JP2858923B2 - Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance - Google Patents
Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistanceInfo
- Publication number
- JP2858923B2 JP2858923B2 JP28073290A JP28073290A JP2858923B2 JP 2858923 B2 JP2858923 B2 JP 2858923B2 JP 28073290 A JP28073290 A JP 28073290A JP 28073290 A JP28073290 A JP 28073290A JP 2858923 B2 JP2858923 B2 JP 2858923B2
- Authority
- JP
- Japan
- Prior art keywords
- pva
- polyvinyl alcohol
- hot water
- water resistance
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、セメントやゴム補強材などの分野において
有用な耐熱水性に優れた高強力ポリビニルアルコール
(以下PVAと略記)系繊維の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a high-strength polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having excellent hot water resistance and useful in fields such as cement and rubber reinforcing materials. .
<従来の技術> 従来、汎用ポリマー繊維の中でPVA系繊維は、ポリエ
ステル、ポリアミド、ポリアクリルニトリル系繊維など
に比べて強度、弾性率が高く、産業資材用としてはもち
ろんセメント、ゴムなどの補強材用などに実用されてい
る。近年、汎用ポリマーであるポリエチレンにおいて超
高分子量の原料をゲル紡糸し超延伸することにより、高
強力高弾性率繊維が得られることがわかつた。しかしポ
リエチレン自体が低融点で耐熱性が不十分であること及
び補強用繊維としてはマトリツクスとの接着性が悪いな
どの点で不十分であつた。<Conventional technology> Conventionally, among general-purpose polymer fibers, PVA-based fibers have higher strength and elastic modulus than polyester, polyamide, polyacrylonitrile-based fibers, etc., and are reinforced not only for industrial materials but also for cement and rubber. It is practically used for materials. In recent years, it has been found that a high-strength high-modulus fiber can be obtained by gel-spinning and ultra-stretching a raw material having an ultra-high molecular weight in polyethylene which is a general-purpose polymer. However, polyethylene itself was insufficient in that it had a low melting point and insufficient heat resistance, and as a reinforcing fiber, adhesion to matrix was poor.
そこで他の汎用ポリマーにおいてもゲル紡糸、超延伸
の手法を用いて高強力、高弾性率化の試みがなされてい
る。中でもPVAはポリエチレンと同じ平面ジグザグ構造
を有し、しかも活性な水酸基を有するため、分子間水素
結合を生じ易く、高強力、高弾性率、高耐熱性、高親和
性の繊維を得る可能性があり、例えば特開昭59-100710
号、特開昭59-130314号等が提案されている。これらのP
VA繊維は、市販のPVA繊維に比べると高強度、高弾性率
となつており、耐熱性も前記のポリエチレン繊維に比べ
ると優れている。一方PVA繊維ポリマー自体が水に溶け
るため耐熱水性に劣る問題がある。上記高強度、高弾性
率のPVA繊維の耐熱水性は従来のPVA繊維に比べると向上
しているものの充分でない。Therefore, attempts have been made to increase the strength and elasticity of other general-purpose polymers using gel spinning and ultra-drawing techniques. Among them, PVA has the same planar zigzag structure as polyethylene and has an active hydroxyl group, so it is easy to generate intermolecular hydrogen bonds, and it is possible to obtain fibers with high strength, high elastic modulus, high heat resistance, and high affinity. Yes, for example, JP-A-59-100710
And JP-A-59-130314 have been proposed. These p
VA fibers have higher strength and higher elastic modulus than commercially available PVA fibers, and also have better heat resistance than the above polyethylene fibers. On the other hand, there is a problem that the PVA fiber polymer itself is insoluble in water and thus is inferior in hot water resistance. The hot water resistance of the high strength, high modulus PVA fiber is improved as compared with the conventional PVA fiber, but is not sufficient.
そこで高強力PVA系繊維の耐熱水性を改善する提案が
なされている。例えば特開昭63-120107号においては15
倍以上延伸した延伸糸に5〜15%のアセタール化を施こ
すことが提案されている。しかし軽いアセタール化のみ
では耐熱水性の向上効果は充分でなく、かつアセタール
化工程を追加しなければならない。また特開平1-156517
号においては、紡糸後3倍以上に紡糸延伸し、乾燥後PV
A繊維の表面に有機過酸化物、イソシアネート系化合
物、エポキシ系化合物などの架橋性薬剤を付与し、その
後乾燥延伸することにより架橋を施こすことが提案され
ている。しかし、架橋性薬剤は主に表面に存在させて表
面架橋を主体としているため延伸性が不十分となり、弾
性率がせいぜい310g/dと低い。また安全面、健康面で注
意を要する特別な有機化合物を取り扱わねばならないと
いう問題もある。さらに特開平2-84587号にはPVA繊維コ
ードの耐疲労性を改善するため、15g/d以上の強度を有
するPVA繊維を、アルデヒド、イソシアネート、有機過
酸化物、カルボン酸等の有機化合物やリン酸、塩酸、チ
タニウム等の無機化合物などの架橋剤で処理することが
提案されている。しかし、分子の配向や結晶化が進んで
いる高強度繊維に後処理を施こすため、高濃度及び/ま
たは高温及び/または長時間の処理とならざるを得ず、
繊維強度が低下するとともに製造工程が複雑となり、ひ
いては製造コストが高くなる。また特開平2-133605号に
は、PVAとアクリル酸系ポリマーをブレンド紡糸し、両
ポリマー間で架橋を形成させたり、さらに有機過酸化物
など架橋性薬剤を付与することにより架橋させることが
提案されている。しかし強度に関与しないPVA以外のも
のを2%程度以上含有させるため強度の点で充分ではな
い。さらにPVA以外のポリマーを原液に添加するため種
々の問題がある。Therefore, proposals have been made to improve the hot water resistance of high-strength PVA-based fibers. For example, in JP-A-63-120107, 15
It has been proposed to apply 5 to 15% acetalization to a drawn yarn drawn twice or more times. However, the effect of improving hot water resistance is not sufficient with only light acetalization, and an acetalization step must be added. In addition, JP-A-1-56517
No., spinning and drawing three times or more after spinning, drying and PV
It has been proposed that a crosslinking agent such as an organic peroxide, an isocyanate-based compound, or an epoxy-based compound is applied to the surface of the A-fiber and then crosslinked by drying and stretching. However, since the crosslinkable agent is mainly present on the surface and is mainly composed of surface crosslinks, the stretchability becomes insufficient, and the elastic modulus is as low as 310 g / d at most. There is also a problem in that special organic compounds that require attention in terms of safety and health must be handled. Further, JP-A-2-84587 discloses that in order to improve the fatigue resistance of PVA fiber cords, PVA fibers having a strength of 15 g / d or more are treated with organic compounds such as aldehydes, isocyanates, organic peroxides, carboxylic acids and phosphorus. Treatment with a crosslinking agent such as an acid, hydrochloric acid, or an inorganic compound such as titanium has been proposed. However, in order to perform post-treatment on the high-strength fiber in which the orientation and crystallization of molecules are progressing, the treatment must be performed at a high concentration and / or at a high temperature and / or for a long time.
