JPH01162815A - Production of polyethylene fiber - Google Patents

Production of polyethylene fiber

Info

Publication number
JPH01162815A
JPH01162815A JP32074887A JP32074887A JPH01162815A JP H01162815 A JPH01162815 A JP H01162815A JP 32074887 A JP32074887 A JP 32074887A JP 32074887 A JP32074887 A JP 32074887A JP H01162815 A JPH01162815 A JP H01162815A
Authority
JP
Japan
Prior art keywords
polyethylene
spinning
yarn
fibers
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32074887A
Other languages
Japanese (ja)
Inventor
Yutaka Nishikawa
西河 裕
Takehiko Mitsuyoshi
三吉 威彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP32074887A priority Critical patent/JPH01162815A/en
Publication of JPH01162815A publication Critical patent/JPH01162815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the subject fiber of high strength and high modulus, low in creep, thus useful as an industrial fibrous material, by irradiating ultraviolet light on the (un)drawn yarn produced by spinning a solution of high-molecular weight polyethylene followed by drawing at high draw ratio. CONSTITUTION:(A) Undrawn yarn produced by spinning a solution of polyethylene with a weight-average molecular weight of >=700,000 (pref. >=2,000,000) or (B) the drawn yarn produced by drawing said undrawn yarn by a factor of >=20 (pref. 1.5-15) is irradiated with ultraviolet light pref. at an illuminance of 30-1,000W/m<2> for 0.5-250min, followed by drawing at pref. 100-155 deg.C so that the total draw ratio exceeds 20, thus obtaining the objective fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度・高弾性率を有し、かつクリープの低い
ポリエチレン繊維の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing polyethylene fibers having high strength, high modulus of elasticity, and low creep.

(従来の技術) ポリエチレン繊維は軽くて耐薬品性に優れる、比較的安
価であるなど産業用繊維素材としての優れた性質を有し
ている。
(Prior Art) Polyethylene fibers have excellent properties as industrial fiber materials, such as being light, having excellent chemical resistance, and being relatively inexpensive.

近年、産業用繊維素材としてこれを使用する製品の省エ
ネルギー化、高機能化に対応するため軽く、強度、弾性
率の高い繊維素材が要求されてきた。
In recent years, there has been a demand for fiber materials that are lightweight, have high strength, and have high modulus of elasticity in order to meet the demands for energy saving and high functionality in products that use these industrial fiber materials.

この要求を満足するポリエチレン繊維を製造する方法と
して、高分子量ポリエチレンの溶液を紡糸し、冷却して
得たゲル状の繊維を高倍率に熱延伸する方法が特開昭5
5−107506号公報、特開昭58−5228号公報
等に開示されている。
As a method for manufacturing polyethylene fibers that satisfies this requirement, a method was proposed in Japanese Patent Application Laid-Open No. 5-11301, in which a solution of high molecular weight polyethylene is spun, cooled, and the obtained gel-like fibers are hot-drawn to a high magnification.
It is disclosed in JP-A No. 5-107506, Japanese Unexamined Patent Publication No. 58-5228, etc.

これらの方法で得られる高強度・高弾性率ポリエチレン
繊維は、その特性故に特に高い強度と高い弾性率が要求
される産業用繊維用途、例えはローブ、スリング、各種
ゴム補強材、各種樹脂の補強打およびコンクリート補強
材などに有用性が期待されている。
Due to its characteristics, the high-strength, high-modulus polyethylene fibers obtained by these methods can be used for industrial fiber applications that require particularly high strength and high modulus, such as lobes, slings, various rubber reinforcement materials, and reinforcement of various resins. It is expected to be useful as a concrete reinforcement material.

