JPH01156517A - High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber - Google Patents

High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber

Info

Publication number
JPH01156517A
JPH01156517A JP31162887A JP31162887A JPH01156517A JP H01156517 A JPH01156517 A JP H01156517A JP 31162887 A JP31162887 A JP 31162887A JP 31162887 A JP31162887 A JP 31162887A JP H01156517 A JPH01156517 A JP H01156517A
Authority
JP
Japan
Prior art keywords
fiber
water resistance
spinning
strength
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31162887A
Other languages
Japanese (ja)
Inventor
Mitsuo Suzuki
三男 鈴木
Masaharu Mizuno
正春 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP31162887A priority Critical patent/JPH01156517A/en
Publication of JPH01156517A publication Critical patent/JPH01156517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title fiber useful for the reinforcement of rubber such as tire cord, V-belt or hose or as a rope, conveyor belt, fishing net, etc., by spinning a dope of a PVA polymer having high polymerization degree and drawing the obtained fiber under specific condition. CONSTITUTION:The objective fiber having a tensile strength of >=15g/d, preferably >=20g/d, an elastic modulus of >=250g/d, preferably >=300g/d, a hot-water resistance of >=120 deg.C, preferably >=130 deg.C and a steam resistance index of >=50, preferably >=60 can be produced by spinning a dope of a PVA polymer having a polymerization degree of >=1,500, preferably >=3,500, drawing the obtained fiber at a draw ratio of >=3, preferably 3.5-7, treating the drawn fiber with a crosslinking agent (e.g., hydroperoxide) and subjecting to a dry-heat treatment at a draw ratio of >=3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐熱水性に優れた有機系高強度I&″紺、特に
ゴム補強材、ローブ、シートベル!・、漁網等の産業資
材や水産資材の用途において有用な耐熱水性に優れた高
強度・高弾性率繊維およびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applied to organic high-strength I&'' navy blue with excellent hot water resistance, especially industrial materials such as rubber reinforcing materials, robes, seat bells, fishing nets, and marine materials. The present invention relates to a high-strength, high-modulus fiber with excellent hot water resistance that is useful in applications, and a method for producing the same.

[従来の技術] 従来、ポリビニルアルコール(以下、PVAと略記する
)系繊維は、その優れた機械的性質によりゴム補強材、
セメント補強材、ローブ、シートベルト、漁網などの産
業分野で広く用いられている。
[Prior Art] Conventionally, polyvinyl alcohol (hereinafter abbreviated as PVA) fibers have been used as rubber reinforcing materials, due to their excellent mechanical properties.
Widely used in industrial fields such as cement reinforcement, robes, seat belts, and fishing nets.

しかしながら、PVA系繊維はポリマ自体が本質的に水
に可溶性であるため、耐熱水性、耐蒸熱性と言った耐水
特性が要求される分野への展開が大幅に制約されていた
However, since the polymer itself of PVA-based fibers is essentially soluble in water, the application of PVA-based fibers to fields that require water-resistant properties such as hot water resistance and steam resistance has been greatly restricted.

かかるPVA系繊維の本質的欠点である耐水特性の改良
手段としては従来より、PVA系繊維にホルマリンのよ
うなアルデヒド類を反応せしめ該繊維を不溶化(アセタ
ール化)する方法が一般的に知られている。かかる方法
では、PVA系繊維を不溶化するためにはアセタール化
度が20〜30モル%以上のアセタール化処理を施す必
要があり、これによって耐水特性の向上がみられるが、
反面PVA系繊維自体の繊維構造を乱す結果となり、結
晶性、配向度などが低下し、繊維の機械的性質は著しく
損なわれてしまう。したがって、この種の機械的性質が
伴わないような改良手段は、高水準の機械的性能を必要
とされる産業用繊維には到底適用できず、衣料用繊維の
場合に限られていた。
As a means for improving the water resistance properties, which are an essential drawback of PVA fibers, a method has been generally known in which PVA fibers are reacted with an aldehyde such as formalin to insolubilize (acetalize) the fibers. There is. In this method, in order to insolubilize PVA fibers, it is necessary to perform acetalization treatment with a degree of acetalization of 20 to 30 mol% or more, which improves water resistance properties, but
On the other hand, this results in disturbing the fiber structure of the PVA fiber itself, resulting in a decrease in crystallinity, degree of orientation, etc., and the mechanical properties of the fiber are significantly impaired. Therefore, improvement measures that do not involve this type of mechanical property cannot be applied to industrial fibers that require a high level of mechanical performance, and have been limited to textile fibers for clothing.

特開昭60−126312号公報には、重合度が150
0以上の高重合度PVAを乾・湿式紡糸し、得られる糸
条に20倍以上の延伸を施すことによって機械的性質を
損なわずに耐熱水性を向上させる改良手段が開示されて
いる。かかる方法は高重合度PVAポリマを採用したこ
とによる効果と、繊維化に際しての高度な配向構造によ
る非晶部の減少効果等によって、機械的性質を損なわす
゛に耐熱水性を向上させようとするものである。しかる
に、いかに高配向せしめたとはいえ完全結晶体を構成し
えるものではなく残存する非晶部分のために耐熱水性が
充分であるとは言い得えない。
JP-A-60-126312 discloses that the degree of polymerization is 150
An improved means for improving hot water resistance without impairing mechanical properties is disclosed by dry/wet spinning PVA with a high polymerization degree of 0 or more and stretching the resulting yarn by 20 times or more. This method aims to improve hot water resistance without impairing mechanical properties by utilizing the effect of using a high polymerization degree PVA polymer and the effect of reducing amorphous parts due to a highly oriented structure during fiberization. It is. However, no matter how highly oriented it is, it cannot be said to have sufficient hot water resistance because it cannot form a perfect crystal and the amorphous portion remains.

[発明が解決しようとする問題点コ 本発明は上記従来技術の欠点に鑑み、機械的性質と耐熱
水性がともに優れたPVA系繊維と、その製造方法を提
供することにある。
[Problems to be Solved by the Invention] In view of the above-mentioned drawbacks of the prior art, an object of the present invention is to provide a PVA fiber having excellent mechanical properties and hot water resistance, and a method for producing the same.

