JPH02154008A - Drawing of polyvinyl alcohol-based fiber - Google Patents

Drawing of polyvinyl alcohol-based fiber

Info

Publication number
JPH02154008A
JPH02154008A JP30471988A JP30471988A JPH02154008A JP H02154008 A JPH02154008 A JP H02154008A JP 30471988 A JP30471988 A JP 30471988A JP 30471988 A JP30471988 A JP 30471988A JP H02154008 A JPH02154008 A JP H02154008A
Authority
JP
Japan
Prior art keywords
stretching
heater
polyvinyl alcohol
draw
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30471988A
Other languages
Japanese (ja)
Inventor
Hirofumi Sano
洋文 佐野
Hideo Kawakami
秀男 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP30471988A priority Critical patent/JPH02154008A/en
Publication of JPH02154008A publication Critical patent/JPH02154008A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably obtain the subject polyvinyl alcohol-based fiber having high strength and high elastic modules by drawing a raw spun yarn of polyvinyl alcohol under a specified condition. CONSTITUTION:A raw spun yarn produced from a solution containing a polyvinyl alcohol with >=1,500 average polymerization degree is drawn at one or two or more stages using a system having a non-contact hollow heater between rollers and utilizing the heater at >=210 deg.C in an atmosphere containing >=85% N2 and at 0.05-5/min. rate of draw deformation give by the formula [DRn is draw rate in drawing at the n-th stage; HDn is draw ratio in drawing at the n-th stage; Vn is feed ratio (m/min.) in drawing at the n-th stage; Ln is length(m) of heater in drawing at the n-th stage] to obtain the objective fiber with >=1.8g/d draw tension and >=16 times total draw ratio at the final stage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強力高弾性率を有するポリビニフレアルコー
ル(以下P■Δと略記する)系繊維を工業的に有利に製
造するための延伸方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a drawing method for industrially advantageously producing polyvinifre alcohol (hereinafter abbreviated as P■Δ) fibers having high strength and high modulus. It is about the method.

(従来の技術〉 従来PVA系繊維はポリアミド、ポリエステル、ポリア
クリロニトリル系繊維に比へ強度1弾性率が高く、その
主用途である産業資材用繊維としてはもちろん最近では
アスベスト代替繊維としてセメント補強材等にも使用さ
れている。
(Conventional technology) Conventional PVA fibers have higher strength and modulus of elasticity than polyamide, polyester, and polyacrylonitrile fibers, and have been used not only as fibers for industrial materials, which is their main use, but also as cement reinforcement materials as asbestos substitute fibers. It is also used in

高強力高弾性率のPVA系繊維を得る方法としては高分
子量ポリエチレンのゲル紡糸−超延伸の考え方(例えば
特開昭60−194109号公報)を応用した特開昭5
9−100710号公報、特開昭59−130314号
公報、特開昭61−108711号公報などが公知であ
る。これらの方法はいずれも溶剤抽出速度の大きいメタ
ノールを用いて溶剤を抽出し延伸しているが未だ満足し
た強度は得られていない。
As a method for obtaining PVA-based fibers with high strength and high modulus, the concept of gel spinning and super-stretching of high molecular weight polyethylene (for example, JP-A-60-194109) was applied.
9-100710, JP-A-59-130314, JP-A-61-108711, etc. are known. In all of these methods, the solvent is extracted using methanol, which has a high solvent extraction rate, and stretching is performed, but satisfactory strength has not yet been obtained.

一方特開昭62−149909号公報、特開昭62−1
49910号公報にみられるごとくホウ酸を含む1’V
A水溶液を乾湿式紡糸でアルカリ性水溶液により凝固さ
せる方法も公知であるが冷却だけではゲル化しないため
均一ゲルは得がたく、かつ水膨潤による単糸間の膠着が
起り易く高強力繊維を得るのが難しい。
On the other hand, JP-A-62-149909, JP-A-62-1
1'V containing boric acid as seen in Publication No. 49910
It is also known to coagulate an aqueous solution A with an alkaline aqueous solution by dry-wet spinning, but it is difficult to obtain a uniform gel because it does not gel with cooling alone, and it is difficult to obtain a high-strength fiber because it tends to cause agglutination between single filaments due to water swelling. is difficult.

高強力高弾性率のPVA繊維を得るには高倍率に延伸し
高配向結晶の構造にしなければならないが、そのために
はPVaの融点近くで延伸する必要がある。しかしPV
Aは融点と分解温度が同程度であり、延伸過程でPVa
の分解が起り強度低下を招きやすい。
In order to obtain PVA fibers with high strength and high elastic modulus, it is necessary to draw the fibers at a high magnification to form a highly oriented crystal structure, but for this purpose it is necessary to draw the fibers near the melting point of PVa. However, P.V.
A has the same melting point and decomposition temperature, and in the stretching process, PVa
decomposition occurs, which tends to lead to a decrease in strength.

(発明が解決しようとする課題) 従って本発明は、延伸工程でのPVAの分解を抑制しか
つ高倍率に延伸可能な技術を得んとするものである。
(Problems to be Solved by the Invention) Therefore, the present invention aims to obtain a technology that suppresses the decomposition of PVA in the stretching process and allows stretching at a high magnification.

(課題を解決するための手段) すなわち本発明は。(Means for solving problems) That is, the present invention.

「 平均重合度15oo以上のポリビニルアルコール系
ポリマーを含む溶液から常法により得られた紡糸原糸を
ローラー間に非接触型中空ヒーターを有する方式によっ
て延伸する際に、210℃以上の温度でN2含有率が8
5%以上の雰囲気下で該ヒーターを用いかつ次式で表わ
される延伸変形速度ドローレートを0.05〜5 rn
in ’にて1段または2段以上に延伸し、最終段階の
延伸張力が1.8gハ以上でかつ総延伸倍率が少なくと
も16倍であることを特徴とするポリビニルアルコール
系繊維の延伸方法。
"When drawing a spun yarn obtained by a conventional method from a solution containing a polyvinyl alcohol-based polymer with an average degree of polymerization of 15 oo or higher using a method that has a non-contact hollow heater between rollers, N2-containing fibers are drawn at a temperature of 210°C or higher rate is 8
Using the heater in an atmosphere of 5% or more, the stretching deformation speed draw rate expressed by the following formula is 0.05 to 5 rn
1. A method for stretching polyvinyl alcohol-based fibers, which comprises stretching in one or more stages in ', with a final stage stretching tension of 1.8 g or more, and a total stretching ratio of at least 16 times.

1)Bn = (川)n−1) X Vn/Ln (m
1n−’ )に関するものである。
1) Bn = (river) n-1) X Vn/Ln (m
1n-').

本発明の特徴は延伸温度、雰囲気(N2含有率)に合わ
せてドローレート(DB)を変化させ、PVAの酸化分
解を抑えながら延伸張力と総延伸倍率を大きくする点に
あり、これにより高強力高弾性率のPVA系繊維を得る
ことができるものである。
The feature of the present invention is that the draw rate (DB) is changed according to the stretching temperature and atmosphere (N2 content) to increase the stretching tension and total stretching ratio while suppressing the oxidative decomposition of PVA. It is possible to obtain PVA-based fibers with high elastic modulus.

以下本発明の内容をざらに詳細に説明する。The contents of the present invention will be explained in detail below.

一般に繊維強度を高くするには分子鎖の配向と結晶化を
高める必要があり、そのために高倍率延伸が必要となる
Generally, in order to increase fiber strength, it is necessary to increase the orientation and crystallization of molecular chains, which requires high-magnification stretching.

本発明に言うPVA糸ポリマーとは30℃の水溶液で粘
度法により求めた平均重合度が1.500以上のもので
あり、ケン化度が99モル%以上で分岐度の低い直鎖状
のものである。PVAの平均重合度が高いほど高強力高
弾性率繊維が得やすく、好ましくは4000以上、ざら
に好ましくは10000以上である。重合度が高いほど
欠陥部になりやすい分子鎖末端が少なく、かつ結晶間を
連結するタイ分子が多く高強度高弾性率繊維になりやす
い。
The PVA thread polymer referred to in the present invention is a linear polymer with an average degree of polymerization of 1.500 or more determined by a viscosity method in an aqueous solution at 30°C, a saponification degree of 99 mol% or more, and a low degree of branching. It is. The higher the average degree of polymerization of PVA, the easier it is to obtain high-strength, high-modulus fibers, preferably 4,000 or more, more preferably 10,000 or more. The higher the degree of polymerization, the fewer molecular chain ends tend to become defects, and the more tie molecules connecting crystals, the more likely it is to become a high-strength, high-modulus fiber.

PVaのケン化度は99%以上であり、99%未満では
分子鎖の乱れが大きすぎ結晶化が進まず融点が低下して
耐熱性が下り高強力高弾性率繊維は得られない。なおP
VAに5重量%以下の添加物例えばホウ酸、顔料、紫外
線吸収剤、界面活性剤などを加えても構わない。
The degree of saponification of PVa is 99% or more, and if it is less than 99%, the disorder of the molecular chains is too large and crystallization does not proceed, the melting point decreases, the heat resistance decreases, and high strength and high modulus fibers cannot be obtained. Furthermore, P
Additives such as boric acid, pigments, ultraviolet absorbers, surfactants, etc. may be added to VA in an amount of 5% by weight or less.

P V A系ホ!Jマーの溶剤としては何でもよいが、
冷却でゲル化するような溶剤が好ましく、例えばエチレ
ングリコール、トリメチレングリコール、ジエチレング
リコール、グリセリンなどの多価アルコールやそれらと
水との混合溶剤あるいはジメチルスルホキシド2ジメチ
ルホルムアミド、ジエチレントリアミンやそれらと水と
の混合溶剤がある。これらの場合急冷ゲル化が可能であ
るため非晶化、からみ固定、溶剤抽出速度の遅延化など
均一ゲルを生成し好都合である。
P V A type ho! Any solvent can be used as a solvent for J-mer, but
Solvents that gel when cooled are preferred, such as polyhydric alcohols such as ethylene glycol, trimethylene glycol, diethylene glycol, and glycerin, mixed solvents of these with water, dimethyl sulfoxide, dimethyl formamide, diethylene triamine, and mixtures of these with water. There is a solvent. In these cases, rapid cooling gelation is possible, so it is advantageous to produce a homogeneous gel without crystallization, entanglement fixation, and retardation of solvent extraction rate.

紡糸方式はどのようなものでもよく、湿式、乾式、乾湿
式いずれでもよいが、好ましくは乾湿式ゲル紡糸である
The spinning method may be any method, and may be wet, dry, or wet-dry, but wet-dry gel spinning is preferred.

凝固浴はどのようなものでもよく例えCiメタノール、
エタノールなどのアルコール類やアセトン。
The coagulation bath can be any type of bath, such as Ci methanol,
Alcohols such as ethanol and acetone.

エーテルざらにはアルカリ水溶液、芒硝水溶液およびそ
れらの混合液などいずれのものでも構わない。
The ether solution may be any alkali aqueous solution, mirabilite aqueous solution, or a mixture thereof.

湿延伸はしてもしなくてもよいが、乾燥までの工程中で
好ましくは3倍以上の延伸を行なったほうがよい。延伸
倍率3倍以上の理由は結晶化度を低下させ分子間水素結
合を弱くして分子鎖を動きやすくすることにより最終工
程の乾熱延伸を高倍率で行なえるようにすることおよび
単糸間膠着を少なくすることである。
Although wet stretching may or may not be carried out, it is preferable to carry out stretching three times or more during the process up to drying. The reason for the draw ratio of 3 times or more is to lower the degree of crystallinity, weaken the intermolecular hydrogen bonds, and make the molecular chains more mobile, so that the dry heat drawing in the final step can be performed at a high draw ratio, and the The goal is to reduce stalemate.

PVA系ポリマーの溶剤の抽出はアルコール、アセトン
、水等向で行なってもよいが、好ましくはメタノール、
エタノール等低級アルコールで行なったほうがよい。
The solvent extraction of the PVA-based polymer may be carried out using alcohol, acetone, water, etc., but preferably methanol,
It is better to use a lower alcohol such as ethanol.

その後乾燥をしなけれはならないが、その温度は130
℃以下好ましくは70〜100℃である。130℃を超
えると結晶化が増大しそれ以降の延伸で倍率を高くする
ことが難しい。
After that, it must be dried at a temperature of 130°C.
℃ or less, preferably 70 to 100℃. When the temperature exceeds 130°C, crystallization increases and it is difficult to increase the stretching ratio in subsequent stretching.

本発明では最終的に高温で高倍率に延伸しなければなら
ない。ヒーターは接触型では繊維が融解または損傷し易
く非接触型が好ましい。ヒーター温度は210℃以上で
なければならない。210℃未満では延伸倍率が低下し
配向結晶化が進まないため高強力高弾性率の繊維は得が
たい。ここでヒーター温度とは実測最高温度を意味し、
好ましくは230〜260℃である。加熱延伸雰囲気は
N2含有率8596以上好ましくは90%以上がよい。
In the present invention, it is necessary to finally stretch the film at a high temperature and at a high magnification. A contact type heater tends to melt or damage the fibers, so a non-contact type heater is preferable. Heater temperature must be 210°C or higher. If the temperature is lower than 210°C, the draw ratio decreases and oriented crystallization does not proceed, making it difficult to obtain fibers with high strength and high modulus. Heater temperature here means the highest temperature actually measured.
Preferably it is 230-260°C. The N2 content of the heated stretching atmosphere is preferably 8596 or more, preferably 90% or more.

85%未満では酸素によりポリマーの分解が起こりやす
い。また延伸変形速度ドローレート(Dki)は(1,
tl 5〜5m1n−1でなければならない。D )l
 0.05m1n−’未満ではヒーター長に対しフィー
ド速度が遅くヒーター内の滞留時間が長くなってポリマ
ーの分解が進行する。DBが5m1n−’を超えるとヒ
ーター長に対しフィード速度が大きすぎて分子鎖の一部
切断や総延伸倍率の低下による分子配向度の減少などに
より高強力高弾性率繊維になりにくい。ヒーター温度が
250℃以上と高い場合、DHは大ざいほうが分解が少
なくて好ましい。DBの好適範囲はこの場合0.2〜2
m1n=である。
If it is less than 85%, the polymer is likely to be decomposed by oxygen. In addition, the stretching deformation speed draw rate (Dki) is (1,
tl must be 5-5m1n-1. D)l
If it is less than 0.05 m1n-', the feed rate is slow relative to the length of the heater, the residence time in the heater becomes long, and the decomposition of the polymer progresses. When DB exceeds 5 m1n-', the feed rate is too high relative to the heater length, and it is difficult to obtain a high-strength, high-modulus fiber due to partial cleavage of molecular chains and a decrease in the degree of molecular orientation due to a decrease in the total draw ratio. When the heater temperature is as high as 250° C. or higher, it is preferable that the DH be large, since decomposition will be less. In this case, the preferred range of DB is 0.2 to 2.
m1n=.

一方高強力繊維を得るには高張力で高倍率に延伸するの
が好ましく本発明の場合最終延伸張力は1.8y/d以
上でなければならず好ましくは2.sg7’a以上であ
る。延伸張力は高温下での強度に匹敵し張力1.8 g
/d未満では高強力繊維が得がたい。延伸温度が高すぎ
る場合分子鎖が動き易く、延伸倍率は高くなるが、分子
鎖のフロー(素抜け)が起り、延伸張力および強度の低
下を来たす。延伸温度が低すぎる場合延伸に対し分子鎖
の抵抗が強く。
On the other hand, in order to obtain high-strength fibers, it is preferable to draw at a high tension and a high magnification, and in the case of the present invention, the final drawing tension must be 1.8 y/d or more, preferably 2. sg7'a or higher. The stretching tension is comparable to the strength under high temperature, with a tension of 1.8 g.
If it is less than /d, it is difficult to obtain high strength fibers. If the stretching temperature is too high, the molecular chains will move easily and the stretching ratio will be high, but the molecular chains will flow and the stretching tension and strength will decrease. If the stretching temperature is too low, the molecular chains will have strong resistance to stretching.

延伸張力は高い値を示すが、延伸倍率が低下し分子鎖の
配向が不十分のため低強度になり易い。従って、高強力
糸は延伸倍率と張力が共に高い時に達成される。一般に
高重合度はど結晶間を貫通する分子の数が多く、延伸張
力は増大する。
Although the stretching tension shows a high value, the strength tends to be low because the stretching ratio is low and the molecular chains are insufficiently oriented. Therefore, high tenacity yarns are achieved when both the draw ratio and tension are high. Generally, when the degree of polymerization is high, the number of molecules penetrating between the crystals is large, and the stretching tension increases.

一方、総延伸倍率は16倍以上好ましくは20倍以上で
ある。ここで総延伸倍率とは、紡糸時の湿延伸倍率およ
び210℃未満の熱延伸倍率を乗じたものにざらに21
0℃以上での熱延伸倍率を乗じたものを意味する。16
倍未満では分子の配向が不十分で高強力になり難い。
On the other hand, the total stretching ratio is 16 times or more, preferably 20 times or more. Here, the total draw ratio is approximately 21 times the wet draw ratio during spinning and the hot draw ratio below 210°C.
It means the value multiplied by the hot stretching ratio at 0°C or higher. 16
If it is less than twice as strong, the molecular orientation will be insufficient and it will be difficult to achieve high strength.

従って本発明の特徴は、比較的高い重合度のPVA系繊
維をN2雰囲気下で張力、温度1倍率を高くするような
延伸変形速度D)Iで延伸することでありこれにより例
えば強度18 g/d以上1弾性率4 s o g/a
以上の繊維が得られ易い。
Therefore, the feature of the present invention is to draw PVA-based fibers with a relatively high degree of polymerization in an N2 atmosphere at a drawing deformation rate D)I that increases the tension and temperature ratio, thereby increasing the strength, for example, 18 g/ d or more 1 elastic modulus 4 s o g/a
It is easy to obtain fibers of the above.

以下実施例により本発明を具体的に説明するが、本発明
は実施例のみに限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited only to the Examples.

実施例1および比較例J 平均重合度17000.ケン化度99.4モル%の乾燥
PVAを5重量%溶液になるようにグリセリンに180
℃にて溶解せしめた。なお溶解機は密閉系で系内は減圧
後N2ガスを流しPVAの着色分解を抑えた。
Example 1 and Comparative Example J Average degree of polymerization: 17,000. Dry PVA with a saponification degree of 99.4 mol% was added to glycerin at 180% to make a 5% by weight solution.
It was dissolved at ℃. The melting machine was a closed system, and N2 gas was flowed into the system after reducing the pressure to suppress color decomposition of PVA.

次いで該溶液を190℃にして孔径0.2(転)、ホー
ル数20のノズルより吐出させ、25mm下の凝固浴に
落下せしめた。凝固浴組成はメタノール/グリセリン−
8フ2重量比であり温度は0℃にした。
Next, the solution was heated to 190° C. and discharged from a nozzle with a hole diameter of 0.2 (turn) and 20 holes, and dropped into a coagulation bath 25 mm below. The coagulation bath composition is methanol/glycerin.
The weight ratio was 8:2 and the temperature was 0°C.

凝固浴で冷却によりゲル繊維を得たあと40℃メp/ 
−/l/中で4倍湿延伸し、メタノールでグリセリンを
ほぼ完全に抽出してから100℃の熱風で乾燥しボビン
に巻取った。
After obtaining gel fibers by cooling in a coagulation bath, 40℃ mep/
The film was wet-stretched 4 times in -/l/, and the glycerin was almost completely extracted with methanol, then dried with hot air at 100°C and wound up on a bobbin.

得られた紡糸原糸を1段で延伸するに際し4mの非接触
輻射型ヒーターにN2を流してヒーター内のNZ含有率
を95粥にしたあとフィード速度0.8〜’min 、
ヒーター最高温度260℃で延伸倍率を5.3倍(総延
伸倍率21.2倍)にして延伸した。この時のDI(は
0.86であり、延伸張力は3.6Q/dと高いもので
あった。得られた延伸繊維は強度23.1y/d、弾性
率は620 Q/dを示し従来にない特徴を有していた
。なお得られた延伸糸を140℃の熱水で溶解し粘度測
定により重合度を求めてポリマーに対する重合度低下率
をみたが15%と低いものであった。
When the obtained spun yarn was drawn in one stage, N2 was flowed through a 4 m non-contact radiant heater to bring the NZ content in the heater to 95%, and then the feed rate was set at 0.8-'min.
Stretching was carried out at a maximum heater temperature of 260° C. and a stretching ratio of 5.3 times (total stretching ratio of 21.2 times). The DI (DI) at this time was 0.86, and the drawing tension was as high as 3.6 Q/d.The obtained drawn fiber had a strength of 23.1 y/d and an elastic modulus of 620 Q/d, compared to the conventional The obtained drawn yarn was dissolved in hot water at 140°C, and the degree of polymerization was determined by viscosity measurement to determine the degree of decrease in degree of polymerization relative to the polymer, which was as low as 15%.

比較例1としてヒーター内にN2を流さず空気中で上記
と同様の延伸を実施したが総延伸倍率は19.8倍、延
伸張力は2.5Q/dに低下して、繊維は黄色に着色し
2重合度は38%も低下して1強度は17.6y/dと
低いものになった。
As Comparative Example 1, the same stretching as above was carried out in air without flowing N2 into the heater, but the total stretching ratio was 19.8 times, the stretching tension was reduced to 2.5 Q/d, and the fiber was colored yellow. However, the 2 degree of polymerization decreased by 38% and the 1 strength became as low as 17.6 y/d.

実施例2および比較例2 平均重合度7000、ケン化度99.9モル%の1’V
Aを10重量%溶液になるようにジメチルスルホキシド
に100℃で溶解せしめた。
Example 2 and Comparative Example 2 1'V with average polymerization degree of 7000 and saponification degree of 99.9 mol%
A was dissolved in dimethyl sulfoxide at 100°C to make a 10% by weight solution.

次いで該溶液を85℃にしてホール数40のノズルから
吐出させた。凝固浴組成はメタノール/ジメチルスルホ
キシド=6/4重量比であり、温度は10℃とした。4
0℃メタノール中で5倍の湿延伸を実施し、溶剤抽出後
100℃の熱風で乾燥しボビンに巻取った。
Next, the solution was heated to 85° C. and discharged from a nozzle with 40 holes. The coagulation bath composition was methanol/dimethyl sulfoxide = 6/4 weight ratio, and the temperature was 10°C. 4
Wet stretching was carried out 5 times in methanol at 0°C, and after solvent extraction, it was dried with hot air at 100°C and wound up on a bobbin.

得られた紡糸原糸を1段で延伸するに際し、4雇の輻射
型ヒーターでヒーター内のN2含有率ヲ97%にしたあ
とフィード速度201m1n   ヒーター最高温度2
53℃で延伸倍率を4.8倍(総延伸倍率24.0倍)
にして延伸した。この時のDEは1.9m1n7’であ
り延伸張力は3.117/dであった。得られた延伸繊
維は強度2 o、s g/d 、弾性率540 g/d
と高い値を示した。
When drawing the obtained spun yarn in one stage, the N2 content in the heater was brought to 97% using a 4-person radiant heater, and then the feed rate was 201 m1n and the maximum heater temperature was 2.
Stretching ratio is 4.8 times at 53℃ (total stretching ratio 24.0 times)
It was then stretched. The DE at this time was 1.9 m1n7' and the stretching tension was 3.117/d. The obtained drawn fiber has a strength of 2 o, s g/d and an elastic modulus of 540 g/d.
showed a high value.

比較例2として、実施例2におけるフィード速度を10
 m%ninにしたところ延伸張力は2.9 g/dで
あったが、延伸倍率3.5倍(総延伸倍率17.5倍)
に低下しDI(は6.8m1n−’と縄く、分子配向が
不十分か、分子鎖の切断が一部起ったためか、得られた
繊維の強度はl 6.9 y/d、弾性率460 Q/
dに低下した。
As Comparative Example 2, the feed rate in Example 2 was changed to 10
When m%nin was used, the stretching tension was 2.9 g/d, but the stretching ratio was 3.5 times (total stretching ratio 17.5 times).
The strength of the obtained fiber was 6.9 y/d, and the elasticity Rate 460 Q/
It decreased to d.

実施例3および比較例3 平均重合度3300、ケン化度99.5モル%の乾燥P
Vaを13重量%になるよう水に溶解した。
Example 3 and Comparative Example 3 Dry P with average polymerization degree of 3300 and saponification degree of 99.5 mol%
Va was dissolved in water to a concentration of 13% by weight.

その際PVAに対して3.5重量%となるようホウ酸を
添加した。
At that time, boric acid was added in an amount of 3.5% by weight based on PVA.

次いで該溶液を110℃にしてホール数1000のノズ
ルより組成NaOH10Q/II 、 Na80< 3
00 g/A’の70℃に保った凝固浴中に吐出させ湿
式紡糸を行なった。次に希R25u4水溶液で中和後水
洗を行なったが、この間にトータル湿延伸倍率S、O倍
で延伸を行なった。120℃の熱風で乾燥しボビンに巻
取った原糸を1段で延伸するに際し、25雇の熱風炉の
N2含有率を90%にしたあとフィード速度231m+
n 、ヒーター最高温度254℃で延伸倍率を5.6倍
(総延伸倍率28.0倍)にして延伸した。この時のD
l(は4.2m1n−’、延伸張力は2.3y/dであ
った。得られた延伸繊維は強度18.9 Q/d 。
Next, the solution was heated to 110°C and passed through a nozzle with 1000 holes to give a composition of NaOH10Q/II, Na80<3.
Wet spinning was performed by discharging the product into a coagulation bath maintained at 70°C at 00 g/A'. Next, the film was neutralized with a dilute R25u4 aqueous solution and washed with water, during which time stretching was carried out at a total wet stretching ratio of S and O times. When drawing the raw yarn that has been dried with hot air at 120°C and wound around a bobbin in one stage, the feed speed is 231m+ after the N2 content in the 25-hour hot air oven is set to 90%.
The film was stretched at a maximum heater temperature of 254° C. and a stretching ratio of 5.6 times (total stretching ratio of 28.0 times). D at this time
The drawn fiber had a strength of 18.9 Q/d.

弾性率4 s Og/dを示した。It showed an elastic modulus of 4 s Og/d.

比較例3として、ヒーター最高温度を265℃で同様に
延伸したところ、延伸倍率は6.2倍(総延伸倍率31
.0倍〕と高くなったが、延伸張力は1.5y/d L
かなく、分子鎖のフローが起った。得られた延伸繊維の
強度は15.7 g/dと低い値であった。
As Comparative Example 3, when the heater maximum temperature was 265°C and the same stretching was performed, the stretching ratio was 6.2 times (total stretching ratio 31
.. 0 times], but the stretching tension was 1.5 y/d L
Suddenly, a flow of molecular chains occurred. The strength of the drawn fibers obtained was as low as 15.7 g/d.

Claims (1)

【特許請求の範囲】 平均重合度1500以上のポリビニルアルコール系ポリ
マーを含む溶液から常法により得られた紡糸原糸をロー
ラー間に非接触型中空ヒーターを有する方式によつて延
伸する際に、210℃以上の温度でN_2含有率が85
%以上の雰囲気下で該ヒーターを用いかつ次式で表わさ
れる延伸変形速度ドローレートを0.05〜5min^
−^1にて1段または2段以上に延伸し、最終段階の延
伸張力が1.8g/d以上でかつ総延伸倍率が少なくと
も16倍であることを特徴とするポリビニルアルコール
系繊維の延伸方法。 DRn=(HDn−1)×Vn/Ln(min^−^1
) DRn:n段目延伸時のドローレート HDn:n段目延伸時の延伸倍率(倍) Vn:n段目延伸時のフィード速度(m/min) Ln:n段目延伸時のヒーター長(m)
[Scope of Claims] When a spun yarn obtained by a conventional method from a solution containing a polyvinyl alcohol polymer having an average degree of polymerization of 1,500 or more is drawn by a method having a non-contact hollow heater between rollers, N_2 content is 85 at temperatures above ℃
% or more in an atmosphere, and the stretching deformation speed draw rate expressed by the following formula is 0.05 to 5 min^
- A method for stretching polyvinyl alcohol fibers, characterized by stretching in one or two or more stages at ^1, with a final stage stretching tension of 1.8 g/d or more, and a total stretching ratio of at least 16 times. . DRn=(HDn-1)×Vn/Ln(min^-^1
) DRn: Draw rate during n-th drawing HDn: Stretching ratio (times) during n-th drawing Vn: Feed speed during n-th drawing (m/min) Ln: Heater length during n-th drawing ( m)
JP30471988A 1988-11-30 1988-11-30 Drawing of polyvinyl alcohol-based fiber Pending JPH02154008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30471988A JPH02154008A (en) 1988-11-30 1988-11-30 Drawing of polyvinyl alcohol-based fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30471988A JPH02154008A (en) 1988-11-30 1988-11-30 Drawing of polyvinyl alcohol-based fiber

Publications (1)

Publication Number Publication Date
JPH02154008A true JPH02154008A (en) 1990-06-13

Family

ID=17936391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30471988A Pending JPH02154008A (en) 1988-11-30 1988-11-30 Drawing of polyvinyl alcohol-based fiber

Country Status (1)

Country Link
JP (1) JPH02154008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627171B1 (en) * 2002-03-19 2006-09-22 주식회사 효성 Method for preparing high-tenacity polyvinyl alchol fiber and product manufactured thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627171B1 (en) * 2002-03-19 2006-09-22 주식회사 효성 Method for preparing high-tenacity polyvinyl alchol fiber and product manufactured thereby

Similar Documents

Publication Publication Date Title
EA001056B1 (en) Wet spinning process for aramid polymer containing salts and fiber produced from this process
JPH01272814A (en) Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
US4205038A (en) Process for producing shaped articles of polyoxadiazoles
JPH02154008A (en) Drawing of polyvinyl alcohol-based fiber
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JPH02169709A (en) Method for drawing polyvinyl alcohol-based fiber
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
US4035465A (en) Drawing polyoxadiazoles filaments
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JPS63190010A (en) Production of high-tenacity polyvinyl alcohol based fiber
JPH02251608A (en) Production of polyvinyl alcohol-based fiber
JP3053277B2 (en) Polyvinyl alcohol fiber drawing method
JPH04289215A (en) Production of high-tenacity polyvinyl alcoholic fiber excellent in resistance to dry heat aging
JPH02216211A (en) Production of improved poly-p-phenylene terephthalamide fiber
JP2765951B2 (en) Glossy high-strength polyvinyl alcohol fiber and method for producing the same
JPH03279412A (en) Method for spinning polyvinyl alcohol-based fiber
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
JPH01266212A (en) Production of high-tenacity polyvinyl alcohol fiber
JPS636108A (en) Production of poly(p-phenylene terephthalamide) fiber
JPH0299607A (en) Production of polyvinyl alcohol-based fiber
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPH0959819A (en) Production of polyvinyl alcohol fiber
KR20180072051A (en) Method of manufacturing para-aramid fiber with high strength
JPH06235117A (en) Production of high strength polyvinyl alcohol fiber