しかしながら上記の方法で得られる高強度・高弾性率ポ
リエチレン繊維は高い強度を有してはいるが、通常のポ
リエチレン繊維と同様に荷重下での伸び、すなわちクリ
ープが高いという欠点を有する。このため産業用繊維素
材としてこれらの高強度・高弾性率ポリエチレン繊維を
用いた場合、多くの支障を生ずることになる。例えば、
これらの繊維を用いたローブは荷重により徐々に伸びて
くるという問題を生じる。また、これらの繊維を光ファ
イバー等のテンションメンバーとして用いた場合には、
張力を担うべきテンションメンバーの伸びが時間ととも
に進行する。このため、テンションメンバーに支えられ
るべき光ファイバー等に張力がかかるようになり、その
機能が低下したり、破断に至るようになるなどである。
However, although the high-strength, high-modulus polyethylene fibers obtained by the above method have high strength, they have the same drawback as ordinary polyethylene fibers of high elongation under load, that is, high creep. Therefore, when these high-strength, high-modulus polyethylene fibers are used as industrial fiber materials, many problems occur. for example,
Lobes using these fibers have the problem of gradually stretching under load. In addition, when these fibers are used as tension members for optical fibers, etc.,
The tension member that is responsible for the tension progresses over time. As a result, tension is applied to the optical fibers and the like that should be supported by the tension members, which may reduce their functionality or cause them to break.

そこで、上記のような高強度・高弾性率ポリエチレン繊
維のクリープ特性を改善できれば産業用繊維素材として
、その用途が大きく広がると考えられる。
Therefore, if the creep characteristics of high-strength, high-modulus polyethylene fibers as described above can be improved, their use as industrial fiber materials will be greatly expanded.

ポリエチレンのクリープ特性を改善する方法としては架
橋処理を行うことが知られている。
Crosslinking treatment is known as a method for improving the creep properties of polyethylene.

特開昭60−59172号公報にはポリエチレンの延伸
糸に、また特開昭60−240433号公報には延伸前
または延伸中のゲル状フィルムまたはテープに放射線を
照射し架橋処理を施す方法が記載されている。しかしな
がら、これらの方法では放射線を照射する際に架橋だけ
でなく分子鎖の切断も同時に起こり、強度の低下が避け
られない。
JP-A No. 60-59172 describes a method of applying radiation to a drawn polyethylene yarn, and JP-A No. 60-240433 describes a method of subjecting a gel-like film or tape to crosslinking treatment by irradiating radiation before or during stretching. has been done. However, in these methods, when irradiating with radiation, not only crosslinking but also molecular chain scission occurs at the same time, resulting in an unavoidable decrease in strength.

また、ジェー・デボア、エイチ・ジエー・ファンデンベ
ルグ、及びエイ・ジエー・ベニングス;ポリマー第25
巻(1984)513〜519ページ[J、  de 
 Boer、  H,J、  van  den  B
erg+  A、J、Pennjngs; POLYM
ER,Vol、25 (1984)、P、513〜51
9]には乾燥したゲル状繊維に溶剤に溶かした架橋剤を
含浸させ溶剤をとばした後延伸と同時に架橋処理を施す
方法が記載されている。さらに特開昭61−29322
9号公報には耐熱性の改良が目的であるが、ポリエチレ
ンのゲル状物に架橋剤を含浸させ成形する方法が記載さ
れている。ところがこれらの方法においては、延伸ある
いは成形中に架橋が進むため配向、結晶化が阻寡されて
、やはり高強度・高弾性率を得ることか困難である。
Also, J. DeBoer, H.G. Vandenberg, and A.G. Bennings; Polymer No. 25
Volume (1984) pages 513-519 [J, de
Boer, H.J., van den B.
erg+ A, J, Pennjngs; POLYM
ER, Vol, 25 (1984), P, 513-51
[9] describes a method in which dried gel-like fibers are impregnated with a crosslinking agent dissolved in a solvent, the solvent is blown off, and then a crosslinking treatment is performed simultaneously with stretching. Furthermore, JP-A-61-29322
No. 9, the purpose of which is to improve heat resistance, describes a method of impregnating a polyethylene gel-like material with a crosslinking agent and molding the material. However, in these methods, crosslinking progresses during stretching or molding, which inhibits orientation and crystallization, making it difficult to obtain high strength and high elastic modulus.

従って、上記のような方法で得られる架橋ポリエチレン
繊維は一般に機械的特性が多くの産業用繊維用途におい
て充分とならない。
Therefore, crosslinked polyethylene fibers obtained by the above-described method generally do not have sufficient mechanical properties for many industrial fiber applications.