As the fiber strength decreases, the manufacturing process becomes complicated, and the manufacturing cost increases. Japanese Patent Application Laid-Open No. 2-133605 proposes that PVA and an acrylic acid-based polymer are blended and spun to form a cross-link between the two polymers or to further cross-link by adding a cross-linking agent such as an organic peroxide. Have been. However, it is not sufficient in strength because it contains about 2% or more other than PVA which does not contribute to strength. Further, there are various problems because a polymer other than PVA is added to the stock solution.
以上の如く、高強力PVA繊維の耐熱水性や耐疲労性を
改善するため架橋する方法は種々提案されているが、性
能及び製造コストの両方を満足させる方法はない。As described above, various methods of crosslinking to improve the hot water resistance and fatigue resistance of high-strength PVA fibers have been proposed, but there is no method that satisfies both performance and manufacturing cost.
<発明が解決しようとする課題> 従つて本発明は、セメントやゴムの補強材などに有用
な、耐熱水性と強度に優れたPVA繊維をシンブルな製造
工程で得んとしたものである。<Problems to be Solved by the Invention> Accordingly, the present invention is to obtain PVA fiber having excellent hot water resistance and strength, which is useful as a reinforcing material for cement or rubber, in a thimble manufacturing process.
<課題を解決するための手段> 本発明者らは上記課題を追求し、後述するような乾熱
延伸前の高含液率状態の糸篠に高温で脱水触媒となる塩
を接触させて糸篠内にこれを均一に浸透させてから乾燥
し乾熱延伸を行うことにより、繊維表面のみならず繊維
内部にも均一に架橋構造を有する繊維を公知の方法より
簡単な製造工程で得ることができ、しかも強度、耐熱水
性ともに優れていることを認め本発明に至つたものであ
る。<Means for Solving the Problems> The present inventors have pursued the above-mentioned problems and contacted a high-temperature content salt with a salt serving as a dehydration catalyst at a high temperature before the dry heat drawing as described later. By uniformly infiltrating this into Shino and drying and performing dry heat drawing, it is possible to obtain a fiber having a crosslinked structure uniformly not only on the fiber surface but also inside the fiber by a simpler manufacturing process than known methods. Thus, the present invention was found to be excellent in both strength and hot water resistance, leading to the present invention.
本発明は高強力PVA繊維の耐熱水性改善のための架橋
を導入するに際して、公知の方法では乾熱延伸して分子
配向及び結晶化が進んでいる延伸糸に架橋性薬剤を付与
して繊維表面を主体に架橋を導入するのに対し、架橋性
薬剤を繊維内に浸透させる際の架橋性薬剤の種類と付与
量、さらに糸篠の含液率を適正化することにより、架橋
性薬剤の繊維内部均一浸透をはかり、その後乾熱延伸し
て配向結晶化と同時に脱水架橋をさせこれにより均一架
橋を導入したものである。またこの方法は公知の方法よ
り簡単な製造工程で得るところに特徴を有する。In the present invention, when introducing cross-linking for improving hot water resistance of high-strength PVA fiber, a known method is used to apply a cross-linking agent to a drawn yarn that has been subjected to dry heat drawing and molecular orientation and crystallization, and the fiber surface is obtained. In contrast to the introduction of cross-linking mainly, the type and amount of the cross-linking agent when penetrating the cross-linking agent into the fiber, and by adjusting the liquid content of Itoshino, the fiber of the cross-linking agent Internal uniform infiltration is measured, followed by dry heat stretching, orientation crystallization and dehydration crosslinking at the same time, thereby introducing uniform crosslinking. Also, this method is characterized in that it is obtained by a simpler manufacturing process than known methods.
以下本発明をより具体的に説明する。本発明に用いる
PVAの重合度は特に限定されるものではないが、より高
重合度なPVAを用いる程強度、耐熱水性とも優れるので
好ましい。本発明の如く高温で脱水触媒となる塩を付着
後乾燥延伸して均一架橋させることにより耐熱水性を向
上させる場合、高重合度程耐熱水性向上効果が大きいこ
とがわかつたので、30℃水溶液の粘度より求めた平均重
合度が3000以上であることが好ましい。さらに平均重合
度が7000以上であると均一架橋による耐熱水性向上の相
乗効果が特に大きく好ましい。用いるPVAのケン化度は9
8モル%以上が好ましく、99モル%以上であるとさらに
好ましく、99.9モル%以上であると耐熱水性の点で特に
好ましい。また用いるPVAは、他にビニル基を有するモ
ノマー例えばエチレン、イタコン酸、ビニルピロリドン
などのモノマーを10モル%以上の比率で共重合したPVA
系ポリマーであつてもよい。Hereinafter, the present invention will be described more specifically. Used in the present invention
Although the degree of polymerization of PVA is not particularly limited, it is preferable to use a PVA having a higher degree of polymerization because strength and hot water resistance are excellent. In the case of improving the hot water resistance by applying a salt which becomes a dehydration catalyst at a high temperature and then drying and stretching the same to uniformly crosslink as in the present invention, it has been found that the higher the degree of polymerization, the greater the effect of improving the hot water resistance. The average degree of polymerization determined from the viscosity is preferably 3000 or more. Further, when the average degree of polymerization is at least 7000, the synergistic effect of improving the hot water resistance by uniform crosslinking is particularly large and is preferable. The saponification degree of PVA used is 9
It is preferably at least 8 mol%, more preferably at least 99 mol%, and particularly preferably at least 99.9 mol% in terms of hot water resistance. The PVA used is a PVA obtained by copolymerizing a monomer having a vinyl group, for example, a monomer such as ethylene, itaconic acid, or vinylpyrrolidone at a ratio of 10 mol% or more.
It may be a system polymer.
本発明に用いるPVAの溶媒は、ジメチルスルホキシド
(以下DMSOと略記)、グリセリン、エチレングリコー
ル、ジメチルホルムアミド、ジメチルイミダゾリジノ
ン、水、ロダン塩水溶液などの溶媒及びこれら溶媒同志
の混合溶媒などが挙げられる。PVAを各溶媒に適した温
度で溶解し脱泡して紡糸原液とする。Solvents for PVA used in the present invention include dimethylsulfoxide (hereinafter abbreviated as DMSO), glycerin, ethylene glycol, dimethylformamide, dimethylimidazolidinone, water, and aqueous solutions of rodane salts, and a mixture of these solvents. . PVA is dissolved at a temperature suitable for each solvent and defoamed to obtain a spinning stock solution.
得られた紡糸原液をノズルを通して、メタノール、エ
タノール、アセトンなどPVAに対して凝固作用を示す有
機溶媒を主体とする20℃以下の凝固浴に乾式あるいは乾
湿式紡糸する。もちろん凝固浴として凝固性有機溶媒と
原液溶媒との混合溶媒も用いることができる。凝固浴の
温度が20℃を越えると固化糸篠が不均一となり高強力繊
維を得ることができない。凝固浴温度を10℃以下とする
と固化糸篠がさらに均質となるので好ましい。なお、所
謂「ゲル化紡糸」は冷却のみで固化する系であり、通常
一旦空気中に押し出すものであり、本発明では、該「ゲ
ル化紡糸」は本明細書でいう乾湿式紡糸に包含されるも
のである。The obtained spinning dope is spin-dried through a nozzle into a coagulation bath of 20 ° C. or lower mainly comprising an organic solvent such as methanol, ethanol, acetone or the like which has a coagulation action on PVA. Of course, a mixed solvent of a coagulable organic solvent and a stock solution can also be used as the coagulation bath. If the temperature of the coagulation bath exceeds 20 ° C., the solidified yam becomes uneven and high-strength fibers cannot be obtained. It is preferable to set the coagulation bath temperature to 10 ° C. or lower because the solidified yam becomes more homogeneous. The so-called "gelling spinning" is a system that solidifies only by cooling, and is usually once extruded into the air. In the present invention, the "gelling spinning" is included in the dry-wet spinning referred to in the present specification. Things.
凝固浴にて固化した糸篠は湿延伸、溶媒抽出、乾燥
し、乾熱延伸を施こすが、本発明では乾熱延伸工程でPV
Aが脱水架橋するよう、乾熱延伸前の工程において、220
〜270℃の高温で脱水触媒としての機能を果す塩を糸篠
に20〜20,000ppm(対PVA)に付与することが重要なポイ
ントの1つである。220〜270℃の高温で脱水触媒として
の機能を果す塩には、例えば硫酸やリン酸などの多価強
酸とアルカリ金属あるいはアルカリ土類金属との酸性
塩、強酸とアンモニアとのアンモニユーム塩、強酸と遷
移金属との塩などが包含される。具体的には、リン酸第
一カリ、リン酸第二カリ、リン酸第一ソーダ、リン酸第
二ソーダ、酸性硫酸カリ、酸性リン酸カルシウム、硫酸
アンモン、リン酸アンモン、リン酸第一アンモン、リン
酸第二アンモン、リン酸水素カリウムアンモン、硫酸
銅、硝酸銅、硝酸コバルト、塩化マンガンなどがあげら
れる。PVAの架橋性薬剤としてはアルデヒド類、イソシ
アネート類、エポキシ類、メチロール類、有機過酸化物
類などがあるが、これらとPVAの架橋反応は200℃以下で
行なわれ、200℃以上では架橋剤自体が分解したり、有
機過酸化物の場合はあまりに急激に分解したりするた
め、220℃以上で実施する乾熱延伸工程での脱水架橋剤
としては適切ではない。高温でPVAの脱水架橋を促進す
る触媒として、硫酸、塩酸、リン酸などの無機酸や有機
スルホン酸などがあるが、いずれも常温で強酸であり、
取扱いに十分な注意が必要である。Itoshino solidified in the coagulation bath is subjected to wet stretching, solvent extraction, drying, and dry heat drawing.
