NL7900990A - FILAMENTS WITH LARGE TENSILE STRENGTH AND MODULUS. - Google Patents
FILAMENTS WITH LARGE TENSILE STRENGTH AND MODULUS. Download PDFInfo
- Publication number
- NL7900990A NL7900990A NL7900990A NL7900990A NL7900990A NL 7900990 A NL7900990 A NL 7900990A NL 7900990 A NL7900990 A NL 7900990A NL 7900990 A NL7900990 A NL 7900990A NL 7900990 A NL7900990 A NL 7900990A
- Authority
- NL
- Netherlands
- Prior art keywords
- polymer
- filament
- solvent
- filaments
- temperature
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/04—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/12—Stretch-spinning methods
- D01D5/16—Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0058—Liquid or visquous
- B29K2105/0073—Solution
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Woven Fabrics (AREA)
Description
' V"V
— , STAMICAEBON B.V.-, STAMICAEBON B.V.
Uitvinders: Paul SMITH te SittardInventors: Paul SMITH in Sittard
Pieter J. LEMSTRA te Brunssum 1 3057Pieter J. LEMSTRA in Brunssum 1 3057
FILAMENTEN MET GROTE TREKSTERKTE EN MODULUSFILAMENTS WITH LARGE TENSILE STRENGTH AND MODULUS
De uitvinding Leeft betrekking op filamenten met grote treksterkte en modulus en op een werkwijze ter vervaardiging van filamenten door het verspinnen van een oplossing van verspinbaar materiaal.The invention relates to filaments of high tensile strength and modulus and to a method of manufacturing filaments by spinning a solution of spinnable material.
Filamenten worden vervaardigd door spinnen van lineaire 5 polymeren. Het polymeer wordt daarbij in een vloeibare vorm (smelt, oplossing) gebracht en versponnen. De in het gevormde filament willekeurig georiënteerde molekuulketens moeten vervolgens in de lengterichting van het filament gericht worden door strekken. Alhoewel ook andere stoffen wel verspinbaar kunnen zijn, zijn ketenvormige makro-10 moleculen een belangrijke conditie voor verspinbaarheid tot filamenten. Vertakkingen beïnvloeden de filamentvorming en de mechanische eigenschappen nadelig. Voor de vervaardiging van filamenten gaat· men daarom uit van zoveel mogelijk lineaire polymeren, al zal een beperkte mate van vertakking veelal niet vermeden kunnen worden en ook toelaatbaar 15 zijn.Filaments are produced by spinning linear polymers. The polymer is thereby brought into a liquid form (melt, solution) and spun. The molecular chains randomly oriented in the formed filament must then be aligned in the longitudinal direction of the filament by stretching. Although other substances can also be spinnable, chain-shaped macro-10 molecules are an important condition for spinnability into filaments. Branching adversely affects filament formation and mechanical properties. As a result, as many linear polymers as possible are used for the production of filaments, although a limited degree of branching can often not be avoided and are also permissible.
Door het strekken van filamenten worden de ketenvormige makromoleculen in de lengterichting georiënteerd, en de sterkte van de filamenten neemt daarbij toe. De sterkte blijft echter in vele gevallen ver onder de waarden die men theore.tisch zou mogen verwachten.The stretching of filaments causes the chain-shaped macromolecules to be oriented in the longitudinal direction, thereby increasing the strength of the filaments. In many cases, however, the strength remains far below the values that one would theoretically expect.
20 Er zijn reeds vele pogingen gedaan om filamenten te vervaardigen waarvan de treksterkte en de modulus de theoretische mogelijkheden beter benaderen. Deze pogingen, waarvan een overzicht gegeven is in publicaties van Juyn in Plastica 31 (1978) 262-270 en van Bigg in Polymer Eng. Sci. 16 (1976) 725-734 hebben geen bevredigende resultaten opge-25 leverd. In een aantal gevallen kon wel de modulus, maar niet de trek- 790 0 9 90 w" ' ' 2 sterkte in voldoende mate worden verbeterd, en bovendien verloopt veelal de filamentvorming zo langzaam dat een economische productie niet mogelijk is.Many attempts have already been made to produce filaments whose tensile strength and modulus are closer to theoretical possibilities. These attempts, which have been reviewed in publications by Juyn in Plastica 31 (1978) 262-270 and by Bigg in Polymer Eng. Sci. 16 (1976) 725-734 have not yielded satisfactory results. In some cases, modulus but not tensile strength could be sufficiently improved, and in addition, filament formation tends to be so slow that economical production is not possible.
Gevonden werd nu, dat men filamenten van polymeren 5 met grote treksterkte en modulus kan vervaardigen door een spinbare oplossing op gebruikelijke wijze te verspinnen, het gevormde filament te koelen tot beneden de oplostemperatuur van het polymeer, vervolgens het filament te verwarmen tot een temperatuur tussen het zwelpunt van ‘het polymeer in het oplosmiddel en het smeltpunt van het polymeer, 10 en te strekken.It has now been found that one can prepare filaments of polymers of high tensile strength and modulus by spinning a spinnable solution in a conventional manner, cooling the formed filament to below the polymer dissolution temperature, then heating the filament to a temperature between swelling point of the polymer in the solvent and the melting point of the polymer, and stretching.
Bij het z.g. droogspinnen, een op technische schaal toegepaste, algemeen bekende werkwijze wordt een oplossing van een verspinbaar polymeer versponnen in een schacht waardoor - meestal verwarmde -lucht wordt geblazen om het oplosmiddel geheel of grotendeels uit het 15 filament te verdampen.'De temperatuur in de schacht is daarbij beneden het smeltpunt van het polymeer, zodat dit bij het verdampen van het oplosmiddel neerslaat, waardoor de mechanische sterkte van het filament, die bij het uittreden uit de spinopening nog zeer gering is, toeneemt. De sterkte wordt in de daarop volgende strekbewerking bij 20 temperaturen beneden het smeltpunt van het polymeer vergroot.In the so-called dry spinning, a generally known method applied on a technical scale, a solution of a spinnable polymer is spun in a shaft through which - usually heated - air is blown in order to evaporate all or most of the solvent from the filament. the shaft is below the melting point of the polymer, so that it precipitates on evaporation of the solvent, so that the mechanical strength of the filament, which is still very small when leaving the spinning opening, increases. The strength is increased in the subsequent stretching operation at temperatures below the melting point of the polymer.
Volgens de onderhavige uitvinding wordt nu het verdampen van het oplosmiddel uit het pas gesponnen filament tijdens de koel-fase daarvan niet bevorderd. Het filament kan op elke geschikte wijze tot onder het oplospunt en in het bijzonder tot onder het zwelpunt van' 25 het polymeer in het oplosmiddel worden gekoeld, bijvoorbeeld door het filament in een waterbad te voeren, of door een schacht, waarbij dan door. deze schacht geen of vrijwel geen lucht wordt geblazen. Enige verdamping van het oplosmiddel uit het filament zal vaak vanzelf plaats vinden en niet voorkomen kunnen worden. Dit schaadt niet in het minst, 30 zolang men de verdamping niet actief bevordert en de hoeveelheid oplosmiddel in het filament niet tot lage waarden bijv. niet tot minder dan 25 gew.% oplosmiddel, bij voorkeur niet tot minder dan gelijke gewichtshoeveelheden oplosmiddel ten opzichte van het polymeer reduceert. Desgewenst kan men verdamping van het oplosmiddel verminderen 35 of tegengaan door te verspinnen in een oplosmiddeldamp bevattende atmosfeer.According to the present invention, evaporation of the solvent from the newly spun filament during its cooling phase is now not promoted. The filament can be cooled in any suitable manner below the dissolution point and in particular below the swelling point of the polymer in the solvent, for example by feeding the filament into a water bath, or through a shaft, then passing through. hardly any air is blown from this shaft. Some evaporation of the solvent from the filament will often take place by itself and cannot be prevented. This does not in the least harm as long as evaporation is not actively promoted and the amount of solvent in the filament is not to low values, eg not to less than 25% by weight of solvent, preferably not to less than equal amounts by weight of solvent relative to the polymer reduces. If desired, solvent evaporation can be reduced or counteracted by spinning in a solvent vapor containing atmosphere.
790 0 9 9 0 3790 0 9 9 0 3
Bij de afkoeling tot onder het oplospunt en in het bijzonder tot onder het zwelpunt van het polymeer in het oplosmiddel slaat het polymeer uit de oplossing neer en ontstaat een gel. Een uit dit polymeergel bestaand filament bezit voldoende mechanische sterkte om 5 verder verwerkt te kunnen worden bijv. via in de spinteehniek gebruikelijke geleiders, rollen, e.d. Een dergelijk filament wordt verwarmd tot een temperatuur tussen het zwelpunt van het polymeer in het oplosmiddel en het smeltpunt van het polymeer, en bij die temperatuur gestrekt. Men kan dit uitvoeren door het filament in een zone 10 met een gasvormig .of vloeibaar medium te voeren, die op de gewenste temperatuur wordt gehouden. Een buisoven met lucht als gasvormig medium is zeer geschikt, maar men kan ook een vloeistofbad of elke andere daartoe geëigende inrichting gebruiken. Een gasvormig medium is gemakkelijker hanteerbaar en geniet de voorkeur.On cooling to below the dissolving point and in particular below the swelling point of the polymer in the solvent, the polymer precipitates from the solution and a gel is formed. A filament consisting of this polymer gel has sufficient mechanical strength to be processed further, eg via conductors, rollers, etc. customary in spinning technology. Such a filament is heated to a temperature between the swelling point of the polymer in the solvent and the melting point of the polymer, and stretched at that temperature. This can be done by feeding the filament into a zone 10 with a gaseous or liquid medium, which is kept at the desired temperature. A tube oven with air as a gaseous medium is very suitable, but a liquid bath or any other suitable device can also be used. A gaseous medium is easier to handle and is preferred.