(本発明が解決しようとする問題点) 本発明の目的は産業用繊維素材として有用な高強度、高
弾性率を有し、かつクリープの低いポリエチレン繊維の
製造方法を提供することにある。
(Problems to be Solved by the Present Invention) An object of the present invention is to provide a method for producing polyethylene fibers that have high strength, high elastic modulus, and low creep and are useful as industrial fiber materials.

(問題点を解決するための手段) 本発明は、重量平均分子量が70万以上のポリエチレン
の溶液を紡糸して得られる未延伸糸または未延伸糸を2
0倍以下に延伸した延伸糸に紫外線を照射した後、総延
伸倍率が20倍を超えるまで延伸すること特徴とするポ
リエチレン繊維の製造方法に関するものである。
(Means for Solving the Problems) The present invention provides undrawn yarn or undrawn yarn obtained by spinning a solution of polyethylene having a weight average molecular weight of 700,000 or more.
The present invention relates to a method for producing polyethylene fibers, which comprises irradiating a drawn yarn drawn to 0 times or less with ultraviolet rays, and then drawing it until the total drawing ratio exceeds 20 times.

本発明で用いるポリエチレンは本発明の効果を損なわな
い範囲内で少量の例えば10モル%以下のプロピレン、
ブチレン、ペンテン、ヘキセン、4−メチルペンテンな
どの他のアルケンあるいはエチレンと共重合しうるビニ
ルモノマー等の1種あるいは2種以上が共重合されたも
の、あるいは少量のポリプロピレン、ポリブテン−1等
のポリオレフィンをポリエチレンと混合したものであっ
てもよい。
The polyethylene used in the present invention may include a small amount of propylene, for example, 10 mol% or less, within a range that does not impair the effects of the present invention.
Other alkenes such as butylene, pentene, hexene, 4-methylpentene, or one or more vinyl monomers that can be copolymerized with ethylene, or a small amount of polyolefin such as polypropylene or polybutene-1. may be mixed with polyethylene.

本発明の方法に用いるポリエチレンの分子量はj4fl
平均分子量が70万以上、好ましくは150万以上、さ
らに好ましくは20075以上とする必要がある。
The molecular weight of the polyethylene used in the method of the present invention is j4fl
It is necessary that the average molecular weight is 700,000 or more, preferably 1,500,000 or more, and more preferably 20,075 or more.

一般に分子量が高いほど繊維内部に分子鎖末端等の欠陥
部が少なくなり、強度が高くなるか、産業用繊維素材と
してなんら問題なく使用できるポリエチレン繊維を得る
ためには重量平均分子量が70万以上のポリエチレンを
用いる必要がある。
In general, the higher the molecular weight, the fewer defects such as molecular chain ends inside the fiber, and the higher the strength.In order to obtain polyethylene fiber that can be used as an industrial fiber material without any problems, it is necessary to have a weight average molecular weight of 700,000 or more. It is necessary to use polyethylene.

また、分子量が高いものほとクリープを低下させる効果
が大きいことからも重量平均分子量が70万以上が必要
である。
Further, since the higher the molecular weight, the greater the effect of reducing creep, the weight average molecular weight is required to be 700,000 or more.

本発明のポリエチレンの溶液を形成するために使用する
溶剤としては、脂肪族炭化水素、脂環式炭化水素、芳香
族炭化水素、ハロゲン化炭化水素およびこれらの混合物
が挙げられるがこれらに限定されるものではない。通常
ポリエチレンはこれらの溶剤をもってしても60℃以下
では溶解せず、】00°C以上に加熱することが多いた
め低沸点の溶剤は好ましくない。好適な溶剤としてはデ
カリン、キシレン、テトラリン、ノナン、デカン、n−
パラフィン、灯油、パラフィンオイルなどが挙げられる
。また、パラフィンワックスおよびナフタレンなどの常
温で固体のものも使用し得る。
Solvents used to form solutions of polyethylene of the present invention include, but are not limited to, aliphatic hydrocarbons, cycloaliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, and mixtures thereof. It's not a thing. Normally, even with these solvents, polyethylene does not dissolve at temperatures below 60°C and is often heated to temperatures above 100°C, so solvents with low boiling points are not preferred. Suitable solvents include decalin, xylene, tetralin, nonane, decane, n-
Examples include paraffin, kerosene, and paraffin oil. Moreover, those that are solid at room temperature such as paraffin wax and naphthalene can also be used.

本発明におけるポリエチレン溶液のポリエチレン濃度に
は特に限定はなく溶解時の均一性、紡糸時の吐出安定性
、曳糸性、糸条走行性および延伸時の製糸性などの面か
ら適切な溶液粘度となるように選択されるが、1〜15
重量%の範囲が適当である。
There is no particular limitation on the polyethylene concentration of the polyethylene solution in the present invention, and the solution viscosity is determined to be appropriate from the viewpoints of uniformity during dissolution, ejection stability during spinning, spinnability, thread runnability, and spinnability during drawing. 1 to 15
A range of weight percent is suitable.

なお、溶液紡糸における紡糸温度は紡糸時の吐出安定性
、曳糸性などの面から適切な溶液粘度となるように選択
される。この温度は溶剤の種類やポリエチレンの分子量
、ポリエチレンの濃度によって異なるが、通常120〜
250℃の範囲が適切である。
Note that the spinning temperature in solution spinning is selected so as to provide an appropriate solution viscosity in terms of ejection stability during spinning, spinnability, and the like. This temperature varies depending on the type of solvent, the molecular weight of polyethylene, and the concentration of polyethylene, but it is usually 120~
A range of 250°C is suitable.

本発明の方法において、上記のポリエチレン溶液を通常
のギヤポンプと紡糸ノズルを用いて繊維状に吐出させ、
冷却固化させて繊維化するが、この紡糸方法としてはい
わゆる乾式紡糸、湿式紡糸、ノズルから押出された溶液
を一旦気体部分を通過させた後、凝固浴に導き糸条な凝
固させるいわゆる乾湿式紡糸、ノズルから押出された溶
液を冷却して、−旦ゴム状ゲル糸条を形成させるいわゆ
るゲル紡糸、ノズルから押出された溶液を冷却剤と凝固
剤からなる浴に導き、ゲル化、凝固させる特開昭61−
113813号公報に記載の紡糸方法(以下ゲル湿式紡
糸と呼ぶ)などが適用できるが、特にこれらの方法に限
定されるものではない。ただし、高い引張強度のポリエ
チレン繊維が得やすいことおよび単糸間融着の少ないポ
リエチレンマルチフィラメントが得やすいことからゲル
湿式紡糸を適用するのが好ましい。なぜならポリエチレ
ンマルチフィラメントに単糸間の融着が多いとフィラメ
ント全体の引張強度が低下するばかりか樹脂との接着性
が低下したり、加熱時の強力利用率が低下したりするな
どの問題が起こるからである。
In the method of the present invention, the above polyethylene solution is discharged in the form of fibers using an ordinary gear pump and a spinning nozzle,
The spinning methods are dry spinning, wet spinning, and dry-wet spinning, in which the solution extruded from a nozzle is passed through a gas section, then introduced into a coagulation bath and coagulated into yarn. , so-called gel spinning, in which the solution extruded from the nozzle is cooled to form a rubbery gel thread, and the solution extruded from the nozzle is introduced into a bath consisting of a cooling agent and a coagulant to gel and coagulate. 1986-
The spinning method described in Japanese Patent No. 113813 (hereinafter referred to as gel wet spinning) can be applied, but the method is not particularly limited to these methods. However, it is preferable to apply gel wet spinning because it is easy to obtain polyethylene fibers with high tensile strength and polyethylene multifilaments with less fusion between single filaments. This is because if there is a lot of fusion between single filaments in polyethylene multifilament, problems such as not only the tensile strength of the entire filament will decrease, but also the adhesiveness with the resin will decrease, and the strength utilization rate during heating will decrease. It is from.

上記方法で紡糸された糸条に溶剤が残存する場合、抽出
剤により残存溶剤を抽出するのが好ましい。糸条中の残
存溶剤を乾燥または熱延伸等の方法で除去すると、溶剤
が蒸発する際に単糸間融着が生じることがあるからであ
る。抽出剤により糸条中の残存溶剤を除去すれば乾燥、
熱延伸を行っても単糸間融着は生じない。
When the solvent remains in the yarn spun by the above method, it is preferable to extract the remaining solvent with an extractant. This is because if the residual solvent in the yarn is removed by a method such as drying or hot stretching, fusion between single yarns may occur when the solvent evaporates. If the residual solvent in the yarn is removed using an extractant, drying is possible.
Even if hot stretching is performed, no fusion occurs between single yarns.

