times. This fiber was used as a carcass reinforcing material for automobile tires and had high value added with excellent durability and dimensional stability. As Comparative Example 2, a case in which no resin was attached was performed in Example 3.
The strength and elongation and the DSC at 180 ° C. were not so different from those in Example 3, but it was found that the strength retention after belt bending was 84% and the number of abrasion cuts was 4770, which deteriorated the durability.

【0023】実施例4 粘度平均重合度が17,000、ケン化度が99.8モ
ル%のPVAを用い、濃度6重量%になるようにグリセ
リンにて180℃で溶解し、得られた溶液を200ホー
ルのノズルより吐出させ、メタノール/グリセリン=7
/3重量比、0℃の凝固浴で乾湿式紡糸した。さらに4
0℃メタノール浴で4倍湿延伸したあと、メタノールで
該溶剤をほとんど全部除去した。得られた紡糸原糸を1
90℃−260℃の熱風炉で総延伸倍率19.2倍にな
るように乾熱延伸したあと250℃で2%収縮処理をし
て捲取った。次いで該繊維をローラタッチ方式で実施例
1と同じ共重合ナイロンの3%水エマルジョン液を付着
せしめ張力0.9g/dで210℃×30秒熱処理し
た。該ナイロン樹脂付着量は4.8重量%であった。引
続き実施例1と同じシリコン系油剤を付着して、750
d/200fのヤーンを得た。該樹脂付着ヤーンの強度
は、21.4g/d、伸度は6.2%、180℃DSr
は0.6%であった。さらに該ヤーンを2本合わせ15
00d/1×2 31.5×31.5t/10cmの生
コードを作成したあと、RFL処理によりディップコー
ドを得た。100℃、20φ×13回及び100℃、8
0φ×10万回のベルト屈曲強力保持率は各々89%及
び94%を示し、耐ゴム疲労性に優れる事が判明した。
また摩耗切断回数は7910回と高く、自動車タイヤベ
ルト部やコンベアベルトダック部などの補強材あるいは
一般産業資材に非常に優れた性能を示す事が判った。
Example 4 PVA having a viscosity average polymerization degree of 17,000 and a saponification degree of 99.8 mol% was dissolved in glycerin at 180 ° C. to a concentration of 6% by weight, and the resulting solution was obtained. Is discharged from a 200-hole nozzle, and methanol / glycerin = 7
Dry-wet spinning was carried out in a coagulation bath at a weight ratio of / 3. 4 more
Almost all of the solvent was removed with methanol after 4 times wet drawing in a 0 ° C. methanol bath. 1 spun yarn obtained
Dry hot stretching was performed in a hot air oven at 90 ° C to 260 ° C so that the total stretching ratio was 19.2 times, and then 2% shrinkage treatment was performed at 250 ° C, and the film was wound. Then, the fiber was heat-treated at 210 ° C. for 30 seconds at a tension of 0.9 g / d by applying a 3% aqueous emulsion of the same copolymer nylon as in Example 1 by a roller touch method. The amount of the nylon resin attached was 4.8% by weight. Subsequently, the same silicon-based oil agent as in Example 1 was attached, and 750
A d / 200f yarn was obtained. The resin-bonded yarn has a strength of 21.4 g / d, an elongation of 6.2%, and a DSr of 180 ° C.
Was 0.6%. Furthermore, combine the two yarns 15
After a raw cord of 00d / 1 × 2 31.5 × 31.5t / 10 cm was prepared, a dip cord was obtained by RFL treatment. 100 ° C, 20φ x 13 times and 100 ° C, 8
The belt flexural strength retention ratio of 0φ × 100,000 times was 89% and 94%, respectively, and it was proved that the rubber fatigue resistance was excellent.
Moreover, the number of times of abrasion cutting was as high as 7910 times, and it was found that the material exhibited extremely excellent performance as a reinforcing material for automobile tire belt parts, conveyor belt duck parts, etc. or general industrial materials.

【0024】[0024]

【発明の効果】本発明により、高い伸度と低い収縮性を
有し、かつ表面が特定の樹脂で被覆されていることによ
り、耐疲労性、耐摩耗性、および寸法安定性に優れてい
るPVA系繊維が得られる。本発明のPVA系繊維は、
これらの特長点から、ゴムやプラスチックスの補強材と
して、またロープ、漁網、ネット、帆布、土木シートな
どの一般産業資材に極めて適している。
EFFECTS OF THE INVENTION According to the present invention, it has high elongation and low shrinkage, and its surface is coated with a specific resin, so that it is excellent in fatigue resistance, wear resistance and dimensional stability. A PVA fiber is obtained. The PVA fiber of the present invention is
Due to these features, it is extremely suitable as a reinforcing material for rubber and plastics, and for general industrial materials such as ropes, fishing nets, nets, sailcloth, and civil engineering sheets.

フロントページの続き (72)発明者 小林 悟 岡山県倉敷市酒津1621番地 株式会社クラ レ内Front page continued (72) Inventor Satoru Kobayashi 1621 Sakata, Kurashiki City, Okayama Prefecture Kuraray Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維表面にポリアミド系又はポリウレタ
ン系の樹脂が0.5〜8重量%付着しており、さらにF
/F静摩擦係数が0.28以下の油剤が付着しており、
ヤーン伸度が6%以上、180℃乾熱収縮率が2%以下
であることを特徴とするポリビニルアルコール系繊維。
1. A polyamide-based or polyurethane-based resin is adhered to the fiber surface in an amount of 0.5 to 8% by weight, and further F
/ F has an oil agent with a static friction coefficient of 0.28 or less,
A polyvinyl alcohol fiber having a yarn elongation of 6% or more and a 180 ° C. dry heat shrinkage of 2% or less.
【請求項2】 ポリビニルアルコール系ポリマーの溶液
を紡糸してポリビニルアルコール系繊維を製造する方法
において、以下の工程〜 220℃以上で総延伸倍率が16倍以上となるように
延伸を行う工程、 1〜15%の熱収縮を施す工程、 繊維表面にポリアミド系又はポリウレタン系樹脂を
0.5〜8重量%付与する工程、 F/F静摩擦係数が0.28以下の油剤を付与する工
程、 を順次行うことを特徴とするポリビニルアルコール系繊
維の製造方法。
2. A method for producing a polyvinyl alcohol fiber by spinning a solution of a polyvinyl alcohol polymer, comprising the steps of: stretching at 220 ° C. or higher so that the total stretching ratio is 16 times or higher; A step of applying a heat shrinkage of 15% to 15%, a step of applying 0.5 to 8% by weight of a polyamide-based or polyurethane-based resin to the fiber surface, and a step of applying an oil agent having an F / F static friction coefficient of 0.28 or less. A method for producing a polyvinyl alcohol fiber, which is characterized by carrying out.
JP7026337A 1995-02-15 1995-02-15 Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production Pending JPH08218221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7026337A JPH08218221A (en) 1995-02-15 1995-02-15 Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7026337A JPH08218221A (en) 1995-02-15 1995-02-15 Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production

Publications (1)

Publication Number Publication Date
JPH08218221A true JPH08218221A (en) 1996-08-27

Family

ID=12190632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7026337A Pending JPH08218221A (en) 1995-02-15 1995-02-15 Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production

Country Status (1)

Country Link
JP (1) JPH08218221A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319601B1 (en) 1999-07-16 2001-11-20 Kuraray Co., Ltd. Polyvinyl alcohol based fibers
US6688607B2 (en) * 1997-04-18 2004-02-10 Henkel Loctite Corporation Material for sealing threaded pipe joints, and dispenser therefor
CN102678922A (en) * 2012-05-31 2012-09-19 慈溪博格曼密封材料有限公司 Fiber packing preparation method
JP2017133112A (en) * 2016-01-25 2017-08-03 国立大学法人福井大学 Thermal shrinkage reduced polyvinyl alcohol fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6688607B2 (en) * 1997-04-18 2004-02-10 Henkel Loctite Corporation Material for sealing threaded pipe joints, and dispenser therefor
US6319601B1 (en) 1999-07-16 2001-11-20 Kuraray Co., Ltd. Polyvinyl alcohol based fibers
CN102678922A (en) * 2012-05-31 2012-09-19 慈溪博格曼密封材料有限公司 Fiber packing preparation method
JP2017133112A (en) * 2016-01-25 2017-08-03 国立大学法人福井大学 Thermal shrinkage reduced polyvinyl alcohol fiber

Similar Documents

Publication Publication Date Title
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
CN101652255B (en) Run-flat tire
JPH11222775A (en) Cord for reinforcing rubber
JPH08218221A (en) Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production
JP4966554B2 (en) Pneumatic radial tire
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPS60185833A (en) Polyester fiber dip code for reinforcing rubber
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JPH06207338A (en) Polyvinyl alcohol cord and its production
JP3316300B2 (en) Polyvinyl alcohol fiber excellent in durability and method for producing the same
JP2537962B2 (en) Polyvinyl alcohol fiber suitable for reinforcement
JPS59116411A (en) Novel polyamide yarn and its preparation
JP3067056B2 (en) High strength polyvinyl alcohol fiber and method for producing the same
JPH08218277A (en) High-strength polyvinyl alcohol-based fiber excellent in fatigue resistance and its production
JPH07278950A (en) Polyvinyl alcohol-based fiber having excellent high-temperature characteristic and its production
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JPH0274612A (en) Conjugate fiber having high tenacity
JP2765951B2 (en) Glossy high-strength polyvinyl alcohol fiber and method for producing the same
JP3183483B2 (en) Polyvinyl alcohol fiber having good fatigue resistance and method for producing the same
JPH06299410A (en) Polyvinyl alcohol-based fiber and its production
JP3183479B2 (en) High moisture-heat resistance high-strength polyvinyl alcohol fiber and method for producing the same
KR910004458B1 (en) High-tenacity conjugated fiber and process for preparation thereof
JPH07258923A (en) Production of polyvinyl alcohol-based yarn
JPH0274610A (en) Conjugate fiber having high tenacity and excellent durability
JPH04343709A (en) High-tenacy polyvinyl alcohol-based fiber having good resistance to fatigue and production thereof