15 Bij het strekken van het filament zal oplosmiddel verdam pen, of - bij toepassing van een vloeistof als medium - in de vloeistof oplossen. Bij voorkeur bevordert men de verdamping door daartoe geëigende maatregelen, zoals afvoer van de oplosmiddeldamp, bijv. door een gas- of luchtstroom in de strekzone langs het filament te 20 voeren. Het oplosmiddel dient tenminste gedeeltelijk te verdampen, maar bij voorkeur doet men het oplosmiddel tenminste grotendeels verdampen, zodat het filament aan het einde van strekzone ten hoogste nog geringe hoeveelheden, bijvoorbeeld niet meer dan enkele procenten berekend op vaste stof, van het oplosmiddel bevat. Het uiteindelijke 25 filament dient vrij van oplosmiddel te zijn, en met voordeel kiest men de omstandigheden zodanig dat deze toestand reeds in de strekzone wordt bereikt, althans vrijwel wordt bereikt.When the filament is stretched, the solvent will evaporate, or - when using a liquid as medium - dissolve in the liquid. Preferably, evaporation is promoted by appropriate measures, such as removal of the solvent vapor, for example by passing a gas or air stream into the stretching zone along the filament. The solvent should at least partially evaporate, but preferably the solvent is at least largely evaporated, so that the filament at the end of the stretching zone contains at most still small amounts, for example no more than a few percent, based on solids, of the solvent. The final filament should be free of solvent, and the conditions are advantageously chosen such that this condition is already reached in the drawing zone, or at least practically achieved.
Verrassenderwijze kan men met- de werkwijze volgens de uitvinding filamenten vervaardigen die aanmerkelijk sterker zijn dan 30 filamenten van hetzelfde materiaal die volgens een gebruikelijke droogspinwerkwijze zijn vervaardigd, d.w.z. treksterkte en modulus van de onderhavige filamenten zijn aanmerkelijk groter. Volgens de in de hiervoor genoemde publicaties van Juyn en Bigg beschreven methoden is men er wel in geslaagd filamenten met een grotere modulus 35 te vervaardigen, maar de treksterkte laat nog altijd ernstig te wensen over?· Bovendien is de productiviteit van dergelijke methoden laag.Surprisingly, the process of the invention can produce filaments significantly stronger than 30 filaments of the same material made by a conventional dry spinning process, i.e., tensile strength and modulus of the subject filaments are markedly greater. According to the methods described in the aforementioned publications of Juyn and Bigg, it has been successful to produce filaments with a higher modulus, but the tensile strength still leaves much to be desired. Moreover, the productivity of such methods is low.
7900990 -j» ï 47900990 -j 4
De werkwijze volgens'de uitvinding onderscheidt zich van gebruikelijke droogspinwerkwijzen doordat bij de onderhavige werkwijze een filament, dat aanmerkelijke hoeveelheden oplosmiddel voor het verspinbare materiaal bevat, bij een temperatuur waarbij het 5 verspinbare materiaal ten minste in het oplosmiddel zal zwellen, wordt gestrekt onder verwijdering van het oplosmiddel, terwijl bij gebruikelijke spinwerkwijzen oplosmiddelvrije filamenten worden gestrekt .The process of the invention differs from conventional dry-spinning processes in that the process herein stretches a filament containing significant amounts of solvent for the spinnable material at a temperature at which the spinnable material will swell at least in the solvent, removing the solvent, while in conventional spinning processes, solvent-free filaments are stretched.
Een vereiste voor het droogspinnen is oplosbaarheid van 10 het lineaire polymeer in een geschikt oplosmiddel. Voor elk oplosbaar polymeer zijn wel een aantal oplosmiddelen bekend. De deskundige kan daaruit zonder moeite een geschikt oplosmiddel kiezen, waarvan het kookpunt niet zo hoog ligt dat het moeilijk uit het filament verdampbaar is en niet zo laag dat het te vluchtig is en door te 15 " snelle verdamping de filamentvorming zou verstoren, of anders onder druk moet worden verwerkt.A requirement for dry spinning is solubility of the linear polymer in a suitable solvent. A number of solvents are known for each soluble polymer. Those skilled in the art can effortlessly choose a suitable solvent, the boiling point of which is not so high that it is difficult to evaporate from the filament and not so low that it is too volatile and would interfere with filament formation by 15 "rapid evaporation, or else under pressure must be processed.
Het oplossen van een polymeer in een geschikt oplosmiddel verloopt via zwelling. Onder opname van oplosmiddel en toename van het volume ontstaat "een sterk gezwollen gel, dat echter nog op grond 20 van zijn stijfheid en vormbestendigheid als een soort vaste stof moet worden beschouwd. Algemeen wordt aangenomen dat het polymeer uit geordende (kristallijne) en minder geordende (amorfe) gebieden is opgebouwd. De geordende gebieden zouden nu als verankeringspunten fungeren en zo de vormbestendigheid van het gel bewerkstelligen. De 25 gelvorming en het oplossen zijn temperatuurafhankelijk. Een bepaald polymeer kan slechts boven een bepaalde temperatuur in een bepaald oplosmiddel worden opgelost. Beneden deze oplostemperatuur vindt slechts zwelling plaats en naarmate de temperatuur lager is, wordt' de zwelling minder en op een gegeven moment te verwaarlozen. Als zwel-30 punt of zweltemperatuur wordt die temperatuur beschouwd waarbij een duidelijk waarneembare volumevergroting en een duidelijk waarneembare opname van oplosmiddel van 5 tot 10 % van het polymeergewicht optreedt.Dissolving a polymer in a suitable solvent proceeds via swelling. With the absorption of solvent and an increase in volume, "a strongly swollen gel is formed, which, however, is still to be regarded as a kind of solid on account of its rigidity and shape resistance. The polymer is generally assumed to consist of ordered (crystalline) and less ordered (amorphous) areas has been built up The ordered areas would now act as anchoring points and thus realize the shape resistance of the gel The gel formation and the dissolution are temperature-dependent A certain polymer can only be dissolved in a certain solvent above a certain temperature. this dissolution temperature takes place only swelling and as the temperature decreases, the swelling decreases and at some point becomes negligible. The swelling point or swelling temperature is considered to be that temperature with a clearly observable increase in volume and a clearly observable solvent absorption of Increase 5 to 10% of the polymer weight oaths.
Bij gebruikelijke droogspinwerkwijzen verwerkt men op spintechnische en economische gronden meestal 5-30 gew.%'s oplos-35 singen. Deze zijn ook geschikt voor de onderhavige werkwijze, al zal men daarbij in het algemeen minder geconcentreede oplossingen ge- 790 0 9 9 0 5 * bruiken. Met voordeel gebruikt men 1-5 gew.%'s oplossingen. Ook nog lagere concentraties zijn soms mogelijk al leveren deze geen voordelen op en zijn ze economisch, onvoordelig.In conventional dry spinning processes, 5-30 wt.% Solutions are usually processed on spinning and economic grounds. These are also suitable for the present process, although less concentrated solutions will generally be used. 1-5 wt.% Solutions are advantageously used. Even lower concentrations are sometimes possible, although these do not yield any advantages and are economically unfavorable.
Geschikte strekverhoudingen kunnen gemakkelijk experimen-5 teel worden vastgesteld. De treksterkte en de modulus van de filamenten zijn binnen zekere grenzen ongeveer evenredig met de strekver-houding. Naarmate sterkere filamenten gewenst zijn zal dan de strek-verhouding groter gekozen moeten worden.Suitable stretching ratios can easily be determined experimentally. The tensile strength and modulus of the filaments are, within certain limits, approximately proportional to the stretching ratio. As stronger filaments are desired, the stretch ratio will have to be chosen larger.
Men verstrekt tenminste 5 maal en bij voorkeur tenminste 10 10 maal, meer in het bijzonder tenminste 20 maal. Grote strekverhou dingen van 30 tot 40 en zelfs meer zijn goed mogelijk en men verkrijgt daarbij filamenten waarvan treksterkte en modulus aanmerkelijk groter zijn dan van volgens gebruikelijke werkwijzen vervaardigde filamenten.It is dispensed at least 5 times and preferably at least 10 times, more particularly at least 20 times. Large stretch ratios of 30 to 40 and even more are well possible, and filaments of which tensile strength and modulus are considerably greater than those of filaments produced by conventional methods are obtained.
Bij gebruikelijke droogspinwerkwijzen zijn de diameters 15 van de spinopeningen in de spindoppen veelal gering. In het algemeen zijn de diameters 0,02-1,0 mm. Vooral wanneer kleine spinopeningen ( < 0,2 mm) worden gebruikt, blijkt het spinproces zeer gevoelig voor verontreinigingen in de spinoplossing, en moet men deze zorgvuldig ’ vrij maken en houden van vaste verontreinigingen. Op de spindoppen 20 worden meestal filters aangebracht. Desondanks blijken de spindoppen na korte tijd schoongemaakt te moeten worden en blijken verstoppingen nog veelvuldig op te treden. Bij de onderhavige werkwijze kan men grotere spinopeningen van meer dan 0,2 mm, bijvoorbeeld 0,5-2,0 mm of meer gebruiken, doordat aanmerkelijk grotere strekverhoudingen 25 kunnen worden gebruikt en men bovendien meestal lagere concentraties polymeer in de spinoplossing gebruikt.In conventional dry spinning processes, the diameters of the spinning openings in the spinnerets are often small. Generally, the diameters are 0.02-1.0 mm. Especially when small spinning holes (<0.2 mm) are used, the spinning process proves to be very sensitive to contaminants in the spinning solution, and it must be carefully cleared and kept from solid contaminants. Filters are usually applied to the spinnerets 20. Nevertheless, the spinnerets appear to have to be cleaned after a short time and blockages still occur frequently. In the present process, larger spinning openings of more than 0.2 mm, for example 0.5-2.0 mm or more, can be used, because considerably larger stretching ratios can be used and, moreover, usually lower concentrations of polymer are used in the spinning solution.