なお、抽出糸条は乾燥により抽出剤を除去した方が、後
の熱延伸工程において製糸性が良くなるので好ましい。
Note that it is preferable to remove the extractant from the extracted yarn by drying, since this improves the spinning properties in the subsequent hot stretching step.

本発明において紡糸されたポリエチレン未延伸糸はその
まま、あるいは−旦20倍以下、好ましくは1.5〜2
0倍、さらに好ましくは1.5〜15倍に延伸した後、
紫外線を照射する必要がある。紫外線を照射すると非晶
部分の分子が一部架橋する。この架橋部分が最終延伸糸
において結晶間あるいはフィブリル間をつなぎ止めるた
めにクリープが著しく抑制されると考えられる。しかし
、延伸倍率が20倍を超える繊維は結晶化度が非常に高
く、非晶部分が少ないために、紫外線を照射したときに
非晶内で架橋が起こりにくく、それ故最終延伸糸の架橋
部分が少なく、クリープが高くなる。
The polyethylene undrawn yarn spun in the present invention can be used as it is, or - 20 times or less, preferably 1.5 to 2 times
After stretching 0 times, more preferably 1.5 to 15 times,
It is necessary to irradiate it with ultraviolet light. When irradiated with ultraviolet light, some of the molecules in the amorphous portion crosslink. It is thought that creep is significantly suppressed because this crosslinked portion connects the crystals or fibrils in the final drawn yarn. However, fibers with a draw ratio exceeding 20 times have a very high degree of crystallinity and a small amount of amorphous parts, so crosslinking does not easily occur within the amorphous part when irradiated with ultraviolet rays, and therefore the crosslinked part of the final drawn yarn is low, and creep is high.

照射する紫外線の照度は30〜100OW/nrの範囲
が好ましく、50〜800 W / tn’の範囲がさ
らに好ましい。また、照射時間は0. 5〜250分が
好ましく、0.5〜180分がさらに好ましい範囲であ
る。これらの範囲を超えると紫外線の照射量が多くなり
すぎ、得られるポリエチレン繊維の機械的特性が劣化す
ることがある。また、これらの範囲を下回ると、照射量
が少なすぎるため、紫外線を照射した効果が現われにく
い。
The illumination intensity of the ultraviolet rays to be irradiated is preferably in the range of 30 to 100 OW/nr, and more preferably in the range of 50 to 800 W/tn'. Also, the irradiation time was 0. The range is preferably 5 to 250 minutes, and more preferably 0.5 to 180 minutes. When these ranges are exceeded, the amount of ultraviolet rays irradiated becomes too large, and the mechanical properties of the resulting polyethylene fibers may deteriorate. Furthermore, below these ranges, the amount of irradiation is too small, making it difficult for the effects of ultraviolet irradiation to appear.

本発明においては紫外線を照射したポリエチレン繊維を
総延伸倍率が20倍を超えるまで延伸する必要がある。
In the present invention, it is necessary to stretch the polyethylene fibers irradiated with ultraviolet rays until the total stretching ratio exceeds 20 times.

ここでいう総延伸倍率とはポリエチレン繊維が未延伸糸
から最終延伸糸に至るまでに実質的に延伸された倍率の
ことである。
The total stretching ratio as used herein refers to the ratio at which the polyethylene fiber is substantially stretched from an undrawn yarn to a final drawn yarn.

総延伸倍率が20倍以下のポリエチレン繊維は強度、弾
性率が低く、産業用繊維素材としては不十分となる。
Polyethylene fibers with a total draw ratio of 20 times or less have low strength and modulus of elasticity, and are unsatisfactory as industrial fiber materials.

