JPH01104815A - Polyvinyl alcohol fiber and production thereof - Google Patents

Polyvinyl alcohol fiber and production thereof

Info

Publication number
JPH01104815A
JPH01104815A JP25909087A JP25909087A JPH01104815A JP H01104815 A JPH01104815 A JP H01104815A JP 25909087 A JP25909087 A JP 25909087A JP 25909087 A JP25909087 A JP 25909087A JP H01104815 A JPH01104815 A JP H01104815A
Authority
JP
Japan
Prior art keywords
fibers
pva
polyvinyl alcohol
fiber
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25909087A
Other languages
Japanese (ja)
Inventor
Masahiko Mihoichi
真彦 三歩一
Toshihiko Ota
太田 利彦
Masahiro Hayashi
雅宏 林
Fujio Okada
岡田 冨士男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP25909087A priority Critical patent/JPH01104815A/en
Publication of JPH01104815A publication Critical patent/JPH01104815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the titled fiber with high strength and high modulus, outstanding in hot water resistance, by extruding through a spinneret a PVA-based polymer solution and hot-drawing of the resultant undrawn yarn at high draw ratio followed by treatment with an aqueous boric acid solution and hot-drawing again etc. CONSTITUTION:First, a PVA-based polymer with a polymerization degree of <=1,500 (pref. 1,500 to 4,500) is dissolved in a solvent and the resulting solution is extruded through a spinneret followed by cooling. Thence, the (pseude) gel-like undrawn yarn obtained is subjected to hot-drawing by a factor of >=7 followed by treatment with an aqueous boric acid solution and then performing either hot drawing again or heat treatment, thus obtaining the objective fiber having the following characteristics: 1. tenacity...>=15g/d 2. initial tensile modulus...>=300 g/d (pref.>=500g/d) 3. hot water dissolution temperature...>=115 deg.C (pref.>=120 deg.C).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度高弾性率で且つ耐熱水性に優れたポリビ
ニルアルコール(以下PVAと略す)系繊維及びその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having high strength and high modulus and excellent hot water resistance, and a method for producing the same.

(従来の技術) 従来PVA系繊維はナイロン、ポリエステル、ポリアク
リルニトリル繊維に比べ、高強度高弾性率であり、産業
資材用繊維のみならず、最近ではコンクリート補強用ア
スベスト代替繊維として使用されているが、熱水中ある
いは温熱中での強さが著しく減少するためにタイヤコー
ド、プラスチック補強材などの用途ではその使用が著し
く制限されており、接着性、耐候性などのPVA系繊維
の利点が殆んど活かされていない。
(Prior technology) Conventional PVA fibers have higher strength and higher modulus than nylon, polyester, and polyacrylonitrile fibers, and have recently been used not only as fibers for industrial materials but also as asbestos substitute fibers for concrete reinforcement. However, its use in applications such as tire cords and plastic reinforcing materials is severely limited because its strength in hot water or heat is significantly reduced, and the advantages of PVA-based fibers such as adhesiveness and weather resistance are limited. It's hardly utilized.

このようなPVA系繊維は通常、PVA水溶液を紡糸原
液として用い凝固性無機塩水溶液中に湿式紡糸し、延伸
、乾燥、熱処理などの処理を施す方法により製造されて
いるがこのPVA系繊維の強度、弾性率を向上させるた
めに各種の方法が提案されてきた。
Such PVA-based fibers are usually manufactured by a method of wet spinning in a coagulable inorganic salt aqueous solution using a PVA aqueous solution as a spinning stock solution, and then subjected to treatments such as stretching, drying, and heat treatment. However, the strength of this PVA-based fiber is , various methods have been proposed to improve the elastic modulus.

たとえば特公昭48−9209号公報には、紡糸原液し
た後、高度に乾熱延伸する方法が示されており、重合度
1700 (D PVA テ12g/d (7)引張度
、278g/dの弾性率(初期引張抵抗度)をもつPV
A系繊維が得られている。
For example, Japanese Patent Publication No. 48-9209 discloses a method in which a spinning dope is prepared and then subjected to highly dry heat stretching. (initial tensile resistance)
A type fiber is obtained.

特公昭43−16675公報にはジメチルスルホキシド
等の良溶媒にPVAを溶解したものを紡糸原液として用
い、メタノールやエタノール等の凝固浴中に湿式紡糸す
る方法が示されており、重合度1750のPVA T!
 10.7g/d (7)引張強度、480g/d (
D弾性率(初期引張抵抗度)をもつPVA系繊維が得ら
れている。
Japanese Patent Publication No. 43-16675 discloses a method of wet spinning in a coagulation bath of methanol, ethanol, etc. using PVA dissolved in a good solvent such as dimethyl sulfoxide as a spinning stock solution, and using PVA with a polymerization degree of 1750. T!
10.7g/d (7) Tensile strength, 480g/d (
PVA-based fibers having a D elastic modulus (initial tensile resistance) have been obtained.

特開昭60−126312号公報には、前記の方法によ
りエアーギャップを導入することにより乾湿式紡糸を行
なう方法が示されており重合度3500のPVAで、1
9.2g/d (7)引張強度、420g/d (D弾
性率をもツPVA系繊維が得られている。
JP-A-60-126312 discloses a method of performing wet-dry spinning by introducing an air gap using the above-mentioned method.
9.2 g/d (7) PVA-based fibers with a tensile strength of 420 g/d (D elasticity modulus) have been obtained.

一方、超高分子量ポリエチレンのゲル紡糸の考え方をP
VA系繊維に応用する方法としては特開昭59−130
314号公報に記載されているように分子量170万(
重合度38000 )の超高分子量PVAを用いてグリ
セリンまたはエチレングリコール等の貧溶媒に溶解し、
パラフィン浴で急冷する方法により引張強度19.2g
/d、弾性率628g/dの高強力PVA系繊維が得ら
れている。これらのPVA系繊維の高強度、高弾性率化
の結果は使用するPVAの重合度に大きく依存している
ことを示しており、即ち重合度の高いPVAを用いれば
高強度高弾性率化において有利であることを示している
。このことは特公昭47−8186号公報に示されてお
り、重合度1000から3800の範囲で強度が13.
9g/dから18.28/d171 PVA系繊維が得
られている。従来技術により達成された強度、弾性率と
重合度の関係をそれぞれ第1図、第2図に示す。
On the other hand, P
As for the method applied to VA fiber, Japanese Patent Application Laid-Open No. 59-130
As described in Publication No. 314, the molecular weight is 1.7 million (
Using ultra-high molecular weight PVA with a degree of polymerization of 38,000), it is dissolved in a poor solvent such as glycerin or ethylene glycol,
Tensile strength: 19.2g by rapid cooling in paraffin bath
/d and a high strength PVA fiber with an elastic modulus of 628 g/d. The results of achieving high strength and high elastic modulus of these PVA-based fibers are shown to be largely dependent on the degree of polymerization of the PVA used. It shows that it is advantageous. This is shown in Japanese Patent Publication No. 47-8186, which shows that the strength is 13.0 when the degree of polymerization ranges from 1000 to 3800.
18.28/d171 PVA-based fibers were obtained from 9 g/d. The relationships between strength, elastic modulus and degree of polymerization achieved by the prior art are shown in FIGS. 1 and 2, respectively.

本発明における重要な目的である耐熱水性に優れたPV
A系繊維については従来、延伸後の繊維をアセタール化
して水不溶化処理する方法が用いられているが、アセタ
ール化に伴って強度、弾性率などの機械的性質が著しく
低下する問題がある。
PV with excellent hot water resistance, which is an important objective of the present invention
Conventionally, for A-type fibers, a method has been used in which the fibers after drawing are acetalized to make them water-insolubilized, but there is a problem in that mechanical properties such as strength and elastic modulus are significantly reduced due to acetalization.

従って高強度・高弾性率pv^系繊織繊維求する場合に
は高倍率延伸に伴って向上する耐熱水性を利用している
に過ぎない、特開昭62−85013号公報では、PV
A溶液中の分子間の絡みを減少させて高倍率延伸するた
めに、PVA/エチレングリコール(またはグリセリン
)溶液にホウ酸を添加してPVAを適度に架稿させた低
濃度溶液紡糸〜超延伸法が提案されている。この方法に
より、重合度3400のPVAを用いて強度18.4g
/d、弾性率470g/dが得られているが、本発明者
らがこの方法を追試したところ、本発明に規定する熱水
に溶解する温度は115”C未満であり、また、紡糸後
の未延伸糸に未反応のホウ素が残存すると高倍率熱延伸
が困難であった。
Therefore, when high strength and high elastic modulus PV^-based woven fibers are desired, the hot water resistance that improves with high-magnification stretching is simply utilized.
In order to reduce entanglements between molecules in solution A and perform high-magnification stretching, boric acid is added to the PVA/ethylene glycol (or glycerin) solution to moderately stretch PVA. Low concentration solution spinning ~ ultra-stretching. A law is proposed. By this method, using PVA with a polymerization degree of 3400, the strength was 18.4 g.
/d and elastic modulus of 470 g/d, but when the present inventors retested this method, the temperature of dissolution in hot water specified in the present invention was less than 115"C, and after spinning, If unreacted boron remained in the undrawn yarn, high-magnification hot drawing was difficult.

前記したように高強度・高弾性率PVA系繊維を得るに
は特開昭59−130314号公報記載の超高重合度P
VAを用いることが有利であるが、それは余りにも特殊
な重合法により得られるため商業的にそれを入手するこ
とが困難であり、またこのような超高重合度PVAは溶
媒に対する溶解性が低いなど工業的に製糸することが難
しいと言う問題がある。
As mentioned above, in order to obtain high strength and high elastic modulus PVA fibers, ultra-high polymerization degree P described in JP-A-59-130314 is used.
Although it is advantageous to use VA, it is difficult to obtain it commercially because it is obtained by a very special polymerization method, and such ultra-high polymerization degree PVA has low solubility in solvents. There is a problem that it is difficult to produce silk industrially.

一方商業的に入手可能な重合度(1500から4500
程度)のPVAを用いた場合には第1図、第2図に示し
たように強度20g/d弾性率480g/dOPVA系
繊維が得られているが500g/d以上の弾性率には到
達していないと言う問題がある。さらにPVA系繊維の
本質的な問題として水が存在する系での耐熱性、即ち耐
熱水性、耐湿熱性が低いと言う前述した問題がある。
On the other hand, commercially available polymerization degrees (1500 to 4500
As shown in Figures 1 and 2, when using PVA with a strength of 20 g/d and an elastic modulus of 480 g/d, an OPVA fiber with a strength of 20 g/d and an elastic modulus of 480 g/d was obtained, but an elastic modulus of 500 g/d or higher was not achieved. The problem is that it doesn't. Furthermore, an essential problem with PVA-based fibers is that they have low heat resistance in the presence of water, that is, low hot water resistance and moist heat resistance.

(発明が解決しようとする問題点) 本発明は、高強度高弾性率PVA系繊維およびその製造
方法における前記従来の欠点、即ち下記■〜■、 ■ 超高重合度PVAは溶媒に対する溶解性が低いので
工業的に製糸することが困難である点、■ 商業的に入
数可能な重合度(1500から4500程度)のPVA
からは初期弾性率が500g/d以上のPVA繊維が得
られていない点、 ■ pv^繊維の本質的な問題として耐熱水性が低い点
、 のすべての問題点を同時に解決し、優れた繊維物性、特
に高強度・高弾性率で且つ耐熱水性に優れたPVA系繊
維を提供することである。即ち、アラミド繊維に匹敵す
る高強度・高弾性率を保持し、且つ耐熱水性が著しく向
上した新規なPVA系繊維を提供することにある。さら
に他の目的は、このような新規なPv^系繊維の工業的
な製造方法を提供することにある。。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional drawbacks of high-strength, high-modulus PVA-based fibers and methods for producing the same, namely, the following: PVA has a commercially acceptable degree of polymerization (approximately 1,500 to 4,500).
This method solves all of the following problems at the same time: PVA fibers with an initial modulus of elasticity of 500 g/d or higher have not been obtained from PVA fibers, and ■ The essential problem of pv^ fibers is that they have low hot water resistance. The object of the present invention is to provide a PVA fiber having particularly high strength, high modulus of elasticity, and excellent hot water resistance. That is, the object of the present invention is to provide a novel PVA-based fiber that maintains high strength and high elastic modulus comparable to aramid fibers and has significantly improved hot water resistance. Still another object is to provide an industrial manufacturing method for such novel Pv^-based fibers. .

(問題点を解決するための手段) 即ち、本発明は、 (1)  重合度が1500以上、引張強度が15g/
d以上、初期引張抵抗度が300g/d以上のポリビニ
ルアルコール系繊維であり且つ、本文中に定義する熱水
溶解温度が115℃以上であることを特徴とするポリビ
ニルアルコール系繊維、 (2)  重合度が1500以上のポリビニルアルコー
ル系重合体を該ポリビニルアルコール系重合体の゛溶媒
に溶解し、該溶液を紡糸口金から押し出し、冷却復帰ら
れる(a)ゲル状未延伸繊維またはら)プソイドゲル状
未延伸繊維を延伸倍率が7倍以上になるまで熱延伸した
後、ホウ酸水溶液で処理し、引き続いて熱延伸または熱
処理することを特徴とするポリビニルアルコール系繊維
の製造方法である。
(Means for solving the problems) That is, the present invention provides: (1) a polymer with a degree of polymerization of 1500 or more and a tensile strength of 15 g/
polyvinyl alcohol fiber having an initial tensile resistance of 300 g/d or more, and a hot water dissolution temperature as defined in the text of 115° C. or more; (2) Polymerization A polyvinyl alcohol-based polymer having a polyvinyl alcohol-based polymer having a polyvinyl alcohol content of 1,500 or more is dissolved in a solvent for the polyvinyl alcohol-based polymer, the solution is extruded from a spinneret, and the solution is cooled and returned to (a) gel-like unstretched fibers or (or) pseudo-gel-like unstretched fibers. This method of producing polyvinyl alcohol fibers is characterized in that the fibers are hot-stretched to a stretching ratio of 7 times or more, then treated with a boric acid aqueous solution, and then hot-stretched or heat-treated.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の繊維を構成するPVA系重合体とは少なくとも
1500以上で上限は特に限定はしないが約1万以下、
さらに好ましくは、1500〜4500の重合度を有す
る完全ケン化または部分ケン化PVA系重合体である0
重合度が1500未満では、本発明の目的とする高強所
・高弾性率で耐熱水性に優れた繊維が得られず、又、前
述した樺に、重合度が1万以維が構成されることによっ
て始めて本発明に規定される高性能PVA系繊維が得ら
れる。
The PVA polymer constituting the fiber of the present invention is at least 1,500 or more, and the upper limit is not particularly limited, but it is about 10,000 or less,
More preferably, it is a completely saponified or partially saponified PVA-based polymer having a degree of polymerization of 1,500 to 4,500.
If the degree of polymerization is less than 1,500, fibers with high strength, high elastic modulus, and excellent hot water resistance, which are the objectives of the present invention, cannot be obtained, and the above-mentioned birch has fibers with a degree of polymerization of 10,000 or more. Only by this method can the high-performance PVA-based fiber defined in the present invention be obtained.

本発明に用いるPVA系重合体、特に前記高重合度のP
VA系重合体を溶液紡糸して、ゲル状未延伸繊維を形成
するに当たって基本的に重要なことは、その溶媒をでき
るだけ蒸発させないようにしてゲル化させることであり
、これによりゲル状未延伸繊維の内外層に構造的な差が
生じなくなり、安定で均質なゲル状未延伸繊維が得られ
、引き続く延伸工程での全延伸倍率が向上する。ここで
特定の延伸倍率で延伸した繊維にホウ酸処理を加えて熱
処理をすると、その結果、引張強度が15g/d以上、
初期引張抵抗度が300g/d以上の高強度・高弾性率
PVA系繊維、特に、弾性率が500g/dを越える高
弾性率PVA系SaWで且つ熱水溶解温度が従来に見な
い115℃以上のものが重合度3500であっても得ら
れることを発見した。その詳細について以下に述べる。
The PVA-based polymer used in the present invention, especially the above-mentioned high polymerization degree P
What is fundamentally important when solution spinning a VA polymer to form a gel-like undrawn fiber is to gel it while preventing the solvent from evaporating as much as possible. There is no structural difference between the inner and outer layers of the fiber, a stable and homogeneous gel-like undrawn fiber is obtained, and the total draw ratio in the subsequent drawing step is improved. If the fibers drawn at a specific draw ratio are subjected to boric acid treatment and then heat treated, the result is a tensile strength of 15 g/d or more.
High-strength, high-modulus PVA-based fibers with an initial tensile resistance of 300 g/d or more, especially high-modulus PVA-based SaW with an elastic modulus of over 500 g/d, and an unprecedented hot water dissolution temperature of 115°C or higher It has been discovered that this can be obtained even if the degree of polymerization is 3500. The details are described below.

本発明で言う熱水溶解温度とは詳細は後述のとおりであ
るが、PVA繊維5■と水10■を試料容器に封入した
ものを示差走査熱量計を用いて昇温速度20“07分で
昇温した時の融解曲線のピーク温度はPVA系重合体が
ゲル化し得るものであれば特に限定するものではないが
、エチレングリコール、ジエチレングリコール、グリセ
リンおよびこれらのいづれかと水またはDMSOとの混
合溶媒が好ましい、これら溶媒にPVA系重合体を十分
(透明になるまで)溶解させて紡糸原液を作るがその溶
液濃度はPVA分子鎖の絡み合いをできるだけ少なくす
るために、用いるPVA系重合体の重合度に応じて紡糸
可能な範囲で低濃度にすることが望ましく、例えば重合
度3500のPVA/エチレングリコール溶液では10
〜20重量%の濃度が好ましい。
The hot water dissolution temperature referred to in the present invention is as described below in detail, but 5 cm of PVA fiber and 10 cm of water were sealed in a sample container at a heating rate of 20"07 min using a differential scanning calorimeter. The peak temperature of the melting curve when the temperature is raised is not particularly limited as long as the PVA polymer can be gelled. Preferably, a spinning stock solution is prepared by sufficiently dissolving the PVA polymer in these solvents (until it becomes transparent), but the concentration of the solution is determined depending on the degree of polymerization of the PVA polymer used in order to minimize the entanglement of the PVA molecular chains. Depending on the situation, it is desirable to keep the concentration as low as possible for spinning. For example, in a PVA/ethylene glycol solution with a polymerization degree of 3500, the concentration is 10
A concentration of ~20% by weight is preferred.

このようにして調整された紡糸原液をゲル化紡糸にする
には紡糸原液のゲル化速度と関連して、紡糸温度と冷却
温度の設定が重要となる。紡糸温度は紡糸原液のゲル化
温度より約10〜15℃高い温度に設定することが望ま
しく、また、その温度に保持される時間が長い程、冷却
温度を高く設定できる。さらに、冷却には紡糸原液の溶
媒と置換しない冷媒(例えばデカリン、n・パラフィン
など)を用いることが望ましい、と言うのは、紡糸原液
の溶媒と置換するような冷媒(例えばメタノール、エタ
ノールなど)を用いる場合、紡出繊維のゲル化が十分に
進行していない段階で繊維中の溶媒が抽出されるために
湿式紡糸にみられるように未延伸繊維の内外層に構造の
差が生じ均質な未延伸繊維が形成され難いからである0
次にこのようにして形成されたゲル状未延伸繊維をでき
るだけ高倍率に熱延伸すれば良いのであるが、予め溶媒
を抽出してプソイドゲル状未延伸繊維にした後に熱延伸
する方が好ましく、さらに好ましくは溶媒を抽出する前
にゲル状未延伸繊維を少なくとも1時間、室温に放置し
て十分にシネレシスを起こさせ、ゲル状繊維に抱束され
ていない自由な溶媒を繊維の外へ自然にはき出せるのが
良い、しかる後に、メタノール等による抽出または加熱
乾燥により繊維中の溶媒を除去してプソイドゲル状未延
伸繊維にして熱延伸する方が延伸倍率に伴う強度・弾性
率の上昇率が高くなるとともに到達する強度・弾性率も
高くなるからである。
In order to turn the spinning dope prepared in this way into gel spinning, it is important to set the spinning temperature and cooling temperature in relation to the gelation rate of the spinning dope. The spinning temperature is desirably set at a temperature approximately 10 to 15° C. higher than the gelation temperature of the spinning dope, and the longer the time maintained at that temperature, the higher the cooling temperature can be set. Furthermore, it is desirable to use a refrigerant (e.g., decalin, n-paraffin, etc.) that does not displace the solvent of the spinning dope for cooling. This is because a refrigerant that does not replace the solvent of the spinning dope (e.g., methanol, ethanol, etc.) When using spinning fibers, the solvent in the fibers is extracted before the gelation of the spun fibers has fully progressed, resulting in a difference in structure between the inner and outer layers of the undrawn fibers, as seen in wet spinning, resulting in a homogeneous structure. This is because undrawn fibers are difficult to form.
Next, the gel-like undrawn fibers thus formed may be hot-stretched to as high a magnification as possible, but it is preferable to extract the solvent in advance to form pseudo-gel-like undrawn fibers and then heat-draw them. Preferably, before extracting the solvent, the gelled undrawn fibers are allowed to stand at room temperature for at least one hour to allow sufficient syneresis to occur, so that free solvent not bound to the gelled fibers naturally flows out of the fibers. After that, the solvent in the fibers is removed by extraction with methanol etc. or heat drying to make pseudo gel-like unstretched fibers and hot stretching increases the rate of increase in strength and elastic modulus with the stretching ratio. This is because the strength and modulus of elasticity that can be achieved also increase as the strength increases.

このようにして得られるプソイドゲル状未延伸繊維を延
伸温度100℃〜220″Cの温度範囲、好ましくは、
150″C〜210”Cの温度範囲で3段延伸する。
The pseudogel-like undrawn fiber thus obtained is stretched at a temperature in the range of 100°C to 220″C, preferably
Stretching is carried out in three stages at a temperature range of 150''C to 210''C.

各温度での延伸倍率の配分は特に限定する必要はないが
、1段目で3〜5倍、2段目で2〜4倍、3段目は3倍
以下程度で全延伸倍率ができるだけ高くなるように延伸
温度及び延伸倍率を設定すればよい、延伸装置は本発明
では非接触型加熱板を用いたがこれに限定するものでは
ない。なお、本発明で言う「プソイドゲル状未延伸繊維
」とは、紡糸して得られるゲル状未延伸繊維中に含まれ
る溶媒を完全に除去した、重合体のみより構成される未
延伸繊維のことである。
The distribution of the stretching ratio at each temperature does not need to be particularly limited, but the first stage is 3 to 5 times, the second stage is 2 to 4 times, and the third stage is about 3 times or less, so that the total stretching ratio is as high as possible. The stretching temperature and the stretching ratio may be set so that the stretching temperature and the stretching ratio can be set so that the stretching temperature and the stretching ratio can be set as follows. Although a non-contact type heating plate is used as the stretching device in the present invention, the present invention is not limited to this. In addition, the "pseudo gel-like undrawn fiber" referred to in the present invention refers to an undrawn fiber made only of a polymer from which the solvent contained in the gel-like undrawn fiber obtained by spinning has been completely removed. be.

本発明の最終的な目的である高強度・高弾性率で且つ耐
熱水性の優れたPVA系繊維を得るために、繊維を構成
するPVA分子間をホウ酸で架橋する方法を検討した。
In order to obtain PVA-based fibers with high strength, high elastic modulus, and excellent hot water resistance, which is the ultimate goal of the present invention, we investigated a method of crosslinking PVA molecules constituting the fibers with boric acid.

即ち、前記したプソイドゲル状未延伸繊維および延伸倍
率の異なる延伸繊維を濃度約1重量%のホウ酸水溶液中
で30分間処理した後に熱延伸または熱処理を行なった
。その結果、延伸倍率が7倍以下では引き続く熱延伸に
より繊維が白濁し、高倍率延伸が困難となり、高強度・
高弾性率の点で本発明の目的に至らないことが見出され
た。一方、延伸倍率が7倍以上の延伸繊維にホウ酸水溶
液処理を行った場合には、引き続いて熱延伸または熱処
理することにより本発明の目的を達成し得ることが知ら
れた。
That is, the aforementioned pseudogel-like undrawn fibers and drawn fibers having different draw ratios were treated in an aqueous boric acid solution having a concentration of about 1% by weight for 30 minutes, and then hot-stretched or heat-treated. As a result, if the stretching ratio is 7 times or less, the fiber becomes cloudy due to the subsequent hot stretching, making it difficult to stretch at a high stretching ratio, resulting in high strength and
It has been found that the object of the present invention cannot be achieved in terms of high elastic modulus. On the other hand, it has been found that when a drawn fiber with a draw ratio of 7 times or more is treated with an aqueous boric acid solution, the object of the present invention can be achieved by subsequent hot drawing or heat treatment.

なお、3段延伸後の延伸糸をホウ酸水溶液に浸漬した後
、緊張下で熱処理することが本発明の目的である高性能
PVA系繊維を得るのにより有効であった。従ってホウ
酸水溶液を処理して耐熱水性をPVA系繊維に付与する
本発明の方法は、本発明と異なる方法で得られる高強度
・高弾性率PVA系繊維に対しても同様に有効になると
考えられる。
Note that it was more effective to obtain the high-performance PVA-based fiber, which is the object of the present invention, by immersing the drawn yarn after three-stage drawing in an aqueous boric acid solution and then heat-treating it under tension. Therefore, it is believed that the method of the present invention, which imparts hot water resistance to PVA fibers by treating them with an aqueous boric acid solution, will be equally effective for high-strength, high-modulus PVA fibers obtained by methods different from the present invention. It will be done.

かくして得られるPVA系繊維は、重合度が1500以
上、好ましくは、1500〜4500であって、引張強
度が15g/d以上で、初期引張抵抗度が300g/d
以上、好ましくは500g/d以上で、且つ熱水溶解温
度が115℃以上、好ましくは120℃以上の特性を有
している。
The PVA fiber thus obtained has a degree of polymerization of 1500 or more, preferably 1500 to 4500, a tensile strength of 15 g/d or more, and an initial tensile resistance of 300 g/d.
As mentioned above, it preferably has the characteristics of 500 g/d or more and a hot water dissolution temperature of 115° C. or more, preferably 120° C. or more.

尚、繊維中にホウ素を含有しているのも特徴の1つであ
る。
In addition, one of the characteristics is that the fiber contains boron.

(作 用) 後述する比較例3に示すように、プソイドゲル状未延伸
繊維にホウ酸水溶液を含浸して熱延伸を行うと繊維が白
濁し、十分に延伸できない、それは熱延伸中に水が蒸発
してボイドが形成されるためではな(、熱延伸時にホウ
素がPVA分子間を架橋することにより延伸に伴う内部
歪が著しく増大するためと考えられる。同様に後述の比
較例4.5に示すように、予め紡糸原液にホウ酸を添加
し、pv^分子間を適度にホウ素で架橋した未延伸繊維
から過剰のホウ酸を除去した後、熱延伸する方法、にお
いても白濁が生じ十分な延伸が困難であることが判った
。その結果、本発明の目的である高強度高弾性率で且つ
耐熱水性の優れたPVA系繊維は得られていない、これ
らのことより紡糸後の未延伸繊維をある程度以上延伸し
て配向結晶化を進めた後に、非晶部にホウ酸水溶液を含
浸させて熱延伸又は熱処理して非晶部のPVA分子間を
ホウ素で架橋させることが本発明の目的を達成するのに
有効であると考えられる。これに基づいて研究を進めた
結果、後述の実施例に示すようにホウ素含有率が比較的
少量であっても本発明の目的とする新規なPVA系繊維
が得られている。
(Function) As shown in Comparative Example 3, which will be described later, when a pseudogel-like undrawn fiber is impregnated with a boric acid aqueous solution and hot-stretched, the fiber becomes cloudy and cannot be stretched sufficiently.This is because water evaporates during hot-stretching. This is not due to the formation of voids during hot stretching (it is thought that boron crosslinks between PVA molecules during hot stretching, resulting in a significant increase in internal strain due to stretching. Similarly, as shown in Comparative Example 4.5 below) Similarly, in a method in which boric acid is added to the spinning dope in advance, excess boric acid is removed from undrawn fibers in which pv^ molecules are moderately crosslinked with boron, and the fibers are then hot stretched, clouding occurs and insufficient stretching is performed. As a result, PVA fibers with high strength, high elastic modulus, and excellent hot water resistance, which are the objectives of the present invention, have not been obtained. The object of the present invention is achieved by stretching to a certain extent to advance oriented crystallization, then impregnating the amorphous part with a boric acid aqueous solution and hot stretching or heat treatment to crosslink the PVA molecules in the amorphous part with boron. As a result of conducting research based on this, we have found that novel PVA fibers, which are the object of the present invention, can be produced even if the boron content is relatively small, as shown in the examples below. is obtained.

次に本発明に用いた特性値の試験方法および測定方法に
ついて説明する。
Next, a method for testing and measuring characteristic values used in the present invention will be explained.

〈耐熱水性試験方法〉 理学電機製高性能示差走査熱量計(DSC−10^)を
用いて試料のPVA系繊維5■と水10■を同じ試料容
器に封入し、昇温速度20゛C/分で昇温した時に得ら
れるPVA系繊維の融解曲線のピーク温度を求め、これ
を本発明で規定する「熱水に溶解する温度」とした、こ
こで水は試料容器に密封されているので加圧水となり 
100℃以上でも熱水に溶解する温度が測定できる。ま
た本発明で言う「耐熱水性に優れる」とはこの温度が高
温であることを意味する。
<Hot water resistance test method> Using a high-performance differential scanning calorimeter (DSC-10^) manufactured by Rigaku Denki, 5 cm of sample PVA-based fiber and 10 cm of water were sealed in the same sample container, and the temperature was increased at a heating rate of 20゛C/ The peak temperature of the melting curve of the PVA-based fiber obtained when the temperature was raised in minutes was determined, and this was defined as the "temperature at which it dissolves in hot water" as specified in the present invention. Becomes pressurized water
The temperature at which it dissolves in hot water can be measured even at temperatures above 100°C. Furthermore, in the present invention, "excellent hot water resistance" means that the temperature is high.

く延伸繊維の強度および弾性率の測定方法〉JIS−L
−1017に規定されている測定方法に準じて測定した
。すなわち、試料のPVA系繊維を20゛C165%R
Hの雰囲気に24時間放置したのち、“テンシロン”U
TM−4L型引張試験機を用いて、試料長3C11、引
張速度3 C1/分で測定した。ここで得られた荷重〜
伸長率曲線からJIS−L−1017の定義に従って弾
性率を測定した。
Method for measuring the strength and elastic modulus of drawn fibers〉JIS-L
-1017. That is, the sample PVA fiber was heated to 20°C165%R.
After leaving it in the H atmosphere for 24 hours, "Tensilon" U
It was measured using a TM-4L type tensile tester at a sample length of 3C11 and a tensile rate of 3C1/min. The load obtained here~
The elastic modulus was measured from the elongation rate curve according to the definition of JIS-L-1017.

〈ホウ素含有量の測定方法〉 重量法により求めた。すなわち、ホウ酸水溶液に浸漬す
る前の繊維の重量(−〇)と、ホウ酸水溶液浸漬後、繊
維中に含まれる水を室温で十分に乾燥除去した後の繊維
の重量(W)を測定し、次式により算出した。
<Measurement method of boron content> It was determined by gravimetric method. That is, the weight of the fiber before immersion in the boric acid aqueous solution (-〇) and the weight (W) of the fiber after being immersed in the boric acid aqueous solution and after thoroughly drying and removing the water contained in the fiber at room temperature. , was calculated using the following formula.

一〇 (実施例) 以下、実施例を示すが本発明はこの実施例に限定される
ものではない。
10 (Example) Examples will be shown below, but the present invention is not limited to these examples.

(実施例1〜2) 重合度が2000および3500の完全ケン化型(ケン
化度99%以上)のPV、Aをエチレングリコールに1
60゛Cで溶解し、PVA濃度がそれぞれ20.15重
量%紡糸原液を作成した。これらの溶液を脱泡後それぞ
れ115℃1110℃の温度に保持して孔0.2mmの
紡糸口金から空気中に押し出し、口金面から50III
Il下の0℃のデカリン浴中を通して冷却した。冷却し
て得られたゲル状未延伸繊維を室温にて1時間放置後、
該ゲル状繊維中に含有するエチレングリコールをメタノ
ールで抽出、乾燥して得られるプソイドゲル状未延伸繊
維を、非接触型加熱板を用いて150℃で3倍、200
℃で3.4倍、210℃で1.8倍延伸した。
(Examples 1-2) Completely saponified PV with a degree of polymerization of 2000 and 3500 (degree of saponification of 99% or more), A in ethylene glycol
The mixture was dissolved at 60°C to prepare a spinning dope having a PVA concentration of 20.15% by weight. After defoaming, these solutions were held at a temperature of 115°C and 1110°C and extruded into the air through a spinneret with a hole of 0.2 mm, and 50III
Cooled by passing through a 0° C. decalin bath under Il. After leaving the gel-like undrawn fiber obtained by cooling at room temperature for 1 hour,
The ethylene glycol contained in the gel-like fibers is extracted with methanol, and the resulting pseudo-gel-like undrawn fibers are heated at 150° C. by 3 times and heated to 200° C. using a non-contact heating plate.
It was stretched 3.4 times at ℃ and 1.8 times at 210℃.

このようにして得られた延伸繊維を1重量%のホウ酸水
溶液中に30分間浸漬した後に210゛Cで緊張上熱処
理を行った。この結果、第1表に示すような高強度・高
弾性率で耐熱水性に優れたPVA系繊維が得られた。
The thus obtained drawn fibers were immersed in a 1% by weight boric acid aqueous solution for 30 minutes, and then subjected to tension heat treatment at 210°C. As a result, PVA fibers with high strength, high elastic modulus, and excellent hot water resistance as shown in Table 1 were obtained.

(比較例1〜2) 実施例1〜2において、ホウ酸水溶液に浸漬する前の延
伸繊維の結果を比較例1.2として第1表に示す。いず
れの例においても熱水に溶解する温度が低く、耐熱水性
において著しく劣る。
(Comparative Examples 1 and 2) In Examples 1 and 2, the results of the drawn fibers before being immersed in the boric acid aqueous solution are shown in Table 1 as Comparative Example 1.2. In either example, the temperature at which it dissolves in hot water is low, and its hot water resistance is extremely poor.

(実施例3) 実施例2で得られるプソイドゲル状未延伸繊維(重合度
3500のPVA )を150℃で3倍、200°cテ
3倍延伸して得られる延伸繊維を1重量%のホウ酸水溶
液中に10分間浸漬した後に210″Cで1.8倍延伸
した。この結果、第1表に示すように本発明の目的とす
るPVA系繊維が得られた。
(Example 3) The pseudogel-like undrawn fibers obtained in Example 2 (PVA with a degree of polymerization of 3500) were stretched 3 times at 150°C and 3 times at 200°C. After being immersed in an aqueous solution for 10 minutes, it was stretched 1.8 times at 210''C.As a result, as shown in Table 1, PVA fibers targeted by the present invention were obtained.

(比較例3) 実施例3のプソイドゲル状未延伸繊維を1重量%のホウ
酸水溶液中に10分間浸漬した後に、150℃で3倍、
200℃で3.4倍の延伸を行ったところ繊維が白濁し
、210℃での3段延伸が行えなかった。
(Comparative Example 3) After immersing the pseudogel-like undrawn fibers of Example 3 in a 1% by weight boric acid aqueous solution for 10 minutes,
When the fibers were stretched 3.4 times at 200°C, the fibers became cloudy and three-stage stretching at 210°C could not be performed.

その結果、強度、弾性率において本発明の目的とするP
VA系繊維が得られなかった。尚、ホウ酸水溶液濃度と
0.5重量%にしても同様の結果であった。
As a result, in terms of strength and elastic modulus, P
VA fiber was not obtained. Note that similar results were obtained even when the boric acid aqueous solution concentration was set to 0.5% by weight.

(実施例4) 実施例2で得られるゲル状未延伸繊維(重合度3500
 ’)を、室温にて1時間放置後、該ゲル状繊維を80
’Cにて3倍、150℃にて4倍、200℃にて1.8
倍延伸することにより溶媒のエチレングリコールを除い
た。この延伸繊維をホウ酸水溶液(1重量%)に30分
間浸漬後再び200℃にて緊張上熱処理を行った。この
結果を第1表に示すように本発明の目的とするPVA系
繊維が得られた。
(Example 4) Gel-like undrawn fiber obtained in Example 2 (polymerization degree 3500
') at room temperature for 1 hour, the gel-like fibers were
3 times at 'C, 4 times at 150℃, 1.8 at 200℃
The ethylene glycol solvent was removed by stretching the film twice. The drawn fibers were immersed in a boric acid aqueous solution (1% by weight) for 30 minutes, and then subjected to tension heat treatment again at 200°C. As shown in Table 1, the PVA fibers targeted by the present invention were obtained.

(比較例4) 重合度3400のPVAをエチレングリコールに溶解す
る際、ホウ酸をI’VAに対し4重量%添加しさらにp
H−6〜7にするために少量の水酸化ナトリウムを添加
して160℃で溶解した。 PVA4度は15重量%と
した。この紡糸原液を0.2−の紡糸口金より吐出し、
空気中で冷却しゲル化した。続いて第1浴である水中を
通し、ホウ素の一部を除去するときに約1.3倍に延伸
しながら第2浴のメタノール中で溶媒の抽出を行った。
(Comparative Example 4) When dissolving PVA with a degree of polymerization of 3400 in ethylene glycol, 4% by weight of boric acid was added to I'VA and further p
To make H-6 to 7, a small amount of sodium hydroxide was added and dissolved at 160°C. The PVA degree was 15% by weight. This spinning stock solution is discharged from a 0.2- spinneret,
It was cooled in air to form a gel. Subsequently, the film was passed through a first bath of water, and when a portion of boron was removed, the solvent was extracted in a second bath of methanol while stretching the film approximately 1.3 times.

次に70’Cの熱風により、紡出糸のメタノールと水を
蒸発させ、ボビンに巻き取った。得られた紡出糸を22
5℃で約10倍熱延伸し、延伸繊維を得たが、第1表に
示すように、本発明の目的とするPVA系繊維は得られ
なかった。
Next, methanol and water in the spun yarn were evaporated with hot air at 70'C, and the yarn was wound onto a bobbin. The obtained spun yarn was
Although drawn fibers were obtained by hot drawing at 5° C. about 10 times, as shown in Table 1, the PVA-based fibers targeted by the present invention were not obtained.

(比較例5) 重合度1750のPVAの16重重景水溶液にPVAに
対し2重量%のホウ酸を添加した紡糸原液を苛性ソーダ
アルカリ性の芒硝水溶液中に紡糸し、温熱延伸後水洗し
て、PVAに対して0.3重量%のほう酸を残して乾燥
後、240’Cで約15倍の熱延伸を行った。このよう
にして得られた延伸繊維の物性質は第1表に示すように
本発明の目的とするPVA系繊維は得られなかった。
(Comparative Example 5) A spinning stock solution prepared by adding 2% by weight of boric acid to the PVA to a 16-fold aqueous solution of PVA with a degree of polymerization of 1750 was spun into a sodium hydroxide alkaline aqueous solution of Glauber's sulfate, and after hot stretching, it was washed with water to form PVA. After drying, leaving 0.3% by weight of boric acid, it was hot-stretched at 240'C by about 15 times. The physical properties of the drawn fiber thus obtained are shown in Table 1, indicating that the PVA fiber targeted by the present invention could not be obtained.

(発明の効果) PVA系繊維はナイロン、ポリエステル、ポリアクリル
ニトリル繊維などの汎用高分子繊維の中では比較的高強
度高弾性率であるが、熱水中あるいは温熱中での強さが
著しく減少するためにタイヤコード、プラスチック補強
材などの用途でその使用が著しく制限されている。現在
、市販されている高強度・高弾性率PVA系繊維の強度
は約13g/d、弾性率は約300g/dで熱水に溶解
する温度は114℃以下(比較例5に相当する)である
。−力木発明により、強度が15g/d以上、弾性率が
300g/d以上で且つ熱水に溶解する温度が115℃
を越える新規なPVA系繊維が得られたので、タイヤコ
ードのベルト用素材としても使用できるようになるとと
もにプラスチック補強材、ローブおよびケーブル類など
の使用範囲が著しく拡大される効果がある。
(Effect of the invention) PVA-based fibers have relatively high strength and high modulus among general-purpose polymer fibers such as nylon, polyester, and polyacrylonitrile fibers, but their strength decreases significantly in hot water or at high temperatures. Therefore, its use in applications such as tire cords and plastic reinforcing materials is severely restricted. Currently, commercially available high-strength, high-modulus PVA fibers have a strength of about 13 g/d, an elastic modulus of about 300 g/d, and a melting temperature in hot water of 114°C or lower (corresponding to Comparative Example 5). be. - The strength of the strength is 15 g/d or more, the elastic modulus is 300 g/d or more, and the temperature at which it dissolves in hot water is 115°C.
Since the new PVA fiber has been obtained, it can now be used as a material for tire cord belts, and has the effect of significantly expanding the scope of use in plastic reinforcing materials, lobes, cables, etc.

また、本発明によりPVA系繊維の利点である接着性、
耐候性が活かされるので、その利用分野がさらに拡大さ
れることが期待できる。以上より本発明の産業の意義は
大きい。
In addition, according to the present invention, the adhesive properties, which are the advantages of PVA-based fibers,
Since it takes advantage of its weather resistance, it can be expected that its fields of use will further expand. From the above, the industrial significance of the present invention is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の繊維及び公知の先行特許に記載の繊維
の分子量(又は重合度)と強度の関係を示す図である。 第2図は第1図と同じく分子量(又は重合度)と弾性率
(初期引張抵抗度)の関係を示す図である。なお、図中
の記号は下記の繊維を示す。 ■   本発明繊維 ◎   特開昭60−126311記載の繊維■   
特開昭61−108711 ム   特公昭43−16675   〃八   特開
昭59−130314 ◇   特公昭48−9209 ・   特公昭47−8186 ◎14躍6O−126311 A gall 59−130314 ム$’1g43−16675 ■停発明
FIG. 1 is a diagram showing the relationship between molecular weight (or degree of polymerization) and strength of the fibers of the present invention and the fibers described in known prior patents. FIG. 2, like FIG. 1, is a diagram showing the relationship between molecular weight (or degree of polymerization) and elastic modulus (initial tensile resistance). Note that the symbols in the figure indicate the following fibers. ■ Fiber of the present invention ◎ Fiber described in JP-A-60-126311 ■
JP 61-108711 MU JP 43-16675 〃8 JP 59-130314 ◇ JP 48-9209 ・ JP 47-8186 ◎14 Yaku 6O-126311 A gal 59-130314 Mu$' 1g43-16675 ■ stop invention

Claims (6)

【特許請求の範囲】[Claims] (1)重合度が1500以上、引張強度が15g/d以
上、初期引張抵抗度が300g/d以上のポリビニルア
ルコール系繊維であり、且つ、本文中に定義する熱水溶
解温度が115℃以上であることを特徴とするポリビニ
ルアルコール系繊維。
(1) Polyvinyl alcohol fibers with a degree of polymerization of 1500 or higher, a tensile strength of 15 g/d or higher, and an initial tensile resistance of 300 g/d or higher, and a hot water dissolution temperature of 115°C or higher as defined in the text. A polyvinyl alcohol fiber characterized by:
(2)熱水溶解温度が120℃以上である特許請求の範
囲第1項記載のポリビニルアルコール系繊維。
(2) The polyvinyl alcohol fiber according to claim 1, which has a hot water dissolution temperature of 120° C. or higher.
(3)ポリビニルアルコール系繊維が繊維中にホウ素を
含有する特許請求の範囲第1項又は第2項記載のポリビ
ニルアルコール系繊維。
(3) The polyvinyl alcohol fiber according to claim 1 or 2, wherein the polyvinyl alcohol fiber contains boron in the fiber.
(4)重合度が1500〜4500である特許請求の範
囲第1項乃至第3項のいずれかに記載のポリビニルアル
コール系繊維。
(4) The polyvinyl alcohol fiber according to any one of claims 1 to 3, which has a degree of polymerization of 1,500 to 4,500.
(5)重合度が1500以上のポリビニルアルコール系
重合体を該ポリビニルアルコール系重合体の溶媒に溶解
し、該溶液を紡糸口金から、押し出し、冷却後得られる
(a)ゲル状未延伸繊維または(b)プソイドゲル状未
延伸繊維を延伸倍率が7倍以上になるまで熱延伸した後
、ホウ酸水溶液で処理し、引き続いて熱延伸または熱処
理することを特徴とするポリビニルアルコール系繊維の
製造方法。
(5) A polyvinyl alcohol-based polymer having a degree of polymerization of 1500 or more is dissolved in a solvent for the polyvinyl alcohol-based polymer, the solution is extruded from a spinneret, and the resulting (a) gel-like undrawn fiber or ( b) A method for producing polyvinyl alcohol fibers, which comprises hot-stretching pseudogel-like unstretched fibers until the stretching ratio becomes 7 times or more, then treating the fibers with an aqueous boric acid solution, and subsequently hot-stretching or heat-treating the fibers.
(6)ポリビニルアルコール系重合体の重合度が150
0〜4500である特許請求の範囲第5項記載のポリビ
ニルアルコール系繊維の製造方法。
(6) The degree of polymerization of the polyvinyl alcohol polymer is 150
0 to 4,500, the method for producing polyvinyl alcohol fibers according to claim 5.
JP25909087A 1987-10-14 1987-10-14 Polyvinyl alcohol fiber and production thereof Pending JPH01104815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25909087A JPH01104815A (en) 1987-10-14 1987-10-14 Polyvinyl alcohol fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25909087A JPH01104815A (en) 1987-10-14 1987-10-14 Polyvinyl alcohol fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH01104815A true JPH01104815A (en) 1989-04-21

Family

ID=17329176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25909087A Pending JPH01104815A (en) 1987-10-14 1987-10-14 Polyvinyl alcohol fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH01104815A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133605A (en) * 1988-06-02 1990-05-22 Toray Ind Inc Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
JPH0327111A (en) * 1989-06-23 1991-02-05 Toray Ind Inc Crimped high-tenacity polyvinyl alcohol fiber and production thereof
JPH03146704A (en) * 1989-10-24 1991-06-21 Unitika Ltd Polyvinyl alcohol fiber having excellent hot water resistance and its preparation
US5380588A (en) * 1991-06-24 1995-01-10 Kuraray Company Limited Polyvinyl alcohol-based synthetic fiber
JP2009108432A (en) * 2007-10-29 2009-05-21 Kuraray Co Ltd Polyvinyl alcohol-based fiber and method for producing the same
WO2013137362A1 (en) * 2012-03-14 2013-09-19 パイオニア株式会社 Speaker vibrating plate and method for producing speaker vibrating plate
WO2014141389A1 (en) * 2013-03-12 2014-09-18 パイオニア株式会社 Speaker diaphragm and speaker device
WO2014162468A1 (en) * 2013-04-01 2014-10-09 パイオニア株式会社 Vibrating body for speaker, and speaker device
JP2015111920A (en) * 2012-03-14 2015-06-18 パイオニア株式会社 Speaker diaphragm
JP2017135759A (en) * 2017-05-12 2017-08-03 パイオニア株式会社 Vibrating body for speaker and speaker device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133605A (en) * 1988-06-02 1990-05-22 Toray Ind Inc Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
JPH0327111A (en) * 1989-06-23 1991-02-05 Toray Ind Inc Crimped high-tenacity polyvinyl alcohol fiber and production thereof
JPH03146704A (en) * 1989-10-24 1991-06-21 Unitika Ltd Polyvinyl alcohol fiber having excellent hot water resistance and its preparation
US5380588A (en) * 1991-06-24 1995-01-10 Kuraray Company Limited Polyvinyl alcohol-based synthetic fiber
JP2009108432A (en) * 2007-10-29 2009-05-21 Kuraray Co Ltd Polyvinyl alcohol-based fiber and method for producing the same
US9521490B2 (en) 2012-03-14 2016-12-13 Pioneer Corporation Speaker diaphragm and production method for speaker diaphragm
JP2015111920A (en) * 2012-03-14 2015-06-18 パイオニア株式会社 Speaker diaphragm
WO2013137362A1 (en) * 2012-03-14 2013-09-19 パイオニア株式会社 Speaker vibrating plate and method for producing speaker vibrating plate
WO2014141389A1 (en) * 2013-03-12 2014-09-18 パイオニア株式会社 Speaker diaphragm and speaker device
WO2014162468A1 (en) * 2013-04-01 2014-10-09 パイオニア株式会社 Vibrating body for speaker, and speaker device
JPWO2014162468A1 (en) * 2013-04-01 2017-02-16 パイオニア株式会社 Loudspeaker vibrating body and speaker device
US9635463B2 (en) 2013-04-01 2017-04-25 Pioneer Corporation Vibrating body for speaker device and speaker device
JP2017135759A (en) * 2017-05-12 2017-08-03 パイオニア株式会社 Vibrating body for speaker and speaker device

Similar Documents

Publication Publication Date Title
US5455114A (en) Water soluble polyvinyl alcohol-based fiber
JPH01104815A (en) Polyvinyl alcohol fiber and production thereof
JP2569352B2 (en) High strength water-soluble polyvinyl alcohol fiber and method for producing the same
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JPS62299513A (en) Production of polyphenylene sulfide monofilament
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JPS6285013A (en) High-tenacity and high-modulus pva fiber and production thereof
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JPH0733604B2 (en) High-strength polyvinyl alcohol fiber with excellent knot strength
JP3466279B2 (en) Polyvinyl alcohol fiber excellent in dimensional stability in wet and dry conditions and method for producing the same
JP2019026990A (en) Production method of polyvinyl alcohol-based fiber
JPH01162816A (en) Novel polyethylene fiber
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JPH0284504A (en) Polyvinyl alcohol fiber suitable as reinforcing material
JPH01124611A (en) Production of polyvinyl alcohol yarn
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
JPH03279412A (en) Method for spinning polyvinyl alcohol-based fiber
JPH0299607A (en) Production of polyvinyl alcohol-based fiber
JP2765951B2 (en) Glossy high-strength polyvinyl alcohol fiber and method for producing the same
JPH01156508A (en) Novel polyethylene fiber
JPH0457769B2 (en)