De uitvinding is niet beperkt tot het vervaardigen van sterke filamenten van bepaalde polymeren, maar is algemeen toepasbaar op materialen die door droogspinnen tot filamenten verwerkt kunnen 30 worden.The invention is not limited to the production of strong filaments from certain polymers, but is generally applicable to materials that can be filamented by dry spinning.
Polymeren die volgens de werkwijze volgens de onderhavige uitvinding kunnen worden versponnen zijn bijvoorbeeld polyolefinen zoals polyetheen, polypropeen, etheen-propeencopolymeren, polyoxy-methyleen, polyethyleenoxyde, polyamiden, zoals de verschillende 35 nylonsoorten, polyesters, zoals polyethyleentereftalaat, polyacrylonitrile, vinylpolymeren zoals polyvinylalcohol, polyvinylideenfluoride.Polymers that can be spun according to the method of the present invention are, for example, polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymers, polyoxyethylene, polyethylene oxide, polyamides, such as the various nylon types, polyesters, such as polyethylene terephthalate, polyacrylonitrile, vinyl polymers such as polyvinyl alcohol, polyvinyl .
790 0 9 9 0 / * 6790 0 9 9 0 / * 6
Polyolefinen zoals polyetheen, polypropeen, etheen-propeen-copolymeren en hogere polyolefinen kan men goed oplossen in koolwaterstoffen zoals verzadigde alifatische en cyclische alsmede aromatische koolwaterstoffen, of mengsels daarvan zoals aardoliefracties. Zeer 5 geschikt zijn alifatische of cyclische koolwaterstoffen zoals nonaan, decaan, undecaan, dodecaan, tetraline, decaline enz. of aardoliefracties met overeenkomstige kooktrajecten. Polyetheen of polypropeen lost men bij voorkeur op in decaline of dodecaan.Polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymers and higher polyolefins are readily dissolved in hydrocarbons such as saturated aliphatic and cyclic as well as aromatic hydrocarbons, or mixtures thereof such as petroleum fractions. Very suitable are aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, tetralin, decalin etc. or petroleum fractions with corresponding boiling ranges. Polyethylene or polypropylene is preferably dissolved in decalin or dodecane.
Men kan ook oplossingen van twee of meer polymeren in een 10 gemeenschappelijk oplosmiddel volgens de onderhavige werkwijze tot -filamenten verwerken. De polymeren behoeven daarvoor niet met elkaar mengbaar te zijn. Zo kan men bijvoorbeeld polyetheen en polypropeen, die in de smelt niet. mengbaar zijn gezamenlijk oplossen in decaline of dodecaan en de zo verkregen oplossingen verspinnen.Solutions of two or more polymers in a common solvent can also be processed into filaments according to the present process. The polymers need not be miscible for this purpose. For example, one can use polyethylene and polypropylene, which cannot be melted. are miscible together, dissolve in decalin or dodecane and spin the solutions thus obtained.
15 De filamenten volgens de uitvinding zijn voor velerlei toepassingen geschikt. Men kan ze gebruiken als versterking in velerlei materialen waarvan de versterking met vezels of filamenten bekend is, voor bandengarens en voor alle toepassingen waarbij een gering gewicht gepaard gaande met een grote sterkte gewenst-is.The filaments according to the invention are suitable for many applications. They can be used as reinforcement in many materials where reinforcement with fibers or filaments is known, for tire yarns and for all applications where a low weight accompanied by a high strength is desired.
20 De uitvinding wordt verder verduidelijkt door de volgende voorbeelden, zonder daardoor te worden beperkt.The invention is further illustrated by the following examples, without being limited thereby.
Voorbeeld 1 6Example 1 6
Een hoogmolecülair polyetheen met een “ 1,5 x 10 werd bij 145 °C tot een 2 gew.%'s oplossing in decaline opgelost. Deze 25 oplossing werd bij 130 °C door een spindop met een spinopening met 0,5 mm diameter versponnen. Het filament werd in een op kamertempera- · tuur gehouden waterbad gevoerd en daar gekoeld. Het gekoelde 0,7 mm dikke filament dat een gelachtig ui terlijk had, en nog ongeveer 98 % oplosmiddel bevatte, werd vervolgens door een op 120 °C verwarmde 30 buisoven gevoerd en gestrekt met verschillende strekverhoudingen. Schematisch is deze werkwijze in fig. 1 weergegeven.A high molecular weight polyethylene of 1.5 x 10 was dissolved in 145% at 2 ° C in a solution of 2% by weight in decalin. This solution was spun at 130 ° C through a spinneret with a spinning hole of 0.5 mm diameter. The filament was fed into a water bath kept at room temperature and cooled there. The cooled 0.7 mm thick filament, which had a gel-like appearance, and still contained about 98% solvent, was then passed through a tube oven heated to 120 ° C and stretched at various stretching ratios. This method is shown schematically in Fig. 1.
790 09 90 7790 09 90 7
In fig. 2 en 3 is de treksterkte resp. de modulus uitgezet tegen de strekverhouding. Een modulus van meer dan 60 GPa en een treksterkte van bijna 3 kunnen worden verkregen, terwijl van op conventionele wijze vervaardigde polyetheen filamenten de modulus 5 2 tot 3 GPa bedraagt en de treksterkte ongeveer 0,1 GPa. De in fig, 2 en 3 uitgezette waarden van de modulus en treksterkte van filamenten met verschillende strekverhoudingen zijn vermeld in tabel 1.In fig. 2 and 3 the tensile strength is resp. the modulus plotted against the stretch ratio. A modulus of more than 60 GPa and a tensile strength of almost 3 can be obtained, while from polyethylene filaments produced in a conventional manner the modulus is 2 to 3 GPa and the tensile strength is approximately 0.1 GPa. The values of the modulus and tensile strength of filaments with different stretching ratios plotted in Figures 2 and 3 are shown in Table 1.
Polyetheen filamenten met een treksterkte van meer dan 1,2 GPa kunnen gemakkelijk volgens de onderhavige werkwijze worden 10 vervaardigd.Polyethylene filaments with a tensile strength of more than 1.2 GPa can be easily manufactured according to the present method.
Tabel 1Table 1
Proef strek- modulus treksterkte verhouding GPa GPa 1 1 2,4 0,09 15 2 3 5,4 0,27 3 7 17,0 0,73 4 8 17,6 0,81 5 11 23,9 1,32 6 12 37,5 1,65 20 7 13 40,9 1,72 8 15 41,0 1,72 9 17 43,1 2,11 10 25 69,0 2,90Tensile modulus tensile strength test ratio GPa GPa 1 1 2.4 0.09 15 2 3 5.4 0.27 3 7 17.0 0.73 4 8 17.6 0.81 5 11 23.9 1.32 6 12 37.5 1.65 20 7 13 40.9 1.72 8 15 41.0 1.72 9 17 43.1 2.11 10 25 69.0 2.90
Voorbeeld 2 25 <- Volgens de in voorbeeld 1 beschreven werkwijze werd een 2 gew.%'3 oplossing van een mengsel van gelijke delen hoogmoleculair — 6 polyetheen met een * 1,5 x 10 en een hoogmoleculair polypropeen met een M o* 3,0 x 106 bij 140 °C versponnen en bij 130 °C verstrekt met een strekverhouding van 20. De filamenten hadden een 30 treksterkte van 1,5 GPa.Example 2 - According to the method described in Example 1, a 2 wt% 3 solution of a mixture of equal parts of high molecular weight - 6 polyethylene with a * 1.5 x 10 and a high molecular weight polypropylene with a M o * 3, 0x10 6 spun at 140 ° C and drawn at 130 ° C with a draw ratio of 20. The filaments had a tensile strength of 1.5 GPa.
790 0990 8790 0990 8
XX
Voorbeeld 3Example 3
Volgens de in voorbeeld 1 beschreven werkwijze werd een 2 gew.%'s oplossing van iso-tactisch polypropeen met een * 3,0 x 10® bij 140 °C versponnen en bij 130 °C verstrekt met een strekver-5 houding 20. De verkregen filamenten hadden een treksterkte van 1 GPa.According to the method described in example 1, a 2 wt.% Solution of iso-tactical polypropylene with a * 3.0 x 10® was spun at 140 ° C and stretched at 130 ° C with a draw ratio of 20. obtained filaments had a tensile strength of 1 GPa.