本発明におけるポリエチレン繊維の延伸における延伸温
度には特に限定はないが、80〜155℃の範囲が好ま
しく、さらに好ましくは100〜155℃である。なお
、延伸時の加熱媒体としては加熱ロール、熱板、加熱気
体浴、加熱液体浴および加熱ピンなどが挙げられるが本
発明はこれらに限定されるものではない。
Although there is no particular limitation on the drawing temperature in drawing the polyethylene fibers in the present invention, the range is preferably 80 to 155°C, more preferably 100 to 155°C. In addition, examples of the heating medium during stretching include a heating roll, a hot plate, a heated gas bath, a heated liquid bath, and a heating pin, but the present invention is not limited to these.

なお、紫外線照射前後の各々の延伸は1段でも多段で行
なってもよい。
Note that the stretching before and after the ultraviolet irradiation may be performed in one stage or in multiple stages.

(実施例) 次に実施例により本発明を具体的に説明するが、本発明
はこれに限定されるものではない。なお、引張強度、初
期弾性率およびクリープは次の条件て測定した。
(Example) Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. In addition, tensile strength, initial elastic modulus, and creep were measured under the following conditions.

引張強度、初期弾性率測定条件 測定雰囲気:20℃、相対湿度65% 装置   :東洋ボールドウィン社製 テンシロンUTM−4引張試験機 試料   :単糸250mm 引張速度 : 300 mm/分 初期弾性率二強伸度曲線の原点における傾きから求めた
Tensile strength and initial elastic modulus measurement conditions Measurement atmosphere: 20°C, relative humidity 65% Equipment: Tensilon UTM-4 tensile tester manufactured by Toyo Baldwin Co., Ltd. Sample: Single yarn 250 mm Tensile speed: 300 mm/min Initial elastic modulus Double strength elongation It was determined from the slope at the origin of the curve.

クリープ測定条件 測定雰囲気=60°C 荷重   :vi断断力力1/10 なお、ここでいう破断強力とは単糸引張強度と繊度の積
を意味する。また、クリープは次式により求めた。
Creep measurement conditions Measurement atmosphere = 60°C Load: vi breaking force 1/10 Note that the breaking strength here means the product of single yarn tensile strength and fineness. In addition, creep was determined using the following formula.

Le:サンプルに荷重をかけた直後の 長さ(初期長) L :24時間サンプルに荷重をかけ、荷重がかがフた
状態で測定した 長さ (実施例1) 重量平均分子量が300万の直鎖状高密度ポリエチレン
を灯油に180℃の温度で溶解し5.0Ju1%のポリ
エチレン溶液を調製した。
Le: Length immediately after applying a load to the sample (initial length) L: Length measured after applying a load to the sample for 24 hours and with the load closed (Example 1) Linear high-density polyethylene was dissolved in kerosene at a temperature of 180° C. to prepare a 5.0 Ju 1% polyethylene solution.

この溶液を170℃で孔径1mm、孔数10のノズルか
ら5mmの距離だけ空気層を通過させた後、上層が水、
下層が三塩化三フッ化エタンで構成された2層構造の紡
糸浴で冷却後、凝固させ集束して凝固糸条を得た。紡糸
浴の温度は10℃であり、上層(水)の厚さが80mm
、下N(三塩化三フッ化エタン)の厚さを230mmと
した。
After passing this solution through a 5 mm distance from a nozzle with a hole diameter of 1 mm and 10 holes at 170°C, the upper layer is water,
After cooling in a two-layer spinning bath in which the lower layer was composed of trichlorotrifluoroethane, the mixture was coagulated and bundled to obtain a coagulated yarn. The temperature of the spinning bath was 10 °C, and the thickness of the upper layer (water) was 80 mm.
The thickness of the lower N (trichloride trifluoride ethane) was 230 mm.

また、凝固した糸条は7.5m/分で引取った。Further, the coagulated yarn was taken off at a rate of 7.5 m/min.

前記凝固糸条な引続き5℃の三塩化三フッ化エタンから
なる抽出浴を通し、糸条中に残存する灯油を抽出して、
乾燥後、135℃の熱板を用いて、9倍に延伸してから
ワインダーで巻取った。
The coagulated thread is then passed through an extraction bath consisting of trichlorotrifluoroethane at 5°C to extract the kerosene remaining in the thread,
After drying, it was stretched 9 times using a hot plate at 135° C. and then wound up with a winder.

この1段延伸糸に照度800W/ln’の紫外線を1時
間照射した。
This single-stage drawn yarn was irradiated with ultraviolet rays at an illuminance of 800 W/ln' for 1 hour.

次に、紫外線照射後の1段延伸系をさらに145℃の熱
板を用いて6.5倍に延伸した結果、次のような糸物性
の延伸糸が得られた。
Next, the one-stage drawing system after irradiation with ultraviolet rays was further drawn 6.5 times using a hot plate at 145° C., and as a result, a drawn yarn with the following physical properties was obtained.

単糸繊度      :0.93d 単糸引張強度    :51g/d 単糸初期弾性率   :  1760g/dこの延伸系
に破断強力の1/lOの荷重をかけ50℃で24時間放
置したが、クリープは0. 22%と小さなものであっ
た。
Single yarn fineness: 0.93 d Single yarn tensile strength: 51 g/d Single yarn initial elastic modulus: 1760 g/d A load of 1/1O of the breaking strength was applied to this drawn system and it was left at 50°C for 24 hours, but there was no creep. .. The percentage was small at 22%.

(比較例1) 実施例1とまったく同様にして得られた1段延伸糸を紫
外線照射することなく145°Cの熱板を用いて7倍に
延伸した。
(Comparative Example 1) A single-stage drawn yarn obtained in exactly the same manner as in Example 1 was drawn 7 times using a hot plate at 145° C. without irradiating it with ultraviolet rays.

得られた延伸糸は強度56 g/d、ヤング率1830
g/dと高い物性を示したが、クリープは3.5%と高
い値であった。
The obtained drawn yarn has a strength of 56 g/d and a Young's modulus of 1830.
Although it exhibited high physical properties of g/d, its creep was high at 3.5%.

(比較例2) 重量平均分子量が15万の直鎖状高密度ポリエチレンを
灯油に170℃の温度で溶解し、90分間撹拌して15
重量%のポリエチレン溶液を調製した。
(Comparative Example 2) Linear high-density polyethylene with a weight average molecular weight of 150,000 was dissolved in kerosene at a temperature of 170°C, and stirred for 90 minutes.
A wt% polyethylene solution was prepared.

この溶液を実施例1と同様の方法で紡糸、抽出し、乾燥
した糸条を130℃の熱板を用いて、7倍に延伸してワ
インダーで巻取った。
This solution was spun and extracted in the same manner as in Example 1, and the dried yarn was stretched 7 times using a hot plate at 130° C. and wound up with a winder.

この1段延伸糸に実施例1と同じ条件で紫外線を照射し
た後、135℃の熱板を用いて5倍に延伸した。この延
伸系はポリマの分子量が低いため強度14 g/d、ヤ
ング率420g/dという低い物性であった。また、ク
リープは5%を超えてしまった。
This one-stage drawn yarn was irradiated with ultraviolet rays under the same conditions as in Example 1, and then stretched five times using a hot plate at 135°C. This stretching system had low physical properties such as strength of 14 g/d and Young's modulus of 420 g/d due to the low molecular weight of the polymer. Moreover, the creep exceeded 5%.

(比較例3) 実施例1とよりたく同様にして紡糸、抽出、乾燥した糸
条を135℃の熱板を用いて、26倍に延伸した。
(Comparative Example 3) A yarn spun, extracted, and dried in the same manner as in Example 1 was stretched 26 times using a hot plate at 135°C.

この1段延伸系に照度800W/−の紫外線を】時間照
射した。
This one-stage stretching system was irradiated with ultraviolet rays at an illuminance of 800 W/- for a period of 1 hour.

次に、紫外線照射後の1段延伸糸をさらに145℃の熱
板を用いて2倍に延伸した結果、次のような糸物性の延
伸糸が得られた。
Next, the single-stage drawn yarn after irradiation with ultraviolet rays was further drawn twice using a hot plate at 145° C., and as a result, a drawn yarn with the following physical properties was obtained.

単糸繊度      :  1. 02d単糸引張強度
    : 54g/d 単糸初期弾性率   :  1810g/dしかし、こ
の延伸糸のクリープは2.4%と大きなものであった。
Single yarn fineness: 1. 02d Single yarn tensile strength: 54 g/d Single yarn initial elastic modulus: 1810 g/d However, the creep of this drawn yarn was as large as 2.4%.

ぐ発明の効果) 以上のように本発明の方法によれば産業用繊維素材とし
て有用な高強度・高弾性率を有し、かつクリープの低い
新規なポリエチレン繊維を得ることができる。
(Effects of the Invention) As described above, according to the method of the present invention, it is possible to obtain a novel polyethylene fiber that has high strength and high modulus and has low creep, which is useful as an industrial fiber material.

Claims (4)

【特許請求の範囲】[Claims] (1)重量平均分子量が70万以上のポリエチレンの溶
液を紡糸して得られる未延伸糸または未延伸糸を20倍
以下に延伸した延伸糸に紫外線を照射した後、総延伸倍
率が20倍を超えるまで延伸すること特徴とするポリエ
チレン繊維の製造方法。
(1) Undrawn yarn obtained by spinning a polyethylene solution with a weight average molecular weight of 700,000 or more, or a drawn yarn obtained by stretching the undrawn yarn to 20 times or less, is irradiated with ultraviolet rays, and then the total stretching ratio is 20 times. A method for producing polyethylene fibers, characterized by stretching the fibers until the fibers exceed
(2)照射する紫外線の照度を30〜1000W/m^
2とする特許請求の範囲第(1)項に記載のポリエチレ
ン繊維の製造方法。
(2) Adjust the illuminance of the ultraviolet rays to 30 to 1000 W/m^
2. A method for producing polyethylene fibers according to claim (1).
(3)紫外線の照射時間を0.5〜250分とする特許
請求の範囲第(1)項および第(2)項に記載のポリエ
チレン繊維の製造方法。
(3) The method for producing polyethylene fibers according to claims (1) and (2), wherein the ultraviolet irradiation time is 0.5 to 250 minutes.
(4)紫外線を照射する前に未延伸糸を延伸倍率1.5
〜20倍に延伸する特許請求の範囲第(1)項から第(
3)項に記載のポリエチレン繊維の製造方法。
(4) Stretching ratio of undrawn yarn to 1.5 before irradiation with ultraviolet rays
Claims (1) to (20) to 20 times
3) The method for producing polyethylene fibers according to item 3).
JP32074887A 1987-12-17 1987-12-17 Production of polyethylene fiber Pending JPH01162815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32074887A JPH01162815A (en) 1987-12-17 1987-12-17 Production of polyethylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32074887A JPH01162815A (en) 1987-12-17 1987-12-17 Production of polyethylene fiber

Publications (1)

Publication Number Publication Date
JPH01162815A true JPH01162815A (en) 1989-06-27

Family

ID=18124845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32074887A Pending JPH01162815A (en) 1987-12-17 1987-12-17 Production of polyethylene fiber

Country Status (1)

Country Link
JP (1) JPH01162815A (en)

Similar Documents

Publication Publication Date Title
CS235001B2 (en) Method of polyolefin fibres production with high tensile strength and with modulus of elasticity in tension
JPS63264911A (en) Filament high in both of modulas and tensile strength and production thereof
JPS6269817A (en) Filament having high tensile strength and modulus of elasticity
Penning et al. Influence of chemical crosslinking on the creep behavior of ultra-high molecular weight polyethylene fibers
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
JPS59100710A (en) Production of yarn having high toughness
JPH01272814A (en) Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
JPH02133605A (en) Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
JPH01104815A (en) Polyvinyl alcohol fiber and production thereof
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPH01162816A (en) Novel polyethylene fiber
JPH01162815A (en) Production of polyethylene fiber
JPH01162819A (en) Production of novel polyethylene fiber
JPS62299513A (en) Production of polyphenylene sulfide monofilament
JPH01162814A (en) Production of novel polyethylene fiber
JPH02175913A (en) New polyethylene yarn and production thereof
JPH01162817A (en) Production of polyethylene fiber
JPS62184111A (en) Novel polyethylene filament
JPH01162818A (en) Production of polyethylene fiber
JPS61215708A (en) Production of multifilament yarn
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPH02175914A (en) New polyethylene yarn and production thereof
JPH02175912A (en) New polyethylene yarn
JPH01156508A (en) Novel polyethylene fiber
JPH0284504A (en) Polyvinyl alcohol fiber suitable as reinforcing material