CS235001B2 - Method of polyolefin fibres production with high tensile strength and with modulus of elasticity in tension - Google Patents
Method of polyolefin fibres production with high tensile strength and with modulus of elasticity in tension Download PDFInfo
- Publication number
- CS235001B2 CS235001B2 CS80810A CS81080A CS235001B2 CS 235001 B2 CS235001 B2 CS 235001B2 CS 80810 A CS80810 A CS 80810A CS 81080 A CS81080 A CS 81080A CS 235001 B2 CS235001 B2 CS 235001B2
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- solvent
- polymer
- fiber
- temperature
- tensile strength
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 229920000098 polyolefin Polymers 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title description 3
- 239000002904 solvent Substances 0.000 claims abstract description 44
- 229920000642 polymer Polymers 0.000 claims abstract description 35
- 238000009987 spinning Methods 0.000 claims abstract description 18
- 238000001704 evaporation Methods 0.000 claims abstract description 12
- 230000008020 evaporation Effects 0.000 claims abstract description 12
- 238000004090 dissolution Methods 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 7
- 239000000835 fiber Substances 0.000 claims description 59
- 230000001737 promoting effect Effects 0.000 claims description 2
- 230000008961 swelling Effects 0.000 abstract description 13
- -1 polyethylene Polymers 0.000 abstract description 10
- 239000004698 Polyethylene Substances 0.000 abstract description 6
- 229920000573 polyethylene Polymers 0.000 abstract description 6
- 238000000578 dry spinning Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/04—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/12—Stretch-spinning methods
- D01D5/16—Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0058—Liquid or visquous
- B29K2105/0073—Solution
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Woven Fabrics (AREA)
Abstract
Description
Vynález se týká způsobu výroby polyolefinových vláken o vysoké pevnosti v tahu a vysokým modulem, pružnosti v tahu.The present invention relates to a process for the production of high tensile strength and high tensile modulus polyolefin fibers.
Vlákna se vyrábějí zvlákňováním lineárních polymerů. Při pracovním postupu se polymer uvede do kapalného· tvaru (tavenina, · roztok] a zvlákňuje se. Nahodile orientované řetězce molekul v takto získaném vláknu musí být pak ve vláknu podélně orientovány dloužením. I když také jiné látky mohou být zvlákňovatelné, jsou makromolekuly ve tvaru řetězce důležitou podmínkou zvlákinitelnosti. Postranní větve mají nepříznivý účinek · na tvorbu vláken a na mechanické vlastnosti. Z toho důvodu je výroba vláken ' založena na použití polymerů, které jsou pokud možno· lineární, i když omezený stupeň rozvětvení bude ve většině případů nevyhnutelný a tedy přípustný.The fibers are produced by spinning linear polymers. In the process, the polymer is brought into a liquid shape (melt, solution) and spun. Randomly oriented strands of molecules in the thus obtained fiber must then be longitudinally oriented in the fiber by elongation. Although other substances may also be fiberizable, macromolecules are The side branches have an adverse effect on fiber formation and mechanical properties, and therefore fiber production is based on the use of polymers which are as linear as possible, although a limited degree of branching will in most cases be inevitable and thus permissible.
Dloužením vláken se makromolekuly řetězce orientují podélně a pevnost vláken vzrůstá. Avšak v mnoha případech zůstává pevnost , daleko pod hodnotou, kterou by bylo lze teoreticky očekávat. · Bylo· již · učiněno mnoho pokusů vyrobit vlákna, jejichž pevnost v tahu a modul pevnosti se přibližují více hodnotám, které jsou teoreticky možné. Tyto pokusy, jejichž přehled je podán v · pojednání Juyna v Plastica 31 (1978) 262 až 270 a Bigga v Polymer Eng. Sci. 16 . (1976) 725 až 734, neposkytly uspokojivé výsledky. V četných případech bylo možné · dostatečně zlepšit modul pružnosti v tahu, avšak nikoliv pevnost v tahu, zatímco kromě toho· je tvoření vláken tak pomalé, že hospodárná výroba je nemožná.By stretching the fibers, the macromolecules of the chain are oriented longitudinally and the strength of the fibers increases. In many cases, however, the strength remains far below what one would theoretically expect. Many attempts have already been made to produce fibers whose tensile strength and modulus of strength are closer to the values that are theoretically possible. These experiments are reviewed in Juyn in Plastica 31 (1978) 262-270 and Bigga in Polymer Eng. Sci. 16. (1976) 725-734, failed to give satisfactory results. In many cases, it has been possible to sufficiently improve the tensile modulus but not the tensile strength, while, in addition, the formation of fibers is so slow that economical production is impossible.
Bylo nyní zjištěno, že polyolefinová vlákna o vysoké pevnosti v tahu a vysokém modulu pružnosti v tahu mohou být vyrobena dloužením polyolefinického; vlákna, které obsahuje značné množství rozpouštědla polymeru, a to při teplotě mezi teplotou, při níž obsahuje nabobtnaný polymer 10 % rozpouštědla („teplota bobtnání“) a mezi teplotou tání.It has now been found that polyolefin fibers of high tensile strength and high tensile modulus can be made by drawing polyolefin fibers; fibers which contain a significant amount of polymer solvent, at a temperature between the temperature at which the swollen polymer contains 10% solvent ("swelling temperature") and between the melting point.
Předmětem, vynálezu je tedy způsob vytváření polyolefinických vláken s vysokou pevností v · tahu a vysokým modulem pružnosti v tahu zvlákňováním roztoku polyolefinu s následným, dloužením získaného· vlákna, vyznačující se· tím, že se roztok polyolefinu o· koncentraci 1 až 5 hmotnostních % zvlákňuje a vzniklé vlákno se ochladí pod minimální teplotu · rozpouštění polyolefinu v použitém rozpouštědle bez podporování odpaření rozpouštědla za vzniku gelového vlákna, které se dlouží s alespoň částečným: odpařováním rozpouštědla.It is therefore an object of the present invention to provide a polyolefin fiber having a high tensile strength and a high modulus of elasticity by spinning a polyolefin solution followed by elongation of the fiber obtained, characterized in that the polyolefin solution at a concentration of 1 to 5% by weight is spun and the resulting fiber is cooled below the minimum temperature of dissolving the polyolefin in the solvent used without promoting evaporation of the solvent to form a gel fiber that elongates at least partially: evaporation of the solvent.
U postupu zvaného zvlákňování za sucha, což je obecně známý postup používaný v technickém měřítku, se roztok zvlákňovatelného· polymeru zvlákňuje v šachtě, kterou se dmýchá vzduch, obvykle zahřátý pro odpaření celého· množství nebo většiny rozpouštědla z vlákna. Teplota v šachtě je pod teplotou tání polymeru, · takže polymer se srazí, když se rozpouštědlo odpaří; to· zvýší mechanickou pevnost vlákna, která je · ještě velmi nízká na výstupu ze zvlákňovacího· otvoru. Pevnost se dále zvýší v následujícím · dloužícím ději při teplotách pod bodem tání polymeru.In a process known as dry spinning, which is generally known on a commercial scale, a solution of a spinable polymer is spun in a shaft that blows air, usually heated, to evaporate all or most of the solvent from the fiber. The shaft temperature is below the melting point of the polymer, so that the polymer precipitates when the solvent is evaporated; this will increase the mechanical strength of the fiber, which is still very low at the exit of the spinning hole. The strength is further increased in the following drawing process at temperatures below the melting point of the polymer.
Podle vynálezu se odpařování rozpouštědla z vlákna těsně po· zvláknění nepodporuje v průběhu chladicího období. Vlákno· může být ochlazeno: pod teplotu rozpouštění a * zejména pod teplotu bobtnání polymeru v л rozpouštědle, a to· jakýmkoliv · vhodným způsobem, například vedením vlákna vodní · lázní nebo šachtou, přičemž se šachtou nedmýchá žádný, nebo téměř žádný vzduch. Určité odpaření rozpouštědla z vlákna často nastává spontánně a nelze mu zabránit. To však vůbec nevadí, pokud odpařování není aktivně podporováno· a množství rozpouštědla ve vláknu se nesníží na nízkou hodnotu, například na méně než 25 hmotnostních procent rozpouštědla · ve vztahu k polymeru, s výhodou nikoliv na méně než na stejná hmotnostní množství rozpouštědla a polymeru. Je-li zapotřebí, lze odpařování · rozpouštědla snížit · nebo· potlačit prováděním zvlákňování v atmosféře obsahujícím páru rozpouštědla.According to the invention, evaporation of the solvent from the fiber just after spinning is not supported during the cooling period. · The fiber may be cooled: below the dissolution temperature and below the particular temperature * swelling the polymer in a solvent л, · and · in any suitable manner, such as passing the fibers · water bath or a shaft, wherein the shaft is blown no or almost no air. Some evaporation of the solvent from the fiber often occurs spontaneously and cannot be prevented. However, this does not matter at all if evaporation is not actively promoted and the amount of solvent in the fiber is not reduced to a low value, for example less than 25 weight percent solvent relative to the polymer, preferably not less than equal weight amounts of solvent and polymer. If necessary, evaporation of the solvent can be reduced or suppressed by spinning in an atmosphere containing the solvent vapor.
Při chlazení pod teplotu rozpouštění, zejména pod teplotu bobtnání polymeru v. rozpouštědle, se polymer z roztoku vysráží a vytvoří se gel. Vlákno sestávající z tohoto polymerového' gelu má dostatečnou mechanickou pevnost pro další zpracovávání, například za pomoci vedení, válců atd., jak se jich obvykle používá ve zvlákňovacích technikách. · Vlákno· tohoto druhu se zahřeje· na teplotu mezi bodem bobtnání vlákna v rozpouštědle a mezi bodem tání polymeru a dlouží se při této teplotě. To· lze provádět tím, že se vlákno vede· do pásma obsahujícího. plynné nebo kapalné prostředí udržované na žádané teplotě. Velmi vhodnou je trubková sušárna se vzduchem jako plynným· prostředím, avšak je také možné použít kapalné lázně nebo· jakéhokoliv· jiného·· vhodného zařízení. S plynným prostředím lze snadněji manipulovat, a · proto je mu třeba dát přednost. Když je· vlákno dlouženo, nastává odpaření rozpouštědla nebo· — užije-li se kapalného prostředí — nastane rozpuštění rozpouštědla v kapalině. S výhodou se odpaření podporuje vhodnými opatřeními, například odstraněním páry rozpouštědla, například vedením proudu plynu nebo vzduchu kolem vlákna v· dloužícím pásmu. Měla by se odpařit alespoň část rozpouštědla, avšak · s výhodou se odpaří nejméně převážná část rozpouštědla, takže na konci dloužícího pásma je ve vláknu obsaženo· nejvýše malé množství — například nejvýše několik <Upon cooling below the dissolution temperature, particularly below the swelling temperature of the polymer in the solvent, the polymer precipitates out of solution and forms a gel. The fiber consisting of this polymer gel has sufficient mechanical strength for further processing, for example by means of guides, rollers, etc., as commonly used in spinning techniques. A fiber of this kind is heated to a temperature between the swelling point of the fiber in the solvent and between the melting point of the polymer and is elongated at this temperature. This can be done by guiding the fiber into a zone containing it. gaseous or liquid medium maintained at the desired temperature. A tube dryer with air as a gaseous medium is very suitable, but it is also possible to use liquid baths or any other suitable apparatus. The gaseous environment is easier to handle and therefore should be given priority. When the fiber is elongated, the solvent evaporates or, if a liquid medium is used, the solvent dissolves in the liquid. Preferably, evaporation is promoted by suitable measures, for example by removing the solvent vapor, for example by guiding a gas or air stream around the fiber in the stretching zone. At least a portion of the solvent should be evaporated, but preferably at least a major portion of the solvent is evaporated, so that at the end of the attenuation zone the fiber contains at most a small amount - e.g.
málo1 procent, počítáno na bázi pevné látky — rozpouštědla. Vlákno případně získané musí být prosto: · rozpouštědla a je výhodné použít takových podmínek, že vlákno je prosto nebo' prakticky prosto· rozpouštědla již v dloužícím pásmu.little 1 percent, calculated on a solid-solvent basis. The fiber optionally obtained must be solvent-free and it is preferable to use such conditions that the fiber is free or practically free of solvent already in the stretching zone.
Proti očekávání se mohou způsobem podle vynálezu vyrobit vlákna, která - jsou značně pevnější než vlákna ze stejného materiálu vyrobená jakýmkoliv z obvyklých známých postupů zvlákňování za sucha, to znamená vlákna o značně vyš-ší pevnosti v tahu a modulu. Za pomoci postupů popsaných ve shora uvedených pojednáních od Juyna a Bigga bylo snad dosaženo vláken s vyšším modulem, avšak pevnost v tahu je stále nedostatečná. Kromě toho je produktivita těchto postupů nízká.Contrary to expectations, fibers which are considerably stronger than fibers of the same material produced by any of the conventional known dry spinning processes, i.e. fibers of significantly higher tensile strength and modulus, can be produced by the method of the invention. Using the procedures described in the above-mentioned treaties by Juyn and Biggo, perhaps fibers with a higher modulus have been obtained, but the tensile strength is still insufficient. In addition, the productivity of these processes is low.
Způsob podle vynálezu se ' liší od postupů zvlákňování za sucha v tom, že vlákno obsahující značné množství rozpouštědla zvlákňovatelného materiálu se dlouží při teplotě, při které zvlákňovatelný materiál v rozpouštědle alespoň bobtná za současného odstraňování rozpouštědla, kdežto v obvykle používaných zvlákňovacích postupech jsou dloužení vystavována vlákna prostá rozpouštědla.The process of the present invention differs from dry spinning processes in that a fiber containing a significant amount of solvent of the spinning material is drawn at a temperature at which the spinning material in the solvent at least swells while removing the solvent, while in the commonly used spinning processes the drawing is subjected to fibers. solvent-free.
Požadavek zvlákňování za sucha záleží v tom, aby lineární polymer byl rozpustný ve vhodném rozpouštědle. Pro kterýkoliv· rozpustný polymer je známa celá řada rozpouštědel. Odborník - může z nich bez nesnází vybrat vhodné rozpouštědlo, jehož teplota varu není tak vysoká, aby bylo odpaření rozpouštědla z vlákna dostatečné, a zase nikoliv tak nízká, aby se stalo příliš těkavým a zabránilo vytvoření vlákna v důsledku rychlého odpaření nebo muselo být - použito- pod tlakem, aby se tomu zabránilo.The requirement for dry spinning is that the linear polymer is soluble in a suitable solvent. A variety of solvents are known for any soluble polymer. One skilled in the art - can select from them without difficulty a suitable solvent whose boiling point is not so high that the evaporation of the solvent from the fiber is sufficient and not so low that it becomes too volatile to prevent the formation of the fiber due to rapid evaporation or - under pressure to prevent this.
Rozpuštění polymeru ve vhodném rozpouštědle zahrnuje bobtnání. Zatímco se rozpouštědlo absorbuje a objem vzrůstá, vytvoří se silně zbobtnalý gel, který však vzhledem k jeho- konzistenci a stabilitě tvaru může být stále považován za jakýsi druh pevné látky. Obecně se předpokládá, že polymer je složen z uspořádaných (krystalických) a méně uspořádaných (amorfních) oblastí. Předpokládá se, že uspořádané oblasti působí jakozakotvovací body a tak propůjčují gelu stálost v tvaru. Vytvoření gelu a rozpuštění jsou závislé na čase. Daný polymer může být rozpuštěn v daném rozpouštědle pouze nad danou teplotou. Pod toou teplotou rozpouštění - nastává pouze bobtnání a -čím je teplota nižší, tím je bobtnání menší, až v určitém bodě je zanedbatelné. Bod bobtnání nebo- teplota bobtnání se považuje za tu teplotu, při které nastává znatelné zvětšení objemu a znatelná absorpce rozpouštědla — 5 až 10 % hmotnosti polymeru. Pro jednoduchost je teplota bobtnání, nad níž se má provádět dloužení, ta teplota, při které je 10 % rozpouštědla absorbováno v bobtnajícím polymeru.Dissolution of the polymer in a suitable solvent involves swelling. While the solvent is absorbed and the volume increases, a strongly swollen gel is formed, but due to its consistency and shape stability, it can still be considered as a kind of solid. It is generally believed that the polymer is composed of ordered (crystalline) and less ordered (amorphous) regions. It is believed that the ordered regions act as anchoring points and thus impart shape stability to the gel. Gel formation and dissolution are time dependent. A given polymer can be dissolved in a given solvent only above a given temperature. Below that dissolution temperature - only swelling occurs and the lower the temperature, the less swelling is at a certain point is negligible. The swelling point or swelling temperature is considered to be the temperature at which there is a noticeable increase in volume and a noticeable absorption of solvent - 5 to 10% by weight of the polymer. For simplicity, the swelling temperature above which the drawing is to be carried out is the temperature at which 10% of the solvent is absorbed in the swelling polymer.
U postupů -zvlákňování za sucha, jak se jich obvykle používá, se z technických a hospodárných důvodů užívá většinou roztoků o koncentraci 5 až 30 hmotnostních procent. Takové roztoky jsou vhodné také pro způsob podle vynálezu, i když se bude obvykle používat roztoků o nižší koncentraci.For dry-spinning processes, as is generally the case, solutions with a concentration of 5 to 30% by weight are generally used for technical and economic reasons. Such solutions are also suitable for the process of the invention, although lower concentration solutions will usually be used.
S výhodou se použije roztoků o- koncentraci až 5 hmotnostních -procent. Někdy lze užít ještě nižších koncentrací, ačkoliv tyto- koncentrace nemají žádné výhody a jsou nehospodárné.Preferably solutions of up to 5% by weight are used. Sometimes even lower concentrations can be used, although these concentrations have no advantages and are wasteful.
Vhodné dloužící poměry lze snadno určit pokusem. Pevnost v tahu a modulu vláken jsou uvnitř určitých mezí přibližně úměrné dloužícímu poměru. Podle toho, mají-li být vlákna pevnější, bude třeba zvolit vyšší dloužící poměr.Suitable draw ratios can be readily determined by experiment. The tensile strength and fiber modulus are within certain limits approximately proportional to the draw ratio. Depending on whether the fibers are to be stronger, a higher draw ratio will have to be chosen.
Dloužící poměr je nejméně 5, s výhodou nejméně 10, a zejména 20. Vysokých dloužících -poměrů 30 až 40 a ještě vyšších lze bez námitek užít, přičemž se obdrží vlákna, jejichž pevnost v tahu a modul jsou značně vyšší než u vláken vytvořených obvyklými postupy.The draw ratio is at least 5, preferably at least 10, and in particular 20. High draw ratios of 30 to 40 and even higher can be used without objection, yielding fibers whose tensile strength and modulus are considerably higher than those produced by conventional processes .
U postupů zvlákňování za sucha, jak se jich obvykle používá, jsou průměry zvlákňovacích -otvorů ve zvlákňovacích tryskách obvykle malé. Obecně jsou tyto průměry řádu 0,02 - až 1,0 mm. Zejména užije-li se - malých zvlákňovacích -otvorů (/ 0,2 mm), jeví zvlákňovací postup vysokou citlivost na přítomnost nečistot ve zvlákňovacím roztoku, takže tento roztok musí být pečlivě zbaven nečistot a udržován bez pevných nečistot. Ve většině případů - se na zvlákňovací trysky umístí filtr. Vzdor tomu se ukazuje, že zvlákňovací trysky -musí být po krátké době čištěny a- že při tom ještě často- dochází k ucpání. U způsobu podle vynálezu lze užít větších zvlákňovacích otvorů, více než 0,2 milimetru, například 0,5 až 2,0 mm nebo- více, jelikož lze užít značně vyšších dloužících poměrů a kromě toho* -se užívá obecně nižších koncentrací polymeru ve zvlákňovaném roztoku.In dry spinning processes, as commonly used, the diameters of the spinning holes in the spinnerets are usually small. In general, these diameters are of the order of 0.02-1.0 mm. Especially when using small spinning holes (/ 0.2 mm), the spinning process has a high sensitivity to the presence of impurities in the spinning solution, so that this solution must be carefully cleaned of impurities and kept free of solid impurities. In most cases, a filter is placed on the spinnerets. In spite of this, it appears that the spinnerets have to be cleaned after a short period of time and that, more often, clogging occurs. Larger spinning apertures, more than 0.2 millimeters, for example 0.5 to 2.0 mm or more, can be used in the process of the invention since considerably higher draw ratios can be used and, moreover, generally lower polymer concentrations in the spinning are used. solution.
Polyolefiny jako- polyethylen, polypropylen, kopolymery ethylenu a propylenu a vyšší - polyolefiny mohou být bez nesnází rozpuštěny v- uhlovodících, jako- jsou nasycené, alifatické a cyklické, jakož i aromatické uhlovodíky nebo jejich- směsi, například frakce -minerálního oleje. Velmi vhodné jsou alifatické nebo cyklické uhlovodíky, jako nonan, děkan, undekan, dodekan, tetralin, dekalin atd., nebo frakce minerálních olejů s odpovídajícím rozsahem varu. Polyethylen nebo- polypropylen se s výhodou rozpustí v dekalinu nebo dodekalinu. Způsob podle vynálezu - je zvlášť vhodný pro- přípravu vláken z polyolefinů, s výhodou polyethylenů.Polyolefins such as polyethylene, polypropylene, copolymers of ethylene and propylene and higher polyolefins can be dissolved without difficulty in hydrocarbons such as saturated, aliphatic and cyclic as well as aromatic hydrocarbons or mixtures thereof, for example the mineral oil fraction. Aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, tetralin, decalin etc., or mineral oil fractions having an appropriate boiling range are very suitable. The polyethylene or polypropylene is preferably dissolved in decalin or dodecalin. The process according to the invention is particularly suitable for preparing fibers from polyolefins, preferably polyethylenes.
Vlákna podle vynálezu jsou použitelná pro- mnoho účelů. - Lze jich použít pro vyztužení celé rady -materiálů, u kterých je známo vyztužování fibrilami -nebo vlákny, například jako, kordů do pneumatik a pro veškeré možné aplikace, kde je žádoucí nízká hmotnost v kombinaci s vysokou pevností. Ovšem rozsah možných aplikací není omezen na aplikace shora uvedené.The fibers of the invention can be used for many purposes. They can be used to reinforce a variety of materials known to be fibrillated or fiber reinforced, such as tire cords, and for all possible applications where low weight combined with high strength is desirable. However, the scope of possible applications is not limited to those mentioned above.
Vynález bude nyní vysvětlen na následujících příkladech, na které však není -omezen.The invention will now be illustrated by the following examples, but is not limited thereto.
Příklad 1Example 1
Polyethylen o vysoké molekulární hmotnosti, s Mw s 1,5 χ los byl rozpuštěn v dekallnu při teplotě 145 °C pro vytvoření roztoku o koncentraci 2 hmotnostní procenta. Tento· roztok byl zvlákňován zvlákňovací tryskou se zvlákňovacím otvorem· o průměru 0,5 mm pří· 130· CC. · Vlákno bylo vedeno· do vodní lázně, kde bylo chlazeno. Ochlazené vlákno o· tloušťce 0,7 mm, které mělo gelovitý vzhled a stále obsahovalo· přibližně 98 procent rozpouštědla, bylo· vedeno· trubkovou pecí zahřátou na 12o cC a dlouženo· za použití různých dloužících poměrů. Tento· postup je znázorněn schematicky na obr. 1.High molecular weight polyethylene, with an M w of 1.5 χ molar, was dissolved in decall at 145 ° C to form a 2 weight percent solution. This solution was spun through a spinneret with a spinneret hole of 0.5 mm diameter at 130 ° C. The fiber was passed into a water bath where it was cooled. · The cooled fiber with a thickness of 0.7 mm, which had a gel-like appearance and · still contains about 98 percent of the solvent was conducted · · tube furnace, heated at 12o C · C and stretching using various draw ratios. This procedure is shown schematically in Fig. 1.
Na obr. 1 je znázorněn roztok A polymeru, chladicí lázeň B, vlhké vlákno C, podávači váleček D, sušárna E a dloužící váleček F.Figure 1 shows the polymer solution A, the cooling bath B, the wet fiber C, the feed roller D, the dryer E and the drawing roller F.
Obr. 2 a 3 znázorňují pevnost v · tahu a mo dul nanesené proti dloužícímu poměru. V obou těchto vyobrazeních jsou znázorněny hodnoty uvedené v další tabulce. V obr. 2 značí a pevnost v tahu vyjádřeno· v GPa, a b dloužící poměr. · V obr. 3 značí a modul vyjádřený v GPa a b dloužící poměr.Giant. 2 and 3 show the tensile strength and the modulus applied against the draw ratio. Both figures show the values in the next table. In Fig. 2, a tensile strength expressed in GPa, and b denotes the draw ratio. In Fig. 3, a module expressed in GPa and b denotes the extension ratio.
Znázorňuje tedy obr. 2 pevnost v tahu a obr. 3 modul nanesené proti dloužícímu poměru.Thus, Fig. 2 shows the tensile strength and Fig. 3 shows the modulus applied against the draw ratio.
Lze dosáhnout modulu vyššího než · 60 GPa a pevnosti v tahu téměř 3 GPa, kdežto modul polyethylenových vláken zhotovených obvyklým způsobem je 2 ež 3 GPa a pevnost v tahu přibližně 0,1 GPa. Hodnoty modulu a pevnosti v tahu vláken vytvořených s různými dloužícími poměry, jak jsou naneseny v -obr. 2 a 3, jsou sestaveny v tabulce 1.A modulus of greater than 60 GPa and a tensile strength of nearly 3 GPa can be achieved, while the module of polyethylene fibers produced in the conventional manner is 2 to 3 GPa and a tensile strength of about 0.1 GPa. The modulus and tensile values of the fibers formed with different draw ratios as applied in FIG. 2 and 3 are compiled in Table 1.
Polyethylenová · vlákna s pevností v tahu vyšší než 1,2 GPa mohou být snadno vyrobena způsobem· podle vynálezu.Polyethylene fibers having a tensile strength greater than 1.2 GPa can be easily produced by the process of the invention.
TABULKA 1TABLE 1
Pokus Dloužící poměr Modul GPa Pevnost v tahu GPaExperiment Extension ratio GPa modulus Tensile strength GPa
Postupem popsaným v příkladu 1 byl roztok o koncentraci 2 hmotnostní procenta směsi stejných dílů vysokomolekulárního polyethylenu s hodnotou Mw · 1,5 χ 106 a vysokomolekulárního polypropylenu s Mw s s 3,0· x 106 zvlákňován při teplotě 140 °C a dloužen při teplotě 130 °C za použití dloužícího· poměru · 20. Vlákna měla pevnost v tahu 1,5 GPa.As described in Example 1, a 2 weight percent solution of a mixture of equal parts of high molecular weight polyethylene Mw · 1.5 χ 10 6 and high molecular weight polypropylene Mw ss 3.0 · x 106 was spun at 140 ° C and drawn at 140 ° C. 130 ° C using a draw ratio of 20. The fibers had a tensile strength of 1.5 GPa.
Způsobem popsaným v příkladu 1 byl roztok 25 hmotnostních procent isotaktického polypropylenu s hodnotou Mw s 3,0 χ 106 zvlákňován při 140 ac a dloužen při 130 °C za použití dloužícího poměru 20. Pevnost · v tahu výsledných vláken byla 1 GPa.Prepared as in Example 1, a solution of 25 weight percent isotactic polypropylene having a Mw of 3.0 10 6 χ spun at 140 c and stretched at 130 ° C using a draw ratio of 20. Tensile strength · resultant filaments was 1 GPa.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NLAANVRAGE7900990,A NL177840C (en) | 1979-02-08 | 1979-02-08 | METHOD FOR MANUFACTURING A POLYTHENE THREAD |
Publications (1)
Publication Number | Publication Date |
---|---|
CS235001B2 true CS235001B2 (en) | 1985-04-16 |
Family
ID=19832598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS80810A CS235001B2 (en) | 1979-02-08 | 1980-02-06 | Method of polyolefin fibres production with high tensile strength and with modulus of elasticity in tension |
Country Status (19)
Country | Link |
---|---|
JP (4) | JPS6047922B2 (en) |
AT (1) | AT380033B (en) |
AU (1) | AU532451B2 (en) |
BE (1) | BE881587A (en) |
BR (1) | BR8000775A (en) |
CA (1) | CA1152272A (en) |
CH (1) | CH650535C2 (en) |
CS (1) | CS235001B2 (en) |
DE (2) | DE3051066C2 (en) |
ES (1) | ES488304A1 (en) |
FR (1) | FR2448587B1 (en) |
GB (1) | GB2042414B (en) |
IN (1) | IN152729B (en) |
IT (1) | IT1144056B (en) |
MX (1) | MX6124E (en) |
NL (1) | NL177840C (en) |
SE (1) | SE446105B (en) |
SU (1) | SU1138041A3 (en) |
ZA (1) | ZA80528B (en) |
Families Citing this family (228)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL177840C (en) * | 1979-02-08 | 1989-10-16 | Stamicarbon | METHOD FOR MANUFACTURING A POLYTHENE THREAD |
NL177759B (en) * | 1979-06-27 | 1985-06-17 | Stamicarbon | METHOD OF MANUFACTURING A POLYTHYTHREAD, AND POLYTHYTHREAD THEREFORE OBTAINED |
US4385026A (en) | 1979-08-13 | 1983-05-24 | Imperial Chemical Industries Limited | Removal of solvent from gels of high molecular weight crystalline polymers |
US4360488A (en) | 1979-08-13 | 1982-11-23 | Imperial Chemical Industries Limited | Removal of solvent from gels of poly(hydroxybutyrate) and shaped articles formed therefrom |
NL8006994A (en) * | 1980-12-23 | 1982-07-16 | Stamicarbon | LARGE TENSILE FILAMENTS AND MODULUS AND METHOD OF MANUFACTURE THEREOF. |
AU549453B2 (en) * | 1981-04-30 | 1986-01-30 | Allied Corporation | High tenacity, high modulus, cyrstalline thermoplastic fibres |
US4413110A (en) | 1981-04-30 | 1983-11-01 | Allied Corporation | High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore |
NL8104728A (en) * | 1981-10-17 | 1983-05-16 | Stamicarbon | METHOD FOR MANUFACTURING POLYETHENE FILAMENTS WITH GREAT TENSILE STRENGTH |
EP0091547B2 (en) * | 1982-03-19 | 1993-02-24 | Allied Corporation | Coated extended chain polyolefin fiber |
US4543286A (en) * | 1982-03-19 | 1985-09-24 | Allied Corporation | Composite containing coated extended chain polyolefin fibers |
US4551296A (en) * | 1982-03-19 | 1985-11-05 | Allied Corporation | Producing high tenacity, high modulus crystalline article such as fiber or film |
US4584347A (en) * | 1982-09-30 | 1986-04-22 | Allied Corporation | Modified polyolefin fiber |
US4819458A (en) * | 1982-09-30 | 1989-04-11 | Allied-Signal Inc. | Heat shrunk fabrics provided from ultra-high tenacity and modulus fibers and methods for producing same |
US4455273A (en) * | 1982-09-30 | 1984-06-19 | Allied Corporation | Producing modified high performance polyolefin fiber |
US4713290A (en) * | 1982-09-30 | 1987-12-15 | Allied Corporation | High strength and modulus polyvinyl alcohol fibers and method of their preparation |
US4440711A (en) * | 1982-09-30 | 1984-04-03 | Allied Corporation | Method of preparing high strength and modulus polyvinyl alcohol fibers |
US4599267A (en) * | 1982-09-30 | 1986-07-08 | Allied Corporation | High strength and modulus polyvinyl alcohol fibers and method of their preparation |
JPS59187614A (en) * | 1983-04-07 | 1984-10-24 | Mitsui Petrochem Ind Ltd | Manufacturing method of ultra-high molecular weight polyethylene stretched product |
JPS59130313A (en) * | 1982-12-28 | 1984-07-26 | Mitsui Petrochem Ind Ltd | Method for producing stretched ultra-high molecular weight polyethylene |
US5135804A (en) * | 1983-02-18 | 1992-08-04 | Allied-Signal Inc. | Network of polyethylene fibers |
HU187234B (en) * | 1983-05-13 | 1985-11-28 | Kaposplast Kefe Es Mueanyagipa | Hop guiding monofil |
JPS59216912A (en) * | 1983-05-20 | 1984-12-07 | Toyobo Co Ltd | Production of polyethylene fiber having high strength and modulus of elasticity |
DE3467899D1 (en) * | 1983-06-16 | 1988-01-14 | Agency Ind Science Techn | Ultrahigh-molecular-weight polyethylene composition |
JPS6052647A (en) * | 1983-08-30 | 1985-03-25 | 東洋紡績株式会社 | Gel fiber and gel film stretching method |
JPS59216913A (en) * | 1983-10-22 | 1984-12-07 | Toyobo Co Ltd | Polyethylene fiber having high strength and modulus of elasticity |
JPS59216914A (en) * | 1983-10-22 | 1984-12-07 | Toyobo Co Ltd | Production of polyethylene fiber having ultrahigh tenacity |
EP0144793B1 (en) | 1983-12-05 | 1988-10-12 | AlliedSignal Inc. | High tenacity and modulus polyacrylonitrile fiber and method |
JPS60167918A (en) * | 1984-02-06 | 1985-08-31 | Kuraray Co Ltd | Method for drawing high-strength polyethylene fibers |
JPS60173114A (en) * | 1984-02-16 | 1985-09-06 | Toyobo Co Ltd | Treatment of formed gel |
JPS60186448A (en) * | 1984-02-29 | 1985-09-21 | 東洋紡績株式会社 | Fiber reinforced cement product |
JPS60194109A (en) * | 1984-03-07 | 1985-10-02 | Kuraray Co Ltd | Drawing of high molecular weight polyethylene fiber |
CA1216119A (en) * | 1984-05-16 | 1987-01-06 | Mitsui Chemicals, Incorporated | Process for producing stretched article of ultrahigh- molecular weight polyethylene |
JPS60244524A (en) * | 1984-05-18 | 1985-12-04 | Mitsui Petrochem Ind Ltd | Preparation of stretched polyethylene article |
NL8402964A (en) * | 1984-09-28 | 1986-04-16 | Stamicarbon | PROCESS FOR PREPARING HIGH TENSILE AND HIGH MODULUS POLYALKENE FILMS |
JPH0670283B2 (en) * | 1984-11-02 | 1994-09-07 | 東レ株式会社 | Method for producing high-strength, high-modulus polyvinyl alcohol fiber |
JPH0696807B2 (en) * | 1984-11-02 | 1994-11-30 | 東レ株式会社 | High-strength, high-modulus polyvinyl alcohol fiber manufacturing method |
JPS61252313A (en) * | 1984-11-02 | 1986-11-10 | Toray Ind Inc | Polyvinyl alcohol yarn having improved knot strength and production thereof |
JPS61124621A (en) * | 1984-11-19 | 1986-06-12 | Ntn Toyo Bearing Co Ltd | Production of polyethylene fiber of ultra-high-molecular-weight |
US4663101A (en) * | 1985-01-11 | 1987-05-05 | Allied Corporation | Shaped polyethylene articles of intermediate molecular weight and high modulus |
JPH06102847B2 (en) * | 1985-05-31 | 1994-12-14 | 三井石油化学工業株式会社 | Plastic wire and method for producing the same |
JPS61207616A (en) * | 1985-03-06 | 1986-09-16 | Teijin Ltd | Production of formed polyester having high strength |
JPH0327430Y2 (en) * | 1985-05-16 | 1991-06-13 | ||
JPS61202489U (en) * | 1985-06-11 | 1986-12-19 | ||
EP0205960B1 (en) * | 1985-06-17 | 1990-10-24 | AlliedSignal Inc. | Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber |
US5032338A (en) * | 1985-08-19 | 1991-07-16 | Allied-Signal Inc. | Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution |
NL8502315A (en) * | 1985-08-23 | 1987-03-16 | Stamicarbon | ARTICLES OF HIGH STRENGTH AND MODULUS POLYVINYL ALCOHOL AND METHOD FOR MANUFACTURING THE SAME |
ES2023813B3 (en) | 1985-11-07 | 1992-02-16 | Akzo Nv | REINFORCING ELEMENT OF SYNTHETIC MATERIAL FOR USE IN REINFORCED CONCRETE, MORE PARTICULARLY PRE-STRESSED CONCRETE, REINFORCED CONCRETE PROVIDED WITH SUCH REINFORCEMENT ELEMENTS AND PROCESS FOR MANUFACTURING REINFORCED ELEMENTS, AND REINFORCED CONCRETE. |
US4681792A (en) * | 1985-12-09 | 1987-07-21 | Allied Corporation | Multi-layered flexible fiber-containing articles |
JPS62141110A (en) * | 1985-12-11 | 1987-06-24 | Canon Inc | Method for manufacturing gel fiber |
JPS62184110A (en) * | 1986-02-06 | 1987-08-12 | Toray Ind Inc | Novel polyethylene filament |
JPS62257414A (en) * | 1986-05-01 | 1987-11-10 | Mitsui Petrochem Ind Ltd | Highly oriented molded product of ultra-high molecular weight polyethylene and its manufacturing method |
NL8602912A (en) * | 1986-11-17 | 1988-06-16 | Stamicarbon | ARTICLES OF ETHYLENE-VINYL ALCOHOL COPOLYMERS WITH HIGH STRENGTH AND MODULUS, AND METHOD FOR MANUFACTURING THE SAME |
JPS63175111A (en) * | 1987-01-09 | 1988-07-19 | Toyobo Co Ltd | Crosslinked high-tenacity and high-elastic modulus polyethylene fiber |
US5248471A (en) * | 1987-07-06 | 1993-09-28 | Alliedsignal Inc. | Process for forming fibers |
DE3733446A1 (en) * | 1987-10-02 | 1989-04-20 | Stamicarbon | COMBINATION OF STRINGS WITH DIFFERENTLY DIFFERENT EXPANSION COEFFICIENTS IN A MATRIX AND THEIR USE |
EP0310201A3 (en) * | 1987-10-02 | 1990-05-23 | Dsm N.V. | Combinations of polymer filaments or yarns having a low coefficient of friction and filaments or yarns having a high coefficient of friction, and use thereof |
NL8901266A (en) * | 1989-05-19 | 1990-12-17 | Stamicarbon | METHOD FOR MANUFACTURING A STRETCHED ROPE |
US5176862A (en) * | 1989-05-19 | 1993-01-05 | Dsm N.V. | Process for the manufacture of stretched rope |
JPH02160910A (en) * | 1989-11-20 | 1990-06-20 | Kuraray Co Ltd | High-tenacity polyvinyl alcohol-based synthetic fiber |
NL9000892A (en) * | 1990-04-14 | 1991-11-01 | Stamicarbon | REINFORCED VENEER LAMINATE, COMPRISING AT LEAST ONE LAYER VENEER AND ONE LAYER INCLUDING POLYALKEN FIBERS. |
JP3070694B2 (en) * | 1991-06-11 | 2000-07-31 | 三井化学株式会社 | Ultra-high molecular weight stretched polypropylene article and method for producing the same |
US5230854A (en) * | 1991-12-09 | 1993-07-27 | Allied-Signal Inc. | Method for removal of spinning solvent from spun fiber |
US5213745A (en) * | 1991-12-09 | 1993-05-25 | Allied-Signal Inc. | Method for removal of spinning solvent from spun fiber |
NL9200625A (en) * | 1992-04-03 | 1993-11-01 | Dsm Nv | NON-WOVEN POLYOLEFINE FIBER LAYER FOR USE IN A LAYERED ANTIBALLISTIC STRUCTURE. |
BE1007230A3 (en) * | 1993-06-23 | 1995-04-25 | Dsm Nv | COMPOSITE JOB mutually parallel fibers in a matrix. |
US5429184A (en) * | 1994-03-28 | 1995-07-04 | Minntech Corporation | Wound heat exchanger oxygenator |
NL1000581C2 (en) * | 1995-06-16 | 1996-12-17 | Dsm Nv | Method for dyeing a highly oriented high molecular weight polyethylene molded parts and articles. |
NL1000598C2 (en) | 1995-06-20 | 1996-12-23 | Dsm Nv | Anti-ballistic molded part and a method of manufacturing the molded part. |
US6893704B1 (en) | 1995-06-20 | 2005-05-17 | Dsm Ip Assets B.V. | Ballistic-resistant moulded article and a process for the manufacture of the moulded article |
US5977231A (en) * | 1997-10-06 | 1999-11-02 | Shell Oil Company | Polyketone solvents |
US5929150A (en) * | 1997-10-06 | 1999-07-27 | Shell Oil Company | Polyketone solvents |
US5955019A (en) * | 1997-10-06 | 1999-09-21 | Shell Oil Company | Solution spinning polyketone fibers |
NL1010413C1 (en) * | 1998-10-28 | 2000-05-01 | Dsm Nv | Highly oriented polyolefin fiber. |
US6723267B2 (en) | 1998-10-28 | 2004-04-20 | Dsm N.V. | Process of making highly oriented polyolefin fiber |
EP1350868B1 (en) | 2000-12-11 | 2007-06-27 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fiber |
JP4389142B2 (en) | 2001-08-08 | 2009-12-24 | 東洋紡績株式会社 | Method for producing high-strength polyethylene fiber |
DE10244310C1 (en) * | 2002-09-23 | 2003-12-18 | Hoffmann Air Cargo Equipment G | Air freight netting, of synthetic filament cables, has a woven center section and structured edge strips with edge loops, to be secured to the pallet fasteners |
NL1021805C2 (en) | 2002-11-01 | 2004-05-06 | Dsm Nv | Method for the manufacture of an antiballistic molding. |
EP1587752B1 (en) | 2003-01-30 | 2007-03-21 | DSM IP Assets B.V. | Roundsling |
US7344668B2 (en) | 2003-10-31 | 2008-03-18 | Honeywell International Inc. | Process for drawing gel-spun polyethylene yarns |
US7811673B2 (en) | 2003-12-12 | 2010-10-12 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fiber |
ES2320220T3 (en) | 2004-01-01 | 2009-05-20 | Dsm Ip Assets B.V. | BULLET RESISTANT ARTICLE. |
ATE422656T1 (en) | 2004-07-02 | 2009-02-15 | Dsm Ip Assets Bv | FLEXIBLE SHOTPROOF ARRANGEMENT |
US20080287990A1 (en) * | 2004-07-27 | 2008-11-20 | Dsm Ip Assets B.V. | Elongated Surgical Repair Product Based on Uhmwpe Filaments |
IL203401A (en) * | 2004-08-16 | 2013-03-24 | Yuval Fuchs | Methods of preparation of monolayers and bilayers comprising ultra high molecular weight polyethylene and ballistic resistant articles manufactured therefrom |
US7147807B2 (en) * | 2005-01-03 | 2006-12-12 | Honeywell International Inc. | Solution spinning of UHMW poly (alpha-olefin) with recovery and recycling of volatile spinning solvent |
US20070293109A1 (en) | 2005-06-16 | 2007-12-20 | Ashok Bhatnagar | Composite material for stab, ice pick and armor applications |
EP1896255B1 (en) | 2005-06-30 | 2010-05-05 | DSM IP Assets B.V. | Ballistic-resistant article |
US8057887B2 (en) * | 2005-08-17 | 2011-11-15 | Rampart Fibers, LLC | Composite materials including high modulus polyolefin fibers |
US7648607B2 (en) * | 2005-08-17 | 2010-01-19 | Innegrity, Llc | Methods of forming composite materials including high modulus polyolefin fibers |
US7892633B2 (en) * | 2005-08-17 | 2011-02-22 | Innegrity, Llc | Low dielectric composite materials including high modulus polyolefin fibers |
WO2007071309A2 (en) * | 2005-12-22 | 2007-06-28 | Dsm Ip Assets B.V. | Surgical repair product comprising uhmwpe filaments |
CN101346497B (en) * | 2005-12-22 | 2011-08-10 | 帝斯曼知识产权资产管理有限公司 | Surgical repair product comprising uhmwpe filaments |
CN101360854B (en) | 2006-01-18 | 2011-06-15 | 优知亚米有限公司 | Tapered multifilament yarn and process for producing the same |
MX2008012131A (en) | 2006-03-24 | 2008-11-28 | Honeywell Int Inc | Improved ceramic ballistic panel construction. |
EP2063004B1 (en) | 2006-04-07 | 2012-04-25 | DSM IP Assets B.V. | Polyethylene fiber and method for production thereof |
CA2650440C (en) | 2006-04-26 | 2015-06-23 | Dsm Ip Assets B.V. | Multilayered material sheet and process for its preparation |
MX2008013693A (en) | 2006-04-26 | 2008-12-17 | Dsm Ip Assets Bv | MULTI-STRATIFIED LAMINARY MATERIAL AND PROCESS FOR PREPARATION. |
US7846363B2 (en) | 2006-08-23 | 2010-12-07 | Honeywell International Inc. | Process for the preparation of UHMW multi-filament poly(alpha-olefin) yarns |
