JP2656332B2 - Polyvinyl alcohol fiber drawing method - Google Patents

Polyvinyl alcohol fiber drawing method

Info

Publication number
JP2656332B2
JP2656332B2 JP63318788A JP31878888A JP2656332B2 JP 2656332 B2 JP2656332 B2 JP 2656332B2 JP 63318788 A JP63318788 A JP 63318788A JP 31878888 A JP31878888 A JP 31878888A JP 2656332 B2 JP2656332 B2 JP 2656332B2
Authority
JP
Japan
Prior art keywords
stretching
pva
strength
heater
drn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63318788A
Other languages
Japanese (ja)
Other versions
JPH02169709A (en
Inventor
洋文 佐野
駛視 吉持
秀男 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KK
Original Assignee
KURARE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARE KK filed Critical KURARE KK
Priority to JP63318788A priority Critical patent/JP2656332B2/en
Publication of JPH02169709A publication Critical patent/JPH02169709A/en
Application granted granted Critical
Publication of JP2656332B2 publication Critical patent/JP2656332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強力高弾性率を有するポリビニルアルコー
ル(PVAと略記する)系繊維を工業的に有利に製造する
ための延伸法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a drawing method for industrially advantageously producing a polyvinyl alcohol (abbreviated as PVA) fiber having high strength and high elastic modulus. .

(従来の技術) 従来PVA系繊維はポリアミド、ポリエステル、ポリア
クリロニトリル系繊維に比べて強度、弾性率が高く、そ
の主用途である産業資材用繊維としてはもちろん最近で
はアスベスト代替繊維としてセメント補強材等にも使用
されている。
(Prior art) Conventional PVA fibers have higher strength and elastic modulus than polyamide, polyester, and polyacrylonitrile fibers, and are used mainly for industrial materials, which are their main applications, and recently as substitutes for asbestos, such as cement reinforcing materials. It has also been used.

高強力高弾性率のPVA系繊維を得る方法としては高分
子量ポリエチレンのゲル紡糸−超延伸の考え方(例えば
特開昭60−194109号公報)を応用した特開昭59−100710
号公報、特開昭59−130314号公報、特開昭61−108711号
公報などが公知である。これらの方法はいずれも溶剤抽
出速度の大きいメタノールを用いて溶剤を抽出し延伸し
ているが未だ満足した強度は得られていない。
As a method for obtaining a PVA-based fiber having a high strength and a high elastic modulus, JP-A-59-100710 applying the concept of gel spinning and ultra-drawing of high molecular weight polyethylene (for example, JP-A-60-194109) is applied.
Japanese Patent Application Laid-Open Nos. Sho 59-130314 and 61-108711 are known. In each of these methods, the solvent is extracted and stretched using methanol having a high solvent extraction rate, but satisfactory strength has not yet been obtained.

一方特開昭62−149909号公報、特開昭62−149910号公
報にみられるごとくホウ酸を含むPVA水溶液を乾湿式紡
糸でアルカリ性水溶液により凝固させる方法も公知であ
るが冷却だけではゲル化しないため均一ゲルは得がた
く、かつ水膨潤による単糸間の膠着が起り易く高強力繊
維を得るのが難しい。
On the other hand, as disclosed in JP-A-62-149909 and JP-A-62-149910, a method of coagulating a PVA aqueous solution containing boric acid with an alkaline aqueous solution by dry-wet spinning is also known, but gelling does not occur only by cooling. Therefore, it is difficult to obtain a uniform gel, and it is difficult to obtain a high-strength fiber due to swelling between single yarns due to water swelling.

高強力高弾性率のPVA系繊維を得るには高倍率に延伸
し高配向結晶の構造にしなければならないが、そのため
にはPVAの融点近くで延伸する必要がある。しかしPVAは
融点と分解温度が同程度であり、延伸過程でPVAの分解
が起り強度低下を招きやすい。本発明者らは特に延伸時
のPVA分解抑制に着目し延伸変形素度Draw Rateについて
種々検討した。なおPVA系繊維に関しては延伸変形速度D
raw Rateについての記載は現在までのところない。
In order to obtain a PVA-based fiber having a high strength and a high elastic modulus, it must be drawn at a high magnification to have a structure of a highly oriented crystal. For this purpose, it is necessary to draw near the melting point of PVA. However, the melting point and the decomposition temperature of PVA are almost the same, so that the PVA is decomposed in the stretching process, and the strength tends to be reduced. The present inventors focused on the suppression of PVA decomposition during stretching and made various studies on the stretching deformation degree Draw Rate. For PVA fibers, the stretching deformation rate D
There is no description about raw rate so far.

(発明が解決しようとする課題) 以上の背景を踏えて本発明者らはPVAの分解を抑えて
高倍率に乾熱延伸可能な技術を提供せんとするものであ
る。
(Problems to be Solved by the Invention) In view of the above background, the present inventors intend to provide a technique capable of suppressing the decomposition of PVA and performing dry heat drawing at a high magnification.

(課題を解決するための手段) すなわち本発明は 「平均重合度1500以上のPVA系ポリマーを含む溶液から
常法により得られた紡糸原糸を、ローラー間に非接触型
中空ヒーターを有する方式によって延伸するに際し、20
0℃以上の空気中で該ヒーターを用いかつ次式を満足す
る延伸変形速度(DR)で1段または2段以上に延伸し、
かつ総延伸倍率を少なくとも16倍にすることを特徴とす
るPVA系繊維の延伸法。
(Means for Solving the Problems) That is, the present invention provides a method for producing a spinning yarn obtained from a solution containing a PVA-based polymer having an average degree of polymerization of 1500 or more by a conventional method, using a method having a non-contact hollow heater between rollers. When stretching, 20
Using the heater in air at 0 ° C. or more and stretching at one or more stages at a stretching deformation rate (DR) satisfying the following formula,
A method for drawing PVA-based fibers, wherein the total drawing ratio is at least 16 times.

DRn=(HDn−1)×Vn/Ln(0.1≦DRn≦5) (1) 0.028(Tn−180) −1.3≦DRn≦0.028(Tn−180)+1.3(200≦Tn≦280) (2) に関するものである。DRn = (HDn−1) × Vn / Ln (0.1 ≦ DRn ≦ 5) (1) 0.028 (Tn−180) −1.3 ≦ DRn ≦ 0.028 (Tn−180) +1.3 (200 ≦ Tn ≦ 280) (2) ) It is about.

以下本発明の内容をさらに詳細に説明する。 Hereinafter, the contents of the present invention will be described in more detail.

一般に繊維強度を高くするには分子鎮の配向と結晶化
を高める必要があり、そのために高倍率延伸が必要とな
る。
In general, in order to increase the fiber strength, it is necessary to increase the orientation and crystallization of the molecular weight, and therefore, high draw ratio is required.

本発明に言うPVA系ポリマーとは30℃の水溶液で粘度
法により求めた平均重合度が1500以上のものであり、ケ
ン化度が99モル%以上で分岐度の低い直鎖状のものであ
る。PVAの平均重合度が高いほど高強力高弾性率繊維が
得やすく、好ましくは4000以上、さらに好ましくは1000
0以上である。重合度が高いほど欠陥部になりやすい分
子鎖末端が少なく、かつ結晶間を連結するタイ分子が多
く高強度弾性率繊維になりやすい。
The PVA-based polymer referred to in the present invention is a linear polymer having an average degree of polymerization of 1500 or more as determined by a viscosity method in a 30 ° C. aqueous solution, a degree of saponification of 99 mol% or more, and a low degree of branching. . Higher strength and higher modulus fibers are easier to obtain as the average degree of polymerization of PVA is higher, preferably 4,000 or more, more preferably 1,000.
0 or more. The higher the degree of polymerization, the smaller the number of molecular chain ends that are liable to become defective, and the more tie molecules that connect the crystals, the more likely it is to become a high-strength modulus fiber.

PVAのケン化度は99%以上であり、99%未満では分子
鎖の乱れが大きすぎ結晶化が進まず融点が低下して耐熱
性が下り高強力高弾性率繊維は得られない。なおPVAに
5重量%以下の添加物例えばホウ酸、顔料、紫外線吸収
材、界面活性剤などを加えても構わない。
The saponification degree of PVA is 99% or more, and if it is less than 99%, the disorder of the molecular chain is too large, crystallization does not proceed, the melting point is lowered, the heat resistance is lowered, and a high-strength high-modulus fiber cannot be obtained. The PVA may contain 5% by weight or less of additives such as boric acid, a pigment, an ultraviolet absorber, and a surfactant.

PVA系ポリマーの溶剤としては、例えばエチレングリ
コール、トリメチレングリコール、ジエチレングリコー
ル、、グリセリンなどの多価アルコールやそれらと水と
の混合溶剤あるいはジメチルスルホキシド、ジメチルホ
ルムアミド、ジエチレントリアミンやそれらと水との混
合溶剤などいずれでもよいが冷却でゲル化するような溶
剤が好ましい。この場合急冷ゲル化が可能であるため非
晶化、からみ固定、溶剤抽出速度の遅延化など均一ゲル
を形成し易く好都合である。
Examples of the solvent for the PVA-based polymer include polyhydric alcohols such as ethylene glycol, trimethylene glycol, diethylene glycol, and glycerin, and a mixed solvent thereof with water or dimethyl sulfoxide, dimethylformamide, diethylene triamine, and a mixed solvent thereof with water. Either solvent may be used, but a solvent which gels upon cooling is preferable. In this case, since rapid cooling gelation is possible, it is convenient to easily form a uniform gel such as amorphization, entanglement fixation, and delay in solvent extraction rate.

紡糸方式のどのようなものでもよく、湿式、乾式、乾
湿式いずれでもよいが、好ましくは乾湿式ゲル紡糸であ
る。
Any spinning method may be used, and any of a wet method, a dry method, and a dry-wet method may be used, and a dry-wet gel spinning method is preferred.

凝固浴はどのようなものでもよく、例えばメタノー
ル、エタノールなどのアルコール類やアセトン、エーテ
ルさらにはアルカリ水溶液、芒硝水溶液およびそれらの
混合液などいずれのものでも構わない。
The coagulation bath may be of any type, for example, alcohols such as methanol and ethanol, acetone and ether, alkali aqueous solution, sodium sulfate aqueous solution and a mixture thereof.

湿延伸はしてもしなくてもよいが、乾燥までの工程中
で好ましくは3倍以上の延伸を行なつたほうがよい。延
伸倍率3倍以上の理由は結晶化度を低下させ分子間水素
結合を弱くして分子鎖を動きやすくすることにより最終
工程の乾熱延伸を高倍率で行なえるようにすることおよ
び単糸間膠着を少なくすることである。
Although wet stretching may or may not be performed, it is preferable that stretching is performed three times or more during the steps up to drying. The reason for the draw ratio of 3 times or more is that the degree of crystallinity is reduced, the intermolecular hydrogen bonds are weakened, and the molecular chains are easily moved so that the dry heat drawing in the final step can be performed at a high draw ratio. It is to reduce sticking.

PVA系ポリマーの溶剤の抽出はアルコール、アセト
ン、水等で何なつてもよいが好ましくはエタノール、エ
タノール等低級アルコールで行なつたほうがよい。
The extraction of the solvent of the PVA-based polymer may be performed with alcohol, acetone, water or the like, but is preferably performed with lower alcohol such as ethanol or ethanol.

その後乾燥をしなければならないが、その温度は130
℃以上好ましくは70〜100℃である。130℃を超えると結
晶化が増大しそれ以降の延伸で倍率を高くすることが難
しい。
After that it has to be dried, but its temperature is 130
70 ° C. or more, preferably 70 to 100 ° C. When the temperature exceeds 130 ° C., crystallization increases, and it is difficult to increase the magnification in subsequent stretching.

本発明では最終的に高温で高倍率に延伸しなければな
らない。ヒーターは接触型では繊維が融解または損傷し
やすく非接触型が好ましい。ヒーターの実測最高温度は
200〜280℃の範囲でなければならない。200℃未満では
延伸倍率が低下し配向結晶化が進まないため高強力高弾
性率の繊維は得がたい。また300℃以上では繊維の融解
または酸化分解が起こり好ましくなく。好ましくは220
〜260℃の範囲である。
In the present invention, the film must be finally stretched at a high temperature at a high magnification. In the case of a contact type heater, a non-contact type heater is preferred because the fibers are easily melted or damaged. The maximum measured temperature of the heater is
Must be in the range 200-280 ° C. If the temperature is lower than 200 ° C., a fiber having a high strength and a high elastic modulus is difficult to obtain because the draw ratio is lowered and the orientation crystallization does not proceed. On the other hand, if the temperature is higher than 300 ° C., the fibers are undesirably melted or decomposed by oxidation. Preferably 220
In the range of ~ 260 ° C.

次に延伸変形速度ドローレート(DR)について言及す
る。n段目延伸時のDRすなわちDRnを理論的に求めると
次のようになり最終的に(1)式が成立する。
Next, the drawing deformation rate draw rate (DR) will be described. When the DR at the time of the n-th stretching, that is, DRn is theoretically obtained, the following expression is finally satisfied.

DRn=(Vn+1−Vn)/Lr=(Vn+1/Vn−1)×Vn/Ln =(HDn−1)×Vn/Ln(0.1≦DRn≦5) (1) また実験的に高倍率延伸、低分解の延伸条件を求めた
ところ、DRnとn段目のヒーター温度Tnとの間には
(2)式が成立することが判明した。
DRn = (Vn + 1 −Vn) / Lr = (Vn + 1 / Vn−1) × Vn / Ln = (HDn−1) × Vn / Ln (0.1 ≦ DRn ≦ 5) (1) Experimentally high When the stretching conditions of magnification stretching and low resolution were determined, it was found that the formula (2) was established between DRn and the nth heater temperature Tn.

0.028(Tn−180) −1.3≦DRn≦0.028(Tn−180)+1.3(200≦Tn≦280) (2) DR0.1min-1未満ではヒーター長に対してフイード速度
が遅くヒーター内の滞留時間が長くなつてポリマーの分
解が進行する。DRが5min-1を超えるとヒーター長に対し
フイード速度が大きすぎて総延伸倍率が低くなり高強力
高弾性率繊維になりにくい。ヒーター温度が250℃以上
と高い場合、DRは大きいほうが分解が少なくて好まし
い。DRの好適範囲はこの場合0.2〜2min-1である。第1
図に(2)式の関係を示した。本発明では斜線部の範囲
で延伸しなければならないが、これはPVAの分解を抑え
高張力で高倍率に延伸し、最終的の高強力高弾性繊維を
得るに必要な条件である。
0.028 (Tn-180) -1.3 ≤ DRn ≤ 0.028 (Tn-180) + 1.3 (200 ≤ Tn ≤ 280) (2) If DR is less than 0.1min- 1 , the feed speed is slower than the heater length and stays in the heater. As the time increases, the decomposition of the polymer proceeds. If the DR exceeds 5 min -1 , the feed rate is too high with respect to the heater length, so that the total draw ratio is low, and it is difficult to produce a high-strength high-modulus fiber. When the heater temperature is as high as 250 ° C. or higher, the larger the DR, the smaller the decomposition. The preferred range of DR in this case is 0.2 to 2 min -1 . First
The relationship of the equation (2) is shown in FIG. In the present invention, stretching must be performed in the range of the hatched portion, which is a condition necessary for suppressing decomposition of PVA and stretching at a high tension and a high magnification to obtain a final high strength and high elasticity fiber.

延伸張力は高温下での強度に匹敵し、高いほど高強力
となる。なお延伸温度が高いと延伸倍率は大きくなるが
張力は1.5g/d以下になりやすく強度低下を来たす。一方
総延伸倍率は16倍以上好ましくは20倍以上である。ここ
で総延伸倍率とは、紡糸時の湿延伸倍率および200℃未
満の熱延伸倍率を乗じたものにさらに200℃以上での熱
延伸倍率を乗じたものを意味する。16倍未満では分子の
配向が不十分で高強力になり難い。
The stretching tension is comparable to the strength at high temperature, and the higher the tension, the higher the strength. When the stretching temperature is high, the stretching ratio increases, but the tension tends to be 1.5 g / d or less, resulting in a decrease in strength. On the other hand, the total stretching ratio is 16 times or more, preferably 20 times or more. Here, the total draw ratio means a value obtained by multiplying a wet draw ratio at the time of spinning and a hot draw ratio of less than 200 ° C., and further multiplying the result by a hot draw ratio at 200 ° C. or more. If it is less than 16 times, the orientation of the molecules is insufficient and it is difficult to obtain high strength.

従つて本発明の特徴は、比較的高い重合度のPVA系繊
維を低分解、高張力、高倍率になるような延伸変形速度
DRとヒーター温度Tで延伸することであり、これにより
例えばヤーン強度17g/d以上、ヤーン弾性率450g/d以上
の繊維が得られ易い。
Therefore, the feature of the present invention is that the stretching deformation rate is such that a relatively high degree of polymerization of PVA-based fibers can be reduced in decomposition, high in tension and high in magnification.
The stretching is performed at the DR and the heater temperature T, whereby a fiber having a yarn strength of 17 g / d or more and a yarn elasticity of 450 g / d or more can be easily obtained.

以下実施例により本発明を具体的に説明するが本発明
は実施例のみに限定されるものではない。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to Examples.

実施例1および比較例1 平均重合度17000、ケン化度99.4モル%の乾燥PVAを5
重量%溶液になるようにグリセリンに180℃にて溶解せ
しめた。
Example 1 and Comparative Example 1 5 dry PVAs having an average polymerization degree of 17,000 and a saponification degree of 99.4 mol%
It was dissolved in glycerin at 180 ° C. so as to become a weight% solution.

次いで該溶液を190℃にして孔径0.2mm、ホール数20の
ノズルより吐出させ25mm下の凝固浴に落下せしめた。凝
固浴組成はメタノール/グリセリン=8/2重量比であり
温度は0℃にした。凝固浴で冷却によりゲル繊維を得た
あと40℃メタノール中で4倍湿延伸し、メタノールでグ
リセリンをほぼ完全に抽出してから100℃の熱風で乾燥
しボビンに巻取つた。
Then, the solution was discharged at 190 ° C. from a nozzle having a hole diameter of 0.2 mm and 20 holes and dropped into a coagulation bath 25 mm below. The coagulation bath composition was methanol / glycerin = 8/2 weight ratio and the temperature was 0 ° C. After the gel fiber was obtained by cooling in a coagulation bath, it was wet-drawn four times in methanol at 40 ° C., glycerin was almost completely extracted with methanol, dried with hot air at 100 ° C., and wound around a bobbin.

得られた紡糸原糸を1段で延伸するに際し、3mの非接
触輻射型ヒーターを用いフイード速度1.2m/min、ヒータ
ー最高温度260℃で延伸倍率を5.0倍(総延伸倍率20.0
倍)にして延伸した。この時のDRは1.60であり、延伸張
力は3.2g/dと高いものであつた。得られた延伸マルチフ
イラメントは強度22.4g/d、弾性率590g/dを示し、従来
にない特徴を有していた。なお得られた延伸糸を140℃
の熱水で溶解し粘度測定により重合度を求めてポリマー
の重合度低下率をみたが19%と低いものであつた。
When the obtained spun yarn is stretched in one step, a 3 m non-contact radiant heater is used, a feed speed is 1.2 m / min, a stretching ratio is 5.0 times at a heater maximum temperature of 260 ° C. (total stretching ratio is 20.0 mm).
Times) and stretched. The DR at this time was 1.60, and the stretching tension was as high as 3.2 g / d. The obtained stretched multifilament had a strength of 22.4 g / d and an elasticity modulus of 590 g / d, and had characteristics not found in the past. The obtained drawn yarn is 140 ° C
The polymer was dissolved in hot water and the degree of polymerization was determined by measuring the viscosity.

比較例1としてフイード速度0.4m/min、ヒーター最高
温度260℃で上記と同様の延伸を実施したが総延伸倍率
は17.6倍、DRは0.45で繊維は黄色に着色し、重合度は37
%も低下して、強度は16.8g/dと低いものになつた。
As Comparative Example 1, the same stretching was performed at a feed speed of 0.4 m / min and a maximum heater temperature of 260 ° C., but the total stretching ratio was 17.6 times, the DR was 0.45, the fiber was colored yellow, and the polymerization degree was 37.
%, And the strength was as low as 16.8 g / d.

実施例2および比較例2 平均重合度7000、ケン化度99.9モル%のPVAを10重量
%溶液になるようにジメチルスルホキシドに100℃に溶
解せしめた。
Example 2 and Comparative Example 2 PVA having an average degree of polymerization of 7000 and a degree of saponification of 99.9 mol% was dissolved in dimethyl sulfoxide at 100 ° C. so as to form a 10% by weight solution.

次いで該溶液を85℃にしてホール数40のノズルから吐
出させた。凝固浴組成はメタノール/ジメチルスルホキ
シド=6/4重量比であり、温度は10℃とした。40℃メタ
ノール中で5倍の湿延伸を実施し、溶剤抽出後100℃の
熱風で乾燥しボビンに巻取つた。
Next, the solution was heated to 85 ° C. and discharged from a nozzle having 40 holes. The coagulation bath composition was methanol / dimethyl sulfoxide = 6/4 weight ratio, and the temperature was 10 ° C. The film was stretched 5 times in methanol at 40 ° C, extracted with a solvent, dried with hot air at 100 ° C, and wound around a bobbin.

得られた紡糸原糸を1段で延伸するに際し3mの輻射型
ヒーターを用い、フイード速度2.0m/min、ヒーター最高
温度250℃で延伸倍率を3.9倍(総延伸倍率19.5倍)にし
て延伸した。この時のDRは1.93min-1であり延伸張力は
2.8g/dであつた。得られた延伸繊維は強度19.7g/d、弾
性率505g/dと高い値を示した。
When the obtained spun yarn was stretched in one step, it was stretched using a radiant heater of 3 m, at a feed speed of 2.0 m / min, at a maximum heater temperature of 250 ° C., and at a draw ratio of 3.9 times (total draw ratio of 19.5 times). . DR at this time is 1.93 min -1 and the stretching tension is
It was 2.8 g / d. The obtained drawn fiber showed a high value of 19.7 g / d in strength and 505 g / d in elastic modulus.

比較例2として、実施例2におけるフイード速度を6m
/minにしたところ延伸倍率3.5倍(総延伸倍率17.5倍)
になりDRは3.75min-1と高く得られた繊維の強度は16.2g
/d、弾性率は410g/dに低下した。
As Comparative Example 2, the feed speed in Example 2 was 6 m
/ min and stretch ratio 3.5 times (total stretch ratio 17.5 times)
The DR is 3.75 min -1 and the obtained fiber strength is 16.2 g
/ d, the modulus decreased to 410 g / d.

実施例3 平均重合度3300、ケン化度99.5モル%の乾燥PVAを13
重量%になるよう水に溶解した。その際PVAに対して3.5
重量%となるようホウ酸を添加した。
Example 3 13 dry PVAs having an average polymerization degree of 3300 and a saponification degree of 99.5 mol%
It was dissolved in water to give a weight%. At that time, 3.5 against PVA
Boric acid was added to give a weight percent.

次いで該溶液を110℃にしてホール数1000のノズルよ
り組成NaOH10g/、Na2SO4300g/の70℃に保つた凝固
浴中に吐出させ湿式紡糸を行なつた。次に希H2SO4水溶
液で中和後水洗を行なつたが、この間にトータル湿延伸
倍率5.0倍で延伸した。120℃の熱風で乾燥しボビンに巻
取つた原糸を1段で延伸するに際し、25mの熱風炉でフ
イード速度18m/min、炉最高温度244℃で延伸倍率を4.9
倍(総延伸倍率24.5倍)にし延伸した。この時のDRは2.
81min-1であつた。得られた延伸繊維は強度18.4g/d、弾
性率470g/dを示した。
Then, the solution was heated to 110 ° C. and discharged from a nozzle having 1000 holes into a coagulation bath maintained at 70 ° C. with a composition of NaOH 10 g / and Na 2 SO 4 300 g /, and wet spinning was performed. Next, water washing was performed after neutralization with a dilute H 2 SO 4 aqueous solution, and during this time, the film was stretched at a total wet stretching ratio of 5.0 times. In stretching the raw yarn dried by hot air at 120 ° C and wound on a bobbin in one stage, the feed rate was 18m / min in a 25m hot air furnace, and the draw ratio was 4.9 at the furnace maximum temperature of 244 ° C.
(Total stretching ratio 24.5 times) and stretched. DR at this time is 2.
It was 81min -1 . The obtained drawn fiber had a strength of 18.4 g / d and an elastic modulus of 470 g / d.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明での延伸条件におけるヒーター温度Tn
と延伸変形速度DRnとの関係を示した図で、斜線内が好
適な条件範囲を示すものである。
FIG. 1 is a graph showing the relationship between the heater temperature Tn under the stretching conditions in the present invention.
And the drawing deformation speed DRn, wherein a hatched area indicates a preferable condition range.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均重合度1500以上のポリビニルアルコー
ル系ポリマーを含む溶液から常法により得られた紡糸原
糸を、ローラー間に非接触型中空ヒーターを有する方式
によって延伸するに際し、200℃以上の空気中で該ヒー
ターを用いかつ次式を満足する延伸変形速度(DR)で1
段または2段以上に延伸し、かつ総延伸倍率をすくなく
とも16倍にすることを特徴とするポリビニルアルコール
系繊維の延伸法。 DRn=(HDn−1)×Vn/Ln(0.1≦DRn≦5) (1) 0.028(Tn−180) −1.3≦DRn≦0.028(Tn−180)+1.3(200≦Tn≦280)
(2)
When a spinning yarn obtained by a conventional method from a solution containing a polyvinyl alcohol-based polymer having an average degree of polymerization of 1500 or more is drawn by a method having a non-contact hollow heater between rollers, it is heated to 200 ° C. or more. Using the heater in air and at a stretch deformation rate (DR) that satisfies the following equation:
A method for drawing polyvinyl alcohol-based fibers, wherein the drawing is carried out in two or more steps and the total drawing ratio is at least 16 times. DRn = (HDn−1) × Vn / Ln (0.1 ≦ DRn ≦ 5) (1) 0.028 (Tn−180) −1.3 ≦ DRn ≦ 0.028 (Tn−180) +1.3 (200 ≦ Tn ≦ 280)
(2)
JP63318788A 1988-12-16 1988-12-16 Polyvinyl alcohol fiber drawing method Expired - Fee Related JP2656332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318788A JP2656332B2 (en) 1988-12-16 1988-12-16 Polyvinyl alcohol fiber drawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318788A JP2656332B2 (en) 1988-12-16 1988-12-16 Polyvinyl alcohol fiber drawing method

Publications (2)

Publication Number Publication Date
JPH02169709A JPH02169709A (en) 1990-06-29
JP2656332B2 true JP2656332B2 (en) 1997-09-24

Family

ID=18102950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318788A Expired - Fee Related JP2656332B2 (en) 1988-12-16 1988-12-16 Polyvinyl alcohol fiber drawing method

Country Status (1)

Country Link
JP (1) JP2656332B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927304B2 (en) * 1990-10-18 1999-07-28 株式会社クラレ Method for producing polyvinyl alcohol-based synthetic fiber
KR100627171B1 (en) * 2002-03-19 2006-09-22 주식회사 효성 Method for preparing high-tenacity polyvinyl alchol fiber and product manufactured thereby

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076087B2 (en) * 1985-10-03 1995-01-25 株式会社クラレ High strength and high modulus PVA fiber and method for producing the same
JPH0694604B2 (en) * 1986-06-02 1994-11-24 東レ株式会社 Method for producing high strength and high modulus polyvinyl alcohol fiber
JPS63120107A (en) * 1986-11-05 1988-05-24 Toray Ind Inc High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof

Also Published As

Publication number Publication date
JPH02169709A (en) 1990-06-29

Similar Documents

Publication Publication Date Title
JPS6211089B2 (en)
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JPH01272814A (en) Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
JP2656332B2 (en) Polyvinyl alcohol fiber drawing method
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JP2656339B2 (en) High strength polyvinyl alcohol fiber
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JP3021944B2 (en) Manufacturing method of polyvinyl alcohol fiber with excellent strength
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
KR100713781B1 (en) A process for preparing polyvinylalcohol yarn with high strength, and polyvinylalcohol yarn prepared therefrom
JPH076087B2 (en) High strength and high modulus PVA fiber and method for producing the same
JPS62149909A (en) Polyvinyl alcohol fiber
JP2888502B2 (en) Method for producing high strength polyvinyl alcohol fiber with excellent hot water resistance
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JPH04289215A (en) Production of high-tenacity polyvinyl alcoholic fiber excellent in resistance to dry heat aging
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPH0457769B2 (en)
JP2728737B2 (en) Hot water-resistant polyvinyl alcohol fiber and method for producing the same
JPH02251608A (en) Production of polyvinyl alcohol-based fiber
JPH02154008A (en) Drawing of polyvinyl alcohol-based fiber
JPH0718514A (en) Production of polyvinyl alcohol fiber
KR960002880B1 (en) Manufacturing process of nylon-46 fiber
JPH0321647B2 (en)
JPS6346173B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees