JPH01162816A - Novel polyethylene fiber - Google Patents

Novel polyethylene fiber

Info

Publication number
JPH01162816A
JPH01162816A JP32074987A JP32074987A JPH01162816A JP H01162816 A JPH01162816 A JP H01162816A JP 32074987 A JP32074987 A JP 32074987A JP 32074987 A JP32074987 A JP 32074987A JP H01162816 A JPH01162816 A JP H01162816A
Authority
JP
Japan
Prior art keywords
polyethylene
fiber
creep
strength
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32074987A
Other languages
Japanese (ja)
Inventor
Yutaka Nishikawa
西河 裕
Takehiko Mitsuyoshi
三吉 威彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP32074987A priority Critical patent/JPH01162816A/en
Publication of JPH01162816A publication Critical patent/JPH01162816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To provide high-strength and high-modulus polyethylene fiber having each specific weight-average molecular weight, single fiber strength, single fiber initial modulus, dynamic viso-elastic parameters and creep, also unobservable for structure with long period using the small angle X-ray scattering technique. CONSTITUTION:The objective fiber with low creep, suitable as an industrical fibrous material, obtained by melt spinning of high-density polyethylene with a weight-average molecular weight of >=700,000. This fiber has the following characteristics: 1, creep at 50 deg.C under a load of 4.5g/d for 24hrs....<=2.0% 2, single fiber strength...>=40g/d 3, single fiber initial modulus...>=1,200g/d 4, structure with long period by the small angle X-ray scattering measurement... unobserrable 5, gamma-dispersion peak height in tandelta determined by the dynamic viscoelasticity measurement...<=0.020 (pref. <=0.016) 6, dynamic storage modulus E' at 100 deg.C...>=600g/d 7, single fiber fineness...pref. <=3de.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度・高弾性率を有し、かつクリープの低い
新規なポリエチレン繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel polyethylene fiber having high strength and high modulus of elasticity and low creep.

(従来の技術) ポリエチレン繊維は軽くて耐薬品性に優れる、比較的安
価であるなど産業用繊維素材としての優れた性質を有し
ている。
(Prior Art) Polyethylene fibers have excellent properties as industrial fiber materials, such as being light, having excellent chemical resistance, and being relatively inexpensive.

近年、産業用繊維素材としてこれを使用する製品の省エ
ネルギー化、高機能化に対応するため軽く、強度、弾性
率の高い繊維素材が要求されてきた。
In recent years, there has been a demand for fiber materials that are lightweight, have high strength, and have high modulus of elasticity in order to meet the demands for energy saving and high functionality in products that use these industrial fiber materials.

この要求を満足するポリエチレン繊維を製造する方法と
して、高分子量ポリエチレンの溶液を紡糸し、冷却して
得たゲル状のフィラメントを高倍率に熱延伸する方法が
特開昭55−107506号公報、特開昭58−522
8号公報等に開示されている。
As a method for producing polyethylene fibers that satisfy this requirement, a method is disclosed in JP-A-55-107506, in which a solution of high molecular weight polyethylene is spun, cooled, and the obtained gel-like filament is hot-stretched to a high magnification. Kaisho 58-522
This is disclosed in Publication No. 8, etc.

これらの方法で得られる高強度・高弾性率ポリエチレン
繊維は、その特性故に特に高い強度と高い弾性率が要求
される産業用繊維用途、例えはローブ、スリング、各種
ゴム補強材、各種樹脂の補強打およびコンクリート補強
材などに有用性が期待されている。
Due to its characteristics, the high-strength, high-modulus polyethylene fibers obtained by these methods can be used for industrial fiber applications that require particularly high strength and high modulus, such as lobes, slings, various rubber reinforcement materials, and reinforcement of various resins. It is expected to be useful as a concrete reinforcement material.

しかしながら上記の方法で得られる高強度・高弾性率ポ
リエチレン繊維は高い強度を有してはいるが、通常のポ
リエチレン繊維と同様に荷重下での伸び、すなわちクリ
ープが高いという欠点を有する。このため産業用繊維素
材としてこれらの高強度・高弾性率ポリエチレン繊維を
用いた場合、多くの支障を生ずることになる。例えば、
これらの繊維を用いたロープは荷重により徐々に伸びて
くるという問題を生じる。また、これらの繊維を光ファ
イバー等のテンションメンバーとして用いた場合には、
張力を担うべきテンションメンバーの伸びが時間ととも
に進行する。このため、テンションメンバーに支えられ
るべき光ファイバー等に張力がかかるようになり、その
機能が低下したり、破断に至るようになるなどである。
However, although the high-strength, high-modulus polyethylene fibers obtained by the above method have high strength, they have the same drawback as ordinary polyethylene fibers of high elongation under load, that is, high creep. Therefore, when these high-strength, high-modulus polyethylene fibers are used as industrial fiber materials, many problems occur. for example,
Ropes made of these fibers have the problem of gradually stretching under load. In addition, when these fibers are used as tension members for optical fibers, etc.,
The tension member that is responsible for the tension progresses over time. As a result, tension is applied to the optical fibers and the like that should be supported by the tension members, which may reduce their functionality or cause them to break.

そこで、上記のような高強度・高弾性率ポリエチレン繊
維のクリープ特性を改善できれば産業用繊維素材として
、その用途が大きく広がると考えられる。
Therefore, if the creep characteristics of high-strength, high-modulus polyethylene fibers as described above can be improved, their use as industrial fiber materials will be greatly expanded.

ポリエチレンのクリープ特性を改善する方法としては架
橋処理を行うことが知られている。
Crosslinking treatment is known as a method for improving the creep properties of polyethylene.

特開昭60−59172号公報にはポリエチレンの延伸
糸に、また特開昭60−240433号公報には延伸前
または延伸中のゲル状フィルムまたはテープに放射線を
照射し架橋処理を施す方法が記載されている。しかしな
がら、これらの方法では放射線を照射する際に架橋だけ
でなく分子鎖の切断も同時に起こり、強度の低下が避け
られない。
JP-A No. 60-59172 describes a method of applying radiation to a drawn polyethylene yarn, and JP-A No. 60-240433 describes a method of subjecting a gel-like film or tape to crosslinking treatment by irradiating radiation before or during stretching. has been done. However, in these methods, when irradiating with radiation, not only crosslinking but also molecular chain scission occurs at the same time, resulting in an unavoidable decrease in strength.

また、ジエー・デボア、エイチ・ジェー・ファンデンベ
ルグ、及びエイ・ジエー・ペニングス;ポリマー第25
巻513〜519ベージ(1984)  [J、  d
e  Boer、  H,J、  van  den 
 Berg、A−J、Pennings; POLYM
ER,Vol、25 (1984)、P、513〜51
9]には乾燥したゲル状繊維に溶剤に溶かした架橋剤を
含浸させ溶剤をとばした後延伸と同時に架橋処理を施す
方法が記載されている。ざらに特開昭61−29322
9号公報には耐熱性の改良が目的であるが、ポリエチレ
ンのゲル状物に架橋剤を含浸させ成形する方法が記載さ
れている。ところがこれらの方法においては、延伸ある
いは成形中に架橋が進むため配向、結晶化が阻害されて
、やはり高強度・高弾性率を得ることが困難である。
Also, J.A. DeBoer, H.J. Vandenberg, and A.J. Pennings; Polymer No. 25
Volumes 513-519 (1984) [J, d
E. Boer, H. J. van den.
Berg, A-J, Pennings; POLYM
ER, Vol, 25 (1984), P, 513-51
[9] describes a method in which dried gel-like fibers are impregnated with a crosslinking agent dissolved in a solvent, the solvent is blown off, and then a crosslinking treatment is performed simultaneously with stretching. Zarani JP-A-61-29322
No. 9, the purpose of which is to improve heat resistance, describes a method of impregnating a polyethylene gel-like material with a crosslinking agent and molding the material. However, in these methods, crosslinking progresses during stretching or molding, which inhibits orientation and crystallization, making it difficult to obtain high strength and high elastic modulus.

従って、上記のような方法で得られる架橋ポリエチレン
繊維は一般に機械的特性が多くの産業用繊維用途におい
て充分とならない。
Therefore, crosslinked polyethylene fibers obtained by the above-described method generally do not have sufficient mechanical properties for many industrial fiber applications.

(本発明が解決しようとする問題点) 本発明の目的は産業用繊維素材として有用な高強度、高
弾性率を有し、かつクリープの低い新規なポリエチレン
繊維を提供することにある。
(Problems to be Solved by the Present Invention) An object of the present invention is to provide a novel polyethylene fiber useful as an industrial fiber material that has high strength, high elastic modulus, and low creep.

(問題点を解決するための手段) 本発明は、 (1)重量平均分子量が70万以上であり、50℃て4
.5g/dの荷重下に24時間置いたときのクリープが
2.0%以下であり、40g/d以上の単糸強度、12
00 g / d以上の単糸初期弾性率を有し、かつ小
角X線散乱測定において長周期構造が認められず、かつ
また動的粘弾性測定におけるtanδのγ分散ピークの
高さが0.020以下であり、動的粘弾性率E′の10
0℃での値が600g/d以上であることを特徴とする
新規なポリエチレン繊維、 (2)単糸繊度が3d以下であることを特徴とする前記
第(1)項に記載の新規なポリエチレン繊維、を提供す
るものである。
(Means for solving the problems) The present invention has the following features: (1) The weight average molecular weight is 700,000 or more, and the
.. Creep of 2.0% or less when placed under a load of 5 g/d for 24 hours, single yarn strength of 40 g/d or more, 12
It has a single filament initial elastic modulus of 0.00 g/d or more, and no long-period structure is observed in small-angle X-ray scattering measurements, and the height of the tan δ γ dispersion peak in dynamic viscoelasticity measurements is 0.020. and the dynamic viscoelastic modulus E' is 10
A novel polyethylene fiber characterized by having a value at 0°C of 600 g/d or more; (2) a novel polyethylene according to item (1) above, characterized by having a single fiber fineness of 3 d or less; fibers.

本発明でいうポリエチレンは、本発明の効果を損なわな
い範囲内で少量の例えば10モル%以下のプロピレン、
ブチレン、ペンテン、ヘキセン、4−メチルペンテンな
どの他のアルケンあるいはエチレンと共重合しろるビニ
ルモノマー等の1f重あるいは2種以上が共重合された
ものあるいは少量のポリプロピレン、ポリブテン−1等
のポリオレフィンをポリエチレンと混合したものであっ
てもよい。
The polyethylene used in the present invention includes a small amount of propylene, for example, 10 mol% or less, within a range that does not impair the effects of the present invention.
Other alkenes such as butylene, pentene, hexene, 4-methylpentene, 1f polymers such as vinyl monomers that can be copolymerized with ethylene, or copolymerized two or more types, or a small amount of polyolefins such as polypropylene and polybutene-1. It may also be mixed with polyethylene.

本発明におけるポリエチレンの分子量は重量平均分子量
が70万以上、好ましくは150万以上、さらに好まし
くは200万以上とする必要がある。
The weight average molecular weight of the polyethylene in the present invention needs to be 700,000 or more, preferably 1,500,000 or more, and more preferably 2,000,000 or more.

一般に分子量が高いほど繊維内部に分子鎖末端等の欠陥
部が少なくなり、強度が高くなるので、得られる繊維の
単糸強度を40g/d以上とするには重量平均分子量が
70℃以上のポリエチレンを用いる必要がある。また、
分子量が高いものほど分子鎖の巨視的な運動が起こりに
くくなり、クリープを低くできるが、次に述べるような
低いクリープとするためにも重量平均分子量が70℃以
上のポリエチレンを用いる必要がある。
Generally, the higher the molecular weight, the fewer defects such as molecular chain ends inside the fiber, and the higher the strength. Therefore, in order to obtain a single fiber strength of 40 g/d or higher, polyethylene with a weight average molecular weight of 70°C or higher is required. It is necessary to use Also,
The higher the molecular weight, the less macroscopic movement of the molecular chains will occur and the creep can be reduced, but it is necessary to use polyethylene with a weight average molecular weight of 70° C. or higher in order to achieve low creep as described below.

本発明におけるポリエチレン繊維は50℃において4.
.5g/dの荷重下に24時間装いたときのクリープが
2.0%以下、好ましくは1.5%以下、さらに好まし
くは1.0%以下である必要がある。
The polyethylene fiber in the present invention has a temperature of 4.
.. Creep when placed under a load of 5 g/d for 24 hours must be 2.0% or less, preferably 1.5% or less, and more preferably 1.0% or less.

クリープは測定雰囲気温度と荷重の大きさにより異なり
、温度が高いほど、荷重が大きいほとその値は増加する
。また、クリープは荷重下におかれる時間とともに増加
する。しかしながら本発明者らは50℃で24時間、4
.5g/dの荷重下におかれたときのクリープが2. 
0%以下である繊維は産業用繊維素材として実用上まっ
たく問題にならないということを見いだした。
Creep varies depending on the measurement ambient temperature and the magnitude of the load, and its value increases as the temperature and load increase. Also, creep increases with time under load. However, the present inventors showed that 4
.. Creep when placed under a load of 5 g/d is 2.
It has been found that fibers with a content of 0% or less pose no practical problem as industrial fiber materials.

本発明におけるポリエチレン繊維の単糸強度は40g/
d以上、好ましくは45g/d以上さらに好ましくは5
0 g/ d以上が必要であり、単糸の初期弾性率は1
200g/d以上、好ましくは1400g/d以上、さ
らに好ましくは1600g/d以上とする必要がある。
The single yarn strength of the polyethylene fiber in the present invention is 40g/
d or more, preferably 45 g/d or more, more preferably 5 g/d or more
0 g/d or more is required, and the initial elastic modulus of the single yarn is 1
It is necessary to set it to 200 g/d or more, preferably 1400 g/d or more, and more preferably 1600 g/d or more.

単糸の強度および弾性率が各々40g/d以上、120
0g/d以上であれば産業用繊維素材として実用上全く
問題なく使用できる。
The strength and elastic modulus of the single yarn are each 40 g/d or more, 120
If it is 0 g/d or more, it can be used as an industrial fiber material without any practical problems.

本発明のポリエチレン繊維には小角X線散乱測定におい
て長周期構造が認められてはならない。
The polyethylene fiber of the present invention must not have a long-period structure in small-angle X-ray scattering measurements.

この小角X線散乱測定において長周期構造がg=ぬられ
る繊維は結晶部と非晶部との構造差が大きいことを示す
。即ち繊維中で分子鎖が実質的に完全に伸びきっていな
いことを示している。それ故、単糸強度が40g/d以
上、単糸の初期弾性率が1200g/d以上とならない
In this small-angle X-ray scattering measurement, the long-period structure is g = the fiber that is wetted shows that there is a large structural difference between the crystalline part and the amorphous part. In other words, this indicates that the molecular chains within the fiber have not been substantially completely extended. Therefore, the single yarn strength does not exceed 40 g/d and the initial elastic modulus of the single yarn does not exceed 1200 g/d.

本発明におけるポリエチレン繊維は動的粘弾性測定にお
けるtanδのγ分散ピーク(−130℃付近のピーク
)の高さが0.020以下、好ましくは0.016以下
、さらに好ましくは0.013以下である必要があり、
動的弾性率E′の100′Cでの値が600g/d以上
、好ましくは800g/d以上、さらに好ましくは10
00g/d以上である必要がある。
In the polyethylene fiber of the present invention, the height of the tan δ γ dispersion peak (peak near -130°C) in dynamic viscoelasticity measurement is 0.020 or less, preferably 0.016 or less, more preferably 0.013 or less. There is a need,
The value of dynamic elastic modulus E' at 100'C is 600 g/d or more, preferably 800 g/d or more, more preferably 10
00 g/d or more.

動的粘弾性測定におけるtanδのγ分散ピーク(−1
30℃付近のピーク)の高さは非晶部分の量的割合を反
映しており、このピーク高さが低いものほど非晶部が少
ない。一方動的弾性率E′は低温から高温になるに従っ
て低下するが、結晶化度および配向度が高いほと、すな
わち繊維構造の完全性の高いほど高温においても高い値
を維持する。
γ dispersion peak of tan δ in dynamic viscoelasticity measurement (-1
The height of the peak (around 30° C.) reflects the quantitative proportion of the amorphous portion, and the lower the peak height, the less the amorphous portion. On the other hand, the dynamic elastic modulus E' decreases from low to high temperatures, but the higher the degree of crystallinity and orientation, that is, the higher the integrity of the fiber structure, the higher the value maintained even at high temperatures.

従って、動的粘弾性測定におけるtanδのγ分散ピー
ク高さが0.020より大きいかまたは動的弾性率E′
の100℃での値が600g/d未満であるyc維は結
晶化度および配向度が低く、繊維構造が不完全である。
Therefore, if the γ dispersion peak height of tan δ in dynamic viscoelasticity measurement is greater than 0.020 or the dynamic elastic modulus E'
YC fibers with a value of less than 600 g/d at 100° C. have low crystallinity and orientation, and have an incomplete fiber structure.

それ故、単糸強度が40g/d以上、単糸の初期弾性率
が1200g/d以上とならない。
Therefore, the single yarn strength does not exceed 40 g/d and the initial elastic modulus of the single yarn does not exceed 1200 g/d.

一般に繊維の繊度が低いほとその機械的特性は高くなる
傾向にある。従って、本発明のポリエチレン繊維も高強
度・高弾性率を達成しやすいという面から単糸繊度が3
d以下であることが好ましく、2d以下がさらに好まし
い。
Generally, the lower the fineness of a fiber, the higher its mechanical properties tend to be. Therefore, the polyethylene fiber of the present invention also has a single yarn fineness of 3 in order to easily achieve high strength and high elastic modulus.
It is preferably d or less, more preferably 2d or less.

本発明のかかる新規なポリエチレン1農維は、例えば次
のような製造方法により提供される。
The novel polyethylene 1 agricultural fiber of the present invention can be provided, for example, by the following manufacturing method.

まず、重量平均分子量が70℃以上であるポリエチレン
の溶液を調製する。
First, a polyethylene solution having a weight average molecular weight of 70° C. or higher is prepared.

ただし、ポリエチレンの分子量があまりに高くなるとポ
リエチレン溶液の粘度が高くなりすぎ、紡糸を行うため
には紡糸原液のポリエチレン1農度を極端に低くするこ
とが必要となる。このため重量平均分子量力’<100
0万を越えると生産性か低くなり、生産コストが高くな
ることから工業的に生産することが困難となることかあ
る。
However, if the molecular weight of polyethylene becomes too high, the viscosity of the polyethylene solution becomes too high, and in order to carry out spinning, it is necessary to extremely reduce the polyethylene 1 ratio of the spinning dope. Therefore, the weight average molecular weight force'<100
If it exceeds 0,000, the productivity will be low and the production cost will be high, which may make it difficult to produce industrially.

ポリエチレンの溶液を形成するために使用する溶剤とし
ては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水
素、ハロゲン化炭化水素およびこれらの混合物が挙げら
れるがこれらに限定されるものではない。通常ポリエチ
レンはこれらの溶剤をもってしても60℃以下では溶解
せず、100℃以上に加熱することが多いため低沸点の
溶剤は好ましくない。好適な溶剤としてはデカリン、キ
シレン、テトラリン、ノナン、デカン、n−パラフィン
、灯油、パラフィンオイルなどが挙げられる。
Solvents used to form the solution of polyethylene include, but are not limited to, aliphatic hydrocarbons, cycloaliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, and mixtures thereof. . Normally, even with these solvents, polyethylene does not dissolve at temperatures below 60°C and is often heated to temperatures above 100°C, so low boiling point solvents are not preferred. Suitable solvents include decalin, xylene, tetralin, nonane, decane, n-paraffin, kerosene, paraffin oil, and the like.