EP2080824B1 (en) | 2006-11-08 | 2010-08-18 | HU, Panpan | A process for producing fiber of ultra high molecular weight polyethylene |
CN201066259Y (en) | 2006-12-22 | 2008-05-28 | 帝斯曼知识产权资产管理有限公司 | Armor and armored vest |
CN101568795A (en) | 2006-12-22 | 2009-10-28 | 帝斯曼知识产权资产管理有限公司 | Ballistic resistant sheet and ballistic resistant article |
UA97825C2 (en) | 2007-01-22 | 2012-03-26 | ДСМ АйПи АСЭТС Б.В. | Chain comprising a plurality of interconnected links and a method for enhancing the strength of the chain |
JPWO2008093560A1 (en) | 2007-01-29 | 2010-05-20 | 株式会社ワイ・ジー・ケー | Luminescent composite yarn |
US8017529B1 (en) | 2007-03-21 | 2011-09-13 | Honeywell International Inc. | Cross-plied composite ballistic articles |
US8256019B2 (en) | 2007-08-01 | 2012-09-04 | Honeywell International Inc. | Composite ballistic fabric structures for hard armor applications |
DE102007051675B4 (en) | 2007-10-26 | 2011-11-24 | Hoffmann Air Cargo Equipment Gmbh | Method of making seams on webbings for technical purposes |
EP2693158B1 (en) | 2007-10-31 | 2017-12-13 | DSM IP Assets B.V. | Material sheet and process for its preparation |
CN101861508B (en) | 2007-11-01 | 2015-05-20 | 帝斯曼知识产权资产管理有限公司 | Material sheet and process for its preparation |
CN101230501B (en) | 2008-02-26 | 2010-06-02 | 山东爱地高分子材料有限公司 | Method for preparing high-strength polyethylene fibre by employing blended melting of super high molecular weight polyethylene and low density polyethylene |
AU2009227297B2 (en) | 2008-03-17 | 2012-07-26 | Y.G.K Co., Ltd. | Fishing line of core-sheath structure containing short fibers |
EP2112259A1 (en) | 2008-04-22 | 2009-10-28 | DSM IP Assets B.V. | Abrasion resistant fabric |
KR101694552B1 (en) | 2008-04-29 | 2017-01-09 | 디에스엠 아이피 어셋츠 비.브이. | Stack of first and second layers, a panel and a ballistic resistant article comprising the stack or panel |
BRPI0914237A2 (en) | 2008-06-23 | 2015-11-03 | Dsm Ip Assets Bv | cargo network |
US8474237B2 (en) | 2008-06-25 | 2013-07-02 | Honeywell International | Colored lines and methods of making colored lines |
DE102008032199A1 (en) | 2008-07-09 | 2010-01-14 | Hoffmann Air Cargo Equipment Gmbh | Air freight net for securing freight onto pallet, has meshes which are formed from interconnected rope lines, where rope lines consist of individual strings |
BRPI0920776B1 (en) | 2008-10-14 | 2018-07-10 | Y.G.K Co., Ltd. | FISHING LINE |
US8871046B2 (en) | 2008-12-11 | 2014-10-28 | Dsm Ip Assets B.V. | Transparent antiballistic article and method for its preparation |
WO2010106143A1 (en) | 2009-03-20 | 2010-09-23 | Dsm Ip Assets B.V. | Net for aquaculture |
WO2010122099A1 (en) | 2009-04-23 | 2010-10-28 | Dsm Ip Assets B.V. | Compressed sheet |
LT2462275T (en) | 2009-08-04 | 2016-10-10 | Dsm Ip Assets B.V. | Coated high strength fibers, strands and ropes and method of manufacturing the same |
CN103083717B (en) | 2009-08-06 | 2015-07-29 | 帝斯曼知识产权资产管理有限公司 | Based on the surgical repair goods of HPPE material |
WO2011045325A1 (en) | 2009-10-12 | 2011-04-21 | Dsm Ip Assets B.V. | Method for the manufacturing of a low shrinkage flexible sheet |
US8895138B2 (en) | 2009-11-17 | 2014-11-25 | E I Du Pont De Nemours And Company | Impact resistant composite article |
US20110113534A1 (en) | 2009-11-17 | 2011-05-19 | E.I.Du Pont De Nemours And Company | Impact Resistant Composite Article |
US20130000948A1 (en) | 2009-12-17 | 2013-01-03 | Giovanni Joseph Ida Henssen | Electrical cable |
CN105258569B (en) | 2009-12-17 | 2019-04-12 | 帝斯曼知识产权资产管理有限公司 | Method, multilayered material sheets and application thereof for manufacturing multilayered material sheets |
AU2011204606B2 (en) | 2010-01-07 | 2016-02-11 | Bridon International Ltd. | Hybrid rope |
CN102781811B (en) | 2010-02-24 | 2015-09-16 | 帝斯曼知识产权资产管理有限公司 | On winch drum, winding conciliates the method being coiled into rope |
EP2567176A1 (en) | 2010-05-06 | 2013-03-13 | DSM IP Assets B.V. | Article comprising polymeric tapes |
EP2580387B1 (en) | 2010-06-08 | 2015-07-22 | DSM IP Assets B.V. | Hybrid rope |
WO2011154383A1 (en) | 2010-06-08 | 2011-12-15 | Dsm Ip Assets B.V. | Protected hmpe rope |
WO2012013659A1 (en) | 2010-07-26 | 2012-02-02 | Dsm Ip Assets B.V. | Tether for renewable energy systems |
US9151576B2 (en) | 2010-07-29 | 2015-10-06 | Dsm Ip Assets B.V. | Ballistic resistant article |
US20130291712A1 (en) | 2010-09-08 | 2013-11-07 | Dsm Ip Assets B.V. | Multi-ballistic-impact resistant article |
CN102002769B (en) | 2010-11-08 | 2012-12-12 | 宁波大成新材料股份有限公司 | Preparation method of ultra-high molecular weight polyethylene fiber |
US9174796B2 (en) | 2010-11-16 | 2015-11-03 | Advanced Composite Structures, Llc | Fabric closure with an access opening for cargo containers |
US8479801B2 (en) | 2010-11-16 | 2013-07-09 | Advanced Composite Structures, Llc | Fabric closure with an access opening for cargo containers |
CN103314460B (en) | 2010-11-18 | 2016-08-24 | 帝斯曼知识产权资产管理有限公司 | Flexible generator |
BR112013014435A2 (en) | 2010-12-10 | 2016-09-13 | Dsm Ip Assets Bv | hppe member and method of preparing an hppe member |
KR101879470B1 (en) | 2010-12-14 | 2018-07-17 | 디에스엠 아이피 어셋츠 비.브이. | Tape and products containing the same |
US9744741B2 (en) | 2010-12-14 | 2017-08-29 | Dsm Ip Assets B.V. | Material for radomes and process for making the same |
EP2481847A1 (en) | 2011-01-31 | 2012-08-01 | DSM IP Assets B.V. | UV-Stabilized high strength fiber |
CN103379997A (en) | 2011-02-17 | 2013-10-30 | 帝斯曼知识产权资产管理有限公司 | Enhanced transmission-energy material and method for manufacturing the same |
EP2678464B1 (en) | 2011-02-24 | 2016-06-29 | DSM IP Assets B.V. | Multistage drawing process for drawing polymeric elongated objects |
JP6021022B2 (en) | 2011-03-04 | 2016-11-02 | ディーエスエム アイピー アセッツ ビー.ブイ. | Geodesic radome |
EP2688732B1 (en) | 2011-03-22 | 2015-05-06 | DSM IP Assets B.V. | Radome wall |
CN103476994B (en) | 2011-04-12 | 2017-07-07 | 帝斯曼知识产权资产管理有限公司 | Water baffle system |
NO2697414T3 (en) | 2011-04-13 | 2018-02-03 | ||
JP6044004B2 (en) | 2011-05-10 | 2016-12-14 | ディーエスエム アイピー アセッツ ビー.ブイ. | Yarn, method for producing yarn, and product containing yarn |
EP2726656A1 (en) | 2011-06-28 | 2014-05-07 | DSM IP Assets B.V. | Aquatic-predator resistant net |
CN103732814B (en) | 2011-08-18 | 2018-02-23 | 帝斯曼知识产权资产管理有限公司 | Wear-resistant yarn |
CN103828124A (en) | 2011-09-12 | 2014-05-28 | 帝斯曼知识产权资产管理有限公司 | Composite radome wall |
JP6164777B2 (en) | 2011-11-21 | 2017-07-19 | ディーエスエム アイピー アセッツ ビー.ブイ. | Polyolefin fiber |
WO2013092626A1 (en) | 2011-12-19 | 2013-06-27 | Dsm Ip Assets B.V. | Flexible composite material and use hereof, process for making a flexible composite material |
US9623626B2 (en) | 2012-02-28 | 2017-04-18 | Dsm Ip Assets B.V. | Flexible composite material and use hereof, process for making a flexible composite material |
JP6131453B2 (en) | 2012-02-16 | 2017-05-24 | ディーエスエム アイピー アセッツ ビー.ブイ. | Process for enhancing the coloration of UHMWPE articles, the colored articles, and products containing the articles |
WO2013128006A2 (en) | 2012-03-01 | 2013-09-06 | Dsm Ip Assets B.V. | Method and device for impregnating a rope with a liquid material |
BR112014022250B1 (en) | 2012-03-09 | 2021-01-05 | Dsm Ip Assets B.V. | composite panel, composite sheet and tape, method for preparing the composite panel, resistant ballistic article and use of the composite panel |
MY185064A (en) | 2012-03-12 | 2021-04-30 | Dsm Ip Assets Bv | Umbilical |
CA2865228A1 (en) | 2012-03-20 | 2013-09-26 | Dsm Ip Assets B.V. | Polyolefin fiber |
CA2866655A1 (en) | 2012-04-03 | 2013-10-10 | Dsm Ip Assets B.V. | Polymeric yarn and method for manufacturing |
CA2874297C (en) | 2012-06-11 | 2020-06-09 | Dsm Ip Assets B.V. | Endless shaped article |
PT2875174T (en) | 2012-07-17 | 2018-12-19 | Dsm Ip Assets Bv | Abrasion resistant product comprising uhmwpe fibers |
US10087560B2 (en) | 2012-09-28 | 2018-10-02 | Toyobo Co., Ltd. | Braid |
JP6286717B2 (en) | 2012-10-11 | 2018-03-07 | ディーエスエム アイピー アセッツ ビー.ブイ. | Offshore drilling or production ship |
JP2016503639A (en) | 2012-10-11 | 2016-02-04 | ディーエスエム アイピー アセッツ ビー.ブイ. | Wireless power transmission system |
EP2906902B1 (en) | 2012-10-12 | 2018-08-01 | DSM IP Assets B.V. | Composite antiballistic radome walls |
WO2014076279A1 (en) | 2012-11-19 | 2014-05-22 | Dsm Ip Assets B.V. | Heavy-duty chain |
US9915012B2 (en) * | 2013-05-21 | 2018-03-13 | Reliance Industries Limited | Compact polymeric gel and fibers made therefrom |
US10153546B2 (en) | 2013-07-02 | 2018-12-11 | Dsm Ip Assets B.V. | Composite antiballistic radome walls and methods of making the same |
EP3030856B1 (en) | 2013-08-07 | 2018-06-13 | DSM IP Assets B.V. | Ballistic resistant sheets, articles comprising such sheets and methods of making the same |
EP3060587B1 (en) | 2013-10-25 | 2019-11-20 | DSM IP Assets B.V. | Preparation of ultra high molecular weight polyethylene |
JP6576336B2 (en) | 2013-10-25 | 2019-09-18 | ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. | Preparation of ultra high molecular weight ethylene copolymer |
EP3957780A1 (en) | 2013-10-29 | 2022-02-23 | Braskem, S.A. | Continuous system and method for producing at least one polymeric yarn |
LT3068933T (en) | 2013-11-12 | 2019-10-25 | Dsm Ip Assets Bv | Abrasion resistant fabric |
JP6541234B2 (en) | 2013-12-10 | 2019-07-10 | ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. | Chain with polymer links and spacers |
US10364512B2 (en) | 2014-03-28 | 2019-07-30 | Toyobo Co., Ltd. | Multifilament and braid |
BR112016029232B1 (en) | 2014-07-01 | 2022-05-03 | Dsm Ip Assets B.V. | Structure comprising rigid elements linked together through interconnecting elements and use of polymeric fiber comprising ultra-high molecular weight polyethylene |
JP6668368B2 (en) * | 2014-10-31 | 2020-03-18 | ハードワイヤー・エルエルシーHardwire Llc | Flexible ballistic resistance armor |
EP3230499A4 (en) | 2014-12-02 | 2018-12-19 | Braskem America, Inc. | Continuous method and system for the production of at least one polymeric yarn and polymeric yarn |
US10626531B2 (en) | 2015-02-20 | 2020-04-21 | Toyobo Co., Ltd. | Multifilament and braid using same |
JP6736826B2 (en) | 2015-05-28 | 2020-08-05 | ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. | Hybrid chain ring |
KR20180015135A (en) | 2015-05-28 | 2018-02-12 | 디에스엠 아이피 어셋츠 비.브이. | Polymer chain link |
CN107660241B (en) | 2015-05-28 | 2020-07-14 | 帝斯曼知识产权资产管理有限公司 | mixed chain |
CA2998444A1 (en) | 2015-09-18 | 2017-03-23 | Dsm Ip Assets B.V. | Preformed sheet and ballistic-resistant article |
US10773881B2 (en) | 2015-10-05 | 2020-09-15 | Advanced Composite Structures, Llc | Air cargo container and curtain for the same |
CN114381858B (en) | 2015-10-09 | 2024-06-04 | 埃万特防护材料有限公司 | Long composite objects |
EP3359589B1 (en) | 2015-10-09 | 2024-12-04 | Avient Protective Materials B.V. | High performance fibres composite sheet |
EP3374726B1 (en) | 2015-11-13 | 2022-05-25 | DSM IP Assets B.V. | Impact resistant composite material |
US20180335283A1 (en) | 2015-11-13 | 2018-11-22 | Dsm Ip Assets B.V. | Impact resistant composite material |
EP3202702A1 (en) | 2016-02-02 | 2017-08-09 | DSM IP Assets B.V. | Method for bending a tension element over a pulley |
WO2018002229A1 (en) | 2016-07-01 | 2018-01-04 | Dsm Ip Assets B.V. | Multilayer hybrid composite |
WO2018122120A1 (en) | 2016-12-29 | 2018-07-05 | Dsm Ip Assets B.V. | Multilayer composite material and method for manufacturing |
EP3562664A1 (en) | 2016-12-29 | 2019-11-06 | DSM IP Assets B.V. | Multilayer composite material and method for manufacturing |
TWI818905B (en) | 2017-03-20 | 2023-10-21 | 荷蘭商帝斯曼知識產權資產管理有限公司 | Three dimensional shaped article and process for the manufacture of the same |
EP3964611A1 (en) | 2017-04-03 | 2022-03-09 | DSM IP Assets B.V. | Cut resistant filled lenghty body |
US20210102313A1 (en) | 2017-04-03 | 2021-04-08 | Dsm Ip Assets B.V. | High performance fibres hybrid sheet |
WO2018184821A1 (en) | 2017-04-06 | 2018-10-11 | Dsm Ip Assets B.V. | High performance fibers composite sheet |
CN110832012A (en) | 2017-04-06 | 2020-02-21 | 帝斯曼知识产权资产管理有限公司 | High-performance fiber composite sheet |
US20210148011A1 (en) | 2017-07-14 | 2021-05-20 | Dsm Ip Assets B.V. | Homogeneous filled yarn |
WO2019012129A1 (en) | 2017-07-14 | 2019-01-17 | Dsm Ip Assets B.V. | Homogeneous filled yarn |
US11851270B2 (en) | 2017-10-10 | 2023-12-26 | Advanced Composite Structures, Llc | Latch for air cargo container doors |
AU2018387661B2 (en) | 2017-12-18 | 2024-09-19 | Avient Protective Materials B.V. | Ballistic-resistant curved molded article |
KR102635788B1 (en) | 2017-12-18 | 2024-02-13 | 디에스엠 아이피 어셋츠 비.브이. | bulletproof molded product |
WO2019025641A1 (en) | 2017-12-21 | 2019-02-07 | Dsm Ip Assets B.V. | Hybrid fabrics of high performance polyethylene fiber |
WO2019121663A1 (en) | 2017-12-22 | 2019-06-27 | Dsm Ip Assets B.V. | High performance polyethylene fibers composite fabric |
PL4234240T3 (en) | 2017-12-22 | 2025-06-23 | Avient Protective Materials B.V. | High performance fibers composite sheet |
WO2019121675A1 (en) | 2017-12-22 | 2019-06-27 | Dsm Ip Assets B.V. | Method to produce a high performance polyethylene fibers composite fabric |
US11739447B2 (en) | 2018-03-01 | 2023-08-29 | Avient Protective Materials B.V. | Abrasion resistant fabric |
WO2019170769A1 (en) | 2018-03-06 | 2019-09-12 | Dsm Ip Assets B.V. | Osteoconductive fibers, medical implant comprising such osteoconductive fibers, and methods of making |
WO2020118385A1 (en) | 2018-12-12 | 2020-06-18 | Smiljanic Mario | Underwater parachute propulsion system |
SG10201811534WA (en) | 2018-12-21 | 2020-07-29 | Dsm Ip Assets Bv | Ballistic-resistant molded article |
KR20210135268A (en) | 2019-03-01 | 2021-11-12 | 디에스엠 아이피 어셋츠 비.브이. | Medical implant components including composite biotextiles and manufacturing methods |
JP7542541B2 (en) | 2019-03-01 | 2024-08-30 | ディーエスエム アイピー アセッツ ビー.ブイ. | Method for producing a composite biotextile and medical implants comprising such a composite biotextile |
CN117512807A (en) | 2019-05-14 | 2024-02-06 | 东洋纺Mc株式会社 | Polyethylene fiber |
WO2020264346A1 (en) | 2019-06-28 | 2020-12-30 | Advanced Composite Structures, Llc | Thermally insulated air cargo container |
CN114096629B (en) | 2019-07-08 | 2023-12-15 | 帝斯曼知识产权资产管理有限公司 | Strong and stretchable seam tape |
US12215440B2 (en) | 2019-11-04 | 2025-02-04 | Avient Protective Materials B.V. | Polymer filled polyolefin fiber |
WO2021123426A1 (en) | 2019-12-20 | 2021-06-24 | Dsm Ip Assets B.V. | Multilayer composite comprising a backbone film |
CN114829154B (en) | 2019-12-20 | 2024-03-26 | 埃万特防护材料有限公司 | Sublimation printing of heat sensitive materials |
IL300683A (en) | 2020-09-01 | 2023-04-01 | Dsm Ip Assets Bv | A polyurethane composite sheet, a method of making such composite sheet, and use thereof in making a medical implant |
KR20240029741A (en) | 2021-06-04 | 2024-03-06 | 아비엔트 프로텍티브 머티리얼스 비.브이. | Hybrid ballistic-resistant moldings |
CA3221211A1 (en) | 2021-06-04 | 2022-12-08 | Avient Protective Materials B.V. | Compression molded ballistic-resistant article |
KR20240053640A (en) | 2021-09-07 | 2024-04-24 | 아비엔트 프로텍티브 머티리얼스 비.브이. | complex elongation body |
WO2023191902A2 (en) | 2021-11-10 | 2023-10-05 | Dupont Safety & Construction, Inc. | Ballistic resistant material made of mechanically entangled woven fabrics without nonwoven fibers and method of making thereof |
US12091239B2 (en) | 2021-11-11 | 2024-09-17 | Advanced Composite Structures, Llc | Formed structural panel with open core |
GB202317144D0 (en) | 2023-11-08 | 2023-12-20 | Fibre Extrusion Tech Limited | Extraction techniques |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL230916A (en) * | ||||
BE570563A (en) * | 1956-12-08 | |||
US3742104A (en) * | 1970-05-08 | 1973-06-26 | Celanese Corp | Production of shaped synthetic articles having improved dyeability |
AT355303B (en) * | 1975-07-14 | 1980-02-25 | Ceskoslovenska Akademie Ved | METHOD FOR PRODUCING MOLDED PRODUCTS FROM CRYSTALLINE POLYMERS AND COPOLYMERS OF ACRYLNITRILE |
US4020230A (en) * | 1975-10-03 | 1977-04-26 | The Dow Chemical Company | Microporous polyethylene hollow fibers and process of preparing them |
GB1568964A (en) * | 1975-11-05 | 1980-06-11 | Nat Res Dev | Oriented polymer materials |
DE2558384C3 (en) * | 1975-12-23 | 1984-11-08 | Bayer Ag, 5090 Leverkusen | Modacrylic fibers and threads with a stable gloss and process for their production |
NL7605370A (en) * | 1976-05-20 | 1977-11-22 | Stamicarbon | PROCESS FOR THE CONTINUOUS MANUFACTURE OF FIBER POLYMER CRYSTALS. |
DE2713456C2 (en) * | 1977-03-26 | 1990-05-31 | Bayer Ag, 5090 Leverkusen | Process for the production of hydrophilic fibers |
NL177840C (en) * | 1979-02-08 | 1989-10-16 | Stamicarbon | METHOD FOR MANUFACTURING A POLYTHENE THREAD |
US6020230A (en) * | 1998-04-22 | 2000-02-01 | Texas Instruments-Acer Incorporated | Process to fabricate planarized deep-shallow trench isolation having upper and lower portions with oxidized semiconductor trench fill in the upper portion and semiconductor trench fill in the lower portion |
-
1979
- 1979-02-08 NL NLAANVRAGE7900990,A patent/NL177840C/en not_active IP Right Cessation
-
1980
- 1980-01-29 ZA ZA00800528A patent/ZA80528B/en unknown
- 1980-02-01 AU AU55148/80A patent/AU532451B2/en not_active Expired
- 1980-02-04 CH CH874/80A patent/CH650535C2/en not_active IP Right Cessation
- 1980-02-06 ES ES488304A patent/ES488304A1/en not_active Expired
- 1980-02-06 AT AT0065280A patent/AT380033B/en not_active IP Right Cessation
- 1980-02-06 FR FR8002571A patent/FR2448587B1/en not_active Expired
- 1980-02-06 CS CS80810A patent/CS235001B2/en unknown
- 1980-02-07 IT IT47840/80A patent/IT1144056B/en active
- 1980-02-07 BE BE0/199295A patent/BE881587A/en not_active IP Right Cessation
- 1980-02-07 JP JP55014245A patent/JPS6047922B2/en not_active Expired
- 1980-02-07 BR BR8000775A patent/BR8000775A/en not_active IP Right Cessation
- 1980-02-07 SE SE8000997A patent/SE446105B/en not_active IP Right Cessation
- 1980-02-07 MX MX808636U patent/MX6124E/en unknown
- 1980-02-07 SU SU802878003A patent/SU1138041A3/en active
- 1980-02-07 GB GB8004157A patent/GB2042414B/en not_active Expired
- 1980-02-08 DE DE3051066A patent/DE3051066C2/de not_active Expired
- 1980-02-08 IN IN149/CAL/80A patent/IN152729B/en unknown
- 1980-02-08 CA CA000345309A patent/CA1152272A/en not_active Expired
- 1980-02-08 DE DE19803004699 patent/DE3004699A1/en active Granted
-
1984
- 1984-08-10 JP JP59168737A patent/JPS6075606A/en active Pending
- 1984-08-10 JP JP59168738A patent/JPS6075607A/en active Granted
-
1986
- 1986-07-31 JP JP61181840A patent/JPS6245714A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CH650535A5 (en) | 1985-07-31 |
GB2042414B (en) | 1982-12-22 |
DE3051066C2 (en) | 1987-12-10 |
IT8047840A0 (en) | 1980-02-07 |
SU1138041A3 (en) | 1985-01-30 |
DE3004699A1 (en) | 1980-08-21 |
SE446105B (en) | 1986-08-11 |
IN152729B (en) | 1984-03-24 |
NL7900990A (en) | 1980-08-12 |
CH650535C2 (en) | 1998-02-27 |
BR8000775A (en) | 1980-10-21 |
JPS6075607A (en) | 1985-04-30 |
JPS6075606A (en) | 1985-04-30 |
JPS6245714A (en) | 1987-02-27 |
NL177840C (en) | 1989-10-16 |
AT380033B (en) | 1986-03-25 |
ES488304A1 (en) | 1980-08-01 |
AU5514880A (en) | 1980-08-14 |
JPS55107506A (en) | 1980-08-18 |
JPS6047922B2 (en) | 1985-10-24 |
CA1152272A (en) | 1983-08-23 |
SE8000997L (en) | 1980-08-09 |
AU532451B2 (en) | 1983-09-29 |
ATA65280A (en) | 1985-08-15 |
FR2448587A1 (en) | 1980-09-05 |
BE881587A (en) | 1980-08-07 |
FR2448587B1 (en) | 1985-08-23 |
IT1144056B (en) | 1986-10-29 |
DE3004699C2 (en) | 1987-10-29 |
NL177840B (en) | 1985-07-01 |
JPS648732B2 (en) | 1989-02-15 |
GB2042414A (en) | 1980-09-24 |
MX6124E (en) | 1984-11-21 |
ZA80528B (en) | 1981-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CS235001B2 (en) | Method of polyolefin fibres production with high tensile strength and with modulus of elasticity in tension | |
US4422993A (en) | Process for the preparation of filaments of high tensile strength and modulus | |
US4436689A (en) | Process for the production of polymer filaments having high tensile strength | |
US5455114A (en) | Water soluble polyvinyl alcohol-based fiber | |
US5273703A (en) | Process for post-spin finishing of polybenzoxazole fibers | |
BRPI0811240B1 (en) | process for preparing polymeric yarns from ultra high molecular weight homopolymers or copolymers | |
JPH02160912A (en) | Improvements in manufacture of | |
JPH02160911A (en) | Improvements in manufacture of melt | |
JPS61108711A (en) | Production of polyvinyl alcohol fiber of high strength and high elastic modulus | |
JPS61108713A (en) | Polyvinyl alcohol fiber having good fiber properties and its production | |
JPS61215708A (en) | Production of multifilament yarn | |
JPH0284504A (en) | Polyvinyl alcohol fiber suitable for reinforcement material | |
JPH02175913A (en) | New polyethylene yarn and production thereof | |
JPH01162816A (en) | Novel polyethylene fiber | |
JPH0457769B2 (en) | ||
JPH01162817A (en) | Production of polyethylene fiber | |
JPH01162818A (en) | Production of polyethylene fiber | |
JPH02169709A (en) | Method for drawing polyvinyl alcohol-based fiber | |
JPH01162814A (en) | Production of novel polyethylene fiber | |
JPH02175914A (en) | New polyethylene yarn and production thereof | |
JPS6147809A (en) | Production of high-strength and high-modulus polyolefin based fiber | |
JPH0268309A (en) | Production of high-tenacity polyvinyl alcohol fiber | |
JPS63243316A (en) | Manufacturing method of high strength polyvinyl alcohol fiber | |
JPH02175912A (en) | New polyethylene yarn | |
JPS61610A (en) | Production of high-strength and high-modulus polyolefin based fiber |