JPH01266212A - Production of high-tenacity polyvinyl alcohol fiber - Google Patents

Production of high-tenacity polyvinyl alcohol fiber

Info

Publication number
JPH01266212A
JPH01266212A JP9118688A JP9118688A JPH01266212A JP H01266212 A JPH01266212 A JP H01266212A JP 9118688 A JP9118688 A JP 9118688A JP 9118688 A JP9118688 A JP 9118688A JP H01266212 A JPH01266212 A JP H01266212A
Authority
JP
Japan
Prior art keywords
solvent
fiber
spinning
polyvinyl alcohol
inorganic salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9118688A
Other languages
Japanese (ja)
Inventor
Hirofumi Sano
洋文 佐野
Hideo Kawakami
秀男 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP9118688A priority Critical patent/JPH01266212A/en
Publication of JPH01266212A publication Critical patent/JPH01266212A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber having high tenacity and modulus at a low cost, by dissolving a PVA polymer in a specific solvent, spinning the obtained spinning dope using a coagulation bath composed of a low-temperature aqueous solution containing an inorganic salt and drawing the obtained fiber using a specific method. CONSTITUTION:A PVA polymer having an average polymerization degree of >=3,000 is dissolved in a solvent (e.g. ethylene glycol) capable of giving a gelled PVA by cooling. The obtained spinning dope is extruded through a spinning nozzle, cooled with air and immersed in an aqueous solution of an inorganic salt at <=25 deg.C to effect the gel spinning of the dope. The produced fiber is drawn at a draw ratio of >=5 in a state containing 30-300wt.% of the solvent based on the PVA. The drawn fiber is washed with water, dried and then drawn at >=200 deg.C at a total draw ratio of >=18 to obtain the objective fiber. The inorganic salt to be used in the gel spinning process is e.g. Na2SO4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強力、高弾性率を有するポリビニルアルコー
ル系繊維を安く製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for inexpensively producing polyvinyl alcohol fibers having high strength and high modulus of elasticity.

(従来の技術) 従来ポリビニルアルコール系繊維はポリアミド、ポリエ
ステル、ポリアクリロニトリル系繊維に比べ、強度、弾
性率が高く、その主用途である産業資材用繊維としては
もちろん、最近ではアスベスト代替繊維としてセメント
補強材等にも使用されている。
(Conventional technology) Conventional polyvinyl alcohol fibers have higher strength and elastic modulus than polyamide, polyester, and polyacrylonitrile fibers, and are used not only as fibers for industrial materials, which is their main use, but also as cement reinforcement fibers recently as asbestos substitute fibers. It is also used for materials etc.

高強力高弾性率のボリヒニルアルコール系繊維を得る方
法としては高分子量ポリエチレンのゲル紡糸−超延伸の
考え方を応用した特開昭59=100710号公報、特
開昭59−130314号公報、特開昭61−1087
11号公報などが公知である。これらの方法はいずれも
溶剤抽出速度の大きいメタノールを用いて溶剤を抽出し
延伸しているが未だ満足した強度は得られず、しかもメ
タノールの回収工程や防爆設備の設置が必要で非常に製
造コストの高いものになる。従って高強力高弾性率のポ
リビニルアルコール系繊維を工業的に安価に製造するに
はいまだ解決すべき点が多く残されている。
As a method for obtaining polyhinyl alcohol-based fibers with high strength and high elastic modulus, the concept of gel spinning and ultra-stretching of high molecular weight polyethylene is applied, as disclosed in JP-A-59-100710, JP-A-59-130314, and JP-A-59-130314. Kaisho 61-1087
No. 11 and the like are publicly known. All of these methods use methanol, which has a high solvent extraction rate, to extract the solvent and then stretch, but they have not yet achieved satisfactory strength, and furthermore, they require a methanol recovery process and the installation of explosion-proof equipment, resulting in extremely high production costs. become high. Therefore, there are still many problems to be solved in order to industrially produce polyvinyl alcohol fibers with high strength and high modulus at low cost.

(発明が解決しようとする課題) 以上の背景を踏まえて本発明者らは高強力高弾性率のポ
リビニルアルコール系繊維を安価に得るための検討を鋭
意行なった。
(Problems to be Solved by the Invention) Based on the above background, the present inventors have conducted extensive studies to obtain polyvinyl alcohol-based fibers with high strength and high modulus at low cost.

その結果以下の5つの条件を満たす必要があることを見
出した。すなわち (1)冷却によりゲル化するような溶剤を用いる(2)
凝固浴として低温の無機塩水溶液を用いる(3)溶剤を
多量に含んだ状態で高倍率に延伸する(4)溶剤を水で
抽出する (5)高温で高倍率に延伸する 低温無機塩水溶液によりゲル化を起させ分子鎖のからみ
の少ない状態で固定し、同時に単糸同志の膠着が起らな
い程度にスキン層を形成させる。
As a result, it was found that the following five conditions must be met. That is, (1) use a solvent that gels when cooled (2)
Using a low-temperature inorganic salt aqueous solution as a coagulation bath (3) Stretching to a high magnification in a state containing a large amount of solvent (4) Extracting the solvent with water (5) Using a low-temperature inorganic salt aqueous solution to stretch at a high magnification at a high temperature Gelation is caused and the molecular chains are fixed in a state with little entanglement, and at the same time a skin layer is formed to the extent that the single filaments do not stick together.

次に溶剤残存量の多い状態で高倍率に湿延伸し紡糸初期
に生成した微結晶を破壊し非晶部を多くするとともに分
子配向度を高くさせる。この状態では水による膨潤が少
なく水洗で溶剤抽出が可能になる。最後に高温延伸で配
向結晶化の進んだ高強力高弾性率繊維を形成させる。
Next, wet stretching is carried out at a high magnification with a large amount of remaining solvent to destroy the microcrystals formed at the initial stage of spinning, increase the amorphous portion, and increase the degree of molecular orientation. In this state, there is little swelling due to water and solvent extraction is possible by washing with water. Finally, high-strength, high-modulus fibers with advanced oriented crystallization are formed by high-temperature drawing.

(課題を解決するための手段) すなわち本発明は、 「平均重合度3000以上のポリビニルアルコール系ポ
リマーを冷却によりゲル化するような溶剤に溶解して紡
糸原液を作成した後、紡糸ノズルより該原液を吐出させ
、空気冷却に続いて温度が25℃以下である少なくとも
無機塩を含む水溶液に浸漬してゲル紡糸を行ない、ポリ
ビニルアルコール系ポリマーに対し30〜300重量%
の溶剤を含んだ状態で5倍以上の延伸を施し、次いで水
洗および乾燥にて溶剤の全部または一部を除去し、さら
に200℃以上で総延伸倍率18倍以上になるように延
伸することを特徴とする高強力ポリビニルアルコール系
繊維の製造方法」 に関するものである。
(Means for Solving the Problems) That is, the present invention provides the following features: ``A polyvinyl alcohol-based polymer having an average degree of polymerization of 3000 or more is dissolved in a solvent that gels when cooled to create a spinning stock solution, and then the stock solution is passed through a spinning nozzle. is discharged, cooled with air, and then immersed in an aqueous solution containing at least an inorganic salt at a temperature of 25° C. or less to perform gel spinning.
Stretched by 5 times or more in a state containing a solvent of ``Method for producing characteristic high-strength polyvinyl alcohol fibers.''

以下本発明の内容をさらに詳細に説明する。The contents of the present invention will be explained in more detail below.

一般に繊維強度を高くするには分子鎖の配向と結晶化を
高める必要があり、そのために高倍率延伸が必要となる
。一方繊維断面の均一化と繊維間の膠着減少も欠陥部や
フィブリル化を少なくするので高強力化の方向にある。
Generally, in order to increase fiber strength, it is necessary to increase the orientation and crystallization of molecular chains, which requires high-magnification stretching. On the other hand, uniform fiber cross-sections and reduced adhesion between fibers also reduce defects and fibrillation, leading to higher strength.

本発明者らは高倍率延伸に対してはゲル化により分子鎖
のからみを少ない状態で固定し、かつ延伸前の繊維の結
晶化度を低くし強固な分子間水素結合を抑えるため溶剤
を含んだ状態で高倍率に延伸し紡糸初期の微結晶を破壊
することを考えた。また繊維断面の均一化と繊維間の膠
着に対しては低温の無機塩水溶液でゲル化させ膠着が起
らない程度の表層と溶剤を多量に含んだ内層を形成させ
、かつ高倍率に湿延伸して水に対し膨潤や膠着の起りに
くい繊維にすることを考えたのである。
For high-magnification stretching, the present inventors fixed molecular chain entanglement in a state with less entanglement through gelation, lowered the crystallinity of the fiber before stretching, and contained a solvent in order to suppress strong intermolecular hydrogen bonds. The idea was to destroy the microcrystals in the early stage of spinning by stretching at a high magnification in the still state. In addition, in order to make the fiber cross section uniform and prevent fibers from sticking together, we gelled them with a low-temperature inorganic salt aqueous solution to form a surface layer that does not cause sticking and an inner layer that contains a large amount of solvent, and then wet-stretched the fibers at a high magnification. The idea was to create fibers that would be less likely to swell or stick to water.

本発明に言うポリビニルアルコール系ポリマーとは、3
0℃の水溶液で粘度法により求めた平均重合度が300
0以上のものであり、ケン化度が98モル%以上で分岐
度の低い直鎖状のものである。なお2モル%以下の他の
ビニル化合物を共重合したもの、さらには3重量%以下
の顔料、酸化防止剤、紫外線吸収剤、結晶化抑制剤など
を添加したものも含まれる。特にポリビニルアルコール
のOH基と分子間架橋を起こすホウ酸またはホウ酸塩を
0.5〜5重量%添加することはポリマーの曳糸性を向
上させ紡糸時のビス落ちや単糸切れを減少させると共に
ゲル繊維の結晶化を抑えるので好ましい。
The polyvinyl alcohol-based polymer referred to in the present invention is 3
The average degree of polymerization determined by the viscosity method in an aqueous solution at 0°C is 300.
0 or more, the degree of saponification is 98 mol% or more, and it is a straight chain with a low degree of branching. Note that it also includes those copolymerized with 2 mol% or less of other vinyl compounds, and further includes those to which 3% by weight or less of pigments, antioxidants, ultraviolet absorbers, crystallization inhibitors, etc. are added. In particular, adding 0.5 to 5% by weight of boric acid or borate, which causes intermolecular crosslinking with the OH groups of polyvinyl alcohol, improves the spinnability of the polymer and reduces screw dropout and single fiber breakage during spinning. This is preferable because it also suppresses crystallization of gel fibers.

ポリビニルアルコールの平均重合度が高いほど高強力高
弾性率繊維が得やすく、好ましくはtoooo以上であ
る。重合度が高いほど欠陥部になり易い分子鎖末端が少
なく、かつ結晶間を連結するタイ分子が多く、高強力高
弾性率繊維になり易い。
The higher the average degree of polymerization of polyvinyl alcohol, the easier it is to obtain a fiber with high strength and high elastic modulus, and preferably it is too high or higher. The higher the degree of polymerization, the fewer the molecular chain ends that tend to become defective parts, and the more tie molecules that connect crystals, making it easier to form a high-strength, high-modulus fiber.

ポリビニルアルコール系ポリマーの溶剤としては、冷却
でポリビニルアルコールがゲル化するような溶媒が好ま
しく、例えばエチレングリコール、トリメチレングリコ
ール、ジエチレングリコール、グリセリンなどの多価ア
ルコールやそれらと水との混合溶剤あるいはジメチルス
ルホキシド、ジメチルホルムアミド、ジエチレントリア
ミンやそれらと水との混合溶剤がある。
As a solvent for polyvinyl alcohol-based polymers, it is preferable to use a solvent that causes polyvinyl alcohol to gel when cooled, such as polyhydric alcohols such as ethylene glycol, trimethylene glycol, diethylene glycol, and glycerin, mixed solvents of these and water, or dimethyl sulfoxide. , dimethylformamide, diethylenetriamine, and mixed solvents of these and water.

本発明ではポリビニルアルコール系ポリマーの溶液を紡
糸ノズルから吐出させ直ちに該溶剤の抽出が少ない低温
の少なくとも無機塩を含む水溶液に浸漬することにより
繊維断面が均一で単糸間の膠着がない透明ゲル繊維が得
られ高倍率の湿延伸が可能となる。この場合原!jL温
度と凝固浴温度が大きく異なるため湿式紡糸はできず、
乾湿式紡糸または冷却のみでゲル化するゲル紡糸となる
か、吐出される紡糸糸条をできろ限り均一に急冷するた
めにノズルから凝固浴までの距離を短かくして凝固浴へ
浸漬させる。凝固浴組成はメタノールまたはメタノール
と溶剤の混合系が公知であるが、この場合均一断面、無
膠着に関しては問題ないとしても溶剤の抽出が速いため
溶剤残存量が少なくかつ溶剤残存量のコントロールが難
しく、安定に高倍卑湿延伸が行なえない。一方非抽出性
の液体例えばデカリンやヘキサンを用いると高倍卑湿延
伸が可能となるが溶剤残存量が300重量%をはるかに
超えるため湿延伸時に溶剤が多量にしぼり出され単糸間
の膠着が起り易い。また公知技術ではいずれも薬剤の回
収が複雑となりかつ薬剤回収工程や防爆設備が必要で工
業的に採算の合わないものとなる。
In the present invention, a solution of a polyvinyl alcohol polymer is discharged from a spinning nozzle and immediately immersed in an aqueous solution containing at least an inorganic salt at a low temperature in which extraction of the solvent is small, so that the fiber cross section is uniform and there is no agglutination between single filaments. is obtained, and wet stretching at high magnification is possible. In this case Hara! Wet spinning is not possible due to the large difference between jL temperature and coagulation bath temperature.
Either dry-wet spinning or gel spinning that gels only by cooling is achieved, or the distance from the nozzle to the coagulation bath is shortened and the spun yarn is immersed in the coagulation bath in order to rapidly cool the spun yarn as uniformly as possible. The coagulation bath composition is known to be methanol or a mixture of methanol and a solvent, but in this case, although there is no problem with uniform cross sections and non-sticking, the solvent is extracted quickly, so the amount of remaining solvent is small and it is difficult to control the amount of remaining solvent. , high-strength low-humidity stretching cannot be performed stably. On the other hand, if a non-extractable liquid such as decalin or hexane is used, high-strength, low-moisture stretching is possible, but since the residual amount of solvent far exceeds 300% by weight, a large amount of solvent is squeezed out during wet stretching, resulting in aggregation between single filaments. It happens easily. In addition, all of the known techniques require complicated drug recovery and require a drug recovery process and explosion-proof equipment, making them industrially unprofitable.

本発明では高強力高弾性率ポリビニルアルコール系繊維
を安価に製造するという観点から前述のように少なくと
も無機塩を含む水溶液凝固浴を採用した。無機塩として
は単糸間の膠着を防止し、かつ均一断面を維持する目的
で例えばNatSO4、K、SO,、CaCQ*、Zn
5O*、ZnCQt等が挙げられるが本発明はこれらに
限定されるものではない。また無機塩以外のものとして
pHII整用の酸アルカリやポリマー溶液と同一の溶剤
があるが他の有機溶剤やアルコールなどは回収工程が複
雑でコストアップとなり好ましくない。無機塩水溶液の
濃度は飽和溶解度に近い濃度が好ましい。凝固浴温度は
透明で結晶化度の低いゲルm維を得るために25℃以下
好適なのは10℃以下である。ただし無機塩水溶液の凍
結温度や無機塩析出温度以下での紡糸は不能である。2
5℃を超えると結晶化が起って不透明なゲルとなり易く
かつ溶剤抽出速度が大きくなって好ましくない。
In the present invention, an aqueous solution coagulation bath containing at least an inorganic salt was employed as described above from the viewpoint of manufacturing high strength, high modulus polyvinyl alcohol fibers at low cost. Inorganic salts include, for example, NatSO4, K, SO, CaCQ*, Zn, for the purpose of preventing adhesion between single filaments and maintaining a uniform cross section.
Examples include 5O*, ZnCQt, etc., but the present invention is not limited thereto. In addition to inorganic salts, there are acids and alkalis for adjusting pHII, and the same solvent as the polymer solution, but other organic solvents and alcohols are not preferred because they complicate the recovery process and increase costs. The concentration of the inorganic salt aqueous solution is preferably close to the saturated solubility. The temperature of the coagulation bath is 25° C. or lower, preferably 10° C. or lower, in order to obtain transparent gel fibers with low crystallinity. However, spinning is not possible below the freezing temperature of the inorganic salt aqueous solution or the precipitation temperature of the inorganic salt. 2
If the temperature exceeds 5°C, crystallization tends to occur, resulting in an opaque gel, and the solvent extraction rate increases, which is not preferable.

得られた透明ゲル繊維の溶剤残存量はポリビニルアルコ
ールに対し30〜300重量%が最適である。
The optimal amount of solvent remaining in the obtained transparent gel fiber is 30 to 300% by weight based on the polyvinyl alcohol.

30重量%未満では繊維の湿延伸倍率を低下させ本発明
の言う5倍以上にすることは難かしい。300重量%を
超えた場合は湿延伸時に溶剤のしぼり出される量が多く
なり、単糸間の膠着が起こり易く好ましくない。透明ゲ
ル繊維は引き続き高温の無機塩水溶液例えば80°Cの
NatSOa飽和水溶液中で湿延伸を行なう。これに対
してメタノール浴で湿延伸をしても良いが安全性および
採算性の両面から不利である。また100°C以下の乾
熱延伸も構わないが単糸間の膠着が起り易い。湿延伸倍
率5倍以上の必要性は結晶化度を低下させ分子間水素結
合を弱くして分子鎖を動きやすくすることにより乾熱延
伸を高倍率で行なえるようにすることおよび湿延伸以降
の水洗工程で膨潤による単糸間膠着を少なくすることで
ある。
If it is less than 30% by weight, it is difficult to reduce the wet stretching ratio of the fiber to 5 times or more as defined in the present invention. If it exceeds 300% by weight, a large amount of solvent is squeezed out during wet stretching, which is undesirable because it tends to cause sticking between the filaments. The transparent gel fiber is then wet-stretched in a hot inorganic salt aqueous solution, for example, a saturated NatSOa aqueous solution at 80°C. On the other hand, wet stretching may be carried out in a methanol bath, but this is disadvantageous from both safety and profitability points of view. Dry heat stretching at 100°C or lower may also be used, but it tends to cause sticking between the single filaments. The need for a wet stretching ratio of 5 times or more is to lower the degree of crystallinity, weaken intermolecular hydrogen bonds, and facilitate the movement of molecular chains, so that dry heat stretching can be performed at a high ratio, and The goal is to reduce the sticking of single yarns due to swelling during the water washing process.

湿延伸後水洗を十分に行ない乾燥しなければならないが
、出来る限り水を徐々に除去すると共に結晶化を抑える
ため低温で乾燥するのが望ましい。
After wet stretching, the film must be thoroughly washed with water and dried, but it is desirable to remove water as gradually as possible and dry at a low temperature to suppress crystallization.

また溶剤残存量は5重量%以下、好ましくは1重量%以
下である。溶剤残存量が多いとそれ以降の乾熱延伸時に
繊維の着色分解が起こり易い。なお膠着防止や総延伸倍
率向上の目的で乾燥時に収縮を入れるのは望ましい。
Further, the residual amount of the solvent is 5% by weight or less, preferably 1% by weight or less. If the residual amount of solvent is large, coloring and decomposition of the fibers is likely to occur during subsequent dry heat stretching. Note that it is desirable to shrink the film during drying for the purpose of preventing sticking and increasing the total stretching ratio.

本発明では少なくとも最終的に200°C以上好ましく
は220°C以上の乾熱で延伸しなければならない。2
00℃未満では繊維分子鎖の軟化が不十分で高倍率延伸
が困難となり高強力繊維は得にくく、また得られた延伸
糸の結晶化度が低いため耐熱性や寸法安定性などに問題
を生じて好ましくない。
In the present invention, at least the final drawing must be done with dry heat at 200°C or higher, preferably 220°C or higher. 2
At temperatures below 00°C, the fiber molecular chains are insufficiently softened, making it difficult to draw at high magnification, making it difficult to obtain high-strength fibers, and the resulting drawn yarn has low crystallinity, causing problems in heat resistance, dimensional stability, etc. I don't like it.

高強力高弾性率ポリビニルアルコール系繊維を得るには
200°C以上の乾熱で延伸し全延伸倍率が18倍以上
好ましくは20倍以上にしなければならない。
In order to obtain a high-strength, high-modulus polyvinyl alcohol fiber, it must be drawn with dry heat at 200° C. or higher and the total stretching ratio should be 18 times or more, preferably 20 times or more.

全延伸倍率が18倍未満では分子配向が不十分で高強力
高弾性率繊維は得がたくまた耐熱性も低下して好ましく
ない。
If the total stretching ratio is less than 18 times, the molecular orientation is insufficient, making it difficult to obtain a high-strength, high-modulus fiber, and the heat resistance also decreases, which is not preferable.

なおポリビニルアルコール系ポリマーは熱により着色や
分解が起り易く溶剤での溶解や乾熱延伸時にN、雰囲気
にすることは望ましい。
Note that polyvinyl alcohol-based polymers tend to discolor and decompose due to heat, so it is desirable to use a nitrogen atmosphere during dissolution in a solvent or dry heat stretching.

以下実施例により本発明を具体的に説明するが、本発明
は実施例のみに限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited only to the Examples.

実施例1.2および比較例1,2 平均重合度が7000および14000の完全ケン化ポ
リビニルアルコールをそれぞれ10重量%および7重量
%になるようにグリセリンにIH℃にて溶解せしめた。
Example 1.2 and Comparative Examples 1 and 2 Completely saponified polyvinyl alcohol having an average degree of polymerization of 7,000 and 14,000 was dissolved in glycerin at IH° C. to a concentration of 10% by weight and 7% by weight, respectively.

なお溶解機は密閉系で系内は減圧後N。The melting machine is a closed system, and the inside of the system is filled with N after being depressurized.

ガスを流しポリビニルアルコールの着色分解を抑えた。Gas was passed to suppress the color decomposition of polyvinyl alcohol.

次いで該溶液を170℃にして孔径0.2mm、ホール
数20のノズル上り吐出させ、25a+a+下の凝固浴
に落下せしめた。凝固浴組成はNatSOa/水= 8
g/100gであり温度は10℃にした。凝固浴で冷却
によりゲル繊維を得た後、80℃のNatsO+水溶液
中で6倍延伸し、次いで水洗し100℃の熱風で乾燥し
た。最後に235℃の熱風炉で最高延伸倍率の90%の
割合で延伸した。総延伸倍率を表1に示した。なお凝固
浴通過後のゲル繊維や溶剤除去後の乾燥ゲル繊維の物性
および溶剤残存量、得られた延伸繊維の性能なども表1
に示した。
The solution was then heated to 170° C. and discharged through a nozzle with a hole diameter of 0.2 mm and 20 holes, and dropped into a coagulation bath below 25a+a+. Coagulation bath composition is NatSOa/water = 8
g/100g and the temperature was 10°C. After cooling in a coagulation bath to obtain a gel fiber, it was stretched 6 times in a NatsO+ aqueous solution at 80°C, then washed with water and dried with hot air at 100°C. Finally, it was stretched in a hot air oven at 235° C. at a maximum stretching ratio of 90%. Table 1 shows the total stretching ratio. The physical properties of the gel fibers after passing through the coagulation bath and the dried gel fibers after removing the solvent, the amount of remaining solvent, and the performance of the obtained drawn fibers are also shown in Table 1.
It was shown to.

なお比較例1として実施例1の凝固浴組成、湿延伸、抽
出をいずれもメタノールにした場合および比較例2とし
て実施例2の凝固浴温度を30℃にした場合も実施した
As Comparative Example 1, methanol was used for the coagulation bath composition, wet stretching, and extraction in Example 1, and as Comparative Example 2, the coagulation bath temperature in Example 2 was changed to 30°C.

実施例1および2の場合ゲル繊維は透明感に富み、溶剤
残存量は実施%J Iが43%、実施例2が69%であ
った。乾燥ゲル繊維で単糸間の膠着はなくX線より求め
た結晶化度は実施例1が25%実施例2h<21%であ
った。235℃での総延伸倍率はそれぞれ21.0倍と
19.5倍であった。得られたヤーンの強度はそれぞれ
19.8g/dと22.1g/d、弾性率510g/d
と545g/dであり、高強力高弾性率繊維となった。
In the case of Examples 1 and 2, the gel fibers were highly transparent, and the residual amount of solvent was 43% in implementation % JI and 69% in Example 2. There was no adhesion between single filaments in the dried gel fibers, and the crystallinity determined by X-ray was 25% in Example 1 and <21% in Example 2h. The total stretching ratios at 235°C were 21.0 times and 19.5 times, respectively. The strengths of the obtained yarns were 19.8 g/d and 22.1 g/d, respectively, and the elastic modulus was 510 g/d.
and 545 g/d, making it a high-strength, high-modulus fiber.

比較例1では凝固浴組成にメタノールを使用したためゲ
ル繊維の溶剤残存量は8重量%と低く、40℃メタノー
ル浴の湿延伸倍率は4倍であった。
In Comparative Example 1, since methanol was used in the coagulation bath composition, the residual amount of solvent in the gel fiber was as low as 8% by weight, and the wet stretching ratio in the 40° C. methanol bath was 4 times.

このため総延伸倍率は17.2倍となり強度、弾性率と
もに実施例1より低くなった。
Therefore, the total stretching ratio was 17.2 times, and both the strength and elastic modulus were lower than in Example 1.

比較例2は凝固浴温度を30℃にした場合であるが、溶
剤抽出が速くなり、かつゲル繊維は白くなり結晶化が進
行した。湿延伸倍率は4.5倍であり、水洗で繊維が膨
潤し乾燥時に単糸間の膠着があった。総延伸倍率は17
.5倍であり、延伸時膠着の剥離でフィブリル化が見ら
れ強度、弾性率は低下した。
In Comparative Example 2, the coagulation bath temperature was set at 30° C., but the solvent extraction became faster and the gel fibers turned white and crystallization progressed. The wet stretching ratio was 4.5 times, and the fibers swelled when washed with water, and the single yarns stuck together when dried. The total stretching ratio is 17
.. 5 times, fibrillation was observed due to peeling of adhesive during stretching, and the strength and elastic modulus decreased.

実、泡例3 平均重合度が4500、ケン化度99モル%のポリビニ
ルアルコールを7重量%になろ上うにエチレングリコー
ル/水=575重量比の混合溶剤に110℃で撹拌溶解
せしめた。なお溶解時にポリビニルアルコールに対しホ
ウ酸を2重量%添加した。
In fact, Foam Example 3 Polyvinyl alcohol having an average degree of polymerization of 4,500 and a degree of saponification of 99 mol% was dissolved at 110° C. to a concentration of 7% by weight in a mixed solvent having an ethylene glycol/water ratio of 575% by weight. During dissolution, 2% by weight of boric acid was added to polyvinyl alcohol.

欠いて該溶液を100℃にして孔径Q、 12mn+、
ホール数80のノズルより吐出させ、2oalIIl下
の凝固浴に落下せしめた。凝固浴組成は(Na5O+ 
3g +  NaOHIg) /水100gであり温度
は5°Cにした。凝固浴で冷却によりゲル繊維を得た後
、80℃の(NatSO425g+  NaOH0,5
g) /水100gの浴中で65倍の湿延伸を行なった
。以上の工程でポリビニルアルコールは完全ケン化され
ケン化度99.9モル%となった。
The solution was heated to 100° C. and the pore size Q was 12 mn+,
It was discharged from a nozzle with 80 holes and dropped into a coagulation bath under 2oalIII. The coagulation bath composition is (Na5O+
3g + NaOHIg)/100g of water and the temperature was 5°C. After obtaining gel fibers by cooling in a coagulation bath, 80°C (NatSO425g + NaOH0,5
g) Wet stretching was carried out 65 times in a bath containing 100 g of water. In the above steps, polyvinyl alcohol was completely saponified to a degree of saponification of 99.9 mol%.

さらに40℃の中和塔(HISO4Log +  Na
2SO210g)/水100g中で中和し、次いで30
℃で水洗を行ない、110°Cの熱風で3%の収縮を入
れて乾燥したが単糸間膠着は見られなかった。エチレン
グリコール溶剤の残存量はゲル繊維で51%、乾燥ゲル
繊維で07%であった。最後に210〜240℃の熱風
炉で2段階に分けて乾熱延伸を行なった。総延伸倍率は
215倍となった。得られた延伸繊維は216dr、強
度13.5g/d、弾性率492g/dであった。
Furthermore, a neutralization tower (HISO4Log + Na
Neutralize in 100 g of 2SO2)/100 g of water, then 30 g
It was washed with water at 110°C and dried with 3% shrinkage using hot air at 110°C, but no sticking between the single yarns was observed. The remaining amount of ethylene glycol solvent was 51% for gel fibers and 0.7% for dry gel fibers. Finally, dry heat stretching was performed in two stages in a hot air oven at 210 to 240°C. The total stretching ratio was 215 times. The obtained drawn fiber had a drier of 216 dr, a strength of 13.5 g/d, and a modulus of elasticity of 492 g/d.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 平均重合度3000以上のポリビニルアルコール系ポリ
マーを冷却によりゲル化するような溶剤に溶解して紡糸
原液を作成した後、紡糸ノズルより該原液を吐出させ、
空気冷却に続いて温度が25℃以下である少なくとも無
機塩を含む水溶液に浸漬してゲル紡糸を行ない、ポリビ
ニルアルコールに対し30〜300重量%の溶剤を含ん
だ状態で5倍以上の延伸を施し、次いで水洗および乾燥
にて溶剤の全部または一部を除去し、さらに200℃以
上で総延伸倍率18倍以上になるように延伸することを
特徴とする高強力ポリビニルアルコール系繊維の製造方
法。
After preparing a spinning stock solution by dissolving a polyvinyl alcohol-based polymer having an average degree of polymerization of 3000 or more in a solvent that gels when cooled, the stock solution is discharged from a spinning nozzle,
Following air cooling, gel spinning is performed by immersing in an aqueous solution containing at least an inorganic salt at a temperature of 25° C. or lower, and stretching is performed at least 5 times in a state containing 30 to 300% by weight of a solvent relative to polyvinyl alcohol. A method for producing a high-strength polyvinyl alcohol fiber, which comprises removing all or part of the solvent by washing with water and drying, and further stretching the fiber at a temperature of 200° C. or higher to a total stretching ratio of 18 times or higher.
JP9118688A 1988-04-12 1988-04-12 Production of high-tenacity polyvinyl alcohol fiber Pending JPH01266212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9118688A JPH01266212A (en) 1988-04-12 1988-04-12 Production of high-tenacity polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9118688A JPH01266212A (en) 1988-04-12 1988-04-12 Production of high-tenacity polyvinyl alcohol fiber

Publications (1)

Publication Number Publication Date
JPH01266212A true JPH01266212A (en) 1989-10-24

Family

ID=14019419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9118688A Pending JPH01266212A (en) 1988-04-12 1988-04-12 Production of high-tenacity polyvinyl alcohol fiber

Country Status (1)

Country Link
JP (1) JPH01266212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310570A (en) * 2000-04-28 2001-11-06 Meiji Rubber & Chem Co Ltd Blanket for printing
US6395467B1 (en) * 1998-09-21 2002-05-28 Gregory M. Fahy Cryoprotectant solution containing dimethyl sulfoxide, an amide and ethylene glycol
CN112226840A (en) * 2020-08-04 2021-01-15 东华大学 High-strength high-modulus PVA fiber and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395467B1 (en) * 1998-09-21 2002-05-28 Gregory M. Fahy Cryoprotectant solution containing dimethyl sulfoxide, an amide and ethylene glycol
JP2001310570A (en) * 2000-04-28 2001-11-06 Meiji Rubber & Chem Co Ltd Blanket for printing
CN112226840A (en) * 2020-08-04 2021-01-15 东华大学 High-strength high-modulus PVA fiber and preparation method thereof
CN112226840B (en) * 2020-08-04 2021-07-23 东华大学 High-strength high-modulus PVA fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
US5455114A (en) Water soluble polyvinyl alcohol-based fiber
JPH0124887B2 (en)
Fujiwara et al. Preparation of high‐strength poly (vinyl alcohol) fibers by crosslinking wet spinning
EA001056B1 (en) Wet spinning process for aramid polymer containing salts and fiber produced from this process
JPH01266212A (en) Production of high-tenacity polyvinyl alcohol fiber
JPH01104815A (en) Polyvinyl alcohol fiber and production thereof
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JPH0457769B2 (en)
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS61215708A (en) Production of multifilament yarn
JPH0299607A (en) Production of polyvinyl alcohol-based fiber
JP3466279B2 (en) Polyvinyl alcohol fiber excellent in dimensional stability in wet and dry conditions and method for producing the same
JPH02251608A (en) Production of polyvinyl alcohol-based fiber
JPH0268309A (en) Production of high-tenacity polyvinyl alcohol fiber
JP2019026990A (en) Production method of polyvinyl alcohol-based fiber
JPH0284504A (en) Polyvinyl alcohol fiber suitable as reinforcing material
JPH0429765B2 (en)
JP2728737B2 (en) Hot water-resistant polyvinyl alcohol fiber and method for producing the same
JPH03279412A (en) Method for spinning polyvinyl alcohol-based fiber
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
KR100646652B1 (en) A process of preparing for the polyvinylalcohol yarn with high strength
JPH02175913A (en) New polyethylene yarn and production thereof
JP2765951B2 (en) Glossy high-strength polyvinyl alcohol fiber and method for producing the same
JPS63243316A (en) Production of high-tenacity polyvinyl alcohol fiber