790 0 9 9 0790 0 9 9 0
Claims (10)
Priority Applications (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NLAANVRAGE7900990,A NL177840C (en) | 1979-02-08 | 1979-02-08 | METHOD FOR MANUFACTURING A POLYTHENE THREAD |
ZA00800528A ZA80528B (en) | 1979-02-08 | 1980-01-29 | Filaments of high tensile strength and modulus |
AU55148/80A AU532451B2 (en) | 1979-02-08 | 1980-02-01 | High tensile filaments |
CH874/80A CH650535C2 (en) | 1979-02-08 | 1980-02-04 | SPUN AND STRETCHED SOLVENT-FREE POLYAETHYLENE FILAMENTS AND PROCESS FOR MAKING SOLVENT-FREE POLYMER FILAMENTS. |
AT0065280A AT380033B (en) | 1979-02-08 | 1980-02-06 | METHOD FOR PRODUCING POLYMER FILAMENTS WITH HIGH TENSILE STRENGTH AND LARGE MODULE |
FR8002571A FR2448587B1 (en) | 1979-02-08 | 1980-02-06 | HIGH STRENGTH AND MODULE TENSILE FILAMENTS AND METHODS FOR THEIR PREPARATIONS |
CS80810A CS235001B2 (en) | 1979-02-08 | 1980-02-06 | Method of polyolefin fibres production with high tensile strength and with modulus of elasticity in tension |
ES488304A ES488304A1 (en) | 1979-02-08 | 1980-02-06 | Dry-spinning polymer filaments |
BR8000775A BR8000775A (en) | 1979-02-08 | 1980-02-07 | PROCESS FOR MANUFACTURING HIGH-MODULE POLYMER FILAMENTS WITH HIGH MODULE TRACTION, AND FILAMENTS SO OBTAINED |
IT47840/80A IT1144056B (en) | 1979-02-08 | 1980-02-07 | PROCEDURE FOR THE PRODUCTION OF PLASTIC FILAMENTS OF HIGH MECHANICAL CHARACTERISTICS AND PRODUCT OBTAINED |
MX808636U MX6124E (en) | 1979-02-08 | 1980-02-07 | PROCEDURE TO MANUFACTURE HIGH TRACTION RESISTANCE AND HIGH MODULE POLYMER FILAMENTS |
JP55014245A JPS6047922B2 (en) | 1979-02-08 | 1980-02-07 | Polyolefin filament with high tensile strength and elastic modulus and method for producing the same |
SE8000997A SE446105B (en) | 1979-02-08 | 1980-02-07 | PROCEDURE FOR MANUFACTURING POLYMER FILMS WITH HIGH DRAWINGS AND MODULES |
BE0/199295A BE881587A (en) | 1979-02-08 | 1980-02-07 | FILAMENTS WITH LARGE TENSILE STRENGTH AND MODULUS |
GB8004157A GB2042414B (en) | 1979-02-08 | 1980-02-07 | Dryspinning polymer filaments |
SU802878003A SU1138041A3 (en) | 1979-02-08 | 1980-02-07 | Method of obtaining polyolefin fibers |
CA000345309A CA1152272A (en) | 1979-02-08 | 1980-02-08 | Filaments of high tensile strength and modulus |
IN149/CAL/80A IN152729B (en) | 1979-02-08 | 1980-02-08 | |
DE19803004699 DE3004699A1 (en) | 1979-02-08 | 1980-02-08 | FILAMENTS WITH GREAT TENSILE STRENGTH AND LARGE MODULE |
DE3051066A DE3051066C2 (en) | 1979-02-08 | 1980-02-08 | |
JP59168737A JPS6075606A (en) | 1979-02-08 | 1984-08-10 | Gel filament |
JP59168738A JPS6075607A (en) | 1979-02-08 | 1984-08-10 | Polyethylene stretched filament |
JP61181840A JPS6245714A (en) | 1979-02-08 | 1986-07-31 | High molecular weight polyethylene stretched filamnent |
MX9203707A MX9203707A (en) | 1979-02-08 | 1992-06-29 | FILAMENTS OF HIGH TRACTION RESISTANCE POLYMERS AND HIGH MODULE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL7900990 | 1979-02-08 | ||
NLAANVRAGE7900990,A NL177840C (en) | 1979-02-08 | 1979-02-08 | METHOD FOR MANUFACTURING A POLYTHENE THREAD |
Publications (3)
Publication Number | Publication Date |
---|---|
NL7900990A true NL7900990A (en) | 1980-08-12 |
NL177840B NL177840B (en) | 1985-07-01 |
NL177840C NL177840C (en) | 1989-10-16 |
Family
ID=19832598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NLAANVRAGE7900990,A NL177840C (en) | 1979-02-08 | 1979-02-08 | METHOD FOR MANUFACTURING A POLYTHENE THREAD |
Country Status (19)
Country | Link |
---|---|
JP (4) | JPS6047922B2 (en) |
AT (1) | AT380033B (en) |
AU (1) | AU532451B2 (en) |
BE (1) | BE881587A (en) |
BR (1) | BR8000775A (en) |
CA (1) | CA1152272A (en) |
CH (1) | CH650535C2 (en) |
CS (1) | CS235001B2 (en) |
DE (2) | DE3004699A1 (en) |
ES (1) | ES488304A1 (en) |
FR (1) | FR2448587B1 (en) |
GB (1) | GB2042414B (en) |
IN (1) | IN152729B (en) |
IT (1) | IT1144056B (en) |
MX (1) | MX6124E (en) |
NL (1) | NL177840C (en) |
SE (1) | SE446105B (en) |
SU (1) | SU1138041A3 (en) |
ZA (1) | ZA80528B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009105926A1 (en) | 2008-02-26 | 2009-09-03 | 山东爱地高分子材料有限公司 | 10-50 g/d high strength polyethylene fiber and preparation method thereof |
WO2012062053A1 (en) | 2010-11-08 | 2012-05-18 | 宁波大成新材料股份有限公司 | Preparation method for ultrahigh molecular weight polyethylene fiber |
Families Citing this family (224)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL177840C (en) * | 1979-02-08 | 1989-10-16 | Stamicarbon | METHOD FOR MANUFACTURING A POLYTHENE THREAD |
NL177759B (en) * | 1979-06-27 | 1985-06-17 | Stamicarbon | METHOD OF MANUFACTURING A POLYTHYTHREAD, AND POLYTHYTHREAD THEREFORE OBTAINED |
US4385026A (en) | 1979-08-13 | 1983-05-24 | Imperial Chemical Industries Limited | Removal of solvent from gels of high molecular weight crystalline polymers |
US4360488A (en) | 1979-08-13 | 1982-11-23 | Imperial Chemical Industries Limited | Removal of solvent from gels of poly(hydroxybutyrate) and shaped articles formed therefrom |
NL8006994A (en) * | 1980-12-23 | 1982-07-16 | Stamicarbon | LARGE TENSILE FILAMENTS AND MODULUS AND METHOD OF MANUFACTURE THEREOF. |
US4413110A (en) | 1981-04-30 | 1983-11-01 | Allied Corporation | High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore |
AU549453B2 (en) * | 1981-04-30 | 1986-01-30 | Allied Corporation | High tenacity, high modulus, cyrstalline thermoplastic fibres |
NL8104728A (en) * | 1981-10-17 | 1983-05-16 | Stamicarbon | METHOD FOR MANUFACTURING POLYETHENE FILAMENTS WITH GREAT TENSILE STRENGTH |
US4551296A (en) * | 1982-03-19 | 1985-11-05 | Allied Corporation | Producing high tenacity, high modulus crystalline article such as fiber or film |
DE3365055D1 (en) * | 1982-03-19 | 1986-09-11 | Allied Corp | Coated extended chain polyolefin fiber |
US4543286A (en) * | 1982-03-19 | 1985-09-24 | Allied Corporation | Composite containing coated extended chain polyolefin fibers |
US4713290A (en) * | 1982-09-30 | 1987-12-15 | Allied Corporation | High strength and modulus polyvinyl alcohol fibers and method of their preparation |
US4440711A (en) * | 1982-09-30 | 1984-04-03 | Allied Corporation | Method of preparing high strength and modulus polyvinyl alcohol fibers |
US4455273A (en) * | 1982-09-30 | 1984-06-19 | Allied Corporation | Producing modified high performance polyolefin fiber |
US4584347A (en) * | 1982-09-30 | 1986-04-22 | Allied Corporation | Modified polyolefin fiber |
US4599267A (en) * | 1982-09-30 | 1986-07-08 | Allied Corporation | High strength and modulus polyvinyl alcohol fibers and method of their preparation |
US4819458A (en) * | 1982-09-30 | 1989-04-11 | Allied-Signal Inc. | Heat shrunk fabrics provided from ultra-high tenacity and modulus fibers and methods for producing same |
JPS59130313A (en) * | 1982-12-28 | 1984-07-26 | Mitsui Petrochem Ind Ltd | Manufacture of drawn ultra-high-molecular-weight polyethylene |
JPS59187614A (en) * | 1983-04-07 | 1984-10-24 | Mitsui Petrochem Ind Ltd | Drawn polyethylene material having ultrahigh molecular weight |
US5135804A (en) * | 1983-02-18 | 1992-08-04 | Allied-Signal Inc. | Network of polyethylene fibers |
HU187234B (en) * | 1983-05-13 | 1985-11-28 | Kaposplast Kefe Es Mueanyagipa | Hop guiding monofil |
JPS59216912A (en) * | 1983-05-20 | 1984-12-07 | Toyobo Co Ltd | Production of polyethylene fiber having high strength and modulus of elasticity |
EP0135253B2 (en) * | 1983-06-16 | 1993-04-21 | Agency Of Industrial Science And Technology | Process for producing an ultrahigh-molecular-weight polyethylene composition |
JPS6052647A (en) * | 1983-08-30 | 1985-03-25 | 東洋紡績株式会社 | Gel fiber and gel film stretching method |
JPS59216913A (en) * | 1983-10-22 | 1984-12-07 | Toyobo Co Ltd | Polyethylene fiber having high strength and modulus of elasticity |
JPS59216914A (en) * | 1983-10-22 | 1984-12-07 | Toyobo Co Ltd | Production of polyethylene fiber having ultrahigh tenacity |
EP0144793B1 (en) | 1983-12-05 | 1988-10-12 | AlliedSignal Inc. | High tenacity and modulus polyacrylonitrile fiber and method |
JPS60167918A (en) * | 1984-02-06 | 1985-08-31 | Kuraray Co Ltd | Method for drawing high-tenacity polyethylene fiber |
JPS60173114A (en) * | 1984-02-16 | 1985-09-06 | Toyobo Co Ltd | Treatment of formed gel |
JPS60186448A (en) * | 1984-02-29 | 1985-09-21 | 東洋紡績株式会社 | Fiber reinforced cement product |
JPS60194109A (en) * | 1984-03-07 | 1985-10-02 | Kuraray Co Ltd | Drawing of high molecular weight polyethylene fiber |
CA1216119A (en) * | 1984-05-16 | 1987-01-06 | Mitsui Chemicals, Incorporated | Process for producing stretched article of ultrahigh- molecular weight polyethylene |
JPS60244524A (en) * | 1984-05-18 | 1985-12-04 | Mitsui Petrochem Ind Ltd | Preparation of stretched polyethylene article |
NL8402964A (en) * | 1984-09-28 | 1986-04-16 | Stamicarbon | PROCESS FOR PREPARING HIGH TENSILE AND HIGH MODULUS POLYALKENE FILMS |
JPS61252313A (en) * | 1984-11-02 | 1986-11-10 | Toray Ind Inc | Polyvinyl alcohol yarn having improved knot strength and production thereof |
JPH0670283B2 (en) * | 1984-11-02 | 1994-09-07 | 東レ株式会社 | Method for producing high-strength, high-modulus polyvinyl alcohol fiber |
JPH0696807B2 (en) * | 1984-11-02 | 1994-11-30 | 東レ株式会社 | High-strength, high-modulus polyvinyl alcohol fiber manufacturing method |
JPS61124621A (en) * | 1984-11-19 | 1986-06-12 | Ntn Toyo Bearing Co Ltd | Production of polyethylene fiber of ultra-high-molecular-weight |
US4663101A (en) * | 1985-01-11 | 1987-05-05 | Allied Corporation | Shaped polyethylene articles of intermediate molecular weight and high modulus |
JPH06102847B2 (en) * | 1985-05-31 | 1994-12-14 | 三井石油化学工業株式会社 | Plastic wire and method for producing the same |
JPS61207616A (en) * | 1985-03-06 | 1986-09-16 | Teijin Ltd | Production of formed polyester having high strength |
JPH0327430Y2 (en) * | 1985-05-16 | 1991-06-13 | ||
JPS61202489U (en) * | 1985-06-11 | 1986-12-19 | ||
EP0205960B1 (en) * | 1985-06-17 | 1990-10-24 | AlliedSignal Inc. | Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber |
US5032338A (en) * | 1985-08-19 | 1991-07-16 | Allied-Signal Inc. | Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution |
NL8502315A (en) * | 1985-08-23 | 1987-03-16 | Stamicarbon | ARTICLES OF HIGH STRENGTH AND MODULUS POLYVINYL ALCOHOL AND METHOD FOR MANUFACTURING THE SAME |
ATE65818T1 (en) | 1985-11-07 | 1991-08-15 | Akzo Nv | PLASTIC REINFORCEMENT ELEMENT USABLE IN REINFORCED CONCRETE, ESPECIALLY IN PRESTRESSED CONCRETE, REINFORCED CONCRETE PROVIDED WITH SUCH REINFORCEMENT ELEMENTS AND METHODS FOR PRODUCTION OF REINFORCEMENT ELEMENTS AND REINFORCED AND PRESTRESSED CONCRETE. |
US4681792A (en) * | 1985-12-09 | 1987-07-21 | Allied Corporation | Multi-layered flexible fiber-containing articles |
JPS62141110A (en) * | 1985-12-11 | 1987-06-24 | Canon Inc | Production of gelatinous fiber |
JPS62184110A (en) * | 1986-02-06 | 1987-08-12 | Toray Ind Inc | Novel polyethylene filament |
JPS62257414A (en) * | 1986-05-01 | 1987-11-10 | Mitsui Petrochem Ind Ltd | Highly orientated molded article of ultra-high-molecular-weight polyethylene and production thereof |
NL8602912A (en) * | 1986-11-17 | 1988-06-16 | Stamicarbon | ARTICLES OF ETHYLENE-VINYL ALCOHOL COPOLYMERS WITH HIGH STRENGTH AND MODULUS, AND METHOD FOR MANUFACTURING THE SAME |
JPS63175111A (en) * | 1987-01-09 | 1988-07-19 | Toyobo Co Ltd | Crosslinked high-tenacity and high-elastic modulus polyethylene fiber |
US5248471A (en) * | 1987-07-06 | 1993-09-28 | Alliedsignal Inc. | Process for forming fibers |
JPH01156537A (en) * | 1987-10-02 | 1989-06-20 | Stamicarbon Bv | Combination of polymer filament or yarn having low friction coefficient and filament or yarn having high friction coefficient |
DE3733446A1 (en) * | 1987-10-02 | 1989-04-20 | Stamicarbon | Combination of threads having markedly different coefficients of expansion in a matrix and its use |
NL8901266A (en) * | 1989-05-19 | 1990-12-17 | Stamicarbon | METHOD FOR MANUFACTURING A STRETCHED ROPE |
US5176862A (en) * | 1989-05-19 | 1993-01-05 | Dsm N.V. | Process for the manufacture of stretched rope |
JPH02160910A (en) * | 1989-11-20 | 1990-06-20 | Kuraray Co Ltd | High-tenacity polyvinyl alcohol-based synthetic fiber |
NL9000892A (en) * | 1990-04-14 | 1991-11-01 | Stamicarbon | REINFORCED VENEER LAMINATE, COMPRISING AT LEAST ONE LAYER VENEER AND ONE LAYER INCLUDING POLYALKEN FIBERS. |
JP3070694B2 (en) * | 1991-06-11 | 2000-07-31 | 三井化学株式会社 | Ultra-high molecular weight stretched polypropylene article and method for producing the same |
US5213745A (en) * | 1991-12-09 | 1993-05-25 | Allied-Signal Inc. | Method for removal of spinning solvent from spun fiber |
US5230854A (en) * | 1991-12-09 | 1993-07-27 | Allied-Signal Inc. | Method for removal of spinning solvent from spun fiber |
NL9200625A (en) * | 1992-04-03 | 1993-11-01 | Dsm Nv | NON-WOVEN POLYOLEFINE FIBER LAYER FOR USE IN A LAYERED ANTIBALLISTIC STRUCTURE. |
BE1007230A3 (en) * | 1993-06-23 | 1995-04-25 | Dsm Nv | COMPOSITE JOB mutually parallel fibers in a matrix. |
US5429184A (en) * | 1994-03-28 | 1995-07-04 | Minntech Corporation | Wound heat exchanger oxygenator |
NL1000581C2 (en) * | 1995-06-16 | 1996-12-17 | Dsm Nv | Method for dyeing a highly oriented high molecular weight polyethylene molded parts and articles. |
US6893704B1 (en) | 1995-06-20 | 2005-05-17 | Dsm Ip Assets B.V. | Ballistic-resistant moulded article and a process for the manufacture of the moulded article |
NL1000598C2 (en) | 1995-06-20 | 1996-12-23 | Dsm Nv | Anti-ballistic molded part and a method of manufacturing the molded part. |
US5955019A (en) * | 1997-10-06 | 1999-09-21 | Shell Oil Company | Solution spinning polyketone fibers |
US5977231A (en) * | 1997-10-06 | 1999-11-02 | Shell Oil Company | Polyketone solvents |
US5929150A (en) * | 1997-10-06 | 1999-07-27 | Shell Oil Company | Polyketone solvents |
US6723267B2 (en) | 1998-10-28 | 2004-04-20 | Dsm N.V. | Process of making highly oriented polyolefin fiber |
NL1010413C1 (en) * | 1998-10-28 | 2000-05-01 | Dsm Nv | Highly oriented polyolefin fiber. |
WO2002048436A1 (en) | 2000-12-11 | 2002-06-20 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fiber |
JP4389142B2 (en) | 2001-08-08 | 2009-12-24 | 東洋紡績株式会社 | Method for producing high-strength polyethylene fiber |
DE10244310C1 (en) * | 2002-09-23 | 2003-12-18 | Hoffmann Air Cargo Equipment G | Air freight netting, of synthetic filament cables, has a woven center section and structured edge strips with edge loops, to be secured to the pallet fasteners |
NL1021805C2 (en) | 2002-11-01 | 2004-05-06 | Dsm Nv | Method for the manufacture of an antiballistic molding. |
PT1587752E (en) | 2003-01-30 | 2007-05-31 | Dsm Ip Assets Bv | Roundsling |
US7344668B2 (en) | 2003-10-31 | 2008-03-18 | Honeywell International Inc. | Process for drawing gel-spun polyethylene yarns |
US7811673B2 (en) | 2003-12-12 | 2010-10-12 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fiber |
ES2320220T3 (en) | 2004-01-01 | 2009-05-20 | Dsm Ip Assets B.V. | BULLET RESISTANT ARTICLE. |
CA2571053A1 (en) | 2004-07-02 | 2006-01-12 | Dsm Ip Assets B.V. | Flexible ballistic-resistant assembly |
US20080287990A1 (en) * | 2004-07-27 | 2008-11-20 | Dsm Ip Assets B.V. | Elongated Surgical Repair Product Based on Uhmwpe Filaments |
IL208111A (en) * | 2004-08-16 | 2012-03-29 | Yuval Fuchs | Methods for manufacturing an ultra high molecular weight polyethylene film |
US7147807B2 (en) | 2005-01-03 | 2006-12-12 | Honeywell International Inc. | Solution spinning of UHMW poly (alpha-olefin) with recovery and recycling of volatile spinning solvent |
US20070293109A1 (en) | 2005-06-16 | 2007-12-20 | Ashok Bhatnagar | Composite material for stab, ice pick and armor applications |
TW200714471A (en) | 2005-06-30 | 2007-04-16 | Dsm Ip Assets Bv | Ballistic-resistant article |
US7648607B2 (en) * | 2005-08-17 | 2010-01-19 | Innegrity, Llc | Methods of forming composite materials including high modulus polyolefin fibers |
US8057887B2 (en) * | 2005-08-17 | 2011-11-15 | Rampart Fibers, LLC | Composite materials including high modulus polyolefin fibers |
US7892633B2 (en) * | 2005-08-17 | 2011-02-22 | Innegrity, Llc | Low dielectric composite materials including high modulus polyolefin fibers |
KR20080089603A (en) * | 2005-12-22 | 2008-10-07 | 디에스엠 아이피 어셋츠 비.브이. | Surgical repair product comprising uhmwpe filaments |
CN101346497B (en) * | 2005-12-22 | 2011-08-10 | 帝斯曼知识产权资产管理有限公司 | Surgical repair product comprising uhmwpe filaments |
CN101360854B (en) | 2006-01-18 | 2011-06-15 | 优知亚米有限公司 | Tapered multifilament yarn and process for producing the same |
EP1999428A2 (en) | 2006-03-24 | 2008-12-10 | Honeywell International Inc. | Improved ceramic ballistic panel construction |
WO2007119480A1 (en) | 2006-04-07 | 2007-10-25 | Toyo Boseki Kabushiki Kaisha | Polyethylene fiber and method for production thereof |
CA2650447C (en) | 2006-04-26 | 2015-06-23 | Dsm Ip Assets B.V. | Multilayered material sheet and process for its preparation |
JP5357009B2 (en) | 2006-04-26 | 2013-12-04 | ディーエスエム アイピー アセッツ ビー.ブイ. | Multilayer material sheet and method for preparing the same |
US7846363B2 (en) | 2006-08-23 | 2010-12-07 | Honeywell International Inc. | Process for the preparation of UHMW multi-filament poly(alpha-olefin) yarns |
ATE478178T1 (en) | 2006-11-08 | 2010-09-15 | Panpan Hu | METHOD FOR PRODUCING ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE FIBERS |
MX2009006774A (en) | 2006-12-22 | 2009-07-06 | Dsm Ip Assets Bv | Ballistic resistant sheet and ballistic resistant article. |
CN201066259Y (en) | 2006-12-22 | 2008-05-28 | 帝斯曼知识产权资产管理有限公司 | Armor and armored vest |
EP2122194B1 (en) | 2007-01-22 | 2016-03-09 | DSM IP Assets B.V. | Chain comprising a plurality of interconnected links |
EP2128316B1 (en) | 2007-01-29 | 2012-07-11 | Y.G.K Co., Ltd. | Luminescent composite yarn |
US8017529B1 (en) | 2007-03-21 | 2011-09-13 | Honeywell International Inc. | Cross-plied composite ballistic articles |
US8256019B2 (en) | 2007-08-01 | 2012-09-04 | Honeywell International Inc. | Composite ballistic fabric structures for hard armor applications |
DE102007051675B4 (en) | 2007-10-26 | 2011-11-24 | Hoffmann Air Cargo Equipment Gmbh | Method of making seams on webbings for technical purposes |
US20110174147A1 (en) | 2007-10-31 | 2011-07-21 | Reinard Jozef Maria Steeman | Material sheet and process for its preparation |
WO2009056286A1 (en) | 2007-11-01 | 2009-05-07 | Dsm Ip Assets B.V. | Material sheet and process for its preparation |
KR101576509B1 (en) | 2008-03-17 | 2015-12-10 | 가부시키가이샤 와이.지.케이 | Fishing line of core-sheath structure containing short fibers |
EP2112259A1 (en) | 2008-04-22 | 2009-10-28 | DSM IP Assets B.V. | Abrasion resistant fabric |
EA019783B1 (en) | 2008-04-29 | 2014-06-30 | ДСМ АйПи АССЕТС Б.В. | Stack of first and second layers, a panel and a ballistic resistant article comprising the stack or panel |
KR20110041485A (en) | 2008-06-23 | 2011-04-21 | 디에스엠 아이피 어셋츠 비.브이. | Cargo net |
US8474237B2 (en) | 2008-06-25 | 2013-07-02 | Honeywell International | Colored lines and methods of making colored lines |
DE102008032199A1 (en) | 2008-07-09 | 2010-01-14 | Hoffmann Air Cargo Equipment Gmbh | Air freight net for securing freight onto pallet, has meshes which are formed from interconnected rope lines, where rope lines consist of individual strings |
JP5606917B2 (en) | 2008-10-14 | 2014-10-15 | 株式会社ワイ・ジー・ケー | A fishing line in which composite yarns containing short fibers are integrated |
EP2358528B1 (en) | 2008-12-11 | 2014-03-12 | DSM IP Assets B.V. | Transparent antiballistic article and method for its preparation |
WO2010106143A1 (en) | 2009-03-20 | 2010-09-23 | Dsm Ip Assets B.V. | Net for aquaculture |
AU2010240905B2 (en) | 2009-04-23 | 2016-08-11 | Dsm Ip Assets B.V. | Compressed sheet |
PT2462275T (en) | 2009-08-04 | 2016-08-26 | Dsm Ip Assets Bv | Coated high strength fibers, strands and ropes and method of manufacturing the same |
BR112012002679A2 (en) | 2009-08-06 | 2016-04-12 | Dsm Ip Assets Bv | hppe wires |
EA021297B1 (en) | 2009-10-12 | 2015-05-29 | ДСМ АйПи АССЕТС Б.В. | Method for the manufacturing of a low shrinkage flexible sheet |
US20110113534A1 (en) | 2009-11-17 | 2011-05-19 | E.I.Du Pont De Nemours And Company | Impact Resistant Composite Article |
US8895138B2 (en) | 2009-11-17 | 2014-11-25 | E I Du Pont De Nemours And Company | Impact resistant composite article |
CA2784108C (en) | 2009-12-17 | 2020-03-24 | Dsm Ip Assets B.V. | Process for the manufacture of a multilayer material sheet, multilayer material sheet and use thereof |
EP2513915A1 (en) | 2009-12-17 | 2012-10-24 | DSM IP Assets B.V. | Electrical cable |
EP2521869B1 (en) | 2010-01-07 | 2018-11-21 | DSM IP Assets B.V. | Hybrid rope |
WO2011104310A1 (en) | 2010-02-24 | 2011-09-01 | Dsm Ip Assets B.V. | Method for winding and unwinding a synthetic rope on a winch drum |
WO2011138286A1 (en) | 2010-05-06 | 2011-11-10 | Dsm Ip Assets B.V. | Article comprising polymeric tapes |
US8904741B2 (en) | 2010-06-08 | 2014-12-09 | Dsm Ip Assets B.V. | Hybrid rope |
WO2011154383A1 (en) | 2010-06-08 | 2011-12-15 | Dsm Ip Assets B.V. | Protected hmpe rope |
EP2599090A1 (en) | 2010-07-26 | 2013-06-05 | DSM IP Assets B.V. | Tether for renewable energy systems |
WO2012013738A1 (en) | 2010-07-29 | 2012-02-02 | Dsm Ip Assets B.V. | Ballistic resistant article |
WO2012032082A1 (en) | 2010-09-08 | 2012-03-15 | Dsm Ip Assets B.V. | Multi-ballistic-impact resistant article |
US8479801B2 (en) | 2010-11-16 | 2013-07-09 | Advanced Composite Structures, Llc | Fabric closure with an access opening for cargo containers |
US9174796B2 (en) | 2010-11-16 | 2015-11-03 | Advanced Composite Structures, Llc | Fabric closure with an access opening for cargo containers |
CN103314460B (en) | 2010-11-18 | 2016-08-24 | 帝斯曼知识产权资产管理有限公司 | Flexible generator |
US9687593B2 (en) | 2010-12-10 | 2017-06-27 | Dsm Ip Assets B.V. | HPPE member and method of making a HPPE member |
US10767290B2 (en) | 2010-12-14 | 2020-09-08 | Dsm Ip Assets B.V. | Tape and products containing the same |
KR101952461B1 (en) | 2010-12-14 | 2019-02-26 | 디에스엠 아이피 어셋츠 비.브이. | Material for radomes and process for making the same |
EP2481847A1 (en) | 2011-01-31 | 2012-08-01 | DSM IP Assets B.V. | UV-Stabilized high strength fiber |
KR20140009348A (en) | 2011-02-17 | 2014-01-22 | 디에스엠 아이피 어셋츠 비.브이. | Enhanced transmission-energy material and method for manufacturing the same |
EP2678464B1 (en) | 2011-02-24 | 2016-06-29 | DSM IP Assets B.V. | Multistage drawing process for drawing polymeric elongated objects |
KR101904567B1 (en) | 2011-03-04 | 2018-10-04 | 디에스엠 아이피 어셋츠 비.브이. | Geodesic radome |
EP2688732B1 (en) | 2011-03-22 | 2015-05-06 | DSM IP Assets B.V. | Radome wall |
WO2012140017A1 (en) | 2011-04-12 | 2012-10-18 | Dsm Ip Assets B.V. | Barrier system |
MX349304B (en) | 2011-04-13 | 2017-07-20 | Dsm Ip Assets Bv | Creep-optimized uhmwpe fiber. |
CA2834707A1 (en) | 2011-05-10 | 2012-11-15 | Dsm Ip Assets B.V. | Yarn, a process for making the yarn, and products containing the yarn |
AU2012277803A1 (en) | 2011-06-28 | 2014-01-16 | Dsm Ip Assets B.V. | Aquatic-predator resistant net |
EP2744933A1 (en) | 2011-08-18 | 2014-06-25 | DSM IP Assets B.V. | Abrasion resistant yarn |
CN103828124A (en) | 2011-09-12 | 2014-05-28 | 帝斯曼知识产权资产管理有限公司 | Composite radome wall |
KR101954474B1 (en) | 2011-11-21 | 2019-03-05 | 디에스엠 아이피 어셋츠 비.브이. | Polyolefin fiber |
EP2794258B1 (en) | 2011-12-19 | 2018-03-21 | DSM IP Assets B.V. | Flexible composite material and use hereof, process for making a flexible composite material |
US9623626B2 (en) | 2012-02-28 | 2017-04-18 | Dsm Ip Assets B.V. | Flexible composite material and use hereof, process for making a flexible composite material |
EP2815006B1 (en) | 2012-02-16 | 2018-01-31 | DSM IP Assets B.V. | Process to enhance coloration of uhmwpe article, the colored article and products containing the article |
WO2013128006A2 (en) | 2012-03-01 | 2013-09-06 | Dsm Ip Assets B.V. | Method and device for impregnating a rope with a liquid material |
CN104159730B (en) | 2012-03-09 | 2017-05-10 | 帝斯曼知识产权资产管理有限公司 | Composite panel |
MX355157B (en) | 2012-03-12 | 2018-04-06 | Dsm Ip Assets Bv | Umbilical. |
WO2013139784A1 (en) | 2012-03-20 | 2013-09-26 | Dsm Ip Assets B.V. | Polyolefin fiber |
EP2834398A1 (en) | 2012-04-03 | 2015-02-11 | DSM IP Assets B.V. | Polymeric yarn and method for manufacturing |
KR102124662B1 (en) | 2012-06-11 | 2020-06-24 | 디에스엠 아이피 어셋츠 비.브이. | Endless shaped article |
CA2879232A1 (en) | 2012-07-17 | 2014-01-23 | Dsm Ip Assets B.V. | Abrasion resistant product |
JP5569664B1 (en) | 2012-09-28 | 2014-08-13 | 東洋紡株式会社 | braid |
WO2014057035A1 (en) | 2012-10-11 | 2014-04-17 | Dsm Ip Assets B.V. | Wireless power transfer system |
US9902466B2 (en) | 2012-10-11 | 2018-02-27 | Dsm Ip Assets B.V. | Offshore drilling or production vessel with single length mooring line of high strength polyolefin fibers |
IN2015DN01682A (en) | 2012-10-12 | 2015-07-03 | Dsm Ip Assets Bv | |
EP2920486B1 (en) | 2012-11-19 | 2017-04-05 | DSM IP Assets B.V. | Heavy-duty chain |
WO2014195963A2 (en) * | 2013-05-21 | 2014-12-11 | Reliance Industries Limited | Compact polymeric gel and fibers made therefrom |
EP3017270A1 (en) | 2013-07-02 | 2016-05-11 | DSM IP Assets B.V. | Composite antiballistic radome walls and methods of making the same |
US10215538B2 (en) | 2013-08-07 | 2019-02-26 | Dsm Ip Assets B.V. | Ballistic resistant sheets, articles comprising such sheets and methods of making the same |
US9771440B2 (en) | 2013-10-25 | 2017-09-26 | Dsm Ip Assets B.V. | Preparation of ultra high molecular weight polyethylene |
ES2805362T5 (en) | 2013-10-25 | 2023-07-24 | Dsm Ip Assets Bv | Preparation of Ultra High Molecular Weight Ethylene Copolymer |
BR122020002315B1 (en) | 2013-10-29 | 2021-06-15 | Braskem S.A. | METHOD AND SYSTEM FOR MECHANICAL PRE-RECOVERY OF AT LEAST ONE LIQUID IN AT LEAST ONE POLYMERIC WIRE |
WO2015071133A1 (en) | 2013-11-12 | 2015-05-21 | Dsm Ip Assets B.V. | Abrasion resistant fabric |
US9879757B2 (en) | 2013-12-10 | 2018-01-30 | Dsm Ip Assets B.V. | Chain comprising polymeric links and a spacer |
CN106164347A (en) | 2014-03-28 | 2016-11-23 | 东洋纺株式会社 | Multifilament and braid |
EP3164549B1 (en) | 2014-07-01 | 2020-09-30 | DSM IP Assets B.V. | Structures comprising ultrahigh molecular weight polyethylene fibers |
CA3155880A1 (en) * | 2014-10-31 | 2016-05-06 | Hardwire, Llc | Soft ballistic resistant armor |
WO2016089969A2 (en) | 2014-12-02 | 2016-06-09 | Braskem America, Inc. | Continuous method and system for the production of at least one polymeric yarn and polymeric yarn |
US10626531B2 (en) | 2015-02-20 | 2020-04-21 | Toyobo Co., Ltd. | Multifilament and braid using same |
KR102588339B1 (en) | 2015-05-28 | 2023-10-11 | 디에스엠 아이피 어셋츠 비.브이. | hybrid chain link |
CA2984055A1 (en) | 2015-05-28 | 2016-12-01 | Dsm Ip Assets B.V. | Hybrid chain link |
WO2016189120A1 (en) | 2015-05-28 | 2016-12-01 | Dsm Ip Assets B.V. | Polymeric chain link |
MX2018003392A (en) | 2015-09-18 | 2018-06-12 | Dsm Ip Assets Bv | Preformed sheet and ballistic-resistant article. |
US10773881B2 (en) | 2015-10-05 | 2020-09-15 | Advanced Composite Structures, Llc | Air cargo container and curtain for the same |
US11149122B2 (en) | 2015-10-09 | 2021-10-19 | Dsm Ip Assets B.V. | High performance fibres composite sheet |
AU2016354626A1 (en) | 2015-11-13 | 2018-04-26 | Dsm Ip Assets B.V. | Impact resistant composite material |
CN108351191A (en) | 2015-11-13 | 2018-07-31 | 帝斯曼知识产权资产管理有限公司 | Impact resistance composite material |
EP3202702A1 (en) | 2016-02-02 | 2017-08-09 | DSM IP Assets B.V. | Method for bending a tension element over a pulley |
WO2018002229A1 (en) | 2016-07-01 | 2018-01-04 | Dsm Ip Assets B.V. | Multilayer hybrid composite |
WO2018122120A1 (en) | 2016-12-29 | 2018-07-05 | Dsm Ip Assets B.V. | Multilayer composite material and method for manufacturing |
AU2017385513B2 (en) | 2016-12-29 | 2023-02-02 | Avient Protective Materials B.V. | Multilayer composite material and method for manufacturing |
TWI818905B (en) | 2017-03-20 | 2023-10-21 | 荷蘭商帝斯曼知識產權資產管理有限公司 | Three dimensional shaped article and process for the manufacture of the same |
US20210102313A1 (en) | 2017-04-03 | 2021-04-08 | Dsm Ip Assets B.V. | High performance fibres hybrid sheet |
WO2018185049A1 (en) | 2017-04-03 | 2018-10-11 | Dsm Ip Assets B.V. | Cut resistant filled lenghty body |
WO2018184821A1 (en) | 2017-04-06 | 2018-10-11 | Dsm Ip Assets B.V. | High performance fibers composite sheet |
US11661485B2 (en) | 2017-04-06 | 2023-05-30 | Avient Protective Materials B.V. | High performance fibers composite sheet |
KR102703350B1 (en) | 2017-07-14 | 2024-09-04 | 아비엔트 프로텍티브 머티리얼스 비.브이. | Homogeneous filler |
WO2019012129A1 (en) | 2017-07-14 | 2019-01-17 | Dsm Ip Assets B.V. | Homogeneous filled yarn |
WO2019074864A1 (en) | 2017-10-10 | 2019-04-18 | Advanced Composite Structures, Llc | Latch for air cargo container doors |
EP3727834A1 (en) | 2017-12-18 | 2020-10-28 | DSM IP Assets B.V. | Ballistic-resistant molded article |
CA3084711A1 (en) | 2017-12-18 | 2019-06-27 | Dsm Ip Assets B.V. | Ballistic-resistant curved molded article |
CN111511812A (en) | 2017-12-21 | 2020-08-07 | 帝斯曼知识产权资产管理有限公司 | Hybrid fabric of high performance polyethylene fibers |
WO2019121675A1 (en) | 2017-12-22 | 2019-06-27 | Dsm Ip Assets B.V. | Method to produce a high performance polyethylene fibers composite fabric |
WO2019121663A1 (en) | 2017-12-22 | 2019-06-27 | Dsm Ip Assets B.V. | High performance polyethylene fibers composite fabric |
IL310539A (en) | 2017-12-22 | 2024-03-01 | Dsm Ip Assets Bv | High performance fibers composite sheet |
WO2019166574A1 (en) | 2018-03-01 | 2019-09-06 | Dsm Ip Assets B.V. | Abrasion resistant fabric |
US20210299332A1 (en) | 2018-03-06 | 2021-09-30 | Dsm Ip Assets B.V. | Osteoconductive fibers, medical implant comprising such osteoconductive fibers, and methods of making |
WO2020118385A1 (en) | 2018-12-12 | 2020-06-18 | Smiljanic Mario | Underwater parachute propulsion system |
SG10201811534WA (en) | 2018-12-21 | 2020-07-29 | Dsm Ip Assets Bv | Ballistic-resistant molded article |
CN113490516B (en) | 2019-03-01 | 2022-11-08 | 帝斯曼知识产权资产管理有限公司 | Method for preparing composite biological textile and medical implant comprising composite biological textile |
CA3130173A1 (en) | 2019-03-01 | 2020-09-10 | Dsm Ip Assets B.V. | Medical implant component comprising a composite biotextile and method of making |
US20220235492A1 (en) | 2019-05-14 | 2022-07-28 | Toyobo Co., Ltd. | Polyethylene fiber |
US11981498B2 (en) | 2019-06-28 | 2024-05-14 | Advanced Composite Structures, Llc | Thermally insulated air cargo container |
EP3997184A1 (en) | 2019-07-08 | 2022-05-18 | DSM IP Assets B.V. | Strong and stretchable seam tape |
WO2021089529A1 (en) | 2019-11-04 | 2021-05-14 | Dsm Ip Assets B.V. | Polymer filled polyolefin fiber |
CN114829154B (en) | 2019-12-20 | 2024-03-26 | 埃万特防护材料有限公司 | Sublimation printing of heat sensitive materials |
JP2023515741A (en) | 2019-12-20 | 2023-04-14 | ディーエスエム プロテクティブ マテリアルズ ビー.ブイ. | Multi-layer composite containing skeletal film |
KR20230058149A (en) | 2020-09-01 | 2023-05-02 | 디에스엠 아이피 어셋츠 비.브이. | Polyurethane composite sheet, method for producing such composite sheet and use thereof in the manufacture of medical implants |
BR112023025267A2 (en) | 2021-06-04 | 2024-02-20 | Avient Protective Mat B V | BALLISTIC RESISTANT HYBRID MOLDED ARTICLE |
JP2024521341A (en) | 2021-06-04 | 2024-05-31 | アビエント プロテクティブ マテリアルズ ビー. ブイ. | Compression Molded Ballistic Articles |
EP4399356A1 (en) | 2021-09-07 | 2024-07-17 | Avient Protective Materials B.V. | Composite elongated body |
CA3237308A1 (en) | 2021-11-10 | 2023-10-05 | Dupont Safety & Construction, Inc. | Ballistic resistant material made of mechanically entangled woven fabrics without nonwoven fibers and method of making thereof |
US12091239B2 (en) | 2021-11-11 | 2024-09-17 | Advanced Composite Structures, Llc | Formed structural panel with open core |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL230916A (en) * | ||||
BE556923A (en) * | 1956-12-08 | |||
US3742104A (en) * | 1970-05-08 | 1973-06-26 | Celanese Corp | Production of shaped synthetic articles having improved dyeability |
AT355303B (en) * | 1975-07-14 | 1980-02-25 | Ceskoslovenska Akademie Ved | METHOD FOR PRODUCING MOLDED PRODUCTS FROM CRYSTALLINE POLYMERS AND COPOLYMERS OF ACRYLNITRILE |
US4020230A (en) * | 1975-10-03 | 1977-04-26 | The Dow Chemical Company | Microporous polyethylene hollow fibers and process of preparing them |
GB1568964A (en) * | 1975-11-05 | 1980-06-11 | Nat Res Dev | Oriented polymer materials |
DE2558384C3 (en) * | 1975-12-23 | 1984-11-08 | Bayer Ag, 5090 Leverkusen | Modacrylic fibers and threads with a stable gloss and process for their production |
NL7605370A (en) * | 1976-05-20 | 1977-11-22 | Stamicarbon | PROCESS FOR THE CONTINUOUS MANUFACTURE OF FIBER POLYMER CRYSTALS. |
DE2713456C2 (en) * | 1977-03-26 | 1990-05-31 | Bayer Ag, 5090 Leverkusen | Process for the production of hydrophilic fibers |
NL177840C (en) * | 1979-02-08 | 1989-10-16 | Stamicarbon | METHOD FOR MANUFACTURING A POLYTHENE THREAD |
US6020230A (en) * | 1998-04-22 | 2000-02-01 | Texas Instruments-Acer Incorporated | Process to fabricate planarized deep-shallow trench isolation having upper and lower portions with oxidized semiconductor trench fill in the upper portion and semiconductor trench fill in the lower portion |
-
1979
- 1979-02-08 NL NLAANVRAGE7900990,A patent/NL177840C/en not_active IP Right Cessation
-
1980
- 1980-01-29 ZA ZA00800528A patent/ZA80528B/en unknown
- 1980-02-01 AU AU55148/80A patent/AU532451B2/en not_active Expired
- 1980-02-04 CH CH874/80A patent/CH650535C2/en not_active IP Right Cessation
- 1980-02-06 ES ES488304A patent/ES488304A1/en not_active Expired
- 1980-02-06 FR FR8002571A patent/FR2448587B1/en not_active Expired
- 1980-02-06 CS CS80810A patent/CS235001B2/en unknown
- 1980-02-06 AT AT0065280A patent/AT380033B/en not_active IP Right Cessation
- 1980-02-07 GB GB8004157A patent/GB2042414B/en not_active Expired
- 1980-02-07 BE BE0/199295A patent/BE881587A/en not_active IP Right Cessation
- 1980-02-07 BR BR8000775A patent/BR8000775A/en not_active IP Right Cessation
- 1980-02-07 SE SE8000997A patent/SE446105B/en not_active IP Right Cessation
- 1980-02-07 IT IT47840/80A patent/IT1144056B/en active
- 1980-02-07 MX MX808636U patent/MX6124E/en unknown
- 1980-02-07 JP JP55014245A patent/JPS6047922B2/en not_active Expired
- 1980-02-07 SU SU802878003A patent/SU1138041A3/en active
- 1980-02-08 CA CA000345309A patent/CA1152272A/en not_active Expired
- 1980-02-08 DE DE19803004699 patent/DE3004699A1/en active Granted
- 1980-02-08 IN IN149/CAL/80A patent/IN152729B/en unknown
- 1980-02-08 DE DE3051066A patent/DE3051066C2/de not_active Expired
-
1984
- 1984-08-10 JP JP59168738A patent/JPS6075607A/en active Granted
- 1984-08-10 JP JP59168737A patent/JPS6075606A/en active Pending
-
1986
- 1986-07-31 JP JP61181840A patent/JPS6245714A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009105926A1 (en) | 2008-02-26 | 2009-09-03 | 山东爱地高分子材料有限公司 | 10-50 g/d high strength polyethylene fiber and preparation method thereof |
US8188206B2 (en) | 2008-02-26 | 2012-05-29 | Shandong Icd High Performance Fibres Co., Ltd. | 10-50 G/D high strength polyethylene fiber and preparation method thereof |
WO2012062053A1 (en) | 2010-11-08 | 2012-05-18 | 宁波大成新材料股份有限公司 | Preparation method for ultrahigh molecular weight polyethylene fiber |
Also Published As
Publication number | Publication date |
---|---|
JPS6245714A (en) | 1987-02-27 |
CH650535A5 (en) | 1985-07-31 |
CS235001B2 (en) | 1985-04-16 |
JPS6075607A (en) | 1985-04-30 |
FR2448587A1 (en) | 1980-09-05 |
NL177840B (en) | 1985-07-01 |
FR2448587B1 (en) | 1985-08-23 |
GB2042414A (en) | 1980-09-24 |
JPS6047922B2 (en) | 1985-10-24 |
JPS648732B2 (en) | 1989-02-15 |
GB2042414B (en) | 1982-12-22 |
ATA65280A (en) | 1985-08-15 |
AU532451B2 (en) | 1983-09-29 |
BR8000775A (en) | 1980-10-21 |
NL177840C (en) | 1989-10-16 |
IT1144056B (en) | 1986-10-29 |
SE446105B (en) | 1986-08-11 |
CH650535C2 (en) | 1998-02-27 |
SE8000997L (en) | 1980-08-09 |
BE881587A (en) | 1980-08-07 |
JPS6075606A (en) | 1985-04-30 |
ZA80528B (en) | 1981-01-28 |
ES488304A1 (en) | 1980-08-01 |
IT8047840A0 (en) | 1980-02-07 |
AU5514880A (en) | 1980-08-14 |
MX6124E (en) | 1984-11-21 |
JPS55107506A (en) | 1980-08-18 |
DE3051066C2 (en) | 1987-12-10 |
AT380033B (en) | 1986-03-25 |
DE3004699A1 (en) | 1980-08-21 |
IN152729B (en) | 1984-03-24 |
CA1152272A (en) | 1983-08-23 |
DE3004699C2 (en) | 1987-10-29 |
SU1138041A3 (en) | 1985-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NL7900990A (en) | FILAMENTS WITH LARGE TENSILE STRENGTH AND MODULUS. | |
US4344908A (en) | Process for making polymer filaments which have a high tensile strength and a high modulus | |
US4436689A (en) | Process for the production of polymer filaments having high tensile strength | |
US5455114A (en) | Water soluble polyvinyl alcohol-based fiber | |
NO303696B1 (en) | Process for the preparation of cellulosic bodies | |
Fujiwara et al. | Preparation of high‐strength poly (vinyl alcohol) fibers by crosslinking wet spinning | |
AU648618B2 (en) | A method for producing a cellulose shaped article | |
WO1994004726A1 (en) | Improved process for post-spin finishing of polybenzoxazole fibers | |
US20030099830A1 (en) | Process for preparing industrial polyester multifilament yarn | |
US3074901A (en) | Composition comprising polytetrafluoroethylene particles admixed with polystyrene containing dimethyl phthalate | |
US4094945A (en) | Spinning of polypyrrolidone | |
EP0359692A2 (en) | Solution spinning process | |
US4301106A (en) | Spinning process for nylon 4 fiber | |
JPS61215708A (en) | Production of multifilament yarn | |
JPS62184112A (en) | Production of high-tenacity high-modulus polyethylene fiber | |
US3073670A (en) | Process for the wet-spinning of acrylonitrile polymers | |
US5061425A (en) | Solution spinning process for producing a polyethylene terephthalate filament | |
JPH0429765B2 (en) | ||
Yagi et al. | Multistage stretching of high‐density polyethylene monofilaments in melt spinning | |
JPS62104915A (en) | Production of polyethylene terephthalate fiber | |
JPS6052326A (en) | Manufacture of high strength/high modulus fiber of film | |
Kawaguchi et al. | Melt Spinning of Poly-xylyleneadipamide Part 2: Molecular Orientation and Crystallization of Undrawn Filaments and Their Mechanical Properties | |
JPS6241230A (en) | Production of high tensile and high modulus polyolefin by dissolving particles and molding solution | |
GB2074500A (en) | Fusion Melt-spinning Poly(Polymethylene Terephthalamide) or Polypyrrolidone Fiber | |
Wyatt | Oligomer spin-solvent gel-fiber spinning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1C | A request for examination has been filed | ||
A85 | Still pending on 85-01-01 | ||
R1B | Notice of opposition during period of laying open | ||
NP1G | Patent granted (not automatically) [patent specification modified] | ||
SNR | Assignments of patents or rights arising from examined patent applications |
Owner name: DSM N.V. |
|
V4 | Discontinued because of reaching the maximum lifetime of a patent |
Free format text: 990208 |