[問題点を解決するための手段] 本発明の上記目的は、 (1)重合度が少なくとも1500のポリビニルアルコ
ール系重合体からなり、引張強度が15g/d以上、弾
性率が250g/d以上、および耐熱水性が120℃以
上であり、かつ、耐蒸熱性指数が50以上である耐熱水
性にすぐれた高強度・高弾性率ポリビニルアルコール系
繊維。
[Means for Solving the Problems] The above objects of the present invention are as follows: (1) A polyvinyl alcohol polymer having a degree of polymerization of at least 1500, a tensile strength of 15 g/d or more, and an elastic modulus of 250 g/d or more; and a high-strength, high-modulus polyvinyl alcohol fiber with excellent hot water resistance, which has a hot water resistance of 120° C. or higher and a steam resistance index of 50 or higher.

(2)重合度が少なくとも1500のポリビニルアルコ
ール系重合体溶液を紡糸し、得られた糸条を少なくとも
3倍に延伸する。しかる後、該延伸糸条に架橋性薬剤に
よる処理を施し、ついで延伸培率が3培以上の乾熱延伸
を施すことを特徴とする耐熱水性に優れた高強度・高弾
性率ポリビニルアルコール系繊維の製造方法。
(2) A polyvinyl alcohol polymer solution having a degree of polymerization of at least 1500 is spun, and the resulting yarn is drawn at least three times. Thereafter, the drawn yarn is treated with a cross-linking agent, and then subjected to dry heat stretching at a stretching ratio of 3x or more to obtain a high-strength, high-modulus polyvinyl alcohol fiber with excellent hot water resistance. manufacturing method.

によって達成することができろ。This can be achieved by

すなわち、本発明になるPVA系繊維は少なくとも15
00、好ましくは2500以上、ざらに好ましくは35
00以上の高重合度ポリマて構成されている。このよう
な極めて高い重合度のポリマを用いることが1与られろ
繊維の引張強度が15g/d以上、好まし・くは18g
/d以上、さらに好ましくは20g/d以上、弾性率が
250g/d以上、好まし・くは28 Qg/d以上、
さらに好まし・くは300g/〔1以上という、高強度
・高弾性率化の達成が初めて可能になるのである。
That is, the PVA fiber according to the present invention has at least 15
00, preferably 2500 or more, preferably 35
It is composed of a polymer with a high polymerization degree of 0.00 or more. Using such a polymer with an extremely high degree of polymerization allows the fiber to have a tensile strength of 15 g/d or more, preferably 18 g/d.
/d or more, more preferably 20 g/d or more, an elastic modulus of 250 g/d or more, preferably 28 Qg/d or more,
Furthermore, it becomes possible for the first time to achieve high strength and high elastic modulus, preferably 300 g/[1 or more.

また、前記高重合度ポリマから得られた本発明繊維はそ
の耐熱水性が少なくとも120’C1好ましくは125
0以上、さらにこのまし・くは130′C以上であり、
かつ、耐蒸熱性指数が少なくとも50以上、好ましくは
60以上であることが不可欠の要件となる。本発明繊維
の耐熱水性、耐蒸熱性指数は次の測定方法に従った。
Further, the fiber of the present invention obtained from the high polymerization degree polymer has a hot water resistance of at least 120'C1, preferably 125'C1.
0 or more, and even better, 130'C or more,
In addition, it is an essential requirement that the steam resistance index be at least 50 or higher, preferably 60 or higher. The hot water resistance and steam resistance index of the fibers of the present invention were determined according to the following measurement method.

すなわち、耐熱水性は下記する方法で作成し・たコート
の一端を固定し、他端にはコート−本当たり0.5にg
の荷重をかけ、該コートの中央部分に所定の温度の飽和
水蒸気を10分間吹きかけコ□−ドが溶断する時の温度
(′C)を求め、この温度を耐熱水性として表わしたも
のである ただし・、コートは1000〜2000デニールの原糸
を用い、次式における撚係数を1800に合わせて双子
り然コードとする。
In other words, hot water resistance is determined by fixing one end of the coat prepared using the method described below, and applying 0.5 g per coat to the other end.
Applying a load of・The coat uses raw yarn of 1000 to 2000 deniers, and the twist coefficient in the following formula is adjusted to 1800 to create a twin-stripe cord.

撚係数=撚数[回/10cm] X v′T7!糸の8×Cal ’+、。Twist coefficient = number of twists [times/10cm] X v'T7! 8 x Cal'+ of thread.

また、耐蒸熱性指数は上記で作成し・たコードを用い、
コードの一端を固定し、他端にはコート−本当たり0.
5Kgの荷重をかけ、該コートの中央部分に温度120
”Cの飽和水蒸冥を10分間吹きかけて処理コードとす
る。このコードの強力(TS)を求め、これとこれとは
別に求めた未処理コートの強力(TSo)とから次式に
より強力保持率(RT)を算出し、得られた強力保持率
の無次元直を耐蒸熱性指数として表わした数値である。
In addition, the steam resistance index is determined using the code created above.
One end of the cord is fixed and the other end is coated.
A load of 5 kg was applied to the central part of the coat at a temperature of 120°C.
Spray saturated water vapor of "C" for 10 minutes to create a treated code. Find the strength (TS) of this cord, and calculate the strength retention using the following formula from this and the strength (TSo) of the untreated coat, which was determined separately. This is a numerical value that is obtained by calculating the strength retention rate (RT) and expressing the dimensionless directivity of the obtained strength retention rate as a steam resistance index.

ただし・、 TS RT  (%)  = −X  100″(%)TS。however·, T.S. RT (%) = -X 100″ (%) TS.

PVA系8&′維は既に述へたように本来ポリマ自体が
水に可溶性であるため、耐熱水性・耐蒸熱性の要求され
る分野への展開が大幅に制限される。
As already mentioned, the polymer itself of PVA-based 8&' fibers is inherently soluble in water, which greatly limits its application to fields where hot water resistance and steam resistance are required.

これに対して、上述した本発明の繊維は高強度・高弾性
率のみならず、耐熱水性・耐蒸熱性を有するため産業用
繊維として顕著な効果が発揮されることになる。
On the other hand, the fibers of the present invention described above have not only high strength and high modulus of elasticity, but also hot water resistance and steam heat resistance, so that they exhibit remarkable effects as industrial fibers.

次に本発明繊維の製造手段の一例について述べる。Next, an example of the means for producing the fiber of the present invention will be described.

該PVA系ポリマには、完全ケン化PVA、主鎖中にエ
チレン、プロピレン、スチレン、アクリル酸、およびそ
のアルキルエステル、メタクリル酸、およびそのアルキ
ルエステル、イタコン酸などのオレフィン系モノマーが
少量共重合されたPV Aポリマを挙げることができる
が、特に好ましいPVA系ポリマとしてはケン化度99
モル%以上の完全ケン化PVAがよい。
The PVA-based polymer includes completely saponified PVA, and a small amount of olefinic monomers such as ethylene, propylene, styrene, acrylic acid and its alkyl esters, methacrylic acid and its alkyl esters, and itaconic acid are copolymerized in the main chain. Among them, particularly preferred PVA-based polymers include those with a saponification degree of 99.
Completely saponified PVA with a mole % or more is preferable.

上記の耐熱水性に優れた高強度・高弾性率PXiA系繊
維は通常の湿式紡糸法、すなわち、PVA系ポリマを熱
水に溶解せしめて得た紡糸原液を紡糸用口金を介して芒
硝あるいはアルカリ性塩類水溶液からなる凝固浴液中に
吐出せしめる方法でも得られるが、紡糸溶液の安定性、
および得られた凝固糸条の延伸性が低いため、乾・湿式
紡糸法またはケル紡糸法の採択が効果的である。すなわ
ち。
The above-mentioned high-strength, high-modulus PXiA-based fibers with excellent hot water resistance are manufactured using the normal wet spinning method, in which a spinning stock solution obtained by dissolving a PVA-based polymer in hot water is passed through a spinning nozzle using glauber's salt or alkaline salts. It can also be obtained by discharging it into a coagulation bath consisting of an aqueous solution, but the stability of the spinning solution
Since the resulting coagulated yarn has low drawability, it is effective to adopt the dry/wet spinning method or the Kel spinning method. Namely.

かかる高重合度PVA系ポリマをかかる紡糸方法で紡糸
することにより、緻密な凝固糸条が1与られ、後続する
延伸工程で延伸倍率を高くでき、その結果分子配合度が
高く、かつ、結晶化度の高い高強度かつ、高弾性率繊維
が得られるのである。 そこで、本発明における乾・湿
式紡糸法およびゲル紡糸法について説明する。
By spinning such a highly polymerized PVA-based polymer using such a spinning method, a dense coagulated filament is obtained, and the drawing ratio can be increased in the subsequent drawing step, resulting in a high molecular blending ratio and crystallization. This results in fibers with high strength and high modulus of elasticity. Therefore, the dry/wet spinning method and gel spinning method in the present invention will be explained.

先ず、乾・湿式紡糸法とは、紡糸原液を直接凝固浴中に
吐出しないで、−旦空気などの不活性雰囲気の微小空間
に吐出し、次に吐出糸条を凝固浴に導入して凝固させる
紡糸法である。この際、紡糸原液としては、ジメチルス
ルホキシド(以下DMSOと略記する)、グリセリン、
エチレングリコール、プロピレングリコール、ジエチレ
ングリコール、トリエチレングリコール、テトラエチレ
ングリコール、トリメチロールプロパンなどの多価アル
コール類、エチレンジアミン、ジエチレン聯 トリアミンなどのアミン類、レソルシン、ホルムアミド
、尿素の飽和水va液などの有機系溶剤、または水や臭
化リチウム、塩化リチウムなどのハlコケン化リチウム
、シアン酸ナトリウム、塩化亜鉛、塩化アルミニュウム
、塩化マグネシュウムなどの無機塩の水溶液、またはこ
れらの混合溶媒などを挙げることができるが、好ましく
はPVA系ポリマに対する溶解力の大きい溶剤、特にD
 M S O、エチレングリコール、グリセリン、エチ
レンジアミン、ジエチレントリアミンがよい。
First, the dry/wet spinning method means that the spinning stock solution is not directly discharged into a coagulation bath, but is first discharged into a microscopic space in an inert atmosphere such as air, and then the discharged yarn is introduced into a coagulation bath and coagulated. This is a spinning method that allows At this time, the spinning stock solution includes dimethyl sulfoxide (hereinafter abbreviated as DMSO), glycerin,
Polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and trimethylolpropane, amines such as ethylene diamine and diethylene triamine, and organic systems such as saturated aqueous VA liquids of resorcinol, formamide, and urea. Examples include solvents, aqueous solutions of water, lithium halide saponides such as lithium bromide and lithium chloride, inorganic salts such as sodium cyanate, zinc chloride, aluminum chloride, and magnesium chloride, and mixed solvents thereof. , preferably a solvent with high dissolving power for PVA-based polymers, especially D
MSO, ethylene glycol, glycerin, ethylenediamine, and diethylenetriamine are preferable.

また、凝固剤としては、紡糸原液の溶剤に対して相溶性
を有し、PVA系ポリマに対して非溶媒のもの、例えは
メタノール、エタノール、アセトン、・\ンゼン、トル
エンまたはこれらと紡糸原液の溶剤との混合溶媒並びに
無機塩類水溶液等が用いられる。
In addition, as a coagulant, one that is compatible with the solvent of the spinning dope and is a non-solvent for the PVA polymer, such as methanol, ethanol, acetone, zene, toluene, or a combination of these and the spinning dope. A mixed solvent with a solvent, an aqueous solution of an inorganic salt, etc. are used.

次にゲル紡糸法とは、紡糸原液を紡糸用口金から不活性
雰囲気の微小空間に吐出し、ついて吐出糸条を紡糸原液
の溶剤に対して非混和性の冷却浴中に導いてそのまま(
吐出糸条のポリマ濃度を実質的に変化させろことなく)
冷却、ケル化させる紡糸法である。
Next, in the gel spinning method, a spinning solution is discharged from a spinning nozzle into a microscopic space in an inert atmosphere, and then the discharged yarn is introduced into a cooling bath that is immiscible with the solvent of the spinning solution (
(without substantially changing the polymer concentration of the discharged yarn)
This is a spinning method that involves cooling and kelizing.

このゲル紡糸法における紡糸原液の溶媒としては、PV
A系ポリマを高温で加熱、溶解して得られる溶液を冷却
するとゲル化するものが好ましい。
As a solvent for the spinning dope in this gel spinning method, PV
It is preferable to use a polymer that gels when the solution obtained by heating and dissolving the A-based polymer at a high temperature is cooled.

具体的にはグリセリン、エチレングリコール、プロピレ
ングリコール、ジエチレングリコール、トリエチレング
リコール、テトラエチレングリコール、トリメチロール
プロパンなどの多価アルコール類、ベンゼンスルホンア
ミド、カプロラクタムなどの常温で非揮発性の溶媒を例
示することができるが、好ましくはグリセリン、および
エチレングリコールがよい。
Specifically, examples include polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and trimethylolpropane, and solvents that are non-volatile at room temperature such as benzenesulfonamide and caprolactam. However, glycerin and ethylene glycol are preferred.

また冷却浴とし・では、上記紡糸原液の溶媒に対して、
混和性を有せず、PVA系ポリマに対して非溶剤のもの
、例えばデカ・リン、トリクロルエチレン、四塩化炭素
、パラフィンオイルなどが用いられる。
In addition, in the cooling bath, for the solvent of the spinning dope,
Those that are immiscible and are non-solvents for PVA-based polymers, such as deca phosphorus, trichlorethylene, carbon tetrachloride, paraffin oil, etc., are used.

上記乾・湿式紡糸法またはケル紡糸法において紡糸原液
の粘度は、ポリマの重合度、紡糸原液のポリマ濃度およ
び紡糸温度に依存するが、吐出部の紡糸原液の粘度が約
200〜5000ボイ女、好ましくは500〜3000
ボイスの範囲になるように紡糸原i夜のポリマ濃度と温
度をコントロールするのがよい。該吐出部の紡糸原i夜
の粘度が200ボイスよりも低かったり、5000ボイ
スを超えると紡糸原液の曳糸性が低下し、安定した紡糸
が難しくなるので好ましくない。
In the above-mentioned dry/wet spinning method or Kel spinning method, the viscosity of the spinning dope depends on the degree of polymerization of the polymer, the polymer concentration of the spinning dope, and the spinning temperature, but the viscosity of the spinning dope at the discharge part is about 200 to 5000 mm, Preferably 500-3000
It is preferable to control the polymer concentration and temperature of the spinning mill so as to fall within the range of voice. If the viscosity of the spinning stock in the discharge section is lower than 200 voices or exceeds 5,000 voices, the spinnability of the spinning dope decreases and stable spinning becomes difficult, which is not preferable.

このような紡糸原液は、乾・湿式紡糸法あるいはゲル紡
糸法のいずれにおいても、凝固浴あるいは冷却浴の液面
上的3〜200mmの位置に設けられた紡糸用口金を通
して吐出され、吐出糸条は空気や窒素、パ\リウム、ア
ルゴンなどの不活性気体雰囲気内を走行した後、該凝固
浴あるいは冷却浴に導入される。該吐出糸条が上記空気
あるいは不活性気体雰囲気中を走1テする距離が約3m
m未満になると液面の変動に伴ない吐出糸条の糸切れが
生じ、紡糸安定性が悪化し易く、200mmを超えると
吐出糸条を構成する単糸相互間の接着が生し・、著しい
繊度斑等を生じ易くなるために好ましくない。
In either the dry/wet spinning method or the gel spinning method, such a spinning stock solution is discharged through a spinning nozzle installed at a position of 3 to 200 mm above the liquid level of the coagulation bath or cooling bath, and the discharged yarn is is introduced into the coagulation bath or cooling bath after traveling in an inert gas atmosphere such as air, nitrogen, pallium, or argon. The distance that the discharged yarn travels in the air or inert gas atmosphere is approximately 3 m.
If it is less than 200 mm, the discharged yarn will break due to fluctuations in the liquid level, and the spinning stability will tend to deteriorate, and if it exceeds 200 mm, there will be significant adhesion between the single yarns that make up the discharged yarn. This is not preferable because it tends to cause unevenness in fineness.

また、乾・湿式紡糸法において凝固浴の温度は通常0〜
50′Cの範囲にある。一方、ゲル紡糸法において冷却
浴の温度は、紡糸原液のゲル化温度のよって定まるが、
通常−1O〜30°Cの範囲にするのがよい。すなわち
、30Gよりも高くなると、吐出糸条の冷却効率が不充
分なためにゲル化糸条が柔らかく、後続する脱溶媒、延
伸なとの工程て糸条を安定に走行させることが困難にな
るし、−10°Cよりも低くなると特殊な冷却設備を必
要とし好まし・くない。
In addition, in dry and wet spinning methods, the temperature of the coagulation bath is usually 0 to 0.
It is in the range of 50'C. On the other hand, in the gel spinning method, the temperature of the cooling bath is determined by the gelation temperature of the spinning stock solution.
It is usually preferable to keep the temperature in the range of -10 to 30°C. In other words, when it is higher than 30G, the gelling yarn becomes soft due to insufficient cooling efficiency of the discharged yarn, and it becomes difficult to run the yarn stably during the subsequent steps such as desolvation and stretching. However, when the temperature is lower than -10°C, special cooling equipment is required, which is not desirable.

例えば、重合度が3000であるPVAの15重量%グ
リセリン溶液の場合、そのゲル化温度は約103℃であ
り、この溶液を紡糸用口金から吐出し、得られる糸条を
冷却するには、冷却浴の温度は30′C以下がよい。
For example, in the case of a 15% by weight glycerin solution of PVA with a degree of polymerization of 3000, its gelation temperature is about 103°C. The temperature of the bath is preferably 30'C or less.

