JPH076087B2 - High strength and high modulus PVA fiber and method for producing the same - Google Patents

High strength and high modulus PVA fiber and method for producing the same

Info

Publication number
JPH076087B2
JPH076087B2 JP60221454A JP22145485A JPH076087B2 JP H076087 B2 JPH076087 B2 JP H076087B2 JP 60221454 A JP60221454 A JP 60221454A JP 22145485 A JP22145485 A JP 22145485A JP H076087 B2 JPH076087 B2 JP H076087B2
Authority
JP
Japan
Prior art keywords
pva
fiber
boric acid
strength
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60221454A
Other languages
Japanese (ja)
Other versions
JPS6285013A (en
Inventor
洋文 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP60221454A priority Critical patent/JPH076087B2/en
Publication of JPS6285013A publication Critical patent/JPS6285013A/en
Publication of JPH076087B2 publication Critical patent/JPH076087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高強度高モジユラスなポリビニルアルコール
(本願明細書ではPVAと略記しており、以下も同様略記
する)繊維およびその製造法に関するものであり、特に
産業資材用および複合材の強化用に適したPVA繊維を得
ようとするものである。
TECHNICAL FIELD The present invention relates to a high-strength and high-modulus polyvinyl alcohol (abbreviated as PVA in the present specification and the same hereinafter) fiber and a method for producing the same. In particular, it is intended to obtain a PVA fiber suitable for industrial materials and reinforcing composite materials.

〈従来の技術〉 従来PVA繊維は、ポリアミド、ポリエステル、ポリアク
リロニトリル系繊維に比べ、強度、モジユラスが高く、
その主用途である産業資材用繊維としてはもちろん、最
近ではアスベスト代替繊維としてセメントの補強材にも
使用されようとしている。
<Prior art> Conventional PVA fibers have higher strength and modulus than polyamide, polyester, and polyacrylonitrile fibers,
Not only as a fiber for industrial materials, which is its main application, but recently, it is about to be used as a reinforcing material for cement as an asbestos alternative fiber.

しかしこれまで得られたPVA繊維は、芳香族ポリアミド
(アラミド)繊維や超高分子量ポリエチレン繊維の如き
高い強度やモジユラスを有していなかつた。
However, the PVA fibers obtained so far do not have high strength and module like aromatic polyamide (aramid) fibers and ultra high molecular weight polyethylene fibers.

PVA繊維は通常PVA水溶液を紡糸原液として用い凝固性無
機塩水溶液中で湿式紡糸し、延伸、乾燥、熱処理等の処
理を施す方法により製造されているが、このPVA繊維の
強度および弾性率を向上させるために各種の方法が提案
されてきた。
PVA fibers are usually produced by wet spinning in a coagulating inorganic salt aqueous solution using a PVA aqueous solution as a spinning dope, and then subjecting it to treatments such as stretching, drying, and heat treatment.The strength and elastic modulus of this PVA fiber are improved. Various methods have been proposed to achieve this.

たとえば特公昭43-16675号公報にはPVAのジメチルスル
ホキシド(以下DMSOと略す)溶液を紡糸原液としてメタ
ノール、エタノール、ベンゼン、クロロホルム等の有機
溶剤中に湿式紡糸する方法、特開昭56-128309号公報に
は湿式または乾式紡糸法によつて得られたPVA繊維を少
なくとも10倍以上に延伸した後熱処理する方法が提案さ
れている。また特公昭37-14422号公報や特公昭47-32142
号公報にはホウ酸またはホウ酸塩を含有するPVA水溶液
を種々の塩を含むアルカリ性凝固浴中に紡糸し、ホウ酸
をPVAに架橋させた後、再びホウ酸またはその架橋物を
その後の中和、水洗などの工程で除去する方法が開示さ
れている。しかしこれらの方法によつて得られるPVA繊
維の延伸倍率は15倍以下であり、得られる繊維の強度は
12g/dr以下、モジユラスは400g/dr以下であつた。
For example, JP-B-43-16675 discloses a method of wet spinning a dimethyl sulfoxide (hereinafter abbreviated as DMSO) solution of PVA as an original spinning solution in an organic solvent such as methanol, ethanol, benzene or chloroform, and JP-A-56-128309. The publication proposes a method in which PVA fibers obtained by a wet or dry spinning method are stretched at least 10 times and then heat treated. Also, Japanese Patent Publication No. 37-14422 and Japanese Patent Publication No. 47-32142.
In the publication, a PVA aqueous solution containing boric acid or a borate is spun in an alkaline coagulation bath containing various salts to cross-link boric acid with PVA, and then boric acid or its cross-linked product is added again in the following. A method of removing in a process such as Japanese-style and washing with water is disclosed. However, the draw ratio of the PVA fiber obtained by these methods is 15 times or less, and the strength of the obtained fiber is
It was less than 12g / dr and Modulus was less than 400g / dr.

一方特開昭60-126312号公報にはPVAの重合度が約4000で
DMSOを溶媒とした乾湿式紡糸方法により、延伸倍率約30
倍、強度20g/dr、モジユラス450g/drのPVA繊維を得るこ
とが示されているが、本発明の如く容易に強度20g/dr以
上、モジユラス500g/dr以上を突破することは難しい。
On the other hand, in JP-A-60-126312, the degree of polymerization of PVA is about 4000.
Draw ratio of about 30 by dry-wet spinning method using DMSO as solvent
It has been shown that a PVA fiber having a strength of 20 g / dr and a modulus of 450 g / dr can be obtained, but it is difficult to easily break the strength of 20 g / dr or more and the modulus of 500 g / dr or more as in the present invention.

超高分子量ポリエチレンのゲル紡糸−超延伸の考え方を
PVA繊維に応用した例として特開昭59-130314号公報があ
るが、これは重合度約30000のPVAを用い、グリセリンま
たはエチレングリコールを溶媒として冷却によりゲル繊
維をつくり、最高強度19g/dr、モジユラス500〜600g/dr
のPVA繊維を得る方法である。しかしPVA繊維にはポリエ
チレン繊維と異なり分子間および分子内に水素結合を有
し、折りたたみ分子鎖をとりずらいと考えられており、
高重合度PVAで濃度を低くし、分子鎖のからみを少なく
してもいまだ満足すべき高い延伸倍率と高強度高モジユ
ラスのPVA繊維を得ることは困難であつた。
Ultra high molecular weight polyethylene gel spinning
As an example of application to PVA fiber, there is JP-A-59-130314, which uses PVA with a degree of polymerization of about 30,000 to make gel fiber by cooling with glycerin or ethylene glycol as a solvent, and has a maximum strength of 19 g / dr, Module 500-600g / dr
Is a method of obtaining PVA fiber. However, unlike polyethylene fibers, PVA fibers have intermolecular and intramolecular hydrogen bonds, and it is believed that folding molecular chains are difficult to remove.
It was difficult to obtain a PVA fiber with a high draw ratio and high strength and high modularity, which is still satisfactory, even if the concentration of the polymerized PVA was lowered and the entanglement of the molecular chain was reduced.

高強力高モジユラス繊維を得るには分子鎖を高度に配向
する必要があり、そのために高倍率に延伸する必要があ
る。PVA繊維の場合高倍率延伸で高強度化高モジユラス
化を行なうためには次の点が考えられる。
In order to obtain a high-strength, high-modulus fiber, it is necessary to highly orient the molecular chains, and therefore it is necessary to draw at a high ratio. In the case of PVA fiber, the following points can be considered in order to achieve high strength and high modulus by high-stretch drawing.

(1)高重合度PVAを用いる …分子鎖末端の低下による欠陥部の減少 高延伸張力の維持 結晶非晶間の連結による強度寄与率の増大 (2)低濃度PVA溶液を用いる …分子鎖のからみを少なくし延伸倍率を増大 (3)ゲル紡糸を行なう …分子鎖形態を固定し分子鎖のからみの発生を抑制 (4)分子間の水素結合を抑制する …延伸時の分子鎖およびラメラ間のすべりを向上 (5)分子鎖間に適度の空隙を与える …延伸時の分子鎖およびラメラ間のすべりを向上 (6)延伸時に繊維の白化(ボイド)および着色分解を
抑える …強度、モジユラスの低下防止 従来上記(1)〜(5)を満足し高倍率延伸による高強
度高弾性率PVA繊維を得る方法は見出されていなかっ
た。
(1) Using a high degree of polymerization PVA ... Decreasing defects by lowering the molecular chain ends Maintaining a high stretching tension Increasing the strength contribution rate by linking between crystalline and amorphous (2) Using a low concentration PVA solution ... Reduces entanglement and increases draw ratio (3) Performs gel spinning ... Fixes molecular chain morphology and suppresses entanglement of molecular chains (4) Suppresses hydrogen bonding between molecules ... Between molecular chain and lamella during drawing (5) Giving moderate voids between molecular chains ... Improves slippage between molecular chains and lamellas during stretching (6) Suppresses whitening (voids) and color decomposition of fibers during stretching ... Strength and Modulus Prevention of Degradation Conventionally, a method of satisfying the above (1) to (5) and obtaining a high-strength and high-modulus PVA fiber by high-stretch drawing has not been found.

〈発明が解決しようとする問題点〉 以上の背景をふまえて本発明は、高重合度PVAを用い、
ホウ酸またはホウ酸塩を添加して架橋により溶液粘度を
増大させて、低濃度PVA溶液を安定にゲル紡糸すると共
に、架橋したホウ素を一部除去することにより延伸倍率
を増大させ、容易にかつ安定に高強力高モジユラスPVA
繊維を得んとするものである。
<Problems to be solved by the invention> Based on the above background, the present invention uses a high polymerization degree PVA,
By adding boric acid or borate to increase the solution viscosity by cross-linking, stable gel spinning of low-concentration PVA solution, and by partially removing cross-linked boron, the draw ratio can be increased easily and easily. Stable high strength High modular PVA
The purpose is to obtain fibers.

〈問題点を解決するための手段〉 すなわち本発明は高強力高モジユラスPVA繊維を得るた
めの方法として、重合度が少なくとも1500以上、好まし
くは3000以上のPVA重合体の低濃度溶液にホウ酸または
ホウ酸塩を添加してPVAを架橋させ、分子鎖のからみの
少ない低濃度溶液を安定にゲル紡糸したのち、架橋した
ホウ素を一部除去することにより適度の水素結合の抑制
と分子鎖間またはラメラ間に適度の空隙を与え容易にか
つ安定に高倍率延伸を可能ならしめようとしたものであ
る。
<Means for Solving Problems> That is, the present invention, as a method for obtaining a high-strength, high-modulus PVA fiber, has a polymerization degree of at least 1500 or more, and preferably boric acid or a low-concentration solution of PVA polymer of 3000 or more. Add borate to crosslink PVA, and after stable gel spinning of a low-concentration solution with less entanglement of molecular chains, remove some of the crosslinked boron to moderate hydrogen bond inhibition and between intermolecular chains. The purpose of this is to provide a suitable gap between the lamellas so as to enable easy and stable high-magnification stretching.

更に詳しく述べれば本発明は、平均重合度が1500以上の
PVAにホウ酸またはホウ酸塩を添加した紡糸原液をゲル
紡糸して得られたPVA繊維であって、繊維中にPVAに対し
て0.05〜0.8重量%のホウ酸またはホウ酸塩に相当する
ホウ素が存在し、単繊維の引張強度が15g/dr以上、引張
モジュラスが400g/dr以上である高強力高モジュラスPVA
繊維であり、好ましくは平均重合度が6000以上のPVAか
らなり、単繊維の強度が20g/dr以上、引張モジュラスが
500g/dr以上である高強力高モジュラスPVA繊維であり、
そしてこのような繊維の製造方法として、平均重合度が
1500以上のPVA重合体をゲル紡糸の可能な溶媒に溶解す
る際にpHを5〜9にしてホウ酸またはホウ酸塩を該重合
体に添加し、得られた溶液をノズルより吐出させ冷却に
よりゲル化させたのち、溶媒を全部又は大部分除去する
とともに該重合体に対し0.05〜0.8重量%のホウ酸また
はホウ酸塩に相当するホウ素を残存させ、しかるのち高
倍率に延伸することを特徴とする高強力高モジュラスPV
A繊維の製造法であり、好ましくは製造法において、PVA
の平均重合度が6000以上であり、またPVA重合体の溶媒
がエチレングリコールまたはグリセリンであり、また全
延伸倍率が少なくとも20倍であるPVA繊維の製造法に関
するものである。
More specifically, the present invention has an average degree of polymerization of 1500 or more.
A PVA fiber obtained by gel-spinning a spinning solution prepared by adding boric acid or a borate to PVA, which is 0.05 to 0.8% by weight of boric acid or borate based on PVA in the fiber. With high tensile strength of 15 g / dr or more and tensile modulus of 400 g / dr or more.
The fiber is preferably PVA having an average degree of polymerization of 6000 or more, a single fiber strength of 20 g / dr or more, and a tensile modulus.
It is a high-strength, high-modulus PVA fiber that is 500g / dr or more,
And as a method for producing such fibers, the average degree of polymerization is
When dissolving 1500 or more PVA polymers in a solvent capable of gel spinning, adjust the pH to 5 to 9 and add boric acid or borate to the polymer, discharge the resulting solution from a nozzle, and cool. After gelation, all or most of the solvent is removed, and 0.05 to 0.8 wt% of boric acid or borate corresponding to borate is left with respect to the polymer, followed by stretching at a high magnification. High strength and high modulus PV
A method for producing A fiber, preferably in the production method, PVA
And a solvent for the PVA polymer is ethylene glycol or glycerin, and the total draw ratio is at least 20 times.

以下本発明の内容を更に詳細に説明する。The contents of the present invention will be described in more detail below.

本発明に言うPVAとは、30℃の水溶液で粘度法により求
めた平均重合度が1500以上のものであり、ケン化度が98
%以上で、分岐度が低い直鎖状のPVA重合体を意味す
る。平均重合度が高いほど高強力繊維を得る可能性は大
きいが、その場合PVA濃度を低下しないと粘度が高すぎ
て溶媒への溶解性や紡糸性が低下する。PVAの平均重合
度は、より好ましくは6000以上、さらに好ましくは1000
0以上であり、PVA濃度を15重量%以下、好ましくは10重
量%以下、さらに好ましくは5重量%以下にして分子鎖
のからみを少なくするのが望ましい。
The PVA referred to in the present invention has an average degree of polymerization of 1500 or more as determined by a viscosity method in an aqueous solution at 30 ° C. and a saponification degree of 98.
% Means a linear PVA polymer having a low degree of branching. The higher the average degree of polymerization, the greater the possibility of obtaining high-strength fibers, but in that case, unless the PVA concentration is lowered, the viscosity becomes too high and the solubility in the solvent and the spinnability deteriorate. The average degree of polymerization of PVA is more preferably 6000 or more, further preferably 1000.
It is 0 or more, and it is desirable that the PVA concentration is 15% by weight or less, preferably 10% by weight or less, and more preferably 5% by weight or less to reduce the entanglement of the molecular chain.

溶媒は、分子鎖のからみを少ない状態で固定するために
冷却により容易にゲル化する貧溶媒であり、かつPVAを
均一に溶解するものが好ましい。かかる溶媒としては、
エチレングリコール、トリメチレングリコール、ジエチ
レングリコール、グリセリンなどの多価アルコール、お
よび水とDMSO混合溶媒、あるいは水とロダン塩や塩化カ
ルシウムなどが無機塩との混合溶媒などがあるが、本発
明はこれに限定されるものではない。ただし200℃以上
での溶解および紡糸はPVAの着色、分解を伴い易いの
で、それ以下の温度でPVAを溶解する溶媒が望ましい。
The solvent is preferably a poor solvent which easily gels by cooling in order to fix the entanglement of the molecular chain in a small state, and which dissolves PVA uniformly. As such a solvent,
Polyhydric alcohols such as ethylene glycol, trimethylene glycol, diethylene glycol, glycerin, etc., and a mixed solvent of water and DMSO, or a mixed solvent of water and an inorganic salt such as rhodan salt or calcium chloride, the present invention is not limited to this. It is not something that will be done. However, since dissolution and spinning at 200 ° C. or higher are likely to cause PVA coloring and decomposition, a solvent that dissolves PVA at a temperature lower than that is desirable.

本発明ではPVAと溶媒の混合液に、ホウ酸またはホウ酸
塩を1〜15重量%添加し、さらにpHを5〜9にするため
にアルカリまたは酸を添加しても良い。
In the present invention, 1 to 15% by weight of boric acid or borate may be added to a mixed solution of PVA and a solvent, and an alkali or an acid may be added to adjust the pH to 5 to 9.

ホウ酸またはホウ酸塩の添加時期は、PVAと溶媒の分散
液の状態が好ましく、PVAが溶媒に溶解した後に添加し
た場合は局部的に架橋が起り、紡糸原液の粘度斑を生じ
る。
The boric acid or borate is preferably added in the state of a dispersion liquid of PVA and a solvent, and when PVA is added after being dissolved in the solvent, crosslinking is locally caused to cause viscosity unevenness of the spinning dope.

本発明の特徴の1つは、紡糸原液の状態でホウ酸または
ホウ酸塩をPVAと架橋させ、粘度増加によりPVA濃度を低
下して紡糸することである。これにより分子鎖のからみ
の少ない高倍率延伸の可能な紡糸原糸を得ることができ
る。
One of the features of the present invention is that boric acid or borate is cross-linked with PVA in the state of the stock solution for spinning, and the concentration of PVA is decreased by increasing the viscosity to carry out spinning. As a result, it is possible to obtain a spinning base yarn which has a small number of entangled molecular chains and which can be drawn at a high ratio.

ホウ酸またはホウ酸塩をPVAと架橋させるには、pHを5
以上にする必要があるが、pHが9以上ではPVAポリマー
の着色分解が起り易く好ましくない。pHの特に好ましい
範囲は5.5〜7.5である。
To crosslink boric acid or borate with PVA, adjust the pH to 5
It is necessary to adjust the pH to above, but it is not preferable that the pH is 9 or more because the PVA polymer is likely to be colored and decomposed. A particularly preferred range of pH is 5.5-7.5.

一方ホウ酸またはホウ酸塩の添加量はPVAに対し0.05〜1
0重量%が好ましい。0.05重量%未満では本発明の特徴
である増粘効果によるPVA濃度の低下や水素結合抑制効
果などが見られずらくなり、最終的には高強力高モジユ
ラスPVA繊維を得ることは難しくなる。ホウ酸またはホ
ウ酸塩の添加量が10重量%を超えた場合は増粘によるPV
A濃度の低下は期待できるが、未架橋のホウ酸およびホ
ウ酸塩によるコスト増大を招き、さらに架橋ホウ素の大
部分を除去することが困難となり、逆に延伸性が劣る現
象が見られ好ましくない。
On the other hand, the amount of boric acid or borate added is 0.05 to 1 relative to PVA.
0% by weight is preferred. If it is less than 0.05% by weight, the decrease in PVA concentration due to the thickening effect and the hydrogen bond suppressing effect, which are the features of the present invention, are difficult to be seen, and finally it becomes difficult to obtain a high-strength and high-modulus PVA fiber. If the addition amount of boric acid or borate exceeds 10% by weight, PV will increase due to thickening.
A decrease in A concentration can be expected, but it causes cost increase due to uncrosslinked boric acid and borate, and it becomes difficult to remove most of the crosslinked boron. .

なおPVAの重合度および濃度とホウ酸またはホウ酸塩の
添加量とは、原液粘度を紡糸に好ましい500〜5000ポイ
ズにするために、相反する関係にある。すなわちPVA重
合度が低く、PVA濃度が低い場合はホウ酸またはホウ酸
塩の添加量を多くする必要がある。
The degree of polymerization and concentration of PVA and the amount of boric acid or borate added have contradictory relations in order to adjust the viscosity of the undiluted solution to 500 to 5000 poise, which is preferable for spinning. That is, when the PVA polymerization degree is low and the PVA concentration is low, it is necessary to increase the amount of boric acid or borate added.

本発明ではホウ素架橋PVAを溶媒に完全に溶解した後、
該紡糸原液をノズルより吐出させ同時に気体または/お
よび液体で冷却してゲル化により繊維化する。得られた
ゲル繊維には多量の溶媒と架橋しているホウ素が含まれ
ており、水、メタノール、エタノール、アセトンなどの
抽出剤でそれらを除去する必要がある。なお抽出剤はこ
れに限定するものではない。架橋ホウ素を除去するには
水または希薄な無機酸の水溶液で洗浄すれば良いが、水
が存在するとPVAは膨潤し伸長するので、少しの張力を
与えながら行なうのが好ましい。またPVA繊維に水が含
まれているとボビンへの捲取つた後で繊維同志の膠着が
起り易いので、水洗した後アルコールやアセトンなどで
水を除去したり乾燥で除去するのが望ましい。
In the present invention, after completely dissolving the boron-crosslinked PVA in the solvent,
The spinning solution is discharged from a nozzle and simultaneously cooled with a gas and / or a liquid to be gelated to form fibers. The obtained gel fiber contains a large amount of boron which is cross-linked with a solvent, and it is necessary to remove them with an extracting agent such as water, methanol, ethanol or acetone. The extractant is not limited to this. The cross-linked boron can be removed by washing with water or a dilute aqueous solution of an inorganic acid, but PVA swells and extends in the presence of water, so it is preferable to perform it while giving a little tension. If the PVA fiber contains water, the fibers tend to stick to each other after being wound onto the bobbin, so it is desirable to remove the water by washing with water or alcohol or acetone, or by drying.

本発明のもう1つの特徴は溶媒および架橋ホウ素の残存
量を一定範囲に規制することである。溶媒の残存量が多
いと、繊維同志の膠着や延伸時の繊維の着色分解が起り
易いのでPVA繊維に対して50重量%以下、好ましくは10
重量%以下、さらに好ましくは2重量%以下まで溶媒を
除去する必要がある。一方架橋ホウ素の残存量が多い場
合は延伸時に繊維の分子鎖間やラメラ間のすべりが低下
するため高倍率延伸ができなくなる。架橋ホウ素を完全
に除去した場合は水素結合の抑制および分子鎖間やラメ
ラ間の適度な空隙が減少し、延伸倍率を高くすることに
対するマイナス要因となる。従って残存ホウ素の量は、
PVA繊維に対しホウ酸またはホウ酸塩として0.05〜0.8重
量%が好ましく、0.05〜0.5重量%がさらに好ましい。
Another feature of the present invention is to regulate the residual amount of the solvent and the crosslinked boron within a certain range. If the residual amount of the solvent is large, the fibers are likely to stick together or the fibers may be colored and decomposed during stretching.
It is necessary to remove the solvent to less than or equal to wt%, more preferably less than or equal to 2 wt%. On the other hand, when the residual amount of the crosslinked boron is large, the slip between the molecular chains of the fibers or between the lamellas is reduced during the stretching, so that high-stretching cannot be performed. When the cross-linked boron is completely removed, hydrogen bonds are suppressed and moderate voids between molecular chains and lamellas are reduced, which is a negative factor for increasing the draw ratio. Therefore, the amount of residual boron is
The amount of boric acid or borate as PVA fiber is preferably 0.05 to 0.8% by weight, more preferably 0.05 to 0.5% by weight.

以上により高倍率延伸の可能な紡糸原子が得られるが、
結晶化による物性の向上を考慮して最終延伸は200〜240
℃の乾熱延伸が好ましい。延伸倍率はPVA重合度、PVA濃
度、紡糸ドラフトおよび延伸条件(温度、速度、ヒータ
長)などによつて異なるが、PVAの重合度が高く、かつ
濃度の低い原液を低ドラフトで紡糸した繊維は高倍率に
延伸できる。延伸倍率が高いほど繊維の分子鎖の配向が
高くなり、高強力高モジユラス繊維が得られ易いが全延
伸倍率は15倍以上、好ましくは20倍以上である。ただ
し、最高延伸倍率付近では繊維の白化(ボイド)が起り
易く強力低下を招くので最高延伸倍率よりやや低い倍率
が望ましい。なお延伸温度が240℃以上ではPVAの着色分
解が起り易く延伸倍率が高い割には強度の低い現象がみ
られた。
From the above, spinning atoms capable of high-magnification stretching can be obtained,
The final stretching is 200-240 considering the improvement of physical properties by crystallization.
Dry heat stretching at ℃ is preferred. The draw ratio varies depending on the degree of polymerization of PVA, the concentration of PVA, the spinning draft and the drawing conditions (temperature, speed, heater length), etc., but the fiber obtained by spinning a stock solution with a high degree of polymerization of PVA and a low concentration at a low draft is It can be stretched to a high ratio. The higher the draw ratio, the higher the orientation of the molecular chains of the fibers, and it is easy to obtain a high-strength and high-modulus fiber, but the total draw ratio is 15 times or more, preferably 20 times or more. However, since a fiber whitening (void) is likely to occur near the maximum draw ratio and the strength is lowered, a draw ratio slightly lower than the maximum draw ratio is desirable. When the stretching temperature was 240 ° C. or higher, the PVA was likely to be colored and decomposed, but the phenomenon that the strength was low was observed although the stretching ratio was high.

本発明によって得られたPVA繊維はホウ素を少量含有し
単繊維の引張強度は15g/dr以上、引張モジユラスは400g
/dr以上であり、特にPVAの平均重合度が6000以上では引
張強度20g/dr以上、引張モジユラス500g/dr以上の値を
示した。
The PVA fiber obtained by the present invention contains a small amount of boron, the tensile strength of the single fiber is 15 g / dr or more, and the tensile modulus is 400 g.
/ dr or more, especially when the average degree of polymerization of PVA was 6000 or more, the tensile strength was 20 g / dr or more and the tensile modulus was 500 g / dr or more.

本発明によりアラミド繊維に匹敵する強度およびモジユ
ラスを有するPVA繊維を安価にしかも安定に製造するこ
とが可能となり、一般産業資材用途への展開はもちろん
のこと複合材用の強化材への展開も考えられ、その有用
性は極めて大きいと言える。以下実施例により本発明を
具体的に説明する。
According to the present invention, it becomes possible to inexpensively and stably produce PVA fiber having strength and module comparable to aramid fiber, and it is considered to be applied not only to general industrial material applications but also to reinforcing materials for composite materials. It can be said that its usefulness is extremely large. The present invention will be specifically described below with reference to examples.

実施例1〜4および比較例1、2 平均重合度が1700、3400、7000、および12000の完全ケ
ン化PVAをエチレングリコールに溶解する際に、ホウ酸
をPVAに対し4重量%添加し、さらにpH=6〜7にする
ために少量の水酸化ナトリウムを添加して160℃で3時
間、撹拌下の溶解を行なつた。PVA濃度は第1表の如く
重合度の順にそれぞれ26、14、7.5重量%にした。
Examples 1 to 4 and Comparative Examples 1 and 2 In dissolving fully saponified PVA having an average degree of polymerization of 1700, 3400, 7000, and 12000 in ethylene glycol, boric acid was added in an amount of 4% by weight based on PVA, and A small amount of sodium hydroxide was added to adjust the pH to 6 to 7, and the mixture was dissolved at 160 ° C. for 3 hours with stirring. As shown in Table 1, the PVA concentrations were 26, 14, and 7.5% by weight, respectively, in the order of polymerization degree.

溶解した原液を脱泡した後、紡糸原糸のデニールが200d
rになるようにギヤポンプにて孔径0.8mmの単孔ノズルよ
り原液を吐出させ、空気で冷却ゲル化した。この時の紡
糸ドラフトは1.5〜2であつた。引続きゲル繊維を第1
浴の水中に通し、溶媒およびホウ素の一部を除去すると
きに1.3倍に伸長しながら第2浴のメタノール中で溶媒
と吸着水の抽出を行なつた。その後70℃の熱風により紡
糸原糸からメタノールや水を蒸発させボビンに捲取つ
た。
After defoaming the dissolved stock solution, the denier of the spinning raw yarn is 200d
The undiluted solution was discharged from a single-hole nozzle with a hole diameter of 0.8 mm by a gear pump so as to be r, and was cooled and gelled with air. The spinning draft at this time was 1.5 to 2. Continue to the gel fiber first
The solvent and adsorbed water were extracted in the second bath of methanol while the solution was passed through the water of the bath, and when the solvent and part of boron were removed, the elongation was 1.3 times. After that, methanol and water were evaporated from the spun yarn by hot air at 70 ° C. and wound on a bobbin.

得られた紡糸原糸を225℃の中空ヒータで延伸し、第1
表の如き結果を得たが、比較例1としてホウ酸を添加し
ない場合、比較例2としてホウ酸としての残存量が多い
場合の結果も併記した。
The obtained spun raw yarn is drawn by a hollow heater at 225 ° C.
Although the results shown in the table were obtained, the results of Comparative Example 1 in which no boric acid was added and Comparative Example 2 in the case where a large amount of boric acid remained were also shown.

実施例1〜4においていずれの紡糸原液も若干の着色が
あつたが、PVAは完全に溶解し粘度の増大がみられた。
実施例3と比較例1の両者の対比においてホウ酸未添加
ではPVA濃度を高くしないと紡糸の安定な同程度の粘度
が得られないこと、およびホウ酸とエチレングリコール
だけでは粘度上昇がみられないことなどによりPVAとホ
ウ酸が架橋していると考えられた。なお実施例3におい
て原液のpHを4.1にした場合は高粘度のものは得られ
ず、ホウ酸の架橋はほとんど起つていないことが判明し
た。またホウ酸がPVAと架橋することにより紡糸時の曳
糸性が非常に良好となり、紡糸時の断糸は1度も見られ
なかつた。
In each of Examples 1 to 4, all spinning stock solutions were slightly colored, but PVA was completely dissolved and an increase in viscosity was observed.
In the comparison between both Example 3 and Comparative Example 1, when the PVA concentration was not added without adding boric acid, the same stable viscosity of spinning could not be obtained, and the viscosity increase was observed only with boric acid and ethylene glycol. It was considered that PVA and boric acid were crosslinked due to the absence of such factors. In Example 3, when the pH of the stock solution was set to 4.1, a highly viscous product was not obtained, and it was found that cross-linking of boric acid hardly occurred. In addition, since boric acid cross-links with PVA, the spinnability during spinning was very good, and no breakage was observed during spinning.

第1浴の水および第2浴のメタノールで溶媒と架橋ホウ
素を大部分除去したがホウ素の残存量は第1浴の滞留時
間でほぼ決まり、第2浴のメタノール中ではホウ素はほ
とんど除去されていなかつた。実施例1〜4において70
℃の熱風乾燥後のエチレングリコール残存量は1.0〜3.2
wt%といずれも低く、ホウ酸残存量は0.21〜0.33wt%と
本発明の請求範囲内であつた。なお水の残存量は1wt%
以下であつた。なおエチレングリコール残存量は高温熱
風でエチレングリコールを飛散させた後の重量減少より
求め、ホウ酸残存量は原子吸光により得られたホウ素含
有量をホウ酸に換算して求めた。
Most of the solvent and cross-linking boron were removed with water in the first bath and methanol in the second bath, but the remaining amount of boron was almost determined by the residence time in the first bath, and most of the boron was removed in the methanol in the second bath. Nakatsuta. 70 in Examples 1-4
Residual amount of ethylene glycol after hot air drying at ℃ is 1.0 to 3.2
Each of them was as low as wt% and the residual amount of boric acid was 0.21 to 0.33 wt%, which was within the scope of the present invention. The remaining amount of water is 1 wt%
It was as follows. The residual amount of ethylene glycol was determined from the weight loss after the ethylene glycol was scattered with high temperature hot air, and the residual amount of boric acid was determined by converting the boron content obtained by atomic absorption into boric acid.

次いで得られた紡糸原糸を225℃で乾熱延伸したが、繊
維の着色はほとんど見られず、全延伸倍率は18.5〜23.0
倍と従来にみられない高いレベルであつた。また延伸倍
率はPVAの重合度が高くPVA濃度の低い方が高い値を示
し、それにほぼ対応して単繊維の引張強度およびモジユ
ラスも増大した。平均重合度が12000のPVAにホウ酸を4
%添加し、ホウ酸残存量を0.27wt%にすることにより強
度21.9g/dr、モジユラス628g/drのPVA繊維が得られ、ア
ラミド繊維にほぼ匹敵する性能であつた。
Next, the obtained spun raw yarn was dry-heat drawn at 225 ° C., but almost no coloring of the fiber was observed, and the total draw ratio was 18.5 to 23.0.
It was twice as high as never before. The higher the degree of polymerization of PVA and the lower the concentration of PVA, the higher the draw ratio, and the tensile strength and modulus of the single fiber increased correspondingly. Boric acid was added to PVA with an average degree of polymerization of 12000
%, And by adjusting the residual amount of boric acid to 0.27 wt%, PVA fiber having a strength of 21.9 g / dr and a modulus of 628 g / dr was obtained, and the performance was almost comparable to that of aramid fiber.

一方比較例1はホウ酸を添加しない場合であるが、同一
重合度のPVAを用いた実施例3に対し、PVA濃度を約2倍
高くする必要があり、かつ紡糸調子は若干悪い傾向を示
した。得られた紡糸原糸のホウ酸残存量は0.15wt%であ
り、水の残存量は4.2wt%であつた。また延伸倍率は12.
8倍と低く、強度12.6g/dr、モジユラス303g/drはいずれ
もホウ酸4%添加の実施例3に比して見劣りした。
On the other hand, Comparative Example 1 is a case where boric acid is not added, but it is necessary to increase the PVA concentration by about 2 times as compared with Example 3 using PVA of the same degree of polymerization, and the spinning tone tends to be slightly worse. It was The residual amount of boric acid in the obtained spun raw yarn was 0.15 wt%, and the residual amount of water was 4.2 wt%. The draw ratio is 12.
The strength was as low as 8 times, and the strength of 12.6 g / dr and the modulus of 303 g / dr were inferior to those of Example 3 in which 4% of boric acid was added.

比較例2は実施例2においてホウ酸残存量を1.5wt%と
多くした場合であるが、延伸倍率は実施例2の18.5倍に
対し14.0倍と低く強度およびモジユラスも低い値であつ
た。
Comparative Example 2 is a case in which the residual amount of boric acid was increased to 1.5 wt% in Example 2, but the draw ratio was 14.0 times lower than 18.5 times in Example 2 and the strength and module were low.

実施例5 平均重合度が7000の完全ケン化PVAを濃度が9wt%になる
ようにグリセリンに分散させ、同時にpH=7.3にしなが
らホウ砂(ホウ酸ナトリウム)をPVAに対し2wt%添加し
て、180℃で撹拌溶解した。12ホールのノズルを用いた
以外は実施例1と同様の紡糸条件でゲル化し、得られた
紡糸原糸を215℃のヒータで20倍延伸した。
Example 5 A fully saponified PVA having an average degree of polymerization of 7,000 was dispersed in glycerin to a concentration of 9 wt%, and borax (sodium borate) was added at 2 wt% to PVA while adjusting pH to 7.3, It was dissolved by stirring at 180 ° C. Gelation was carried out under the same spinning conditions as in Example 1 except that a 12-hole nozzle was used, and the obtained spinning raw yarn was drawn 20 times with a heater at 215 ° C.

紡糸原液は少し着色したがPVAは完全に溶解し9wt%のPV
A濃度でも曳糸性は良くホウ酸未添加に対して約40%PVA
濃度を低下することが出来た。
The spinning solution was slightly colored, but PVA was completely dissolved and 9 wt% PV
Spinnability is good even at A concentration, and about 40% PVA compared to boric acid not added.
The concentration could be reduced.

紡糸原糸のグリセリン残存量は15wt%でホウ酸残存量は
0.11wt%であり、単糸間およびヤーン間の膠着がみられ
なかつた。
The residual amount of glycerin in the spun yarn is 15 wt% and the residual amount of boric acid is
It was 0.11 wt%, and no sticking between single yarns and yarns was observed.

得られた延伸糸は単繊維デニールが4.2dr、引張強度が1
9.4g/dr、引張モジユラスが520g/drであり、従来にない
高強力高モジユラスPVA繊維を得た。
The drawn yarn has a single fiber denier of 4.2 dr and a tensile strength of 1
9.4 g / dr, tensile module 520 g / dr, and high strength and high modulus PVA fiber, which was unprecedented, was obtained.

実施例6および比較例3 平均重合度3400の完全ケン化PVAを濃度12wt%になるよ
うに水/DMSO=1/1の混合溶媒に分散させ、同時にpH=5.
8にしながらホウ酸をPVAに対し8wt%添加し、80℃で撹
拌溶解した。得られた原液は曵糸性があり、単ホールの
ノズルより空気中へ吐出させ、ノズル下20cmの0℃メタ
ノール浴で冷却ゲル化させた。次いで第2浴に通し、室
温の水の中で3倍伸長した後第3浴の室温メタノールを
通し80℃で熱風乾燥してボビンに捲取つた。乾燥直後の
紡糸原糸のDMSO残存量は0.9wt%で水は残存せずホウ酸
残存量は0.56wt%であつた。
Example 6 and Comparative Example 3 Fully saponified PVA having an average degree of polymerization of 3400 was dispersed in a mixed solvent of water / DMSO = 1/1 at a concentration of 12 wt%, and pH = 5.
While adjusting to 8, boric acid was added to PVA in an amount of 8 wt%, and dissolved by stirring at 80 ° C. The obtained undiluted solution had spinnability and was discharged into the air from a single hole nozzle, and cooled and gelled in a 0 ° C. methanol bath 20 cm below the nozzle. Then, the mixture was passed through a second bath, stretched 3 times in water at room temperature, passed through room temperature methanol in a third bath, dried with hot air at 80 ° C., and wound on a bobbin. The DMSO residual amount of the spun raw yarn immediately after drying was 0.9 wt%, and no water remained and boric acid residual amount was 0.56 wt%.

得られた紡糸原糸を230℃の乾熱で2段延伸したが全延
伸倍率は24.1倍と非常に高く、単繊維の引張強度は20.7
g/dr、引張モジユラスは554g/drであつた。
The obtained spun raw yarn was drawn in two stages by dry heat at 230 ° C, but the total draw ratio was very high at 24.1 times, and the tensile strength of single fiber was 20.7.
The g / dr and tensile modulus were 554 g / dr.

比較例3として実施例6の溶媒水/DMSO=1/1を水のみに
代えてアルカリ浴で凝固させ湿式紡糸を行なつた。次い
で、中和−水洗−メタノール浴を通して60℃で乾燥しボ
ビンに捲取り、実施例6と同一条件で延伸したが全延伸
倍率は、15倍で退繊維の引張強度は11.4g/dr、引張モジ
ユラス321g/drと本発明で得られるPVA繊維より性能は劣
つていた。
As Comparative Example 3, the solvent water / DMSO = 1/1 in Example 6 was replaced with water only, and coagulation was carried out in an alkaline bath to carry out wet spinning. Then, the mixture was neutralized-washed with water-dried at 60 ° C through a methanol bath, wound on a bobbin, and stretched under the same conditions as in Example 6, but the total stretching ratio was 15 and the tensile strength of the degraded fiber was 11.4 g / dr. The modulus was 321 g / dr, which was inferior to the PVA fiber obtained by the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】平均重合度が1500以上のPVAにホウ酸また
はホウ酸塩を添加した紡糸原液をゲル紡糸して得られた
PVA繊維であって、繊維中にPVAに対して0.05〜0.8重量
%のホウ酸またはホウ酸塩に相当するホウ素が存在し、
単繊維の引張強度が15g/dr以上、引張モジュラスが400g
/dr以上である高強力高モジュラスPVA繊維。
1. Obtained by gel spinning a spinning dope prepared by adding boric acid or borate to PVA having an average degree of polymerization of 1500 or more.
PVA fibers, wherein the fiber has 0.05 to 0.8% by weight of boric acid or boron corresponding to borate, based on PVA,
Single fiber tensile strength of 15g / dr or more, tensile modulus of 400g
High strength and high modulus PVA fiber that is more than / dr.
【請求項2】平均重合度が6000以上でかつ単繊維の引張
強度が20g/dr以上、引張モジュラスが500g/dr以上であ
る特許請求の範囲第1項記載の高強力高モジュラスPVA
繊維。
2. A high-strength, high-modulus PVA according to claim 1, wherein the average degree of polymerization is 6000 or more, the tensile strength of the single fiber is 20 g / dr or more, and the tensile modulus is 500 g / dr or more.
fiber.
【請求項3】平均重合度が1500以上のPVA重合体をゲル
紡糸の可能な溶媒に溶解する際にpHを5〜9にしてホウ
酸またはホウ酸塩を該重合体に添加し、得られた溶液を
ノズルより吐出させ冷却によりゲル化させたのち、溶媒
を全部又は大部分除去するとともに該重合体に対し0.05
〜0.8重量%のホウ酸またはホウ酸塩に相当するホウ素
を残存させ、しかるのち高倍率に延伸することを特徴と
する高強力高モジュラスPVA繊維の製造法。
3. A PVA polymer having an average degree of polymerization of 1500 or more is dissolved in a solvent capable of gel spinning to adjust the pH to 5 to 9 and boric acid or borate is added to the polymer to obtain a PVA polymer. The solution was discharged from a nozzle and gelled by cooling, and then the solvent was removed in whole or in large part, and the amount of the solvent was 0.05%.
A method for producing a high-strength, high-modulus PVA fiber, which comprises: leaving 0.8% by weight of boric acid or boron corresponding to a borate salt, and then drawing at a high ratio.
【請求項4】平均重合度が6000以上である特許請求の範
囲第3項記載の製造法。
4. The production method according to claim 3, wherein the average degree of polymerization is 6000 or more.
【請求項5】PVA重合体の溶媒がエチレングリコールお
よび/またはグリセリンである特許請求の範囲第3項ま
たは第4項に記載の製造法。
5. The method according to claim 3 or 4, wherein the solvent of the PVA polymer is ethylene glycol and / or glycerin.
【請求項6】全延伸倍率が少なくとも20倍である特許請
求の範囲第3〜5項のいずれかに記載の製造法。
6. The production method according to claim 3, wherein the total draw ratio is at least 20 times.
JP60221454A 1985-10-03 1985-10-03 High strength and high modulus PVA fiber and method for producing the same Expired - Fee Related JPH076087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60221454A JPH076087B2 (en) 1985-10-03 1985-10-03 High strength and high modulus PVA fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60221454A JPH076087B2 (en) 1985-10-03 1985-10-03 High strength and high modulus PVA fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6285013A JPS6285013A (en) 1987-04-18
JPH076087B2 true JPH076087B2 (en) 1995-01-25

Family

ID=16766975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60221454A Expired - Fee Related JPH076087B2 (en) 1985-10-03 1985-10-03 High strength and high modulus PVA fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JPH076087B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165509A (en) * 1986-12-27 1988-07-08 Unitika Ltd Polyvinyl alcohol fiber with high crystal fusion energy and production thereof
JP2653682B2 (en) * 1987-10-22 1997-09-17 株式会社クラレ Polyvinyl alcohol-based synthetic fiber and method for producing the same
JPH01314717A (en) * 1988-06-14 1989-12-19 Unitika Ltd Production of polyvinyl alcohol fiber
JP2656332B2 (en) * 1988-12-16 1997-09-24 株式会社クラレ Polyvinyl alcohol fiber drawing method
CN102337605B (en) * 2011-08-18 2013-03-06 安徽皖维高新材料股份有限公司 High-strength, high-modulus and high-melting point PVA (Polyvinyl Acetate) fiber and manufacturing method thereof
CN115772713A (en) * 2022-11-30 2023-03-10 安徽皖维高新材料股份有限公司 Method for preparing PVA (polyvinyl alcohol) coarse denier fiber through melt plasticization-wet spinning

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440711A (en) * 1982-09-30 1984-04-03 Allied Corporation Method of preparing high strength and modulus polyvinyl alcohol fibers
JPH0611927B2 (en) * 1983-12-12 1994-02-16 東レ株式会社 High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same

Also Published As

Publication number Publication date
JPS6285013A (en) 1987-04-18

Similar Documents

Publication Publication Date Title
JP2569352B2 (en) High strength water-soluble polyvinyl alcohol fiber and method for producing the same
US5133916A (en) Polyvinyl alcohol fiber having excellent resistance to hot water and process for producing the same
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JPH076087B2 (en) High strength and high modulus PVA fiber and method for producing the same
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JPH01104815A (en) Polyvinyl alcohol fiber and production thereof
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
US4035465A (en) Drawing polyoxadiazoles filaments
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JPH0457769B2 (en)
JPS62162010A (en) Production of polyvinyl alcohol fiber of high tenacity and elasticity
JP3366476B2 (en) High-strength polyvinyl alcohol-based fiber excellent in wet heat resistance and method for producing the same
KR100494063B1 (en) Polyvinyl alcohol fiber for the reinforcement of tire and method for the production of the same
JP2553129B2 (en) Polyvinyl alcohol fiber with good fatigue resistance
JPS63243316A (en) Production of high-tenacity polyvinyl alcohol fiber
JP2656332B2 (en) Polyvinyl alcohol fiber drawing method
JPH0284504A (en) Polyvinyl alcohol fiber suitable as reinforcing material
KR20020048780A (en) Process for preparation of high-tenacity polyvinyl alcohol fiber with hot-water resistance
JP2888502B2 (en) Method for producing high strength polyvinyl alcohol fiber with excellent hot water resistance
JPH06212513A (en) Production of high-strength polyvinyl alcoholic fiber
JPH02251608A (en) Production of polyvinyl alcohol-based fiber
JPH07305222A (en) Method for producing polyvinyl alcohol fiber
JPH03213511A (en) Production of high-strength polyvinyl alcohol-based fiber excellent in hot water resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees