JPS60173114A - Treatment of formed gel - Google Patents

Treatment of formed gel

Info

Publication number
JPS60173114A
JPS60173114A JP2830484A JP2830484A JPS60173114A JP S60173114 A JPS60173114 A JP S60173114A JP 2830484 A JP2830484 A JP 2830484A JP 2830484 A JP2830484 A JP 2830484A JP S60173114 A JPS60173114 A JP S60173114A
Authority
JP
Japan
Prior art keywords
gel
stretching
dielectric heating
molded product
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2830484A
Other languages
Japanese (ja)
Inventor
Hiroshige Sugiyama
博茂 杉山
Tokio Kawaguchi
川口 時夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2830484A priority Critical patent/JPS60173114A/en
Publication of JPS60173114A publication Critical patent/JPS60173114A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a formed article such as fiber, film, etc. having high strength and modulus and uniform physical properties, in high productivity, by drawing and heat-treating an undrawn or semi-drawn formed gel of a high polymer with a dielectric heating means. CONSTITUTION:An undrawn or semi-drawn formed gel of a polymer (preferably an ultra-high-molecular-weight polyethylene having a weight-average molecular weight of >=1X10<6>) is drawn and/or heat-treated by a dielectric heating means, preferably a microwave dielectric heating means using a TM010-mode cylindrical microwave dielectric heating device. The form of the formed gel is preferably fiber or film to obtain a highly oriented product.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゲル状成形体の処理方法に関し、更に詳しくは
高分子重合体の未延伸または半延伸のグル状成形体を、
内外層の差なく均一に生産性良く延伸および/または熱
処理する処理方法に関し、特に高速延伸および高倍率延
伸を可能とな[2、高強度、高弾性率の物性均一な繊維
、フィルム等の成形品を得る処理方法に関する。 高分子重合体の溶液全押出成形1−2て得られる未延伸
1几は半延伸のゲル状成形体を高倍率延伸し。 て高強度、高弾性率の繊維またはフィルム全製造する方
法は、例えば特開昭55−107506号公報、特開昭
56−15408号公報、特開昭58−5228号公報
、特開昭58−81612号公報等により公知である。 従来より高強度、高弾性率化するtめには分子鎖を高U
[に引伸す必要から、延伸工程において高倍率延伸する
ことが必須とされている。しが
The present invention relates to a method for treating a gel-like molded product, and more specifically, it relates to a method for treating an unstretched or semi-stretched gel-like molded product of a high molecular weight polymer.
Regarding a processing method that uniformly and efficiently stretches and/or heat-treats the inner and outer layers without any difference, it is particularly capable of high-speed stretching and high-strength stretching [2. Forming of fibers, films, etc. with uniform physical properties of high strength and high elasticity. Regarding processing methods for obtaining products. One batch of unstretched material obtained by solution extrusion molding 1-2 of a high molecular weight polymer is obtained by stretching a semi-stretched gel-like molded product at a high magnification. Methods for producing high-strength, high-modulus fibers or films are disclosed, for example, in JP-A-55-107506, JP-A-56-15408, JP-A-58-5228, and JP-A-58-1989. It is publicly known from Publication No. 81612 and the like. In order to achieve higher strength and higher elastic modulus than before, the molecular chain has a high U.
[Due to the need for stretching, it is essential to stretch at a high magnification in the stretching process. Shiga

【、なから、この場合、
分子鎖を引伸ばすに必要な活性化エネルギーが高いため
、従来技術では延伸速度を低くするか、ま7tは延伸ヒ
ーターを長くしなければ目的とする高強度、高弾性率に
ならず、従って生産性が低下する欠点があった。延伸温
度全高くすることによシ、ある程度生産性を向上させる
ことは可能であるが、被延伸物の融点近くにまで延伸温
度を上げると切断が生じたシ、特に繊維の場合は糸かけ
操作が困難になるなどの欠点が生じる。捷友従米延伸法
では外部加熱方式であるため、延伸は被延伸物の外周部
から始って内層部へと進行する。従って溶剤を含んだ未
延伸成形体を従来延伸法により延伸する場合には、先ず
外層部の溶剤の除去(しぼシ出し)1伴いながら外周部
から緻密化される。そのため内層部の溶剤の被延伸物外
部−・の移動除去が妨げられ、延伸が不完全になシ、延
伸倍率を十分尚〈できず、目的とする高強力、高弾性率
の成形体を得ることが困難であった。 そして前記した高分子重合体の溶液を押出成形して得ら
れる溶剤を含んだゲル状成形体を高倍率延伸して高強度
、高弾性率の繊維またはフィルムを得る従来法の場合、
かかる欠点は特に顕著であった。またかかるゲル状成形
体が溶剤を多量含有子る繊維状物である場合には、従来
延伸法では、延伸過程において繊維の横断面が扁平化【
12、円形断面の繊維を得ることが困難であつ穴。 本発明者等はかかる従来法の欠点全解消し、高分子重合
体の未延伸または半延伸のゲル状成形体から高強度、高
弾性率の繊維、フィルム等の成形体を生産性良く得る方
法について鋭意検討した結果、所期の目的を達成する本
発明に到遵り、た。 涙1jち、本発明は、高分子重合体の未延伸または半延
伸のゲル状成形体を、誇を加熱方式により延伸および/
または熱処理すること全特徴とする処理方法である。 本発明に用いる高分子重合体の未延伸または半延伸のゲ
ル状成形体は、前記した特開昭55−107506号公
報、特開昭56−15408号公報、特開昭58−52
28号公報、特開昭58−81612号公報等に記載さ
れているような公知の溶液紡糸法および溶液押出成形法
によって製造することができ、tt本発明者等が出願中
の特願昭58 152261号、特願昭5 J3−15
462.2号、特願昭58−161044号等の明細書
に記載の方法で製造することができる。これを簡単に述
べれば次のとおりでおる。 即ち、本発明に用いるゲル状成形体は、選択された浴剤
に、高分子重合体(特に超高分子量合成重合体)を溶解
し几成形可能な原料液を任意のダイから押出すことによ
って得られる。溶剤の選択に当っては次の基本的要件を
満たすものを選ぶ必要がある。即ち該溶剤は高分子量重
合体の加工?助けるために単一の比較的低分子量の化合
物またはそれらの混合物が用いられ、この化合物は高温
下でのみ高分子量重合体を溶解状態にするものを選択せ
ねばならない。しかしながらこの溶解温度は高分子量重
合体の分解温度より低くなくてはならない。従って低温
に5例えば室温ではこの低分子量化合物またはこれらの
混合物は高分子量重合体に対し、て非溶剤であらねばな
らない。かかる基本的要件を満たす溶剤であれば何でも
良く特に限足されるものではない。 未延伸ゲル状成形体の製造に際し、目的とする一高強力
−高弾性率成形体′t−得るためには原料の合′成!ハ
体としては、ポリオレフィン、ポリアミド、ポリエフチ
ル、ポリアクリロニトリル、ポリ()フ化ビニリデン)
、ポリビニルアルコール等があり、これらの高分子t′
M合体等が挙げられるがもちろんこれらに限定されるも
のではない。 前記する高分子量重合体の中で、特に重量平均分子量(
’Nk )がlXl0”以上、好ましくは、1×106
以上の超高分子量ポリエチレンを、原料の合成重合体と
り、て使用」2、本発明を実施することによって極めて
高強力・高弾性率成形体が得られることが本発明者らに
よって判明1.ている。又、1×106以上の超高分子
量ポリプロピレンを原料として用いても良好なW、績が
得られることも判明している。 上記溶剤を適当量含む上記合成重合体は公知の溶融成形
法や溶液成形法で容易に成形することができる。上記方
法で得られた未延伸ゲル状成形体は通常溶剤を含んでい
る。一方溶剤を含まない未延伸ゲル状成形体〔湿ゲルの
固体マトリックスに対応して湿ゲル中の液体をガス〔例
えば窒素又は空気等の不活性ガス)にて置換した同体マ
) IJフックス意味するもので「キセロゲル」と称す
る〕は溶液成形法で得た未延伸ゲル状成形体に高温の空
気を吹きつけて該ゲル状成形体から溶剤を除去する方法
やゲル状成形体に吸蔵される溶剤以外の低沸点溶剤金用
いて溶剤置換を行なって溶剤を除去する方法等により容
易に製造することができる。 で延伸することによシ得られる。半延伸のゲル状成形体
は、たとえ溶剤を含んだ未延伸のゲル状成形体を延伸し
たものであっても、溶剤全会く含まない場合もめるし、
溶剤を含む場合もある。 本発明は、前記の未延伸又は半延伸のゲル状成形体全延
伸して高強度、高弾性率の製品を得るに際【−1誘電加
熱力式により延伸および/または熱処理することを特徴
とする。 誘電加熱方式により合成重合体成形体を延伸する方法は
、特開昭57−148616号公報などで知られている
。しかるに、通常の溶融成形法で得られた未延伸の合成
重合体は、それを構成する分子鎖密度が高く、分子鎖が
複雑に絡み合っているため、たとえ誘電加熱方式によっ
ても延伸できる最一方、未延伸又は半延伸のゲル状成形
体は、分子鎖密度が低く、分子鎖間の絡み合いが僅かで
あるため、分子鎖を引伸ばすことが、潜在的に容易であ
る。本発明はこのような、分子鎖を引伸ばすことが潜在
的に容易ではめるが、従来の技術では、低速でり、か達
成されなかった高強度、高弾性率成形品を、誘電加熱方
式を用いて延伸することにより従来法による場合よりも
一段と高強度、高弾性率の成形品を生産性よく達成しよ
うとするものである。 誘電加熱方式の特徴は、重合体が有する各種の誘゛成緩
和吸収の周波数に応じた交流電場を印加することにより
重合体の内部から発熱を促がすことにあり、従来の加熱
方法がもっばら外部から加熱していたのに比べると、重
合体を均一に加熱するという点では卓越している。特に
ゲル状成形体のように、成形体の内部に重合体以外の液
体や気体を多く含むものけ、高速で走行する重合体の内
外層とも均一に加熱するためには、内部加熱方式ひいて
は誘電加熱方式が特に有用である。通常、誘電加熱はl
 OMHz〜20 (mzの交流電場を被加熱物に印加
することにより行なうことができる。 本発明の方法に用いるゲル状成形体の形態は繊維状、ロ
ンド状、パイプ状、テープ状、あるいはフィルム状暮の
形態などいずれでもよいが、特に繊維状あるいはフィル
ム状であれば、高配向物が得易く、好まI、2い。 前記り、たよりに、特にポリエチレンを原料の合成重a
°体として用い、本発明の延伸および/または熱処理方
法を実施することにkす、高強力、高弾性¥成形体が容
易に得られるが、未延伸物を延伸して完全延伸物とする
全延伸工程にわたって、εり面加熱方式を適用する必要
はない。ポリエチレンのゲル状未延伸成形体は、初期の
延伸倍率の比較的低い段階では従来の外部加熱方式によ
っても′容易に延伸できる。例えば、1ON’P/−以
下の引張強#:、?有する未延伸成形体?読方式により
延伸[1、90Kf/−ないし180 KP/−未満の
引張強度とすることは比較的容易である。誘電加熱を適
用しないと高速延伸で達成できないのけ、それ以上の強
度向上を目標とする場合であり、例えば強度が90Kf
 / 胃d未満の半延伸のポリエチレン成形体を180
Kf /−以上の強度となるまで延伸する場合、あるい
け強度が180KP/−未満の半延伸のポリエチレン成
形体を280 K?/−以上の強度となるまで延伸する
場合がそれに該当する。 本発明における防電加熱方式は特に限定するものではな
いが、マイクロ波誘電加熱方式、就中、マイクロ波が供
給さj、る空胴共振器内を貫通走行するゲル状成形体に
平行に沿って電界を均一に集中させる型式のマイクロ波
誘電加熱方式ケ採用するのが好ましい。このような型式
のマイクロ波誘電加熱装置とし、では、T Mo r 
oモードのH筒型マイクロ波誘電7JO熱装置が適当で
あるが、空胴共振器は他の形状、例えば断面が矩形、楕
円形、まゆ型のものを用いてもよく、又TMo1t、T
Mattモードなど他のモードを用いてもよい。 本発明によれば、ゲル状成形体から、従来法による場合
よりも一段と高強匹、高弾性率の物性均一な成形品全極
めて生産性よく製造することができ、特に溶剤を多量含
有するゲル状繊維から、横断面が円形の、物性均一な、
扁強度、高弾性本繊維を高生産性のもとに型造すること
ができる。 以下実施例をあげて本発明を具体的に説明する。 実施例1 重量平均分子量1.9X10”の高密度ポリエチレン1
kP’elLKpのデカリン中に投入し150’Cの温
度で攪拌しながら均一に溶解【、た。得られた溶液を直
径(1,gmmの細孔から押出し、5m/分の周速で回
転するローラーでゲル状繊維を引取った後、連続でホッ
トプレート加熱方式による第1段延伸を行なった。延伸
倍率は7.6とした。得られ九半−延伸繊維の引張強度
は78KP/−1弾性率は1750に5J /iであっ
た。 該半延伸繊維を用い、次の数種の方式で1.00m/分
の延伸速度(最終延伸ローラの周速〕で延伸し几。 〈方式1>−・本発明 延伸ヒーターと【1、て0.5mの長さの円筒型マイク
ロ波U電加熱装置(発振周波数2400 MHz 、出
力1.5k”’W、 TMo+o %−ト) 2個を直
列に設け、被延伸を維は円筒空胴共振器の中心部を貫通
走行させた。 〈方式2)・・ゆ比較例】 延伸ヒーターと[2て1.4mの長さのプレートヒータ
ー2枚を直列に設け、1枚目のヒーターを130℃、2
枚目のヒーターt−145℃に設定した。 被延伸wt維はプレートヒータに接触させながら走行さ
せた。 〈方式3〉・・・比較例2 延伸ヒーターとして1.6mの長さのチューブ型の熱風
ヒーター2個を直列に設け1個目のヒータの熱風温度ヲ
140℃に2個目のヒーターの熱風温度を148℃Lで
設定した。被延伸繊維はチューブの中心部を走行させた
。 各方式で、80m/分の供給ローラ速度で糸掛けした後
、供給ローラ速度を10m/分/分の速さで下けて行き
糸が切断した時の速度より最大延伸倍率(延伸速度(1
00m/分)/糸切断時の供給速度(m7分)〕をめた
ものを第1表に示す。第1表には最大延伸倍率×0.8
の倍率で延伸した際の延伸糸の引張強度、弾性率をも示
す。 第1表 断面のポリエチレン繊維を、従来法c方式2または方式
3〕の約2倍以上の延伸生産性のもとに製造【−・得る
ことがわかる。 実施例2 実施例1で使用した半延伸糸を方式3の延伸し一ターを
用いて10m/分の延伸速度で延伸したところ、最大延
伸倍率3.9であす3.1倍の延伸倍率で安定に延伸が
できtoこの糸は引張強度175KP / ad’を有
するものであった。この2段延伸糸を用いて実施例1で
述べた方式1および方式2の延伸ヒーターでそれぞれ第
3段目の延伸ヲ1−1たところ、方式1の延伸ヒーター
を使用【、た場合は、200m/分の延伸速度で3.8
倍の延伸倍率で安定的に延伸ができ、完成糸の引張強度
は346Kp/d、弾性率は12500 KP /−で
あった。 一方、方式2の延伸ヒーターを使用し、た場合は、20
0 m/分の延伸速度では1.1倍以下の延伸倍率でL
7か安定的に延伸できず、強度および弾性率の改善は極
〈僅かであった。そこで高強度、高弾性率化のために方
式2の延伸ヒーターを使用しまた場合について、延伸速
度?3m/分と極端に下けて延伸したところ、最高2.
0倍の延伸倍率で安定的に延伸できたが、完成糸の引張
強度Id 251 Ky / −1弾性率は8500に
ノ/−と本発明の方式1にくらべ劣っていた。 これによって明らかなように、本発明の延伸方式全使用
すると、従来法による場合よりも引張強度および弾性率
共に優れた完成糸を、従来法よりもはるかに速い延伸速
度で生産性よ〈製@ L、、 mることがわかる。 特許出願人 東洋紡績店株式会
[, because, in this case,
Because the activation energy required to stretch the molecular chain is high, conventional technology requires a low stretching speed or a long stretching heater to achieve the desired high strength and high elastic modulus. There was a drawback that the performance deteriorated. It is possible to improve productivity to some extent by raising the overall drawing temperature, but if the drawing temperature is raised to near the melting point of the material to be drawn, cuts may occur, especially in the case of fibers, the threading operation may be difficult. There are disadvantages such as difficulty in Since the rolling method uses an external heating method, the stretching starts from the outer periphery of the object to be stretched and progresses to the inner layer. Therefore, when an unstretched molded body containing a solvent is stretched by the conventional stretching method, the outer layer is first densified from the outer periphery while the solvent is removed from the outer layer. This prevents the movement and removal of the solvent in the inner layer from the outside of the object to be stretched, resulting in incomplete stretching and inability to increase the stretching ratio sufficiently to obtain the desired molded product with high strength and high elastic modulus. It was difficult. In the conventional method, a gel-like molded product containing a solvent obtained by extrusion molding a solution of the above-described high molecular weight polymer is stretched at a high magnification to obtain a fiber or film with high strength and high elastic modulus.
Such drawbacks were particularly noticeable. In addition, when the gel-like molded product is a fibrous material containing a large amount of solvent, in the conventional stretching method, the cross section of the fiber becomes flat during the stretching process.
12. It is difficult to obtain fibers with a circular cross section and holes. The present inventors have devised a method for eliminating all the drawbacks of such conventional methods and obtaining high-strength, high-modulus fibers, films, and other molded products from unstretched or semi-stretched gel-like molded products of high molecular weight polymers with high productivity. As a result of intensive study, we have arrived at the present invention which achieves the intended purpose. However, the present invention involves stretching and/or stretching an unstretched or semi-stretched gel-like molded product of a high molecular weight polymer using a heating method.
Alternatively, it is a processing method characterized by heat treatment. The unstretched or semi-stretched gel-like molded product of the polymer used in the present invention is disclosed in the above-mentioned JP-A-55-107506, JP-A-56-15408, and JP-A-58-52.
It can be produced by the known solution spinning method and solution extrusion method as described in Japanese Patent Application No. 58-81612, Japanese Patent Application No. 58-81612, etc. No. 152261, patent application No. 5 J3-15
462.2, Japanese Patent Application No. 58-161044, and the like. This can be explained simply as follows. That is, the gel-like molded product used in the present invention is produced by dissolving a high molecular weight polymer (especially an ultra-high molecular weight synthetic polymer) in a selected bath agent and extruding a moldable raw material liquid through an arbitrary die. can get. When selecting a solvent, it is necessary to choose one that satisfies the following basic requirements. In other words, is the solvent used for processing high molecular weight polymers? A single relatively low molecular weight compound or a mixture thereof is used to assist, and the compound must be selected to cause the high molecular weight polymer to go into solution only at elevated temperatures. However, this melting temperature must be lower than the decomposition temperature of the high molecular weight polymer. Therefore, at low temperatures, for example at room temperature, the low molecular weight compound or mixture thereof must be a non-solvent for the high molecular weight polymer. Any solvent may be used as long as it satisfies these basic requirements and is not particularly limited. When producing an unstretched gel-like molded product, it is necessary to synthesize the raw materials in order to obtain the desired high-strength, high-modulus molded product. Polyolefin, polyamide, polyethyl, polyacrylonitrile, polyvinylidene fluoride)
, polyvinyl alcohol, etc., and these polymers t'
Examples include, but are not limited to, M combinations and the like. Among the high molecular weight polymers mentioned above, especially those with a weight average molecular weight (
'Nk) is lXl0" or more, preferably 1x106
The present inventors have found that by carrying out the present invention, extremely high strength and high elastic modulus molded articles can be obtained by using the above-mentioned ultra-high molecular weight polyethylene as a synthetic polymer as a raw material1. ing. It has also been found that good W and performance can be obtained even when ultra-high molecular weight polypropylene of 1×10 6 or more is used as a raw material. The above synthetic polymer containing an appropriate amount of the above solvent can be easily molded by a known melt molding method or solution molding method. The unstretched gel-like molded product obtained by the above method usually contains a solvent. On the other hand, an unstretched gel-like molded product that does not contain a solvent [a solid matrix in which the liquid in the wet gel is replaced with a gas [e.g., an inert gas such as nitrogen or air] corresponding to the solid matrix of the wet gel) IJ Fuchs means (referred to as "xerogel") can be obtained by blowing hot air onto an unstretched gel-like molded product obtained by solution molding to remove the solvent from the gel-like molded product, or by removing the solvent occluded by the gel-like molded product. It can be easily produced by a method in which the solvent is removed by solvent substitution using a low boiling point solvent other than gold. It can be obtained by stretching with. Even if a semi-stretched gel-like molded product is obtained by stretching an unstretched gel-like molded product that contains a solvent, it may be difficult to form a gel-like molded product if it does not contain any solvent at all.
May also contain solvents. The present invention is characterized in that when the above-mentioned unstretched or semi-stretched gel-like molded product is fully stretched to obtain a product with high strength and high elastic modulus, stretching and/or heat treatment is performed using a dielectric heating power method. do. A method of stretching a synthetic polymer molded body using a dielectric heating method is known from, for example, Japanese Unexamined Patent Publication No. 148616/1983. However, unstretched synthetic polymers obtained by ordinary melt molding methods have a high density of molecular chains, and the molecular chains are intricately intertwined. An unstretched or semi-stretched gel-like molded product has a low molecular chain density and slight entanglement between molecular chains, so that it is potentially easy to stretch the molecular chains. Although the present invention can potentially easily stretch molecular chains, it is possible to create high-strength, high-modulus molded products using the dielectric heating method, which was slow or unattainable with conventional techniques. The purpose of this method is to achieve molded products with higher strength and higher modulus of elasticity with higher productivity than those achieved by conventional methods. The feature of the dielectric heating method is that it promotes heat generation from within the polymer by applying an alternating current electric field that corresponds to the frequency of the various dielectric relaxation absorptions that the polymer has. Compared to heating the polymer from outside, it is superior in that it heats the polymer evenly. In particular, for gel-like molded products that contain a large amount of liquid or gas other than the polymer inside the molded product, internal heating methods and dielectric Heating methods are particularly useful. Typically, dielectric heating is l
This can be carried out by applying an alternating current electric field of OMHz to 20 (mz) to the object to be heated. Any form of fiber or film may be used, but a highly oriented product can be obtained easily if it is particularly fibrous or film-like.
A highly strong and highly elastic molded body can be easily obtained by using the stretched body and carrying out the stretching and/or heat treatment method of the present invention. There is no need to apply the ε-sided heating method throughout the stretching process. A gel-like unstretched molded polyethylene product can be easily stretched by a conventional external heating method when the initial stretching ratio is relatively low. For example, tensile strength # below 1ON'P/-:,? Unstretched molded body with? Depending on the reading method, it is relatively easy to obtain a tensile strength of 1,90 Kf/- to less than 180 KP/-. Although this cannot be achieved with high-speed stretching without applying dielectric heating, this is a case where the goal is to improve the strength further, for example, when the strength is 90 Kf.
/ Semi-stretched polyethylene molded body less than d 180
When stretching to a strength of Kf/- or more, a semi-stretched polyethylene molded product with a strength of less than 180 KP/- is stretched to a strength of 280 Kf/- or more. This corresponds to the case where the film is stretched to a strength of /- or more. Although the electrically-proof heating method in the present invention is not particularly limited, it is a microwave dielectric heating method, in particular, a microwave dielectric heating method, in which microwaves are supplied parallel to the gel-like molded body passing through the cavity resonator. It is preferable to use a microwave dielectric heating method that uniformly concentrates the electric field. Assuming this type of microwave dielectric heating device, T Mor
Although an o-mode H-cylindrical microwave dielectric 7JO thermal device is suitable, the cavity resonator may have other shapes, such as rectangular, elliptical, or cocoon-shaped in cross section;
Other modes such as Matt mode may also be used. According to the present invention, it is possible to produce molded products with uniform physical properties, higher strength and higher elastic modulus, from a gel-like molded product with extremely high productivity than in the case of conventional methods. Made from fibers with a circular cross section and uniform physical properties.
It is possible to mold fibers with high flat strength and high elasticity with high productivity. The present invention will be specifically explained below with reference to Examples. Example 1 High density polyethylene 1 with weight average molecular weight 1.9X10”
The mixture was poured into decalin of kP'elLKp and uniformly dissolved while stirring at a temperature of 150'C. The obtained solution was extruded through pores with a diameter of 1 gmm, and the gel-like fibers were taken off with a roller rotating at a circumferential speed of 5 m/min, followed by first-stage stretching using a continuous hot plate heating method. The stretching ratio was 7.6. The tensile strength of the obtained semi-drawn fiber was 78 KP/-1 and the elastic modulus was 1750 to 5 J/i. Using the semi-drawn fiber, the following several methods were used. Stretch at a stretching speed of 1.00 m/min (peripheral speed of the final stretching roller). <Method 1> - Using the stretching heater of the present invention and [1. Two heating devices (oscillation frequency 2400 MHz, output 1.5 k'''W, TMo+o%-t) were installed in series, and the fiber to be stretched was run through the center of the cylindrical cavity resonator. <Method 2> )... Yu comparative example] A stretching heater and two 1.4 m long plate heaters were installed in series, and the first heater was heated at 130°C, 2
The temperature of the second heater was set at t-145°C. The drawn wt fiber was run while being in contact with a plate heater. <Method 3> Comparative Example 2 Two tube-shaped hot air heaters with a length of 1.6 m are connected in series as stretching heaters, and the hot air from the second heater is heated to a temperature of 140°C. The temperature was set at 148°C. The fibers to be drawn were run through the center of the tube. In each method, after threading at a supply roller speed of 80 m/min, the supply roller speed was lowered at a speed of 10 m/min/min, and the maximum stretching ratio (stretching speed (1
00 m/min)/feeding speed at the time of thread cutting (m7 min)] is shown in Table 1. Table 1 shows the maximum stretching ratio x 0.8
It also shows the tensile strength and elastic modulus of the drawn yarn when drawn at a magnification of . It can be seen that the polyethylene fibers having the first surface cross section can be produced with a drawing productivity that is about twice or more than that of the conventional method c method 2 or method 3]. Example 2 When the semi-drawn yarn used in Example 1 was stretched at a drawing speed of 10 m/min using the drawing method 3, the maximum drawing ratio was 3.9 and the following drawing ratio was 3.1 times. The yarn could be stably drawn and had a tensile strength of 175 KP/ad'. Using this two-stage drawn yarn, the drawing heaters of method 1 and method 2 described in Example 1 were used to perform the third drawing step 1-1. 3.8 at a drawing speed of 200 m/min
It was possible to stably draw the yarn at a draw ratio of 2 times, and the finished yarn had a tensile strength of 346 Kp/d and an elastic modulus of 12500 KP/-. On the other hand, when using method 2 stretching heater, 20
At a stretching speed of 0 m/min, L at a stretching ratio of 1.1 times or less
7 could not be stably stretched, and the improvement in strength and elastic modulus was extremely small. Therefore, in order to achieve high strength and high elastic modulus, we use the drawing heater of Method 2.In addition, we have to decide on the drawing speed. When stretched at an extremely low speed of 3 m/min, the maximum speed was 2.
Although stable stretching was possible at a stretching ratio of 0 times, the tensile strength Id 251 Ky / -1 elastic modulus of the finished yarn was 8500 -/-, which was inferior to Method 1 of the present invention. As is clear from this, when the entire drawing method of the present invention is used, the finished yarn has better tensile strength and elastic modulus than those obtained by the conventional method, and the productivity is increased at a much higher drawing speed than the conventional method. It turns out that L...m. Patent applicant: Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 高分子重合体の未延伸または半延伸のゲル状成形
体を、誘電加熱方式により延伸および/または熱処理す
ることを特徴とする処理方法。 2、 ゲル状成形体が高分子重合体の溶液を押出成形し
て得らfしる溶剤を含むかまたは溶剤を含1ないゲル状
成形体である特許請求の範囲第1項記載の処理方法。 3、ゲル状成形体が繊維状物である特許請求の範囲第1
項または第2項記載の処理方法。 4、 ゲル状成形体がフィルム状物である特許請求の範
囲第1項、第2項または第3項記載の処理方法。 5、 ゲル状成形体が高分子量ポリエチレンからなる特
許請求の範囲第1典乃至第4項のいずれかに記載の処理
ブJ法。 6、 ゲル状成形体が高分子量ポリプロピレンからなる
特許請求の範囲第1項乃至第5項のいずれかに記載の処
理方法。 7、引張強度が90Kp/−未満のポリエチレンからな
るゲル状成形体を延伸【6、引張強度t180KP/−
以上とする特許請求の範囲第1項乃至第5項のいずれか
に記載の処理方法。 8、引張強度が180 K?/−未満のポリエチレンか
らなるゲル状成形体を延伸し、引張強度全280Kp/
−以上とする特許請求の範囲第1項乃至第5項のいずれ
かに記載の処理方法。 9、 誘電加熱方式がマイクロ波誘電加熱方式である特
許請求の範囲第1項記載の処理方法。 10、誘電加熱方式がマイクロ波が供給される空胴共振
器内金貫通走行するゲル状成形体に平行に沿って電界?
均一に集中させるマイクロ波誘電加熱方式である特許請
求の範囲第1項記載の処理方法。
[Scope of Claims] 1. A processing method characterized by stretching and/or heat treating an unstretched or semi-stretched gel-like molded product of a high molecular weight polymer using a dielectric heating method. 2. The treatment method according to claim 1, wherein the gel-like molded product is a gel-like molded product that is obtained by extrusion molding a solution of a high molecular weight polymer and contains or does not contain a solvent. . 3. Claim 1 in which the gel-like molded product is a fibrous material
The treatment method described in Section 2 or Section 2. 4. The treatment method according to claim 1, 2, or 3, wherein the gel-like molded product is a film-like product. 5. The processing method according to any one of claims 1 to 4, wherein the gel-like molded body is made of high molecular weight polyethylene. 6. The treatment method according to any one of claims 1 to 5, wherein the gel-like molded body is made of high molecular weight polypropylene. 7. Stretching a gel-like molded body made of polyethylene with a tensile strength of less than 90 Kp/- [6. Tensile strength t180 KP/-
A processing method according to any one of claims 1 to 5 as set forth above. 8. Tensile strength is 180K? A gel-like molded body made of polyethylene with a total tensile strength of 280 Kp/- is stretched.
- A processing method according to any one of claims 1 to 5. 9. The processing method according to claim 1, wherein the dielectric heating method is a microwave dielectric heating method. 10. Is the dielectric heating method an electric field parallel to the gel-like molded body passing through the inner metal of the cavity resonator to which microwaves are supplied?
The processing method according to claim 1, which is a microwave dielectric heating method that uniformly concentrates the heating.
JP2830484A 1984-02-16 1984-02-16 Treatment of formed gel Pending JPS60173114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2830484A JPS60173114A (en) 1984-02-16 1984-02-16 Treatment of formed gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2830484A JPS60173114A (en) 1984-02-16 1984-02-16 Treatment of formed gel

Publications (1)

Publication Number Publication Date
JPS60173114A true JPS60173114A (en) 1985-09-06

Family

ID=12244876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2830484A Pending JPS60173114A (en) 1984-02-16 1984-02-16 Treatment of formed gel

Country Status (1)

Country Link
JP (1) JPS60173114A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS57193513A (en) * 1981-05-25 1982-11-27 Nippon Telegr & Teleph Corp <Ntt> Preparation of filament having low coefficient of linear expansion and high elasticity
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS5881612A (en) * 1981-10-17 1983-05-17 スタミカ−ボン・ビ−・ベ− Production of polyethylene filament with high tensile strength
JPS58109617A (en) * 1981-12-24 1983-06-30 Nippon Telegr & Teleph Corp <Ntt> Drawing method for polyoxymethylene rod

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS57193513A (en) * 1981-05-25 1982-11-27 Nippon Telegr & Teleph Corp <Ntt> Preparation of filament having low coefficient of linear expansion and high elasticity
JPS5881612A (en) * 1981-10-17 1983-05-17 スタミカ−ボン・ビ−・ベ− Production of polyethylene filament with high tensile strength
JPS58109617A (en) * 1981-12-24 1983-06-30 Nippon Telegr & Teleph Corp <Ntt> Drawing method for polyoxymethylene rod

Similar Documents

Publication Publication Date Title
JPS61146308A (en) Preparation of porous polypropylene hollow yarn or film
JPH0149611B2 (en)
JPH0841240A (en) Ultrahigh modulus yarn product having excellent mechanical characteristic and its production
JPH02270535A (en) Manufacture of hard rod-like heterocyclic liquid crystal polymer film by biaxial stretching
JPS63308049A (en) Production of super-stretchable polymer material, super-stretchable material and production of article using the same
JPS6290309A (en) Production of polyvinyl alcohol product having high tensile strength and high modulus
JPS61215715A (en) Polyarylene thioether fiber of high performance and production thereof
JPS60173114A (en) Treatment of formed gel
JPH10323890A (en) Manufacture of fluororesin drawing molded product
US3005236A (en) Process for stretching polycarbonate filaments and films at temperature at which tangent of dielectric loss angle is maximum
JPH0371974B2 (en)
JPH0367490B2 (en)
EP0344860A1 (en) Process and device for the preparation of continuous objects of plastic
JPS6312767B2 (en)
JPS6052647A (en) Gel fiber and gel film stretching method
JPH07238416A (en) Production of high-strength polyethylene fiber
JPH02210013A (en) Dry and wet spinning process
JPS61611A (en) Preparation of polyolefinic yarn having high strength and high modulus
US3657409A (en) Process for the production of acrylic filaments
JPS61215708A (en) Production of multifilament yarn
JPS63118234A (en) Preparation of stretched polyethylene
JPH0679659B2 (en) Method for producing porous polypropylene hollow fiber or film
US3531551A (en) Dielectric curing of spandex
RU2205845C2 (en) Method of manufacturing porous film material from nascent reactor ultrahigh- molecular polyethylene powder
JPH02112404A (en) Cellular polyethylene hollow yarn and production thereof