また、パラフィンワックスおよびナフタレンなどの常温
で固体のものも使用し得る。
Moreover, those that are solid at room temperature such as paraffin wax and naphthalene can also be used.

ポリエチレン溶液のポリエチレン濃度には特に限定はな
く溶解時の均一性、紡糸時の吐出安定性、曳糸性、糸条
走行性および延伸時の製糸性などの面から適切な溶液粘
度となるように選択されるが、1〜15重回%の範囲が
適当である。
There is no particular limit to the polyethylene concentration of the polyethylene solution, and the solution viscosity is determined to be appropriate from the viewpoints of uniformity during dissolution, ejection stability during spinning, spinnability, yarn runnability, and spinnability during drawing. Although selected, a range of 1 to 15% is suitable.

上記のポリエチレン溶液を通常のギヤポンプと紡糸ノズ
ルを用いて繊維状に吐出させ、冷却固化させてm相比す
るが、この紡糸方法としてはいわゆる乾式紡糸、湿式紡
糸、ノズルから押出された溶液を一旦気体部分を通過さ
せた後、凝固浴に導き糸条を凝固させるいわゆる乾湿式
紡糸、ノズルから押出された溶液を冷却して、−旦ゴム
状ゲル糸条を形成させるいわゆるゲル紡糸、ノズルから
押出された溶液を冷却剤と凝固剤からなる浴に導き、ゲ
ル化、凝固させる特開昭61−113813号公報に記
載の紡糸方法(以下ゲル湿式紡糸と呼ぶ)などが適用で
きるが、特にこれらの方法に限定されるものではない。
The above polyethylene solution is discharged in the form of fibers using an ordinary gear pump and a spinning nozzle, and is cooled and solidified to form an m-phase ratio. So-called wet-dry spinning, in which the yarn is coagulated after being passed through a gaseous bath, and gel spinning, in which the solution extruded from the nozzle is cooled to form a rubbery gel yarn, which is extruded from the nozzle. The spinning method described in JP-A-61-113813 (hereinafter referred to as gel wet spinning), in which the resulting solution is introduced into a bath consisting of a cooling agent and a coagulant to gel and solidify, can be applied. The method is not limited.

ただし、高い引張強度のポリエチレンフィラメントが得
やすいことおよび単糸間融着の少ないポリエチレンマル
チフィラメントが得やすいことからゲル湿式紡糸を適用
するのが好ましい。なぜならポリエチレンマルチフィラ
メントに単糸間の融着が多いとフィラメント全体の引張
強度が低下するばかりか樹脂との接着性が低下したり、
加熱時の強力利用率が低下したりするなどの問題が起こ
るからである。
However, it is preferable to apply gel wet spinning because it is easy to obtain polyethylene filaments with high tensile strength and polyethylene multifilaments with less fusion between single filaments. This is because if there is a lot of fusion between single filaments in polyethylene multifilament, not only the tensile strength of the entire filament will decrease, but also the adhesiveness with the resin will decrease.
This is because problems such as a decrease in the power utilization rate during heating may occur.

上記方法で紡糸されたポリエチレン未延伸糸はそ゛のま
ま、あるいは−旦20倍以下に延伸した後、紫外線を照
射する。紫外線を照射すると非晶部分の分子が一部架橋
するが、この架橋部分が最終延伸糸において結晶間ある
いはフィブリル間をつなぎ止めるためにクリープが著し
く抑制されると考えられる。
The undrawn polyethylene yarn spun by the above-mentioned method is irradiated with ultraviolet rays either as it is or after it has been drawn to 20 times or less. When irradiated with ultraviolet rays, some of the molecules in the amorphous portion are crosslinked, and it is thought that this crosslinked portion connects the crystals or fibrils in the final drawn yarn, thereby significantly suppressing creep.

このとき延伸倍率が20倍を超える繊維は結晶化度が非
常に高く、非晶部分が少なくなるために、紫外線を照射
したとき非晶内で架橋が起こりにくく、それ故最終延伸
糸の架橋部分が少なく、クリープが高くなる。
At this time, fibers with a draw ratio exceeding 20 times have a very high degree of crystallinity and have a small amount of amorphous parts, so when irradiated with ultraviolet rays, crosslinking is difficult to occur in the amorphous, and therefore the crosslinked part of the final drawn yarn is low, and creep is high.

照射する紫外線の照度は30〜1000”vV/m2の
範囲とし照射時間を0.5〜250分の範囲とするのが
好ましい。これらの範囲を超えると紫外線の照射量が多
くなりすぎ、得られるポリエチレン繊維の機械的特性が
劣化することがある。また、これらの範囲を下回ると、
照射量が少なすぎるため、紫外線を照射した効果が現わ
れにくい。
It is preferable that the illuminance of the ultraviolet rays to be irradiated is in the range of 30 to 1000"vV/m2, and the irradiation time is in the range of 0.5 to 250 minutes. If these ranges are exceeded, the amount of ultraviolet rays irradiated will be too large, resulting in poor results. The mechanical properties of polyethylene fibers may deteriorate, and below these ranges,
Because the amount of irradiation is too small, the effects of UV irradiation are difficult to see.

上記方法で紫外線を照射したポリエチレン繊維を引続き
総延伸倍率が20倍を超えるまで延伸する。ここでいう
総延伸倍率とはポリエチレン繊維が未延伸糸から最終延
伸糸に至るまでに実質的に延伸された倍率のことである
。総延伸倍率が20倍以下のポリエチレン繊維は単糸強
度を40g/d以上とすることが難しい。
The polyethylene fibers irradiated with ultraviolet rays by the above method are subsequently stretched until the total stretching ratio exceeds 20 times. The total stretching ratio as used herein refers to the ratio at which the polyethylene fiber is substantially stretched from an undrawn yarn to a final drawn yarn. It is difficult for polyethylene fibers with a total draw ratio of 20 times or less to have a single fiber strength of 40 g/d or more.

ポリエチレン繊維の延伸における延伸温度は80〜15
5℃の範囲がとするのが好ましい。なお、延伸時の加熱
媒体としては加熱ロール、熱板、加熱気体浴、加熱液体
浴および加熱ビンなどが挙げられる。
The stretching temperature for polyethylene fiber stretching is 80-15
Preferably, the temperature is in the range of 5°C. In addition, examples of the heating medium during stretching include a heating roll, a hot plate, a heated gas bath, a heated liquid bath, and a heating bottle.

なお、紫外線照射前後の各々の延伸は1段でも多段で行
ってもよい。
Note that the stretching before and after the ultraviolet irradiation may be performed in one stage or in multiple stages.

(実施例) 次に実施例により本発明を具体的に説明するが、本発明
はこれに限定されるものではない。なお、引張強度、初
期弾性率、クリープ、動的粘弾性および小角X線散乱は
次の条件で測定した。
(Example) Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. Note that tensile strength, initial elastic modulus, creep, dynamic viscoelasticity, and small-angle X-ray scattering were measured under the following conditions.

引張強度、初期弾性率測定条件 測定雰囲気:20℃1相対湿度65% 装置   :東洋ボールドウィン社製 テンシロンUTM−4引張試験機 試料   :単糸250mm 引張速度 :300mm/分 初期弾性率二強伸度曲線の原点における傾きから求めた
Tensile strength and initial elastic modulus measurement conditions Measurement atmosphere: 20°C, relative humidity 65% Equipment: Tensilon UTM-4 tensile tester manufactured by Toyo Baldwin Co., Ltd. Sample: Single yarn 250 mm Tensile speed: 300 mm/min Initial elastic modulus double strength elongation curve It was determined from the slope at the origin.

クリープ測定条件 測定雰囲気:50℃ 荷重   :4.5g/d なお、クリープは次式により求めた。Creep measurement conditions Measurement atmosphere: 50℃ Load: 4.5g/d Incidentally, creep was determined using the following formula.

L9:サンプルに荷重をかけた直後の 長さく初期長) L:24時間サンプルに荷重をかけ、 荷重がかかった状態で測定した 長さ 動的粘弾性測定条件 装置   :東洋ボールドウィン■ DDV−II型 振動数  :110Hz 昇温速度 =3℃/分 小角X線散乱(写真法)測定条件 装置   :理学電機社製Ru−200型X線源  :
CuKa線(Niフィルター使用)X線出力 : 50
KV、150mA スリット系:0.3mmφ カメラ半径:400mm 露出時間 : 120分 フィルム :Kodak  DEF−5長周期は小角X
線散乱像の子午線上の干渉点(あるいは干渉線)の位置
からBraggの式を用いて求めた。子午線上の干渉点
くあるいは干渉線)の現れないものは長周期が認められ
ないとした。
L9: Initial length immediately after applying a load to the sample) L: Length measured with a load applied to the sample for 24 hours Dynamic viscoelasticity measurement conditions Equipment: Toyo Baldwin DDV-II type Vibration frequency: 110Hz Heating rate = 3℃/min Small-angle X-ray scattering (photography) Measurement conditions Equipment: Ru-200 type X-ray source manufactured by Rigaku Denki Co., Ltd.:
CuKa ray (using Ni filter) X-ray output: 50
KV, 150mA Slit system: 0.3mmφ Camera radius: 400mm Exposure time: 120 minutes Film: Kodak DEF-5 Long period is small angle
It was determined using Bragg's equation from the position of the interference point (or interference line) on the meridian of the line scattering image. If no interference point (or interference line) appears on the meridian, a long period is not recognized.

(実施例1) 重量平均分子量が300万の直鎖状高密度ポリエチレン
を灯油に180℃の温度で溶解し5. 0重量%のポリ
エチレン溶液を調製した。
(Example 1) Linear high-density polyethylene having a weight average molecular weight of 3 million was dissolved in kerosene at a temperature of 180°C.5. A 0% by weight polyethylene solution was prepared.

この溶液を170℃で孔径1mm、孔数10のノズルか
ら5mmの距g1だけ空気層を通過させた後、上層が水
、下層が三塩化三フッ化エタンで構成された2層構造の
紡糸浴で冷却後、凝固させ集束して凝固糸条を得た。紡
糸浴の温度は10℃てあり、上N(水)の厚さが80m
m、下層(三塩化三フッ化エタン)の厚さを230mm
とした。
After passing this solution through an air layer of 5 mm distance g1 from a nozzle with a hole diameter of 1 mm and 10 holes at 170°C, a spinning bath with a two-layer structure consisting of water in the upper layer and trichlorotrifluoroethane in the lower layer is formed. After cooling, it was coagulated and bundled to obtain a coagulated thread. The temperature of the spinning bath was 10°C, and the thickness of the upper N (water) was 80 m.
m, the thickness of the lower layer (trichloride trifluoride ethane) is 230 mm
And so.

また、凝固した糸条は7.5m/分で引取フた。Further, the coagulated yarn was taken off at a rate of 7.5 m/min.

前記凝固糸条を引続き5℃の三塩化三フッ化エタンから
なる抽出浴を通し、糸条中に残存する灯油を抽出して、
乾燥後、135℃の熱板を用いて、9倍に延伸してから
ワインダーで巻取った。
The coagulated thread is then passed through an extraction bath of trichlorotrifluoroethane at 5°C to extract the kerosene remaining in the thread,
After drying, it was stretched 9 times using a hot plate at 135° C. and then wound up with a winder.

この1段延伸糸に照度800W/T1″の紫外線を1時
間照射した。
This single-stage drawn yarn was irradiated with ultraviolet rays at an illumination intensity of 800 W/T1'' for 1 hour.

次に、紫外線照射後の1段延伸糸をさらに145℃の熱
板を用いて6.5倍に延伸した結果、次のような糸物性
の延伸糸が得られた。
Next, the one-stage drawn yarn after being irradiated with ultraviolet rays was further stretched 6.5 times using a hot plate at 145° C., and as a result, a drawn yarn with the following yarn physical properties was obtained.

単糸繊度      :0.93d 単糸引張強度    :51g/d 単糸初期弾性率   :  1760g/dtanδの
γ分散 ピーク高さ     :0.012 100℃におけるE’ :  1180g/d長周期 
      :認められず この延伸糸に4.5g/dの荷重をかけ50℃て24時
間放置したが、クリープは0.19%と小さなものであ
った。
Single yarn fineness: 0.93 d Single yarn tensile strength: 51 g/d Single yarn initial elastic modulus: 1760 g/d γ dispersion peak height of tan δ: 0.012 E' at 100°C: 1180 g/d long period
A load of 4.5 g/d was applied to this drawn yarn and it was left at 50° C. for 24 hours, but the creep was as small as 0.19%.

(比較例1) 実施例1とまったく同様にして得られた1段延伸系を紫
外線照射することなく145℃の熱板を用いて7倍に延
伸した。
(Comparative Example 1) A one-stage stretched system obtained in exactly the same manner as in Example 1 was stretched 7 times using a hot plate at 145° C. without irradiating with ultraviolet rays.

得られた延伸系は強度56 g/d、ヤング率1830
g/dと高い物性を示したが、クリープは3.2%と高
い値てあフた。他の物性は次の通りである。
The resulting stretched system had a strength of 56 g/d and a Young's modulus of 1830.
It showed high physical properties of g/d, but the creep was high at 3.2%. Other physical properties are as follows.

tanδのγ分散 ピーク高さ     :0.009 100℃におけるE’ :  1420g/d長周期 
      :認められず (比較例2) 重量平均分子量が15万の直鎖状高密度ポリエチレンを
灯油に170℃の温度で溶解し、90分間撹拌して15
重量%のポリエチレン溶液を調製した。
γ dispersion peak height of tan δ: 0.009 E' at 100°C: 1420 g/d long period
: Not observed (Comparative Example 2) Linear high-density polyethylene with a weight average molecular weight of 150,000 was dissolved in kerosene at a temperature of 170°C, and stirred for 90 minutes.
A wt% polyethylene solution was prepared.

この溶液を実施例1と同様の方法で紡糸、抽出し、乾燥
した糸条を130℃の熱板を用いて、7倍に延伸してワ
インダーで巻取った。
This solution was spun and extracted in the same manner as in Example 1, and the dried yarn was stretched 7 times using a hot plate at 130° C. and wound up with a winder.

この1段延伸糸に実施例1と同じ条件で紫外線を照射し
た後、135℃の熱板を用いて5倍に延伸した。この延
伸糸はポリマの分子量が低いため強度14g/d、ヤン
グ率420g/dという低い物性であった。また、クリ
ープは5%を超えてしまった。
This one-stage drawn yarn was irradiated with ultraviolet rays under the same conditions as in Example 1, and then stretched five times using a hot plate at 135°C. This drawn yarn had low physical properties such as strength of 14 g/d and Young's modulus of 420 g/d due to the low molecular weight of the polymer. Moreover, the creep exceeded 5%.

(発明の効果) 以上のように本発明の新規なポリエチレン繊維は高強度
・高弾性率を有し、かつクリープが低いので産業用繊維
素材として非常に有用である。
(Effects of the Invention) As described above, the novel polyethylene fiber of the present invention has high strength and high modulus of elasticity, and has low creep, so it is very useful as an industrial fiber material.

Claims (2)

【特許請求の範囲】[Claims] (1)重量平均分子量が70万以上であり、50℃で4
.5g/dの荷重下に24時間置いたときのクリープが
2.0%以下であり、40g/d以上の単糸強度、12
00g/d以上の単糸初期弾性率を有し、かつ小角X線
散乱測定において長周期構造が認められず、かつまた動
的粘弾性測定におけるtanδのγ分散ピークの高さが
0.020以下であり、動的粘弾性率E′の100℃で
の値が600g/d以上であることを特徴とする新規な
ポリエチレン繊維。
(1) Weight average molecular weight is 700,000 or more, and at 50℃
.. Creep of 2.0% or less when placed under a load of 5 g/d for 24 hours, single yarn strength of 40 g/d or more, 12
It has a single filament initial elastic modulus of 00 g/d or more, and no long-period structure is observed in small-angle X-ray scattering measurements, and the height of the tan δ γ dispersion peak in dynamic viscoelasticity measurements is 0.020 or less. and a dynamic viscoelastic modulus E' at 100° C. of 600 g/d or more.
(2)単糸繊度が3d以下であることを特徴とする特許
請求の範囲第(1)項に記載の新規なポリエチレン繊維
(2) The novel polyethylene fiber according to claim (1), characterized in that the single yarn fineness is 3d or less.
JP32074987A 1987-12-17 1987-12-17 Novel polyethylene fiber Pending JPH01162816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32074987A JPH01162816A (en) 1987-12-17 1987-12-17 Novel polyethylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32074987A JPH01162816A (en) 1987-12-17 1987-12-17 Novel polyethylene fiber

Publications (1)

Publication Number Publication Date
JPH01162816A true JPH01162816A (en) 1989-06-27

Family

ID=18124856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32074987A Pending JPH01162816A (en) 1987-12-17 1987-12-17 Novel polyethylene fiber

Country Status (1)

Country Link
JP (1) JPH01162816A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046436A1 (en) * 1999-02-05 2000-08-10 Toyo Boseki Kabushiki Kaisha High strength polyethylene fiber and non-woven fabric for electric cell separator, and impact-resistant member
JP2009500091A (en) * 2005-07-05 2009-01-08 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE filament based surgical repair products
JP2010540791A (en) * 2007-10-05 2010-12-24 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE fiber and method for producing the same
JP2010540792A (en) * 2007-10-05 2010-12-24 ディーエスエム アイピー アセッツ ビー.ブイ. Low creep, high strength UHMWPE fiber and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046436A1 (en) * 1999-02-05 2000-08-10 Toyo Boseki Kabushiki Kaisha High strength polyethylene fiber and non-woven fabric for electric cell separator, and impact-resistant member
JP2009500091A (en) * 2005-07-05 2009-01-08 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE filament based surgical repair products
JP2010540791A (en) * 2007-10-05 2010-12-24 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE fiber and method for producing the same
JP2010540792A (en) * 2007-10-05 2010-12-24 ディーエスエム アイピー アセッツ ビー.ブイ. Low creep, high strength UHMWPE fiber and method for producing the same
US9005753B2 (en) 2007-10-05 2015-04-14 Dsm Ip Assets B.V. Fibers of UHMWPE and a process for producing thereof
US9957643B2 (en) 2007-10-05 2018-05-01 Dsm Ip Assets B.V. Fibers of UHMWPE and a process for producing thereof

Similar Documents

Publication Publication Date Title
JPH02133605A (en) Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
JP2588579B2 (en) Polyvinyl alcohol fiber excellent in hot water resistance and method for producing the same
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
US5283281A (en) Polyvinyl alcohol multifilament yarn and process for producing the same
JPH01162816A (en) Novel polyethylene fiber
JPH01104815A (en) Polyvinyl alcohol fiber and production thereof
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS6241311A (en) Improved polypropylene monofilament and production thereof
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JPH01156508A (en) Novel polyethylene fiber
JPH01162819A (en) Production of novel polyethylene fiber
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPH01162814A (en) Production of novel polyethylene fiber
JPH01162815A (en) Production of polyethylene fiber
JPS62184111A (en) Novel polyethylene filament
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JP2656339B2 (en) High strength polyvinyl alcohol fiber
JPH07238416A (en) Production of high-strength polyethylene fiber
JPH02175912A (en) New polyethylene yarn
JPS61215708A (en) Production of multifilament yarn
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPH02175913A (en) New polyethylene yarn and production thereof
JPH01162817A (en) Production of polyethylene fiber
JPS62141110A (en) Production of gelatinous fiber