In the step before dry heat drawing, so that A is dehydrated and crosslinked, 220
It is one of the important points to give a salt that functions as a dehydration catalyst at a high temperature of up to 270 ° C. to 20 to 20,000 ppm (vs. PVA) in Itoshino. Salts that function as dehydration catalysts at high temperatures of 220 to 270 ° C include, for example, acid salts of polyvalent strong acids such as sulfuric acid and phosphoric acid with alkali metals or alkaline earth metals, ammonium salts of strong acids with ammonia, and strong acids. And salts of transition metals. Specifically, primary potassium phosphate, secondary potassium phosphate, primary sodium phosphate, secondary sodium phosphate, acidic potassium sulfate, calcium acid phosphate, ammonium sulfate, ammonium phosphate, primary ammonium phosphate, phosphorus phosphate Examples thereof include ammonium secondary acid, potassium ammonium phosphate, copper sulfate, copper nitrate, cobalt nitrate, and manganese chloride. Crosslinking agents for PVA include aldehydes, isocyanates, epoxies, methylols, and organic peroxides.The cross-linking reaction between these and PVA is carried out at 200 ° C or lower. Is decomposed or, in the case of organic peroxides, decomposes too rapidly, so that it is not suitable as a dehydration crosslinking agent in the dry heat drawing step performed at 220 ° C. or higher. Catalysts that promote dehydration and crosslinking of PVA at high temperatures include inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, and organic sulfonic acids, all of which are strong acids at room temperature.
Careful handling is required.
塩は、乾熱延伸前の工程で含液率が30%/PVA以上の糸
篠に10〜20,000ppm/PVA付着させる必要がある。含液率
が30%未満であると塩が糸篠内部まで均一に浸透しない
ので好ましくない。含液率が80%/PVA以上であると均一
性の点でさらに好ましい。本発明にいう糸篠の含液率と
は、工程中の糸篠を手で3回力強く振つて液切りし、素
早くその重量を測定し(W1)、その後凝固浴及び原液溶
媒が完全に蒸発し恒量となるまで減圧乾燥して重量を測
定し(W2)、次式で与えられる値(W)である。It is necessary to attach the salt to the shinoshi having a liquid content of 30% / PVA or more in a step before the dry heat drawing at 10 to 20,000 ppm / PVA. If the liquid content is less than 30%, the salt does not uniformly penetrate into the inside of the shinoshino, which is not preferable. It is more preferable that the liquid content is 80% / PVA or more in terms of uniformity. In the present invention, the liquid content of Itoshino is defined as the liquid content of the Itoshino in the process, which is shaken vigorously three times by hand to drain the liquid, quickly measure its weight (W 1 ), and then the coagulation bath and the undiluted solvent are completely It is dried under reduced pressure until it evaporates to a constant weight, the weight is measured (W 2 ), and the value is given by the following formula (W).
塩の付着量は、架橋触媒としての機能の強さ、乾熱延
伸時の温度と滞留時間によつて異なるが、10ppm/PVA未
満であると乾熱延伸時の脱水架橋が不十分となるので目
標とする耐熱水性改良効果が得られない。30ppm/PVA以
上であるとさらに好ましく、最も好ましくは80ppm以上
である。塩の付着量が20,000ppmを越えると乾熱延伸時
脱水架橋より分解反応が優先的となるので糸強度が低下
し不都合である。塩の種類、乾熱延伸時の温度と滞留時
間によつて適正な酸の付着量を選定すべきである。 The amount of salt attached varies depending on the strength of the function as a cross-linking catalyst, the temperature during hot drawing and the residence time, but if it is less than 10 ppm / PVA, dehydration cross-linking during hot drawing becomes insufficient. The desired hot water resistance improvement effect cannot be obtained. It is more preferably at least 30 ppm / PVA, most preferably at least 80 ppm. If the amount of salt attached exceeds 20,000 ppm, the decomposition reaction takes precedence over the dehydration crosslinking at the time of dry heat drawing, so that the yarn strength is disadvantageously reduced. An appropriate amount of acid should be selected depending on the type of salt, the temperature at the time of dry heat drawing and the residence time.
塩を付与する工程は乾熱延伸前でなければならない
が、乾熱延伸前で糸篠の含液率が30%/PVA以上の工程で
あれば特に限定はない。例えば乾燥直前の油剤浴に塩を
共存させてもよいし、油剤浴前の溶媒抽出浴に塩を添加
してもよい。さらに原液がノズルから吐出されて固化す
る一浴に塩を添加してもよい。この場合繊維内部の均一
性は優れているが、一浴以降の浴(湿延伸浴、抽出浴、
油剤浴など)にも同じ程度の濃度の塩を添加しないと塩
が流去される可能性があるので全浴に塩を添加する方が
好ましい。The step of applying the salt must be performed before the hot drawing, but is not particularly limited as long as the liquid content of the yarn is 30% / PVA or more before the hot drawing. For example, a salt may coexist in an oil bath immediately before drying, or a salt may be added to a solvent extraction bath before the oil bath. Further, a salt may be added to one bath in which the undiluted solution is discharged from the nozzle and solidified. In this case, the uniformity inside the fiber is excellent, but after the first bath (wet stretching bath, extraction bath,
If the same concentration of salt is not added to an oil bath, the salt may be washed away. Therefore, it is preferable to add the salt to all baths.
