JPS63243316A - Production of high-tenacity polyvinyl alcohol fiber - Google Patents

Production of high-tenacity polyvinyl alcohol fiber

Info

Publication number
JPS63243316A
JPS63243316A JP7784587A JP7784587A JPS63243316A JP S63243316 A JPS63243316 A JP S63243316A JP 7784587 A JP7784587 A JP 7784587A JP 7784587 A JP7784587 A JP 7784587A JP S63243316 A JPS63243316 A JP S63243316A
Authority
JP
Japan
Prior art keywords
pva
fiber
strength
polyvinyl alcohol
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7784587A
Other languages
Japanese (ja)
Other versions
JPH0457770B2 (en
Inventor
Hirofumi Sano
洋文 佐野
Shigetoshi Amiya
繁俊 網屋
Shunpei Naramura
楢村 俊平
Akio Omori
大森 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7784587A priority Critical patent/JPS63243316A/en
Publication of JPS63243316A publication Critical patent/JPS63243316A/en
Publication of JPH0457770B2 publication Critical patent/JPH0457770B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled fiber having high tenacity and suitable for industrial material and reinforcing agent for composite material, by spinning a PVA polymer having an average polymerization degree and an atacticity K falling within respective specific ranges and finally subjecting the spun fiber to dry hot drawing to increase the total draw ratio. CONSTITUTION:A straight-chain PVA polymer having low branching degree, an average polymerization degree of >=1,500 (preferably >=6,000), an atacticity K of <=0.25 (preferably <=0.23) and a saponification degree of preferably >=98mol.% is homogeneously dissolved in water, ethylene glycol, etc. The obtained dope is subjected to wet spinning into an aqueous solution containing e.g. sodium hydroxide and sodium sulfate and, if necessary, neutralized, washed with water and drawn in wet state. After drying, the obtained fiber is finally drawn in dried hot atmosphere at >=200 deg.C (preferably 225-235 deg.C) to a total draw ratio of >=15 (preferably >=25) to obtain the objective fiber having a single fiber strength of generally >=15g/d.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明はシンジオ成分が比較的少ないポリビニルアルコ
ール(以下PVAと略記する)を用いるととKよシ、溶
剤への溶解性を高めかつ高倍率に延伸できることを特徴
とする繊維の製造方法に関するものであり、特に産業資
材用および複合材強化用に適した単繊維強度15 Q/
d以上の高強力PVA系繊維を得る方法に関するもので
ある。
[Detailed description of the invention] Industrial application field> The present invention uses polyvinyl alcohol (hereinafter abbreviated as PVA) with a relatively small amount of syndioic components, thereby increasing its solubility in solvents and achieving high magnification. This invention relates to a method for producing fibers characterized by the ability to be drawn to a single fiber strength of 15 Q/
The present invention relates to a method for obtaining a high tenacity PVA fiber having a strength of d or more.

〈従来の技術〉 従来PVA繊維はポリアミド、ポリエステル、ポリアク
リロニトリル系繊維に比べ強度モジュラスが高く、その
主用途である産業資材用繊維はもちろん最近ではアスベ
スト代替繊維としてセメント補強材に使用されている。
<Prior Art> Conventional PVA fibers have a higher strength modulus than polyamide, polyester, and polyacrylonitrile fibers, and have been used not only as fibers for industrial materials, which are their main uses, but also as cement reinforcement materials recently as asbestos substitute fibers.

高強力PVA繊維を得る方法としては、高分子量ポリエ
チレンのゲル紡糸−超延伸の考え方を応用した高強力繊
維あるいはその製造法が特開昭59−100710号公
報、特開昭59−130514号公報あるいは特開昭6
1−108711号公報などで公知である。
As a method for obtaining high-strength PVA fibers, high-strength fibers and their manufacturing methods applying the concept of gel spinning and ultra-stretching of high-molecular-weight polyethylene are disclosed in JP-A-59-100710, JP-A-59-130514, and JP-A-59-130514. Tokukai Showa 6
This method is known from Japanese Patent No. 1-108711.

−戸晧一−i萼 しかしこれらの方法を本発明者らが検討したところ、特
にPVAの重合度が高くなると、該PVAを溶剤へ均一
に溶解させることが難しく、また1分子鎖当りの分子間
水素結合が多くなるためか延伸倍率が低下し、ひいては
満足した繊維強度が得られないという事が判明した。
-Koichi Todo-i Calyx However, when the present inventors examined these methods, they found that it was difficult to uniformly dissolve PVA in a solvent, especially when the degree of polymerization of PVA was high, and the number of molecules per molecule chain increased. It was found that the stretching ratio decreased probably due to an increase in the number of hydrogen bonds between the fibers, and as a result, satisfactory fiber strength could not be obtained.

また特開昭61−108713号公報にはシンジオタク
トの割合が52%以上で高強力高モジュラスの耐熱水性
に富んだPVA繊維が得られることが記載されている。
Further, JP-A-61-108713 describes that a PVA fiber with high strength, high modulus, and high hot water resistance can be obtained when the proportion of syndiotact is 52% or more.

本発明者らもシンジオリッチなPVAについて検討した
ところ、耐熱水性のあるPVA繊維は得られたが、立体
規則性が良く強固な分子間水素結合を有するためか延伸
倍率は低く、単繊維強度は159/d以下のものしか得
られなかった。
The present inventors also investigated syndiorich PVA and found that PVA fibers with hot water resistance were obtained, but the draw ratio was low, probably due to the good stereoregularity and strong intermolecular hydrogen bonds, and the single fiber strength was low. Only 159/d or less was obtained.

またP”v’Aの重合度が高くかつゲル化を起こすよう
な貧溶剤を用いた場合、PVAの溶解性が低下し、均一
に溶解しようと高温で長時間攪拌した場合はPVAの着
色分解が起こるという問題が生じた。さらに不均一溶解
により繊維構造に欠陥部を生じるためかあるいは高重合
度PVAを作成する場合低温条件をとりシンジオリッチ
なPVAが出来易いためか延伸倍率が低下し、満足した
高強力PVA繊維は得られなかった。
In addition, if a poor solvent with a high polymerization degree of P"v'A that causes gelation is used, the solubility of PVA will decrease, and if stirred for a long time at high temperature to uniformly dissolve, PVA will be colored and decomposed. In addition, the stretching ratio decreased, possibly because defects were created in the fiber structure due to uneven dissolution, or because low temperature conditions were required to create PVA with a high degree of polymerization, making syndio-rich PVA easy to produce. Satisfactory high-strength PVA fibers were not obtained.

〈発明が解決しようとする問題点〉 以上の背景をふまえて本発明者らは高強力PVA系繊維
を得る方法として、次の2つの点を満足する必要がある
と考えた。
<Problems to be Solved by the Invention> Based on the above background, the present inventors considered that the following two points should be satisfied as a method for obtaining high-strength PVA-based fibers.

第1は溶剤特にゲル化を起こすような貧溶剤に均一に溶
解させ分子鎖の絡みや繊維の欠陥部を出来る限り少なく
すること。
The first is to uniformly dissolve it in a solvent, especially a poor solvent that causes gelation, to minimize the entanglement of molecular chains and defects in the fibers.

第2は延伸前の紡糸原糸における分子間水素結合を弱く
して延伸倍率を増大させ分子鎖を高配向させること。
The second method is to weaken the intermolecular hydrogen bonds in the spun yarn before stretching, increase the stretching ratio, and highly orient the molecular chains.

以上の2点に対し鋭意検討した結果、シンジオ成分が比
較的少ないPVA系ポリマーを紡糸し、高倍率に延伸す
ることにより従来に見られない高強力PVA系繊維を得
ることを見出した。
As a result of intensive investigation into the above two points, we discovered that by spinning a PVA-based polymer with a relatively small amount of syndioic components and drawing it at a high magnification, it was possible to obtain a highly strong PVA-based fiber that had never been seen before.

〈問題点を解決するための手段〉 すなわち本発明は 「(1)平均重合度が1500以上でアタクチシティK
が0.25以下のポリビニルアルコール系ポリマーを溶
剤に溶解して常法により紡糸したあと最終的に200°
C以上の乾熱で延伸して、総延伸倍率を15倍以上にす
ることを特徴とする高強力ポリビニルアルコール系繊維
の製造法(2)平均重合度が3000以上である特許請
求の範囲第1項記載の高強力ポリビニルアルコール系繊
維の製造法 ものを用い、該原液を乾湿式によりゲル紡糸すに関する
ものである。
<Means for Solving the Problems> That is, the present invention provides ``(1) average polymerization degree of 1500 or more and atacticity K
After dissolving a polyvinyl alcohol-based polymer with a diameter of 0.25 or less in a solvent and spinning it by a conventional method, it is finally spun at 200°.
A method for producing a high-strength polyvinyl alcohol fiber, characterized by stretching with dry heat of C or more to make the total stretching ratio 15 times or more (2) The average degree of polymerization is 3000 or more Claim 1 The present invention relates to gel spinning of the stock solution in a dry-wet process using the method for producing high-strength polyvinyl alcohol fibers described in 1.

以下本発明の内容を更に詳細に説明する。The contents of the present invention will be explained in more detail below.

本発明に言うPVA系ポリマーとは、30°Cの水溶液
で粘度法により求めた平均重合度が1500以上のもの
でちゃ、ケン化度が98モルチ以上で分岐度の低い直鎖
状のポリビニルアルコールである。
The PVA-based polymer referred to in the present invention is a linear polyvinyl alcohol with a saponification degree of 98 mol or more and a low degree of branching, as long as the average degree of polymerization determined by the viscosity method in an aqueous solution at 30°C is 1500 or more. It is.

なお2モルチ以下の他のビニル化合物を共重合したもの
、さらには3重量%以下の顔料、酸化防止剤、紫外線吸
収剤、あるいはPVAのOH基と分子間架橋を起こし紡
糸時の曳糸性を向上させるホウ酸またはホウ酸塩などを
添加したものも含まれる。
Copolymerized with 2 molar or less of other vinyl compounds, or 3% by weight or less of pigments, antioxidants, ultraviolet absorbers, or intermolecular crosslinks with the OH groups of PVA to improve stringiness during spinning. Also included are those to which boric acid or borate salts are added.

超高分子量ポリエチレンのゲル紡糸−超延伸の考え方(
高重合度ポリマーの希薄溶液をつくりポリマー分子鎖の
からみが少ない状態でゲル化すなわち固定化させ、高倍
率に延伸し、高強力にする考え方)はPVA系ポリマー
にも適用でき、ゲル紡糸でPVA系ポリマーの重合度が
高いほど高強力繊維が得られ易い。PVA系ポリマーの
好ましい重合度は3000以上さらに好ましくは600
0以上である。
Gel spinning of ultra-high molecular weight polyethylene - Concept of ultra-stretching (
The concept of creating a dilute solution of a highly polymerized polymer, gelling or fixing it with less entanglement of the polymer molecular chains, stretching it to a high ratio, and increasing its strength) can also be applied to PVA-based polymers, and by gel spinning, PVA The higher the polymerization degree of the system polymer, the easier it is to obtain high strength fibers. The preferred degree of polymerization of the PVA-based polymer is 3000 or more, more preferably 600.
It is 0 or more.

本発明の特徴はアタクチシティKが0.25以下のPV
A系ポリマーを用いることである。このアタクチシティ
に値については、例えば、第32回高分子討論会GIC
16(1983) 、第33口高分子討論会GIC19
(1984)での奇弁等の発表で使用されているが、次
式に基づいて算出される。
The feature of the present invention is that the PV attacticity K is 0.25 or less.
The method is to use A-based polymers. For the value of this attacticity, see the 32nd Polymer Symposium GIC
16 (1983), 33rd Polymer Symposium GIC19
(1984), and is calculated based on the following formula.

K = (rrrr −mmmm) / (rrrr+
 mmmm)ここでrrrrおよびmmmmは13C−
NMRにおいて観測されるPVAのメチン炭素のペンタ
ドタクチシティ(Pentad tacticity 
)により求められる。
K = (rrrr − mmmm) / (rrrr+
mmmm) where rrrr and mmmm are 13C-
Pentad tacticity of methine carbon in PVA observed in NMR
).

2つのモノマ一単位からなる連鎖をダイアト(二単位連
鎖構造)といいこれは H メソダイアト(m)とラセミダイアト(r)から成シ立
っている。
A chain consisting of two monomer units is called a diat (two-unit chain structure), and it is composed of H meso diato (m) and racemic diato (r).

5つのモノマ一単位連鎖構造(ペンタド)ではそれぞれ
4つのmとrの組合せから合計10コのペンタドタクチ
シティによる分裂の観測が考えられ、その中でmmmm
とrrrrは に基づくメチン炭素の吸収強度のモル分率を表示したも
のである。Kが0.25以下のPVAの製造方法につい
ては特に制限はなく、任意の方法で製造可能である。例
えば誘電率の高い溶媒(ジメチルスルホキシド、エチレ
ンカーボネート、スルホランなど)の中で酢酸ビニルを
重合しケン化して製造する方法、あるいは安息香酸ビニ
ルなど酢酸ビニル以外の七ツマ−で重合しケン化して製
造する方法などが例示される。
In the five monomer one-unit chain structures (pentads), a total of 10 splittings due to pentad tacticity can be observed from four combinations of m and r, among which mmmm
and rrrr are the molar fractions of absorption intensity of methine carbon based on . There are no particular restrictions on the method for producing PVA with K of 0.25 or less, and any method can be used to produce it. For example, it can be produced by polymerizing and saponifying vinyl acetate in a solvent with a high dielectric constant (dimethyl sulfoxide, ethylene carbonate, sulfolane, etc.), or by polymerizing and saponifying vinyl acetate other than vinyl acetate, such as vinyl benzoate. Examples include methods to do so.

アタクチシティKが0.25以下、好ましくは0.23
以下であることは、本発明で用いるPVAにおいて分子
間水素結合が弱められ、溶解性の向上が図られること、
および延伸性を向上させることを意味する。
Atacticity K is 0.25 or less, preferably 0.23
The following is that in the PVA used in the present invention, intermolecular hydrogen bonds are weakened and solubility is improved;
This means improving stretchability.

一般に市販されるPVA6るいは低温エマルジョン重合
法やパール重合法により得られる高重合度PVAは、K
が0.25よシ大であり、ラセミ(r)分率が高いため
分子間水素結合が強く、Kが0.25以下のPVAより
溶解性、延伸性が劣る。
Generally commercially available PVA6 or high polymerization degree PVA obtained by low temperature emulsion polymerization method or pearl polymerization method is K
is larger than 0.25, and the racemic (r) fraction is high, so intermolecular hydrogen bonds are strong, and the solubility and stretchability are inferior to PVA with K of 0.25 or less.

本発明はKが0.25以下で比較的高い重合度のPVA
を用いることを特徴とするが、その中KKが0.25よ
り大のPVAを少量添加しても何んら支障ない。
The present invention uses PVA with a relatively high degree of polymerization with K of 0.25 or less.
However, there is no problem in adding a small amount of PVA with KK greater than 0.25.

PVA系ポリマーの溶剤としては、エチレングリコール
、トリメチレングリコール、ジエチレンクリコール、グ
リセリンなどの多価アルコールやジメチルスルホキシド
、ジメチルホルムアミド、ジエチレントリアミンなどの
有機溶剤、水、さらにはこれら2種以上の混合溶剤やア
ルコールとの混合溶剤あるいはロダン塩水溶液などいず
れのものでも支障ない。
Solvents for PVA-based polymers include polyhydric alcohols such as ethylene glycol, trimethylene glycol, diethylene glycol, and glycerin, organic solvents such as dimethyl sulfoxide, dimethyl formamide, and diethylene triamine, water, and mixed solvents of two or more of these. Any solvent such as a mixed solvent with alcohol or an aqueous Rodan salt solution may be used.

特に本発明は高重合度PVAで多価アルコールなどの貧
溶剤を用いてゲル紡糸−高倍率延伸により高強力繊維を
得る場合に有効である。溶解機はPVAの均一溶液が得
られるものならどのような型式のものでも良いが、特に
攪拌効果が大きく、ポリマーの局在化が少ないものとし
ては、自転と公転を有するフックと溶解釜壁面に接触し
て公転するスクレーパを具備した密閉容器やバンバリー
ミキサ−12軸混練押出機などがある。なお高温下で長
時間溶解する場合はポリマーの着色分解が起こり易いの
でN2雰囲気下で溶解するのが望ましい。
In particular, the present invention is effective when obtaining high-strength fibers using high-polymerization degree PVA by gel spinning and high-strength stretching using a poor solvent such as polyhydric alcohol. The dissolving machine may be of any type as long as it can obtain a homogeneous solution of PVA, but the one that has a particularly strong stirring effect and minimizes the localization of the polymer is one that has a hook that rotates on its axis and revolves around the melting vessel wall, Examples include a closed container equipped with a scraper that contacts and revolves, a Banbury mixer, and a 12-screw kneading extruder. Note that when dissolving at high temperatures for a long period of time, coloring and decomposition of the polymer tends to occur, so it is preferable to dissolve under N2 atmosphere.

紡糸方法は湿式、乾式、乾湿式など通常用いられる方法
で何んら支障はないが、特にゲル紡糸−超延伸の考え方
では乾湿式紡糸が望ましい。
The spinning method may be any commonly used method such as wet, dry, dry-wet, etc., but wet-dry spinning is particularly preferred from the viewpoint of gel spinning-ultra-stretching.

凝固剤としてはメタノール、エタノール、ブタノールな
どのアルコール類、アセトン、ベンゼン、トルエンなど
あるいはこれらと溶剤との混合系、さらには飽和無機塩
類水溶液、カセイソーダ水溶液などがあるが1本発明は
これに限定されるものではない。
Examples of the coagulant include alcohols such as methanol, ethanol, and butanol, acetone, benzene, toluene, etc., or mixtures thereof with solvents, as well as saturated inorganic salt aqueous solutions and caustic soda aqueous solutions, but the present invention is not limited thereto. It's not something you can do.

溶剤除去は薬剤による抽出または/および乾燥により行
なうのが一般的である。本発明は溶剤を完全に除去する
前または除去した後で、水素あるいは有機溶剤系の浴中
で延伸しても何んら問題ないが、少なくとも最終的に2
00°C以上の乾熱で延伸し、総延伸倍率を15倍以上
にする必要がある。200℃未満の場合は延伸に必要な
分子鎖の動きが不十分で高倍率延伸が出来ず、また結晶
化度が低下するため分子鎖の固定が不十分となり高強力
繊維は得難くなる。
Solvent removal is generally performed by extraction with chemicals and/or drying. In the present invention, there is no problem with stretching in a hydrogen or organic solvent bath before or after the solvent has been completely removed;
It is necessary to draw with dry heat at 00° C. or higher, and make the total stretching ratio 15 times or higher. If the temperature is less than 200°C, the movement of the molecular chains required for stretching is insufficient, making it impossible to draw at a high magnification, and the degree of crystallinity decreases, resulting in insufficient fixation of the molecular chains, making it difficult to obtain high-strength fibers.

延伸温度は225〜235°Cが好ましい。245“C
以上では分子鎖の素抜けが生じて延伸倍率が低下したり
1着色分解が起って強力低下を招く。200°C以上の
油浴中で延伸しても支障ないが、繊維に付着した油を除
去する工程が必要になる。乾熱延伸は空気又は不活性ガ
スの雰囲気下で1段または2段以上の多段にて行なって
も良いが、繊維損傷の点で非接触タイプの中空ヒーター
を用いるのが好ましい。
The stretching temperature is preferably 225 to 235°C. 245“C
If this is the case, the molecular chains will be missing, resulting in a decrease in the stretching ratio, and one-color decomposition, resulting in a decrease in strength. There is no problem even if the fiber is stretched in an oil bath at 200° C. or higher, but a step is required to remove the oil attached to the fibers. Although the dry heat stretching may be carried out in one stage or in multiple stages of two or more stages in an atmosphere of air or inert gas, it is preferable to use a non-contact type hollow heater in view of fiber damage.

総延伸倍率は15倍以上、好ましくは20倍以上、さら
に好ましくは25倍以上であるが、高重合度PVA#!
ど延伸倍率は低下する。15倍未満では目的としている
単繊維強度15 f/d以上の高強力m維を得ることは
困難となる。本発明の分子間水素結合の弱いPVAを用
いることにより、溶剤への溶解性が向上し繊維欠陥部が
少なくなって紡糸延伸の毛羽断糸が減少しかつ高倍率に
延伸でき、従来よυ高張力なPVA系繊維を安定に作る
ことが容易になった。
The total stretching ratio is 15 times or more, preferably 20 times or more, more preferably 25 times or more, but high polymerization degree PVA#!
However, the stretching ratio decreases. If it is less than 15 times, it will be difficult to obtain high-strength m-fibers with the desired single fiber strength of 15 f/d or more. By using PVA with weak intermolecular hydrogen bonds of the present invention, solubility in solvents is improved, fiber defects are reduced, fluff breakage during spinning and drawing is reduced, and it is possible to draw at a high magnification. It has become easier to stably produce tensile PVA fibers.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例1,2および比較例1.2 PVAとして、ジメチルスルホキシド(DMSO)の溶
媒中で重合した平均重合度が1700および3700の
ものをそれぞれ実施例1と2に用いた。
Examples 1 and 2 and Comparative Example 1.2 PVA polymerized in a dimethyl sulfoxide (DMSO) solvent and having an average degree of polymerization of 1700 and 3700 was used in Examples 1 and 2, respectively.

本発明に言うアタクテシテイにはそれぞれ0.19およ
び0.20であυ、ケン化度はいずれも99.0モルチ
であった。2つのPVAを水にそれぞれ18および10
重量%となるように添加し、同時にホウ酸を各PVAに
対し2重量%ずつ入れて98°Cで3時間攪拌しながら
溶解した。得られた溶液を常法により苛性ソーダと芒硝
の入った水容液中へ湿式紡糸し、中和、水洗を行なって
5倍の湿延伸を行なった。次いで熱風乾燥により溶剤で
ある水を完全に蒸発させたあと180°Cから230°
Cまでの温度勾配のある熱風炉で延伸した。
The attack according to the present invention was 0.19 and 0.20, respectively, and the degree of saponification was 99.0 mol. Two PVA in water 18 and 10 respectively
At the same time, 2% by weight of boric acid was added to each PVA and dissolved with stirring at 98°C for 3 hours. The obtained solution was wet-spun into an aqueous solution containing caustic soda and Glauber's salt by a conventional method, neutralized, washed with water, and then wet-stretched 5 times. Next, the solvent water was completely evaporated by hot air drying, and then heated from 180°C to 230°C.
It was stretched in a hot air oven with a temperature gradient up to C.

比較例1として通常のメタノール溶液より得た平均重合
度3700%に=0.30.ケン化度92.2モルチの
PVAを用い、実施例2と同様に紡糸延伸を行なった。
As Comparative Example 1, the average degree of polymerization obtained from a normal methanol solution was 3700% = 0.30. Spinning and drawing was performed in the same manner as in Example 2 using PVA with a saponification degree of 92.2 mol.

また比較例2として実施例1と同じPVAを用い紡糸し
たあと延伸温度を190°C一定にして延伸した。
Further, as Comparative Example 2, the same PVA as in Example 1 was spun and then stretched at a constant stretching temperature of 190°C.

これらの紡糸性、延伸性および繊維性能の結果をまとめ
て第1表に示した。
The results of spinnability, drawability and fiber performance are summarized in Table 1.

以下余白 実施例1は平均重合度1700、K=0.19のPVA
を用いているが、98℃、3時間で水に均一に溶解しほ
ぼ透明な溶液となった。該溶液を300ホールのノズル
より吐出させ、2日間連続紡糸したが単糸間の張力斑は
少なく単糸切れは1度もなかった。5倍湿延伸をした原
糸を180〜230℃の温度勾配のあるヒータで5.3
倍延伸したが5日間で単糸切れは1度もなかった。総延
伸倍率26.5倍は最高切断延伸倍率の8割に相当する
が、長時間単糸切れがなかったことより繊維に欠陥部や
形態斑が少ないことが裏付けられた。得られた延伸糸の
単繊維強度は1 B、1 f/dであシ高強力PVA繊
維となった。
The following margin Example 1 is PVA with an average degree of polymerization of 1700 and K=0.19.
was used, but it dissolved uniformly in water at 98°C for 3 hours to form a nearly transparent solution. The solution was discharged from a 300-hole nozzle and spun continuously for 2 days, but there were few tension irregularities between single yarns and no single yarn breakage occurred. The raw yarn that has been wet-stretched 5 times is heated to 5.3℃ using a heater with a temperature gradient of 180 to 230℃.
Although it was stretched twice, there was no single yarn breakage in 5 days. The total draw ratio of 26.5 times corresponds to 80% of the maximum cutting draw ratio, but the fact that there was no single filament breakage for a long time confirmed that the fibers had few defects and shape irregularities. The resulting drawn yarn had a single fiber strength of 1 B and 1 f/d, making it a high-strength PVA fiber.

実施例2は平均重合度5700.fc=0.20のPV
Aでおるが、実施例1と同様紡糸延伸性は良好テ、 単
繊維強jJi20.7 vd %%’):Lラス426
 g/dを示し、従来にない高強力、高モジユラスPV
A繊維であった。
Example 2 had an average degree of polymerization of 5700. PV of fc=0.20
A, but the spinning drawability was good as in Example 1. Single fiber strength jJi20.7 vd%%'): L lath 426
g/d, unprecedented high strength and high modulus PV
It was A fiber.

比較例1は平均重合度3700でに=0.50とシンジ
オ成分が多いPVAの場合であるが、水への溶解性が悪
く少し不透明な溶液を呈した。該耐液を実施例2と同様
に紡糸したが2日間で5回単糸切れがあった。乾熱延伸
倍率は2.82倍(総延伸倍率14.2倍)と低く、5
日間の延伸で8回の単糸切れがあった。単繊維のデニー
ルおよび強度の斑が大きく、平均強度は13.9 f/
dと低くなった。
Comparative Example 1 is a case of PVA with an average degree of polymerization of 3,700 and a high content of syndioic components (=0.50), but it had poor solubility in water and exhibited a slightly opaque solution. The liquid-resistant material was spun in the same manner as in Example 2, but single yarn breakage occurred five times in two days. The dry heat stretching ratio is as low as 2.82 times (total stretching ratio 14.2 times);
There were 8 single yarn breakages during one day of drawing. The denier and strength of single fibers are highly uneven, with an average strength of 13.9 f/
It became as low as d.

比較例2は実施例1において延伸ヒータ温度を190℃
にした場合であるが、分子鎖が伸びるのに十分な温度が
与えられなかったためか、300フイラメントの中央の
単繊維が切れ易く総延伸倍率は19.8倍に低下した。
In Comparative Example 2, the stretching heater temperature was 190°C in Example 1.
However, the single fiber at the center of the 300 filament was easily broken, and the total stretching ratio decreased to 19.8 times, probably because sufficient temperature was not provided for the molecular chains to stretch.

従って強度が15.21と低くまたX線よシ求めた結晶
化度が48チと低いため、熱に対する寸法安定性に劣シ
産業資材用繊維としての商品価値は低下した。
Therefore, the strength was as low as 15.21, and the degree of crystallinity as determined by X-ray scanning was as low as 48 degrees, resulting in poor dimensional stability against heat and a decline in commercial value as a fiber for industrial materials.

実施例3および比較例3 DMSO溶液より得た平均重合度が6800、K=0.
25.ケン化度99.9 モル%cDPVAを用い、P
VA濃度濃度1置 添加した。次いで180℃、4時間N雰囲気下で攪拌混
合して均一な溶液を得た。該溶液を20ホールのノズル
より空気中へ吐出させ、引続きメタノール/グリセリン
=7/3の浴に入れて冷却しゲル化させた。次いでメタ
ノールによりグリセリンを完全に抽出し、80℃の熱風
でメタノールを飛散させた。紡糸原糸はほぼ円型に近く
、デニール斑はわずかであった。得られた紡糸原糸を1
70°Cと255℃の中空ヒータにて乾熱2段に延伸し
、総延伸倍率18.3倍、単繊維強度22.897dの
高強力PVA繊維を得た。
Example 3 and Comparative Example 3 The average degree of polymerization obtained from the DMSO solution was 6800, K=0.
25. Using cDPVA with saponification degree of 99.9 mol%, P
VA concentration was added at one time. Next, the mixture was stirred and mixed at 180° C. under an N atmosphere for 4 hours to obtain a homogeneous solution. The solution was discharged into the air through a 20-hole nozzle, and then placed in a 7/3 methanol/glycerin bath to cool and gel. Next, glycerin was completely extracted with methanol, and methanol was blown off with hot air at 80°C. The spun filament was almost circular in shape and had slight denier irregularities. The obtained spun yarn is 1
It was drawn in two dry heat stages at 70°C and 255°C with a hollow heater to obtain a high-strength PVA fiber with a total draw ratio of 18.3 times and a single fiber strength of 22.897 d.

比較例3としてバール重合法で得た平均重合度7000
、K=0.29,ケ/化度99.9モルチのPVAを用
い、実施例3と同様にグリセリンに溶解し,ゲル紡糸を
行なったが,紡糸時に毛羽断糸があり、また張力斑によ
るデニール斑が大きくなった。得られた紡糸原糸に実施
例3と同様乾熱2段延伸を施したが、総延伸倍率は11
.4倍と低く、単繊維強度は1 8.5 9/dと実施
例3の場合よシ低くなった。
As Comparative Example 3, the average degree of polymerization was 7000 obtained by the bar polymerization method.
, K = 0.29, K/degree of 99.9 molti PVA was dissolved in glycerin and gel spinning was performed in the same manner as in Example 3, but there was fluff breakage during spinning, and tension unevenness caused The denier spots have become larger. The obtained spun yarn was subjected to two-step dry heat stretching as in Example 3, but the total stretching ratio was 11.
.. The single fiber strength was 18.59/d, which was lower than that of Example 3.

実施例4 スルホラン溶液より得た平均重合度3200、K=0.
18、ケン化度? ?.9モy%(7)PVA? 5重
量部と、低温パール重合よシ得た平均重合度12000
、K=0.31、ケン化度99.9モルチのPVA5重
量部の混合PVAを水に対し30重量%となるように添
加し、98℃で8時間攪拌し均一に溶解した。次いで1
00ホールのノズルから乾式法により1日紡糸したが、
その間単糸切れは1度もなかった。熱風乾燥で水を除去
したあと、200〜235℃の温度勾配のある熱風炉で
1段延伸を行なったが、総延伸倍率は19.5倍と高く
、単繊維強度は2 L4 9/dを示した。
Example 4 Average degree of polymerization obtained from sulfolane solution: 3200, K=0.
18.Saponification degree? ? .. 9 moy% (7) PVA? 5 parts by weight and an average degree of polymerization of 12,000 obtained by low-temperature pearl polymerization.
, K=0.31, PVA with a saponification degree of 99.9 mol 5 parts by weight of mixed PVA were added to the water to give a concentration of 30% by weight, and the mixture was stirred at 98° C. for 8 hours to uniformly dissolve. then 1
It was spun for one day using a dry method using a 00 hole nozzle.
During that time, there was never a single thread breakage. After removing water by hot air drying, one-stage stretching was performed in a hot air oven with a temperature gradient of 200 to 235°C, but the total stretching ratio was as high as 19.5 times, and the single fiber strength was 2 L4 9/d. Indicated.

実施例5 実施例?DPVAを用いDMSO/水=8/2の混合溶
液にPVA濃度12重量%になるように添加し、95℃
で6時間攪拌して均一な透明液を得た。該溶液を20ホ
ールのノズルより空気中に吐出させ,すぐに5℃、メタ
ノール/ DMSO = s/sの浴に浸漬し、透明な
ゲル繊維にしたあとメタノール抽出、40°C真空乾燥
を行なった。次いで170〜225℃の中空ヒータで2
段延伸し、総延伸倍率23.7倍、単繊維強度2L59
/dを得た。
Example 5 Example? Using DPVA, add it to a mixed solution of DMSO/water = 8/2 so that the PVA concentration is 12% by weight, and heat at 95°C.
The mixture was stirred for 6 hours to obtain a homogeneous transparent liquid. The solution was discharged into the air from a 20-hole nozzle, and immediately immersed in a methanol/DMSO = s/s bath at 5°C to form a transparent gel fiber, which was then extracted with methanol and vacuum dried at 40°C. . Then, 2
Stage stretching, total stretching ratio 23.7 times, single fiber strength 2L59
/d was obtained.

Claims (3)

【特許請求の範囲】[Claims] (1)平均重合度が1500以上でアタクチシティKが
0.25以下のポリビニルアルコール系ポリマーを溶剤
に溶解して常法により紡糸したあと、最終的に200℃
以上の乾熱で延伸して総延伸倍率を15倍以上にするこ
とを特徴とする高強力ポリビニルアルコール系繊維の製
造法。
(1) A polyvinyl alcohol-based polymer with an average degree of polymerization of 1500 or more and an atacticity K of 0.25 or less is dissolved in a solvent and spun using a conventional method, and then finally heated to 200°C.
A method for producing high-strength polyvinyl alcohol-based fibers, which comprises stretching with dry heat to achieve a total stretching ratio of 15 times or more.
(2)平均重合度が3000以上である特許請求の範囲
第1項記載の高強力ポリビニルアルコール系繊維の製造
法。
(2) The method for producing high-strength polyvinyl alcohol fibers according to claim 1, wherein the average degree of polymerization is 3,000 or more.
(3)ポリビニルアルコール系ポリマーを溶解する溶剤
が冷却によりポリビニルアルコールのゲル化を起こさせ
るものを用い、該原液を乾湿式によりゲル紡糸すること
を特徴とする特許請求の範囲第1項または第2項記載の
高強力ポリビニルアルコール系繊維の製造法。
(3) Claims 1 or 2, characterized in that the solvent for dissolving the polyvinyl alcohol polymer is one that causes polyvinyl alcohol to gel when cooled, and the stock solution is subjected to gel spinning using a dry-wet process. A method for producing high-strength polyvinyl alcohol fibers as described in .
JP7784587A 1987-03-30 1987-03-30 Production of high-tenacity polyvinyl alcohol fiber Granted JPS63243316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7784587A JPS63243316A (en) 1987-03-30 1987-03-30 Production of high-tenacity polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7784587A JPS63243316A (en) 1987-03-30 1987-03-30 Production of high-tenacity polyvinyl alcohol fiber

Publications (2)

Publication Number Publication Date
JPS63243316A true JPS63243316A (en) 1988-10-11
JPH0457770B2 JPH0457770B2 (en) 1992-09-14

Family

ID=13645390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7784587A Granted JPS63243316A (en) 1987-03-30 1987-03-30 Production of high-tenacity polyvinyl alcohol fiber

Country Status (1)

Country Link
JP (1) JPS63243316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338534A2 (en) * 1988-04-21 1989-10-25 Kuraray Co., Ltd. Polyvinyl alcohol fiber having excellent resistance to hot water and process for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100710A (en) * 1982-11-25 1984-06-11 Kuraray Co Ltd Production of yarn having high toughness
JPS61108712A (en) * 1984-11-02 1986-05-27 Toray Ind Inc Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS61108711A (en) * 1984-11-02 1986-05-27 Toray Ind Inc Production of polyvinyl alcohol fiber of high strength and high elastic modulus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100710A (en) * 1982-11-25 1984-06-11 Kuraray Co Ltd Production of yarn having high toughness
JPS61108712A (en) * 1984-11-02 1986-05-27 Toray Ind Inc Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS61108711A (en) * 1984-11-02 1986-05-27 Toray Ind Inc Production of polyvinyl alcohol fiber of high strength and high elastic modulus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338534A2 (en) * 1988-04-21 1989-10-25 Kuraray Co., Ltd. Polyvinyl alcohol fiber having excellent resistance to hot water and process for producing the same

Also Published As

Publication number Publication date
JPH0457770B2 (en) 1992-09-14

Similar Documents

Publication Publication Date Title
JPS6385107A (en) Production of filament high in modulus and tensile strength
Fujiwara et al. Preparation of high‐strength poly (vinyl alcohol) fibers by crosslinking wet spinning
JPH04228613A (en) Polyketone fiber and its manufacture
US5133916A (en) Polyvinyl alcohol fiber having excellent resistance to hot water and process for producing the same
JPH0978349A (en) Production of polybenzazole fiber
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
JPH10504593A (en) Manufacturing method of cellulose extrudate
JPH01104815A (en) Polyvinyl alcohol fiber and production thereof
Nagashima et al. Syndiotacticity‐rich poly (vinyl alcohol) fibers spun from N‐methylmorpholine‐N‐oxide/water mixture
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS63243316A (en) Production of high-tenacity polyvinyl alcohol fiber
JPH076087B2 (en) High strength and high modulus PVA fiber and method for producing the same
JPH0284504A (en) Polyvinyl alcohol fiber suitable as reinforcing material
JPS63190010A (en) Production of high-tenacity polyvinyl alcohol based fiber
JP2019026990A (en) Production method of polyvinyl alcohol-based fiber
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JPH0299607A (en) Production of polyvinyl alcohol-based fiber
JPH01266212A (en) Production of high-tenacity polyvinyl alcohol fiber
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
KR100646652B1 (en) A process of preparing for the polyvinylalcohol yarn with high strength
JPH02169709A (en) Method for drawing polyvinyl alcohol-based fiber
JPH01192813A (en) Polyvinyl alcohol based fiber excellent in flexing fatigue property
JP2553129B2 (en) Polyvinyl alcohol fiber with good fatigue resistance
JPH0625909A (en) Production of high-strength polyvinyl alchol-based fiber