また、乾・湿式紡糸法におけろ凝固浴、ゲル紡糸法にお
けろ冷却浴の深さ、長さなどは特に限定されるものでは
ないが、マルチフィラメントとじて吐出する場合は、マ
ルチフィラメントを構成する単繊維が集束される前に凝
固浴中で充分に凝固あるいは冷却浴中で充分に冷却し、
凝固あるいはゲル化が完了するようにそれぞれ冷却浴の
温度;深ざ、長さを適宜設定すべきである。
In addition, the depth and length of the coagulation bath in the dry/wet spinning method and the cooling bath in the gel spinning method are not particularly limited, but when discharging the multifilament as a multifilament, the multifilament Before the constituent single fibers are bundled, they are sufficiently coagulated in a coagulation bath or sufficiently cooled in a cooling bath,
The temperature, depth, and length of the cooling bath should be appropriately set so that solidification or gelation is completed.

爵られた凝固糸条またはゲル化糸条は、脱溶媒の後、洗
浄浴中あるいは湿熱浴中で延伸され、更に加熱チューブ
、熱媒浴、熱板など各種の手段を採用して、乾熱延伸さ
れる。
After removing the solvent, the coagulated or gelled yarn is stretched in a washing bath or a wet heat bath, and then subjected to dry heat using various means such as a heating tube, a heating medium bath, and a hot plate. Stretched.

本発明の目的の−っである優れた機械的性質を得ろため
には、高重合度のポリマを原料とするとともに、延伸倍
率を可能な限り高くする必要がある。この場合に延伸倍
率は未延伸糸条に対して全延伸倍率が少なくとも9倍、
好ましくは12倍以上、さらに好ましくは16倍以上が
必要である。
In order to obtain excellent mechanical properties, which is the object of the present invention, it is necessary to use a polymer with a high degree of polymerization as a raw material and to make the stretching ratio as high as possible. In this case, the total stretching ratio is at least 9 times that of the undrawn yarn;
It is preferably 12 times or more, more preferably 16 times or more.

全延伸倍率の上限としては、後述する最大延伸倍率の9
5%程度とするのが好ましく、これを超すと延伸工程で
の安定性が損なわれるばかりか、得られる糸条が毛羽を
生じ易くなるので好ましくない。最大延伸倍率とは、延
伸工程において糸条に加える延伸倍率を徐々に高めて1
テった時、全糸条が破断する延伸倍率を言う。
The upper limit of the total stretching ratio is 9, which is the maximum stretching ratio described below.
The content is preferably about 5%, and if it exceeds this, not only will the stability in the drawing process be impaired, but the resulting yarn will tend to become fluffy, which is not preferred. The maximum draw ratio is the draw ratio applied to the yarn in the drawing process by gradually increasing it to 1.
This refers to the stretching ratio at which all yarns break when stretched.

このような高倍率の延伸は上記乾・湿式紡糸法またはゲ
ル紡糸法という特定の紡糸法の採用で可能となり、本発
明の目的とする高物性のPVA系繊維が得られるのであ
る。
Such high-magnification stretching is possible by employing a specific spinning method such as the dry/wet spinning method or gel spinning method, and the PVA fiber with high physical properties, which is the object of the present invention, can be obtained.

かくして1停られたPVA系繊維は高度に延伸配向がな
されているため結晶性に優れ、沸騰水中でも溶解しない
程度に耐熱水性は向上するが、該延伸後の繊維を110
℃以上の加圧水蒸気中で処理すると、溶解ないし大幅な
強度低下をもたらすなど、耐熱水性の点では未だ不充分
であった。
The PVA fibers thus stretched have excellent crystallinity because they are highly stretched and oriented, and have improved hot water resistance to the extent that they do not dissolve even in boiling water.
When treated in pressurized steam at a temperature of 0.degree. C. or higher, the material was still unsatisfactory in terms of hot water resistance, such as dissolution or a significant decrease in strength.

それ故、本発明においてはPVA系繊維の耐熱水性を少
なくとも120 ’Cに、併せて耐蒸熱性指数を少なく
とも50にするための具体的手段として、延伸工程にお
いて糸条に架橋性を有する薬剤を付着させた後、後続す
る工程で更に該糸条に所定の延伸および熱処理を施し、
これによって機械的特性と耐熱水性がともζご隈れたP
VA系高強度繊維とせしめる。この際、架橋性を有する
薬剤を付着せしめる前に糸条を少なくとも3倍以上、好
ましくは3.5倍〜7倍に延伸する必要がある。
Therefore, in the present invention, as a specific means for increasing the hot water resistance of the PVA fiber to at least 120'C and the steam resistance index to at least 50, we add a crosslinking agent to the yarn in the drawing process. After adhering, the yarn is further subjected to prescribed stretching and heat treatment in a subsequent step,
As a result, both mechanical properties and hot water resistance are improved.
Made of VA-based high-strength fiber. At this time, it is necessary to stretch the yarn at least 3 times or more, preferably 3.5 times to 7 times, before attaching the crosslinking agent.

該糸条の延伸倍率が3倍未満では架橋性を有する薬剤が
繊維内部まで浸透してしまうため、“後続′する工程で
延伸性が低下し・たり、架橋が過剰となって得られる繊
維の機械的特性が損なわれることになる。
If the stretching ratio of the yarn is less than 3 times, the cross-linking agent will penetrate into the inside of the fiber, resulting in a decrease in the drawability in the "subsequent" process, or excessive cross-linking, resulting in damage to the resulting fiber. Mechanical properties will be impaired.

本発明で用いる架橋性薬剤としては、たとえばハイドロ
パーオキサイド、ジアルキルパーオキサイド、パーオキ
シケタール、パーオキシエステル等の有機系過酸化物、
イソシアネート系化合物、ブロックドイソシアネ−1・
系化合物、ウレタン系化合物およびエポキシ系化合物等
が挙げられるがこれらに限定されるものではなく、これ
らの化合物の一種ある“いは二種以上を併用して用いる
こともできる。
Examples of the crosslinking agent used in the present invention include organic peroxides such as hydroperoxide, dialkyl peroxide, peroxyketal, and peroxyester;
Isocyanate compound, blocked isocyanate-1.
These compounds include, but are not limited to, urethane-based compounds, epoxy-based compounds, and the like, and one or more of these compounds may be used in combination.

付与方法としては、架橋性薬剤を有機溶媒溶液や水溶液
あるいは水系エマルジョンの状態で用い繊維糸条を該溶
iα中に浸せきする方法、ロールを介して接触付着させ
る方法ある°いは該溶液を繊維糸条に噴霧する方法等が
あるが、いずれの方法でもよい。
The application method includes a method in which the crosslinking agent is used in the form of an organic solvent solution, an aqueous solution, or an aqueous emulsion, and the fiber yarn is immersed in the solution, a method in which the crosslinking agent is applied by contact with the fiber through a roll, or a method in which the solution is applied to the fiber. There are methods such as spraying onto the yarn, but any method may be used.

このようにPVA系繊維において、120’C以上の熱
水中でも溶解することなく、120℃の飽和水蒸気中に
繊維を晒した後の繊維の強力保持率が50%以上を有す
るという繊維が得られることは、従来のPVA系繊維か
ら全く予期し得ない点であり、本発明のように高重合度
のポリマの採用および、紡糸手段の特定化と架橋性薬剤
処理との一体的な結合によって初めて達成し得る。
In this way, it is possible to obtain a PVA-based fiber that does not dissolve even in hot water of 120'C or more and has a tenacity retention rate of 50% or more after being exposed to saturated steam at 120'C. This is completely unexpected from conventional PVA-based fibers, and can be achieved for the first time by adopting a polymer with a high degree of polymerization, specifying the spinning means, and integrally combining the treatment with a crosslinking agent as in the present invention. It can be achieved.

[発明の効果コ 本発明になるPVA系繊維は、120℃以上の耐熱水性
および耐蒸熱性指数が50以上の耐蒸熱性を有し、かつ
引張強度が153/d以上、弾性率が250g/d以上
という、1に来のPVA系繊維に比べて著しく優れた耐
熱水性・耐蒸熱性と機械的性能とを併せて有するため、
これまで耐熱水性の点で展開が困難であったタイヤコー
ド、■ベルト、ボース等のコム補強用、ロープ、コンベ
アベルト。
[Effects of the Invention] The PVA-based fiber of the present invention has hot water resistance of 120° C. or higher, steam resistance with a steam resistance index of 50 or higher, a tensile strength of 153/d or higher, and an elastic modulus of 250 g/d or higher. d or more, which is significantly superior to PVA-based fibers in terms of hot water resistance, steam heat resistance, and mechanical performance.
Tire cords, ■belts, comb reinforcements such as bows, ropes, and conveyor belts, which have been difficult to develop due to their hot water resistance.

FRP用など、PXIA系繊維の新しい用途分野への展
開を可能にするものであり、その有用性は梅めて大きい
This makes it possible to develop PXIA-based fibers into new fields of use, such as for FRP, and its usefulness is extremely large.

以下、実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

なお、本例中のP■)\の重合度、PVA系繊維の引張
強度および初期弾性率およびコード強伸度物性は次のよ
うにして求めた。
In this example, the polymerization degree of P■)\, the tensile strength and initial elastic modulus of the PVA fiber, and the cord strength and elongation physical properties were determined as follows.

(1)PVAの重合度 JIS  K6726に基づき、′30℃における水溶
液の極限粘度[η]から次式により重合度(Pn)を算
出した。
(1) Degree of polymerization of PVA Based on JIS K6726, the degree of polymerization (Pn) was calculated from the intrinsic viscosity [η] of the aqueous solution at 30° C. using the following formula.

l og (Pn)=1.613  X  l og 
([η]X  10+/8.29) ただし、[η]; ml/ g (2)PVA系単繊維の引張強度および初期弾性率繊維
を予め201C165%RHの温湿度下に24時間放置
し、単糸を取り出して試長20mn1、引張速度10m
m/分の条件で引張試験機を用いて単糸強度および初期
弾性率を測定した(3)コードの強伸度物性 本文記載の方法で作成したコードを用いて、JIS  
L1017に基づき試料をカセ状にとり、20℃、65
%RHの温湿度下に24時間放置したものを”テンシロ
ン”u’rM−tn型引張試験機(東洋ボールドウィン
(株)製)を用い試長25cm、引張速度30mm/分
でコードの強伸度物性を測定した。チャックはコード用
エアージヨウを用いた。
log (Pn)=1.613
([η] Take out the single yarn, test length 20mn1, tensile speed 10m
Single yarn strength and initial elastic modulus were measured using a tensile tester under the conditions of m/min.
Based on L1017, take a sample in a container and heat at 20℃, 65℃.
The strength and elongation of the cord was measured after being left at a temperature and humidity of %RH for 24 hours using a "Tensilon"u'rM-tn type tensile tester (manufactured by Toyo Baldwin Co., Ltd.) at a test length of 25 cm and a tensile speed of 30 mm/min. Physical properties were measured. The chuck used was an air zipper for cords.

実施例1 重合度が3800の完全ケン化のPVA(ケン化度99
.9molX)をジメチルスルフォキサイド(以下D 
rvt S Oと略す)に溶解し、濃度17重量%の紡
糸原液となし、孔径0.08mmφ、孔数600の紡糸
口金から吐出し、約5mmの空気中を走1テさせた後、
20°゛CのDMSOを8重量%含むメタノール凝固浴
中に導いて凝固せしめ、引取速度10m/分て引き取っ
た。
Example 1 Completely saponified PVA with a polymerization degree of 3800 (saponification degree 99)
.. 9 molX) to dimethyl sulfoxide (hereinafter D
rvt SO) to make a spinning stock solution with a concentration of 17% by weight, which was discharged from a spinneret with a hole diameter of 0.08 mm and a number of holes of 600, and after running through approximately 5 mm of air for 1 time,
The sample was introduced into a methanol coagulation bath containing 8% by weight of DMSO at 20°C for coagulation, and taken off at a takeoff speed of 10 m/min.

得られた凝固糸条をメタノールで洗浄し、二連ローラに
より4培に冷延沖を行い、80゛Cの加熱ローラで乾燥
し一次延伸糸となした。
The obtained coagulated yarn was washed with methanol, cold-rolled in four layers using double rollers, and dried with heated rollers at 80°C to obtain a primary drawn yarn.

ついて、架橋性薬剤を含む室温の処理液中に導いて、糸
条に架橋性薬剤を付着すしめた。なお、架橋剤処理液と
しはクメンハイドロパーオキサイドの16重量%メタノ
ール溶液を用いた。
Then, the fibers were introduced into a room temperature treatment solution containing a crosslinking agent to adhere the crosslinking agent to the yarn. Note that a 16% by weight methanol solution of cumene hydroperoxide was used as the crosslinking agent treatment liquid.

上記処理を施した糸条を245 ′cに加熱した空気浴
中に導き、5倍に延伸し、油剤を付与して巻取った。
The yarn subjected to the above treatment was introduced into an air bath heated to 245'C, stretched five times, applied with an oil agent, and wound up.

得られた2次延伸糸の全延伸倍率は20倍であり、1・
−タル繊度が1538デニールで、フィラメント数60
0から構成されており、単糸繊度2゜6デニール、強度
22.0g/d 、弾性率308g/dの繊維物性を有
するものであった。
The total stretching ratio of the obtained secondary drawn yarn was 20 times, and 1.
- Tal fineness is 1538 denier and number of filaments is 60
The fiber was composed of 0.0 denier, had a single fiber fineness of 2°6 denier, a strength of 22.0 g/d, and a modulus of elasticity of 308 g/d.

この原糸を用いて、本文記載の方法でコードを作成した
。このコードの耐熱水性および耐蒸熱性指数を本文記載
の方法で求め、結果を第1表に示した。
Using this yarn, a cord was created using the method described in the text. The hot water resistance and steam heat resistance index of this cord were determined by the method described in the text, and the results are shown in Table 1.

比較例1 2次延伸糸を得る工程において、架橋剤処理工程を省略
する以外は実施例1の方法で2次延伸糸を得た。
Comparative Example 1 A second drawn yarn was obtained by the method of Example 1 except that the crosslinking agent treatment step was omitted in the step of obtaining the second drawn yarn.

1拝られた2次延伸糸の全絨沖培率は20倍であり、I
・−タル繊度が1536デニールで、フィラメント数6
00から構成されており、単糸繊度2゜5デニール、強
度22.4g/d 、弾性率3e)Ig/dの!fi維
物性を有するものであった。
1. The total thickness of the second drawn yarn was 20 times, and I
- Tal fineness is 1536 denier, number of filaments is 6
00, single yarn fineness 2°5 denier, strength 22.4g/d, elastic modulus 3e) Ig/d! It had fi fiber properties.

この原糸を用いて実施例1と同様にし・てコートを作成
し、このコードの耐熱水性および耐蒸熱性指数を求め、
結果を第1表に示した。
Using this yarn, a coat was prepared in the same manner as in Example 1, and the hot water resistance and steam resistance index of this cord were determined.
The results are shown in Table 1.

比較例2および実施例2 実施例1における紡糸口金および1次延伸1音率を変更
した以外は実施例1と同様にして、比較例2および゛実
施例2の一次延伸糸を得た。ここでは孔径0.08mm
φ、?L数400の紡糸口金を使用した。なお、比較例
2および実施例2における一次延沖倍率はそれぞれ2倍
および°5培である。
Comparative Example 2 and Example 2 Primary drawn yarns of Comparative Example 2 and Example 2 were obtained in the same manner as in Example 1, except that the spinneret and the primary drawing rate were changed. Here the hole diameter is 0.08mm
φ,? A spinneret with a number of L of 400 was used. The primary spreading magnifications in Comparative Example 2 and Example 2 are 2x and 5°, respectively.

得られた一次延伸糸を用いて、実施例1と同様に処理し
た。比較例202次延伸では、延伸性が充分でなく、全
延伸倍率が8.6倍の糸条しか得ることができなかった
The obtained primary drawn yarn was treated in the same manner as in Example 1. In Comparative Example 20 secondary stretching, the stretching property was not sufficient and a yarn with a total stretching ratio of only 8.6 times could be obtained.

実施例2については、実施例1と同様に処理が可能であ
った。得られた2次延伸糸の全延伸倍率は19.8倍で
あり、トータル繊度は1530デニールで、フィラメン
ト数は400てあった。繊維物性は単糸繊度3.7デニ
ール、強度19.73/d 、弾性率280g/dてあ
った。
In Example 2, the same treatment as in Example 1 was possible. The total stretching ratio of the obtained secondary drawn yarn was 19.8 times, the total fineness was 1530 denier, and the number of filaments was 400. The fiber properties were as follows: single fiber fineness: 3.7 denier, strength: 19.73/d, and elastic modulus: 280 g/d.

実施例1と同様にして、この原糸のコードを作成し、こ
のコードの耐熱水性および耐蒸熱性指数を求め、結果を
第1表に示した。
A cord of this yarn was prepared in the same manner as in Example 1, and the hot water resistance and steam resistance index of this cord were determined, and the results are shown in Table 1.

比較例3 比較のため、市販のビニロン糸(クラレ(株)製、タイ
プI 800−1000−75501)の耐熱水性およ
び耐蒸熱性指数を調べた。
Comparative Example 3 For comparison, the hot water resistance and steam heat resistance index of a commercially available vinylon yarn (manufactured by Kuraray Co., Ltd., Type I 800-1000-75501) was investigated.

この繊維のトータル繊度は1770デニールであり、単
繊維の強度は13.6g/d、弾性率は208g/dの
繊維物性を有するものであった。
The total fineness of this fiber was 1770 deniers, the single fiber strength was 13.6 g/d, and the fiber physical properties were that the elastic modulus was 208 g/d.

この繊維を用いて、本文記載の方法でコートを作成した
。なお、下撚数および上撚数はともに10 C111当
たり30回であった。
A coat was made using this fiber by the method described in the text. The number of first twists and the number of first twists were both 30 times per 10 C111.

得られたコートの耐熱水性および耐蒸熱性指数を実施例
1の方法で求めた。なお、ここではコードに加える荷重
をコード当たり0.6ICgとした。
The hot water resistance and steam resistance index of the obtained coat were determined by the method of Example 1. Note that here, the load applied to the cord was 0.6 ICg per cord.

得られた結果を第1表に示し・た。The results obtained are shown in Table 1.

Claims (2)

【特許請求の範囲】[Claims] (1)重合度が少なくとも1500のポリビニルアルコ
ール系重合体からなり、引張強度が15g/d以上、弾
性率が250g/d以上、および耐熱水性が120℃以
上であり、かつ、耐蒸熱性指数が50以上である耐熱水
性にすぐれた高強度・高弾性率ポリビニルアルコール系
繊維。
(1) Consisting of a polyvinyl alcohol polymer with a degree of polymerization of at least 1500, a tensile strength of 15 g/d or more, an elastic modulus of 250 g/d or more, a hot water resistance of 120°C or more, and a steam resistance index of High strength and high elastic modulus polyvinyl alcohol fiber with excellent hot water resistance of 50 or higher.
(2)重合度が少なくとも1500のポリビニルアルコ
ール系重合体溶液を紡糸し、得られた糸条を少なくとも
3倍に延伸し、次に、該延伸糸条に架橋性薬剤による処
理を施し、ついで延伸倍率が3倍以上の乾熱延伸を施す
ことを特徴とする耐熱水性に優れた高強度・高弾性率ポ
リビニルアルコール系繊維の製造方法。
(2) Spinning a polyvinyl alcohol polymer solution with a degree of polymerization of at least 1500, drawing the obtained yarn at least three times, then treating the drawn yarn with a crosslinking agent, and then drawing it. A method for producing high-strength, high-modulus polyvinyl alcohol fibers with excellent hot water resistance, which comprises performing dry heat stretching at a magnification of 3 times or more.
JP31162887A 1987-12-09 1987-12-09 High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber Pending JPH01156517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31162887A JPH01156517A (en) 1987-12-09 1987-12-09 High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31162887A JPH01156517A (en) 1987-12-09 1987-12-09 High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber

Publications (1)

Publication Number Publication Date
JPH01156517A true JPH01156517A (en) 1989-06-20

Family

ID=18019550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31162887A Pending JPH01156517A (en) 1987-12-09 1987-12-09 High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber

Country Status (1)

Country Link
JP (1) JPH01156517A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2636081A1 (en) * 1988-09-06 1990-03-09 Bridgestone Corp Tyre reinforced with cords made of crosslinked poly(vinyl alcohol) filaments
JPH0340808A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH0340807A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH03146704A (en) * 1989-10-24 1991-06-21 Unitika Ltd Polyvinyl alcohol fiber having excellent hot water resistance and its preparation
US5340650A (en) * 1992-02-18 1994-08-23 Kuraray Company Limited Vinyl alcohol units-containing polymer composite fiber having resistance to hot water and wet heat and process for its production
US5717026A (en) * 1995-05-22 1998-02-10 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and method of manufacture
CN111334886A (en) * 2020-04-16 2020-06-26 陕西科技大学 Temporary plugging agent for oil well prepared from covalent bond crosslinked polyvinyl alcohol landfill initiator and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2636081A1 (en) * 1988-09-06 1990-03-09 Bridgestone Corp Tyre reinforced with cords made of crosslinked poly(vinyl alcohol) filaments
JPH0340808A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH0340807A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH03146704A (en) * 1989-10-24 1991-06-21 Unitika Ltd Polyvinyl alcohol fiber having excellent hot water resistance and its preparation
US5340650A (en) * 1992-02-18 1994-08-23 Kuraray Company Limited Vinyl alcohol units-containing polymer composite fiber having resistance to hot water and wet heat and process for its production
US5717026A (en) * 1995-05-22 1998-02-10 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and method of manufacture
CN111334886A (en) * 2020-04-16 2020-06-26 陕西科技大学 Temporary plugging agent for oil well prepared from covalent bond crosslinked polyvinyl alcohol landfill initiator and preparation method thereof
CN111334886B (en) * 2020-04-16 2022-06-28 陕西中康能源技术有限公司 Temporary plugging agent for oil well prepared from covalent bond crosslinked polyvinyl alcohol landfill initiator and preparation method thereof

Similar Documents

Publication Publication Date Title
US5208104A (en) High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
JPH0415287B2 (en)
EP0351046B1 (en) Polyvinyl alcohol multifilament yarn and process for producing the same
US5419109A (en) Tire cord of polyvinyl multifilament yarn
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JP2001262437A (en) Polyketone fiber and method for producing the same
JPH01229805A (en) High-strength water-soluble polyvinyl alcohol-based fiber and production thereof
JP3666635B2 (en) High-strength polyethylene fiber with excellent uniformity
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPH01104815A (en) Polyvinyl alcohol fiber and production thereof
JP2002309442A (en) Polyketone fiber, cord, and method for producing the same
JPS6197415A (en) Polyacrylonitrile fiber having high strength and modulus
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JP4446531B2 (en) Fishing net
JP4342055B2 (en) Method for producing polyketone fiber and polyketone fiber
JPS61119708A (en) High-tenacity acrylic fiber and production thereof
JP3316300B2 (en) Polyvinyl alcohol fiber excellent in durability and method for producing the same
JP3067056B2 (en) High strength polyvinyl alcohol fiber and method for producing the same
JPH08218221A (en) Polyvinyl alcohol-based fiber excellent in durability and dimensional stability and its production
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JPH08158149A (en) Production of polyvinyl alcohol-based fiber
JPH0610210A (en) Polyvinyl alcohol-based fiber excellent in knot strength
JP2858923B2 (en) Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance
JPH07278950A (en) Polyvinyl alcohol-based fiber having excellent high-temperature characteristic and its production