凝固浴にて固化した糸篠は、メタノールなどの凝固性
有機溶媒の抽出液により糸中の原液溶媒などを抽出洗浄
除去し乾燥する。乾燥前に1段あるいはより好ましくは
多段で合計2倍以上の湿延伸を施こしておくと乾燥時の
膠着を防止することが出来好ましい。より好ましい湿延
伸倍率は2.5倍〜5.5倍である。湿延伸倍率が6倍を越え
ると単糸切れや断面変形が起こり易いので避けるべきで
ある。乾燥温度は30℃〜150℃が乾燥効率、性能の点で
好ましい。50〜120℃であるとさらに好ましい。After the solidification in the coagulation bath, the undiluted solvent in the yarn is extracted, washed and removed with an extract of a coagulable organic solvent such as methanol, and dried. It is preferable to perform wet stretching in a single stage or more preferably in multiple stages before drying, so that sticking during drying can be prevented. A more preferred wet stretch ratio is 2.5 times to 5.5 times. If the wet stretching ratio exceeds 6 times, breakage of single yarn and cross-sectional deformation are likely to occur, so that it should be avoided. The drying temperature is preferably from 30C to 150C in terms of drying efficiency and performance. More preferably, it is 50 to 120 ° C.
次いで、温度が220℃以上で全延伸倍率が15倍以上と
なるように乾熱延伸を行なつて分子の配向結晶化を行な
わせるとともに塩による脱水架橋をも行なわしめること
が本発明の重要なポイントの1つである。塩を付与した
乾燥後原糸を乾熱延伸する場合、PVAが架橋することに
より乾熱延伸性が大幅に低下し、分子の配向結晶化が十
分行なえないのではないかと危惧したが、適正な架橋性
薬剤の種類、付着量及び付着状態、さらに乾熱延伸温度
を選択すれば、意外にも乾熱延伸性は殆んど低下しない
ことを見出したことが本発明のキーポイントとなつた。
この理由は不明であるが、乾熱延伸時まず分子の配向結
晶化の物理的構造変化が優先し、次いで脱水架橋の化学
構造変化が起るためと推定される。乾熱延伸前に付与す
る架橋性薬剤として本発明において選定した塩はこのよ
うな機能を有するため優れていると考えられる。繊維の
強度及び脱水架橋度は付与する塩の種類と量、乾熱延伸
温度と滞留時間のバランスによつて異なるので適宜選択
すべきである。一例として、塩を付与しない状態で最も
高強度となる延伸温度と滞留時間を見つけ、ほぼ同じ延
伸温度と延伸時間で塩を付与した原糸を延伸し、架橋度
が30〜100%となるよう所定の塩の付与量を決定すれば
よい。ここにいう架橋度とは塩を付与しないPVA繊維の
延伸糸が完全に溶解する熱水温度より5℃高い温度の熱
水中で浴比に1000でフリーで1時間処理した後未溶解の
繊維を300メツシユの金網で過した時に金網に残つた
ゲルを80℃で恒量となるまで減圧乾燥した時の未溶解残
量を測定し、初めに用いた量に対しての残存率より算出
する。Then, it is important to carry out the dry heat stretching so that the temperature is 220 ° C. or more and the total stretching ratio is 15 times or more so that the molecules are oriented and crystallized and the salt is also subjected to dehydration crosslinking by salt. One of the points. In the case where the raw yarn is dry-drawn after the addition of the salt, it is feared that the dry-heat drawability is significantly reduced due to the cross-linking of the PVA, and that the orientation and crystallization of the molecule may not be sufficiently performed. The key point of the present invention was that it was found that if the type, amount and state of adhesion of the crosslinkable agent and the dry heat stretching temperature were selected, the dry heat stretchability was unexpectedly hardly reduced.
The reason for this is unknown, but it is presumed that the dry heat drawing first gives rise to a change in the physical structure of oriented crystallization of molecules, followed by a change in the chemical structure of dehydration crosslinking. It is considered that the salt selected in the present invention as a crosslinkable agent to be applied before the dry heat drawing has such a function and thus is excellent. The fiber strength and the degree of dehydration crosslinking depend on the type and amount of the salt to be provided and the balance between the dry heat drawing temperature and the residence time, and should be appropriately selected. As an example, the stretching temperature and the residence time at which the strength is the highest in the state where the salt is not applied are found, and the raw yarn to which the salt is applied is stretched at substantially the same stretching temperature and the stretching time so that the degree of crosslinking is 30 to 100%. What is necessary is just to determine the application amount of the predetermined salt. The degree of crosslinking referred to here is the undissolved fiber after being treated at a bath ratio of 1000 for 1 hour in hot water at a temperature 5 ° C higher than the hot water temperature at which the drawn yarn of the PVA fiber without salt is completely dissolved. Is passed through a 300 mesh wire gauze, the remaining amount of undissolved gel when dried under reduced pressure at 80 ° C. to a constant weight at 80 ° C. is measured, and is calculated from the residual ratio with respect to the initially used amount.
延伸温度はPVAの重合度によつて異なるが、少なくと
も220℃以上でなければならない。高重合程高温にする
必要があるが、270℃以上では分解が先行するので好ま
しくない。湿延伸と乾熱延伸を加えた全延伸倍率が15倍
未満では繊維強度が低いので15倍以上としなければなら
ない。全延伸倍率は高い方が好ましいが、毛羽や断糸の
発生を考慮し、最大延伸倍率の0.75〜0.95倍とすべきで
ある。乾熱延伸後さらに定長熱処理あるいは乾熱収縮を
施こして結晶化を促進するとともに、脱水架橋を促進さ
せてもよい。The stretching temperature depends on the degree of polymerization of the PVA, but must be at least 220 ° C. or higher. The higher the polymerization, the higher the temperature, the higher the temperature. If the total draw ratio of the wet draw and the dry heat draw is less than 15 times, the fiber strength is low, so it must be 15 times or more. The total draw ratio is preferably higher, but should be 0.75 to 0.95 times the maximum draw ratio in consideration of the occurrence of fluff and breakage. After the dry heat stretching, a constant-length heat treatment or dry heat shrinkage may be further performed to promote crystallization and promote dehydration crosslinking.
以上の如く含液率の高い糸篠に塩を所定量接触させて
塩を内部まで均一に浸透させてから乾燥し、乾熱延伸時
分子の配向結晶化と脱水架橋を行なうことにより架橋を
繊維内部まで均一に行なうことができ、耐熱水性、耐疲
労性に優れたPVA繊維を安価に製造することを可能にし
たものである。As described above, a predetermined amount of salt is brought into contact with a high liquid content of Ishino to allow the salt to uniformly penetrate into the inside, and then dried. It is possible to produce PVA fiber which is excellent in hot water resistance and fatigue resistance because it can be uniformly performed to the inside and is inexpensive.
(発明の効果) 従来の高強力PVA繊維の架橋処理法は表面架橋を主体
としていたのに対し、本発明では含液率の高い糸篠に塩
を接触させて乾燥後乾熱延伸することにより、分子の配
向結晶化と同時に繊維内部まで均一に架橋を施こし、こ
れにより耐熱水性を改善するとともに、新しい設備、製
造工程を追加することなく高強度、高耐熱水性の加橋PV
A繊維を得ることができるので安価に製造することを可
能としたものである。従つて得られた高強度、高耐熱性
PVA繊維は、従来のPVA繊維やパラ系アミドなど他のスー
パー繊維に比べてコストパーフォーマンスに優れてお
り、ホース、タイヤなどのゴム資材分野や、FRCおよびF
RPなどの補強材分野なとに広く用いることができる。(Effect of the Invention) Whereas the conventional crosslinking treatment method for high-strength PVA fibers mainly involves surface crosslinking, the present invention employs a method in which a salt is brought into contact with a high-moisture-content Ishino, dried and then stretched by dry heat. Cross-linking is uniformly applied to the inside of the fiber at the same time as molecular orientation and crystallization, thereby improving hot water resistance and adding high strength and high heat water resistance without adding new equipment and manufacturing process.
A fiber can be obtained, so that it can be manufactured at low cost. High strength and high heat resistance obtained
PVA fiber is superior in cost performance to other super fibers such as conventional PVA fiber and para-amide, and is used in rubber material fields such as hoses and tires, FRC and FRC.
It can be widely used in the field of reinforcing materials such as RP.
以下実施例により具体的に説明するが、本発明はこれ
ら実施例に限定されるものではない。Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
実施例1 粘度平均重合度4000、ケン化度99.9モル%のPVAを7.5
重量%となるようDMSOに添加し、70℃に窒素雰囲気下溶
解した。得られた紡糸原液を孔径0.15mm、孔数500のノ
ズルより、5℃のメタノール/DMSO=7/3(重量比)より
なる凝固浴(第1浴)に湿式紡糸した。得られた凝固糸
篠を第1浴と同じメタノール/DMSO浴(第2浴)にさら
に浸漬し、その後さらに40℃のメタノール/DMSO=90/10
の湿延伸浴(第3浴)を通して4倍の湿延伸を行なつ
た。その後メタノール/DMSO=98/2の第1抽出浴(第4
浴)を通してDMSOを抽出し、さらに100ppmのリン第3ア
ンモンを含有するメタノール/DMSO=99.9/0.1の第2抽
出浴(第5浴)を通すことによりDMSOをさらに抽出する
とともに、150ppm(対PVA)のリン酸アンモンを糸篠に
付与し、80℃で乾燥した。第4浴後の糸篠の含液率は15
0%であつた。次に得られた紡糸原糸を第1炉180℃、第
2炉236℃の熱風炉中で全延伸倍率が20.5倍の延伸を行
なつた。延伸炉内の滞留時間は75秒であつた。Example 1 7.5 of PVA having a viscosity average degree of polymerization of 4000 and a saponification degree of 99.9 mol% was used.
It was added to DMSO so as to be a weight% and dissolved at 70 ° C. under a nitrogen atmosphere. The obtained spinning dope was wet-spun from a nozzle having a pore size of 0.15 mm and a number of holes of 500 into a coagulation bath (first bath) at 5 ° C. and methanol / DMSO = 7/3 (weight ratio). The obtained coagulated yarn is further immersed in the same methanol / DMSO bath as the first bath (second bath), and then methanol / DMSO at 90 ° C. = 90/10
4 times wet stretching was performed through a wet stretching bath (third bath). Thereafter, the first extraction bath (methanol / DMSO = 98/2)
DMSO was further extracted by passing through a second extraction bath (fifth bath) of 99.9 / 0.1 methanol / DMSO containing 100 ppm of phosphorus tertiary ammonium, and 150 ppm (vs. PVA). ) Was added to Itoshino and dried at 80 ° C. The liquid content of Itoshino after the fourth bath is 15
It was 0%. Next, the obtained spun yarn was stretched in a hot air furnace having a first furnace of 180 ° C. and a second furnace of 236 ° C. at a total draw ratio of 20.5 times. The residence time in the drawing furnace was 75 seconds.
得られた延伸糸は紫系統に濃く着色し、脱水架橋反応
が起つていると推定された。ヤーン強度は18.3g/dであ
つた。またこの糸をオートクレーブ中150℃の熱水に定
長で1時間浸漬後取り出して乾燥し、強力残存率を測定
したところ94%とほとんど低下しておらず、優れた耐熱
水性を示した。The obtained drawn yarn was deeply colored in a purple system, and it was presumed that a dehydration crosslinking reaction had occurred. The yarn strength was 18.3 g / d. The yarn was immersed in hot water at 150 ° C. for 1 hour in an autoclave at a constant length, and then taken out and dried. When the strong residual ratio was measured, it hardly decreased to 94%, indicating excellent hot water resistance.
比較例1 第2浴にリン酸を添加しない以外は実施例1と同様に
紡糸延伸を行ない、全延伸倍率21倍まで可能であつた。Comparative Example 1 Spin drawing was performed in the same manner as in Example 1 except that phosphoric acid was not added to the second bath, and a total draw ratio of 21 was possible.
得られた延伸糸には着色はみられなかつた。ヤーン強
度は19.6g/dであつた。またこの延伸糸をオートクレー
ブ中いろいろの温度の熱水に定長で1時間浸漬後取り出
して溶解状態を観察した。その結果135℃以上の熱水で
は殆んど溶解し、糸の形状を保持していなかつた。No coloring was observed in the obtained drawn yarn. The yarn strength was 19.6 g / d. The drawn yarn was immersed in hot water of various temperatures in an autoclave at a constant length for 1 hour, taken out, and the dissolved state was observed. As a result, almost no water was dissolved in hot water at 135 ° C. or higher, and the yarn shape was not maintained.
比較例2 比較例1で得た延伸糸をリン酸8%と尿素20%を含む
60℃の水溶液中に30分浸漬し、常温で15分流水洗後80℃
乾燥し、次いで192℃で6分定長熱処理した。この処理
糸は実施例1と同様に着色した。またこの処理糸の耐熱
水性は148℃と優れていたが、ヤーン強度は14.8g/dと実
施例1や比較例1に比べて低く、重合度4000の高強度PV
A繊維としては不満足のものであつた。Comparative Example 2 The drawn yarn obtained in Comparative Example 1 contains 8% of phosphoric acid and 20% of urea
Immerse in an aqueous solution at 60 ° C for 30 minutes, wash with running water at room temperature for 15 minutes, then 80 ° C
It was dried and then heat-treated at 192 ° C. for 6 minutes. This treated yarn was colored in the same manner as in Example 1. The hot water resistance of this treated yarn was excellent at 148 ° C, but the yarn strength was 14.8 g / d, which was lower than that of Example 1 and Comparative Example 1, and the high-strength PV having a degree of polymerization of 4000.
The A fiber was unsatisfactory.
実施例2 粘度平均重合度7800、ケン化度99.8モル%のPVAを6
重量%となるようDMSOに添加し、70℃にて窒素雰囲気下
溶解した。これを実施例1と同様に紡糸、湿延伸、抽
出、乾燥した。ただし第5浴にリン酸アンモンの代りに
リン酸第1ナトリウムを120ppm添加した。第4浴後糸篠
の含液率は160%であり、リン酸第1ナトリウムの付着
率は190ppm(対PVA)であつた。次に得られた紡糸原糸
を第1炉160℃、第2炉245℃の熱風炉中で全延伸倍率が
20倍となるよう乾燥延伸した。Example 2 PVA having a viscosity average degree of polymerization of 7800 and a saponification degree of 99.8 mol% was added to 6
It was added to DMSO so as to be a weight% and dissolved at 70 ° C. under a nitrogen atmosphere. This was spun, wet drawn, extracted and dried in the same manner as in Example 1. However, monobasic sodium phosphate (120 ppm) was added to the fifth bath instead of ammonium phosphate. After the fourth bath, the liquid content of Itoshino was 160%, and the adhesion rate of monosodium phosphate was 190 ppm (vs. PVA). Next, the obtained spun yarn is heated in a hot stove at 160 ° C. in the first furnace and 245 ° C. in the second furnace, and the total draw ratio is
The film was dried and stretched to 20 times.
得られた延伸糸は実施例1と同様に着色し、ヤーン強
度は19.6g/dであつた。またこの糸をオートクレーブ中1
65℃の熱水に定長で1時間浸漬後取り出して乾燥後、強
力残存率を判定したところ92%であつた。リン酸第1ナ
トリウムを加えずに作製した糸の耐熱水は140℃であつ
た。高重合度PVAを使用すると本発明の耐熱水性改良効
果がより大きくなることが窺える。The obtained drawn yarn was colored as in Example 1, and the yarn strength was 19.6 g / d. In addition, this thread is
After being immersed in hot water at 65 ° C. for 1 hour at a constant length and taken out and dried, the strong residual ratio was determined to be 92%. The heat-resistant water of the yarn prepared without adding sodium phosphate monobasic was 140 ° C. It can be seen that the use of PVA having a high degree of polymerization increases the hot water resistance improving effect of the present invention.
実施例3 粘度平均重合度18000、ケン化度99.8モル%のPVAを5
重量%となるようグリセリンを加えて窒素雰囲気下180
℃で加熱溶解した。得られた紡糸原液を孔径0.17mmφ、
孔数100のノズルよりエヤギャップ1cmとして−5℃のメ
タノール/グリセリン=8/2よりなる第1浴中に乾湿式
紡糸した。得られたゲル糸篠を湿延伸、グリセリン抽出
を行ない、乾燥直前のメタノール浴に硫酸銅を加えて、
ローラータツチ方式で糸篠に硫酸銅を付着させた後乾燥
した。硫酸銅と接触時の糸の含液率は80%であり、乾燥
後の硫酸銅の付着率は280ppm(対PVA)であつた。得ら
れた紡糸原糸を第1炉160℃、第2炉259℃の熱風炉中で
乾燥延伸し、全延伸倍率18倍の延伸糸を得た。Example 3 PVA having a viscosity average degree of polymerization of 18000 and a saponification degree of 99.8 mol%
Glycerin to a concentration of 180 wt.
It melted by heating at ° C. The obtained spinning dope is 0.17 mmφ in pore size,
Dry-wet spinning was performed from a nozzle having 100 holes with an air gap of 1 cm in a first bath of methanol / glycerin = 8/2 at -5 ° C. The obtained gel shinoshi was wet-drawn, glycerin was extracted, and copper sulfate was added to a methanol bath immediately before drying.
Copper sulfate was adhered to Itoshino by a roller touch method and then dried. The liquid content of the yarn upon contact with copper sulfate was 80%, and the adhesion rate of copper sulfate after drying was 280 ppm (vs. PVA). The obtained spun yarn was dried and drawn in a hot air furnace at a first furnace of 160 ° C. and a second furnace of 259 ° C. to obtain a drawn yarn having a total draw ratio of 18 times.
得られた延伸糸の着色は実施例1、2に比べると少な
かつたが、耐熱水性は180℃以上と極めて優れており、
ヤーン強度も20.8g/dと優れていた。Although the coloring of the obtained drawn yarn was less than in Examples 1 and 2, the hot water resistance was extremely excellent at 180 ° C. or higher.
The yarn strength was also excellent at 20.8 g / d.
極く微量の硫酸銅はPVAの着色防止に有効であること
はよく知られているが、多目に付着させて熱延伸すると
耐熱水性の改良に有効であることがわかつた。It is well known that a very small amount of copper sulfate is effective in preventing the coloration of PVA, but it has been found that a large amount of copper sulfate is effective in improving hot water resistance when it is attached to a large amount and hot stretched.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 洋文 岡山県倉敷市酒津1621番地 株式会社ク ラレ内 審査官 真々田 忠博 (56)参考文献 特開 平3−287812(JP,A) 特開 平3−213510(JP,A) 特開 平1−156517(JP,A) (58)調査した分野(Int.Cl.6,DB名) D01F 6/14────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirofumi Sano 1621 Sazu, Kurashiki-shi, Okayama Pref. -213510 (JP, A) JP-A-1-156517 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) D01F 6/14
Claims (1)
を20℃以下の有機溶媒系凝固浴に湿式あるいは乾湿式紡
糸後乾熱延伸してポリビニルアルコール系繊維を製造す
るに際して、乾熱延伸前の工程の含液率がポリビニルア
ルコールに対して30%以上の糸篠に、220〜270℃でポリ
ビニルアルコールの脱水触媒となる塩を接触させて該塩
をポリビニルアルコールに対して10〜20,000ppm付着さ
せて乾燥し、次いで温度220℃以上、270℃以下で、全延
伸倍率15倍以上となるよう乾熱延伸を施こすことを特徴
とする耐熱水性に優れた高強力ポリビニルアルコール系
繊維の製造法。1. A method for producing a polyvinyl alcohol-based fiber by spin-drying a spinning stock solution in which polyvinyl alcohol is dissolved in an organic solvent-based coagulation bath at 20 ° C. or lower after wet- or dry-wet spinning to produce polyvinyl alcohol-based fiber. A salt serving as a dehydration catalyst for polyvinyl alcohol is brought into contact with a yarn having a liquid content of 30% or more with respect to polyvinyl alcohol at 220 to 270 ° C., and the salt is attached to polyvinyl alcohol at 10 to 20,000 ppm and dried. A method for producing a high-strength polyvinyl alcohol-based fiber having excellent hot water resistance, which is followed by performing dry heat drawing at a temperature of 220 ° C or higher and 270 ° C or lower and a total draw ratio of 15 times or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28073290A JP2858923B2 (en) | 1990-10-18 | 1990-10-18 | Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28073290A JP2858923B2 (en) | 1990-10-18 | 1990-10-18 | Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04163309A JPH04163309A (en) | 1992-06-08 |
JP2858923B2 true JP2858923B2 (en) | 1999-02-17 |
Family
ID=17629179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28073290A Expired - Fee Related JP2858923B2 (en) | 1990-10-18 | 1990-10-18 | Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2858923B2 (en) |
-
1990
- 1990-10-18 JP JP28073290A patent/JP2858923B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04163309A (en) | 1992-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4535027A (en) | High strength polyacrylonitrile fiber and method of producing the same | |
JPH0611927B2 (en) | High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same | |
JP2858923B2 (en) | Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance | |
JP2826182B2 (en) | Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance | |
JPH0696807B2 (en) | High-strength, high-modulus polyvinyl alcohol fiber manufacturing method | |
JPH01156517A (en) | High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber | |
JP2888502B2 (en) | Method for producing high strength polyvinyl alcohol fiber with excellent hot water resistance | |
JP2856837B2 (en) | Polyvinyl alcohol fiber and method for producing the same | |
JP3466279B2 (en) | Polyvinyl alcohol fiber excellent in dimensional stability in wet and dry conditions and method for producing the same | |
JP3423814B2 (en) | A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance. | |
JP2833887B2 (en) | Method for producing polyvinyl alcohol fiber with excellent strength | |
JP3067056B2 (en) | High strength polyvinyl alcohol fiber and method for producing the same | |
JPH076087B2 (en) | High strength and high modulus PVA fiber and method for producing the same | |
KR100494063B1 (en) | Polyvinyl alcohol fiber for the reinforcement of tire and method for the production of the same | |
JP2927304B2 (en) | Method for producing polyvinyl alcohol-based synthetic fiber | |
JP3366476B2 (en) | High-strength polyvinyl alcohol-based fiber excellent in wet heat resistance and method for producing the same | |
JP2001288613A (en) | Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber | |
JP3357215B2 (en) | Wet heat resistant polyvinyl alcohol fiber and method for producing the same | |
JPS6156328B2 (en) | ||
JP2888498B2 (en) | Production method of high strength polyvinyl alcohol fiber with little coloring | |
JP2002266159A (en) | Precursor fiber bundle for carbon fiber and method for producing the same | |
JP2001055620A (en) | Acrylic fiber suitable for production of nonwoven fabric | |
JPH1077572A (en) | Hot water-resistant polyvinyl alcohol-based fiber and its production | |
JPS6156326B2 (en) | ||
JPH05321020A (en) | Method for continuously acetalizing polyvinyl alcohol-based yarn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |