JPS61108712A - Production of polyvinyl alcohol fiber of high strength and high elastic modulus - Google Patents

Production of polyvinyl alcohol fiber of high strength and high elastic modulus

Info

Publication number
JPS61108712A
JPS61108712A JP23030284A JP23030284A JPS61108712A JP S61108712 A JPS61108712 A JP S61108712A JP 23030284 A JP23030284 A JP 23030284A JP 23030284 A JP23030284 A JP 23030284A JP S61108712 A JPS61108712 A JP S61108712A
Authority
JP
Japan
Prior art keywords
yarn
solvent
polymer
pva
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23030284A
Other languages
Japanese (ja)
Other versions
JPH0670283B2 (en
Inventor
Masaharu Mizuno
正春 水野
Kotaro Fujioka
藤岡 幸太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59230302A priority Critical patent/JPH0670283B2/en
Publication of JPS61108712A publication Critical patent/JPS61108712A/en
Publication of JPH0670283B2 publication Critical patent/JPH0670283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:A PVA polymer of a specific polymerization degree is dissolved in a solvent which dissolved the PVA at a lower temperature than the melting point of the polymer, extruded through a spinneret, converted into gel in an immiscible cooling bath, drawn and subjected to desolvation to give the titled fibers of high openability and flexibility in high productivity. CONSTITUTION:A polyvinyl alcohol with a polymerization degree of at least 1,500 is dissolved in such a solvent as the polymer is dissolved in a temperature range from 80 deg.C to the melting point of the polymer such as glycerol and the solution is extruded through a spinneret. The extruded yarn is led into a cooling bath which is kept at a temperature lower than the gelling point of the polymer solution and contains a solvent immiscible to the solvent for the spinning dope to effect gelation of the yarn. The gel yarn is subjected to drawing and desolvation or desolvation and drawing at a draw ratio of at least 13 to give the objective fibers.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高強度、高弾性率のポリビニルアルコール(
以下、PVAと略す)系繊維の製造方法、特にその工業
的もしくは商業的な製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides high strength, high modulus polyvinyl alcohol (
The present invention relates to a method for producing PVA (hereinafter abbreviated as "PVA") fiber, particularly an industrial or commercial method for producing the same.

[従来の技術] 従来、超高分子量のポリオレフィン系ポリマの準稀薄溶
液を紡糸し、得られた吐出糸条を冷却してゲル化させ、
このゲル化糸条から溶媒を抽出した後、超延伸を施すと
、強度および弾性率の極めて大きい繊維が得られること
が知られている(特開昭56−15408.特開昭58
−5228M各公報およびJ ournal  of 
 MaterialS  S C1ence  Vol
、15.505〜514頁、1980および同 258
4〜2590頁、1980)。
[Prior Art] Conventionally, a semi-diluted solution of an ultra-high molecular weight polyolefin polymer is spun, and the resulting discharged yarn is cooled and gelled.
It is known that if the solvent is extracted from this gelled yarn and then ultra-stretched, fibers with extremely high strength and elastic modulus can be obtained (JP-A-56-15408; JP-A-58
-5228M publications and Journal of
MaterialS S C1ence Vol.
, 15.505-514, 1980 and 258.
4-2590, 1980).

超高重合度PVAを使用し、上記のゲル紡糸を応用した
超高強度、高弾性率繊維の製造方法として、特開昭59
−130314号公報には、まず、PVA原料である厳
重に精留された酢酸ビニルモノマーを一40℃以下の低
温下に約100時間と言う長時間紫外線を照射して重合
することにより、重合度が6000を越える超高型d度
PVAを作成し、この超高重合度PVAを用いて、ゲル
紡糸法、すなわち紡糸原液を紡糸口金から吐出すること
により得られた糸条を冷却してゲル化し、このゲル化糸
条から繊維を製造する方法により高強度高弾性率繊維を
製造する方法が開示されている。
As a method for producing ultra-high strength and high elastic modulus fibers using ultra-high polymerization degree PVA and applying the above-mentioned gel spinning, JP-A-59
Publication No. 130314 discloses that first, strictly rectified vinyl acetate monomer, which is a raw material for PVA, is polymerized by irradiating it with ultraviolet rays for a long time of about 100 hours at a low temperature of -40°C or less. We created ultra-high d-degree PVA with a polymerization degree of over 6000, and used this ultra-high polymerization degree PVA to cool and gel the yarn obtained by the gel spinning method, that is, by discharging the spinning dope from a spinneret. discloses a method for producing high-strength, high-modulus fibers by producing fibers from this gelled yarn.

しかしながら、このようなゲル化紡糸方法においては、
モノフィラメントは別にして、通常一般的に製造されて
いる多数本の単繊維からなるマルチフィラメントヤーン
を製造する場合には、マルチフィラメントヤーンを構成
する単繊維が相互に融着し易いため、得られる繊維は柔
軟性に乏しく、繊維全体の強度も低く、高次加工、たと
えば撚糸などによって強度が低下し、かつ強度利用率も
低いなどという問題がある。
However, in such a gel spinning method,
Apart from monofilaments, when manufacturing a commonly produced multifilament yarn consisting of a large number of single fibers, the single fibers that make up the multifilament yarn are easily fused to each other. Fibers have problems such as poor flexibility, low strength of the fiber as a whole, strength reduced by high-order processing such as twisting, and low strength utilization.

また、重合度が6000を越えるような高重合度PVA
は、均一性の良好な高濃度のポリマ溶液の作成が難しく
、しかもポリマ濃度の高い紡糸原液は、粘度が著しく高
粘度になり、曳糸性が悪化  □するから、紡糸原液と
してはポリマ濃度の低い溶液を使用せざるを得ないが、
ポリマ濃度の低い紡糸原液は繊維製造における生産性が
低く、工業的な製造法を取り得ないという問題がある。
In addition, high polymerization degree PVA with a polymerization degree exceeding 6000
It is difficult to create a highly concentrated polymer solution with good uniformity, and a spinning stock solution with a high polymer concentration has a significantly high viscosity and deteriorates spinnability. Although it is necessary to use a low-temperature solution,
A spinning stock solution with a low polymer concentration has a problem in that productivity in fiber production is low and industrial production methods cannot be used.

そして、上記ゲル化紡糸法において、吐出糸条をゲル化
するための冷却浴として水を使用すると、湿潤状態にあ
る該ゲル化糸条が融着し易く、PVA系ポリマに対する
溶解性、取り扱い、安全性などの点で有利な水を使用で
きないと言う欠点がある。
In the above-mentioned gel spinning method, when water is used as a cooling bath for gelling the discharged yarn, the gelled yarn in a wet state is likely to fuse, and the solubility of the PVA-based polymer, handling, etc. The disadvantage is that water, which is advantageous in terms of safety, cannot be used.

さらに上記特開昭59−130314号公報に記載され
ているような特殊なPVAの製造法は、少くとも工業的
なポリマの製造方法とは言い難く、その工業化を制約す
る一つの原因と言える。
Furthermore, the special method for producing PVA as described in JP-A-59-130314 can hardly be called an industrial method for producing polymers, and can be said to be one of the reasons for restricting its industrialization.

[発明が解決しようとする問題点] 本発明者らは、高強度・高弾性率PVA系繊維の製造方
法として、上記特開昭59−130314号公報に記載
の超高強度PVA系繊維に匹敵する高い物性を有するP
VA系繊維を工業的およびコスト的に有利に製造する方
法について、鋭意検討し、本発明を見出すに到ったもの
である。
[Problems to be Solved by the Invention] The present inventors have developed a method for producing high-strength, high-modulus PVA-based fibers that is comparable to the ultra-high-strength PVA-based fibers described in JP-A-59-130314. P has high physical properties that
The present invention was discovered after extensive research into a method for manufacturing VA fibers that is industrially and economically advantageous.

すなわち、本発明の目的とするところは、強度および弾
性率において卓越した物性を示すPVA系繊維を生産性
良く、かつ技術的に有利に製造する方法を提供するにあ
る。
That is, an object of the present invention is to provide a highly productive and technically advantageous method for producing PVA fibers exhibiting excellent physical properties in terms of strength and elastic modulus.

さらに他の目的は、融着のない開繊性および柔軟性に富
んだ、高次加工性に優れたPVA系繊維を提供するにあ
る。
Still another object is to provide a PVA-based fiber that is free from fusion, has excellent openability and flexibility, and is excellent in high-order processability.

以下、本発明をさらに詳細、かつ具体的に説明する。Hereinafter, the present invention will be explained in more detail and specifically.

[問題点を解決するための手段] このような本発明の目的は、重合度が少くとも1500
であるPVA系ポリマを使用し、このポリマをその融点
以下、80℃以上の温度範囲で溶解する溶剤に溶解し、
得られたポリマ溶液を紡糸原液として紡糸口金から吐出
し、吐出糸条を該ポリマの溶剤に対して非混和性であっ
て、ゲル化するに十分な温度に保持された液体冷却浴中
に導いてゲル化させ、得られたゲル化糸条を脱溶媒後延
伸するかもしく延伸後脱溶媒し、全延伸倍率が少くとも
13倍の延伸糸条とすることによって達成される。
[Means for Solving the Problems] The object of the present invention is to achieve a polymerization degree of at least 1500.
Using a PVA-based polymer, this polymer is dissolved in a solvent that dissolves in a temperature range of below its melting point and above 80°C,
The resulting polymer solution is discharged from a spinneret as a spinning dope, and the discharged thread is introduced into a liquid cooling bath that is immiscible with the polymer solvent and maintained at a temperature sufficient to gel. This is achieved by gelling the resulting gelled yarn and stretching the resulting gelled yarn after removing the solvent, or by removing the solvent after stretching to obtain a drawn yarn with a total stretching ratio of at least 13 times.

本発明に使用されるPVA系ポリマとしては、従来公知
のPVAおよびその誘導体などであり、特に限定される
ものではないが、具体的には、完全ケン化PVAのみな
らず、主鎖中に共重合成分としてたとえばエチレン、プ
ロピレン、ブチレンなどのオレフィン系モノマが少量共
重合されたものおよびPVAの製造工程で完全にケン化
しないで部分ケン化されたPVAもしくは化学的に後処
理されたPVA系ポリマ並びに10重量%以下の少量の
PVAに対して混和性を有する他種のポリマとのブレン
ドなどを挙げることができる。
The PVA-based polymer used in the present invention includes conventionally known PVA and derivatives thereof, and is not particularly limited. Polymerization components such as those copolymerized with a small amount of olefin monomers such as ethylene, propylene, butylene, PVA that has been partially saponified without being completely saponified in the PVA manufacturing process, or PVA polymers that have been chemically post-treated. Also, examples include blends with other types of polymers that are miscible with a small amount of PVA, such as 10% by weight or less.

しかしながら、これらのPVA系ポリマは、その重合度
が少くとも1500.好ましくは1500〜6000の
範囲内であることが望ましく、重合度が1500よりも
小さくなると、本発明の目的とする超高強度物性を満足
する繊維を得ることができないし、他方、重合度が60
00を越えると、PVA系ポリマそのものの製造コスト
が高く、商業的に入手が困難であるだけでなく、紡糸原
液として生産性良く紡糸し得る濃度および粘度を有する
溶液の作成が困難になり、PVA系繊維の紡糸、製糸の
上から工業的な製造が難しくなるため好ましくない。
However, these PVA-based polymers have a degree of polymerization of at least 1500. Preferably, it is within the range of 1,500 to 6,000. If the degree of polymerization is less than 1,500, it will not be possible to obtain a fiber that satisfies the ultra-high strength physical properties that are the object of the present invention.
If it exceeds 00, the manufacturing cost of the PVA-based polymer itself is high and it is difficult to obtain it commercially, and it is also difficult to create a solution with a concentration and viscosity that can be used as a spinning dope with good productivity. This is not preferable because it makes industrial production difficult in terms of spinning and spinning of the fibers.

このような重合度の範囲内にある本発明のPVA系ポリ
マは、ポリマ濃度が5〜25重量%の範囲内になるよう
に溶解し、紡糸原液が調製される。
The PVA-based polymer of the present invention having a degree of polymerization within this range is dissolved so that the polymer concentration is within the range of 5 to 25% by weight to prepare a spinning dope.

ここで、上記ポリマ濃度が5%よりも低くなると、生産
性が劣り溶剤回収のコスト負担が大きくなるし、他方、
25%よりも高くなると、紡糸原液の粘度が高すぎてポ
リマ流路での圧力損失が大きく安定流動しにくくなる欠
点がある。
Here, if the polymer concentration is lower than 5%, productivity will be poor and the cost burden of solvent recovery will increase, and on the other hand,
When it is higher than 25%, the viscosity of the spinning dope is too high, resulting in a large pressure loss in the polymer flow path and a drawback that stable flow becomes difficult.

上記紡糸原液のll製に用いられるPVA系ポリマの溶
剤としては、該PVA系ポリマがその融点以下、80℃
以上の温度範囲内で溶解され、得られた溶液が冷却によ
ってゲル化するもの、只体的には、エチレングリコール
、グリセリン、ジエチレングリコール、トリメチロール
プロパン、ベンゼンスホンアミド、カプロラクタムなど
常温で非揮発性の溶剤、好ましくは水に対して混和性を
有するグリセリン、エチレングリコールがよい。紡糸原
液は、ポリマの融点(約250℃)以下、80℃以上の
温度範囲に加熱された上記溶剤にPVA系ポリマを溶解
することによって調製さ、れる。
As a solvent for the PVA-based polymer used for making the above-mentioned spinning stock solution, the melting point of the PVA-based polymer is below its melting point, 80°C.
Things that are dissolved within the above temperature range and the resulting solution turns into a gel when cooled, are generally non-volatile at room temperature, such as ethylene glycol, glycerin, diethylene glycol, trimethylolpropane, benzenesphonamide, and caprolactam. Glycerin and ethylene glycol, which are miscible with solvents, preferably water, are preferred. The spinning stock solution is prepared by dissolving the PVA-based polymer in the above-mentioned solvent heated to a temperature range below the melting point of the polymer (approximately 250°C) and above 80°C.

ポリマの融点より高温の溶媒に溶解すると、ポリマが分
解するので好ましくないし、80℃よりも低いと例えば
、常温〜0℃の領域ではゲル化しにくく安定したゲル糸
条を得ることが困難になる。
If it is dissolved in a solvent with a temperature higher than the melting point of the polymer, the polymer will decompose, which is not preferable, and if it is lower than 80°C, for example, it will be difficult to gel in the range of room temperature to 0°C, making it difficult to obtain a stable gel thread.

かくして得られた紡糸原液は、紡糸口金孔から吐出され
るが、紡糸原液は直接冷却浴中に吐出してもよいし、一
旦空気または窒素、ヘリュウム、アルゴンなどの不活性
気体中に吐出し、次いで冷却浴中に導入してもよい。空
気または不活性気体中に吐出する場合は、空気または不
活性気体の温度な0〜80℃とし、かつ紡糸口金面と冷
却浴との間の距離を3〜5〇−程度にするのがよい。
The spinning dope thus obtained is discharged from the spinneret hole, but the spinning dope may be discharged directly into a cooling bath, or once discharged into air or an inert gas such as nitrogen, helium, argon, etc. It may then be introduced into a cooling bath. When discharging into air or inert gas, the temperature of the air or inert gas should be 0 to 80°C, and the distance between the spinneret surface and the cooling bath should be about 3 to 50 degrees. .

ここで、冷却浴液は、PVA系ポリマの溶媒に対して相
溶性および混和性を有しない疎水性の液体、たとえばデ
カリン、トリクロルエチレン、四塩化炭素、パラフィン
オイル、灯油などが用いられ、このような冷却液体を使
用することによって、該冷却液体中でゲル化した糸条は
、そのポリマ濃度が紡糸原液のポリマm度と実質的に同
一に保たれ、このようなゲル化糸条によってはじめて本
発明の高強度、高弾性率PVA系繊維を製造することが
可能になるのである。
Here, the cooling bath liquid used is a hydrophobic liquid that is neither compatible nor miscible with the solvent of the PVA-based polymer, such as decalin, trichlorethylene, carbon tetrachloride, paraffin oil, and kerosene. By using a cooling liquid, the polymer concentration of the gelled yarn in the cooling liquid is kept substantially the same as the polymer concentration of the spinning dope, and it is only through such gelled yarn that the polymer concentration is kept substantially the same as that of the spinning dope. This makes it possible to produce the high strength, high modulus PVA fiber of the invention.

すなわち、前記冷却液体がポリマの溶媒に対して相溶性
および混和性を有していると、該冷却液体中で吐出糸条
中のポリマ溶剤と冷却液体との間で相互拡散が起り、た
とえばスキン、コアなど、のような構造が形成され、緻
密で延伸性に優れたゲル糸条または脱溶媒未延伸糸条を
得ることが困難になるのである。
That is, if the cooling liquid has compatibility and miscibility with the polymer solvent, interdiffusion occurs between the polymer solvent in the discharged yarn and the cooling liquid in the cooling liquid, for example, the skin , core, etc. are formed, making it difficult to obtain a gel yarn or a desolventized undrawn yarn that is dense and has excellent drawability.

ここで、前記冷却液体の温度は、紡糸原液のゲル化温度
によって定まるが、好ましくは0〜60℃の範囲内にす
るのがよい。すなわち、60℃よりも高くなると、吐出
糸条の冷却効率が不充分なために、・後続する脱溶媒、
延伸などの工程で糸条を安定に走行させることが困難に
なるし、0℃よりも低くなると特殊な冷却設備を必要と
し好ましくない。
Here, the temperature of the cooling liquid is determined by the gelling temperature of the spinning dope, and is preferably within the range of 0 to 60°C. In other words, when the temperature rises above 60°C, the cooling efficiency of the discharged yarn is insufficient, resulting in: - subsequent desolvation;
It becomes difficult to run the yarn stably in processes such as drawing, and when the temperature is lower than 0°C, special cooling equipment is required, which is not preferable.

たとえば、3000の重合度を有するPVAの151i
量%グリセリン溶液の場合、そのゲル化温度は約103
℃であり、この溶液を紡糸口金ノズルから吐出し、得ら
れた吐出糸条を冷却するには、冷却浴の温度は40℃以
下がよい。
For example, 151i of PVA with a degree of polymerization of 3000
% glycerin solution, its gelation temperature is approximately 103
In order to discharge this solution from a spinneret nozzle and cool the resulting discharged yarn, the temperature of the cooling bath is preferably 40 °C or less.

また、冷却浴の深さ、長さなどは、特に限定されるもの
ではないが、マルチフィラメントとして吐出する場合は
、マルチフィラメントを構成する単繊維が集束される前
に冷却浴中で十分に冷却され、ゲル化が完了するように
冷却浴の温度、深さ、長さを適宜設定すべきである。
In addition, the depth and length of the cooling bath are not particularly limited, but when discharging as a multifilament, the single fibers that make up the multifilament are sufficiently cooled in the cooling bath before being bundled. The temperature, depth, and length of the cooling bath should be set appropriately so that gelation is completed.

かくして得られたゲル化糸条は、ゲル化糸条を構成する
ポリマの濃度が実質的に紡糸原液におけるポリマ濃度と
同一であると言う特徴を有しており、この特徴は本発明
の前記重合度範囲のPVA系ポリマから高強度・高弾性
率繊維を形成する上で極めて重要である。
The gelled yarn thus obtained has the characteristic that the concentration of the polymer constituting the gelled yarn is substantially the same as the polymer concentration in the spinning stock solution, and this characteristic is due to the polymerization method of the present invention. This is extremely important in forming high-strength, high-modulus fibers from PVA-based polymers in the 50% range.

すなわち、このような特徴を有していることが、得られ
たゲル化糸条を脱溶媒処理した後延伸または延伸後脱溶
l55I!X理することによって少くとも13倍、好ま
しくは16倍以上と言う高倍率の延伸を行う上で必須の
要件になるのである。
That is, having such characteristics means that the obtained gelled yarn is subjected to solvent removal treatment and then stretched or stretched and then desolubilized l55I! X-processing is an essential requirement for stretching at a high magnification of at least 13 times, preferably 16 times or more.

脱溶媒処理としては、ゲル化糸条中に含まれる溶剤に対
して混和性を有し、PVA系ポリマに対して非溶剤であ
る液体、たとえばメタノール、エタノール、アセトンな
どを用いて処理されるが、特に好ましくはゲル化糸条を
熱延伸した復水を用いて該ゲル化糸条を処理することに
より行われる。
The solvent removal treatment is performed using a liquid that is miscible with the solvent contained in the gelled yarn and is a non-solvent for the PVA polymer, such as methanol, ethanol, acetone, etc. This is particularly preferably carried out by treating the gelled yarn using condensate obtained by hot drawing the gelled yarn.

脱溶媒処理した後の糸条は加熱乾燥され、糸条中に含ま
れる脱溶媒処理に使用した薬剤は除去される。
After the solvent removal treatment, the yarn is heated and dried to remove the chemical contained in the yarn used in the solvent removal treatment.

かくして得られた未延伸糸条は、次に延伸されるが、こ
の場合の延伸は延伸温度をPVA系ポリマの融点以下の
温度である160〜250℃の範囲として、一段もしく
は多段のいずれで行ってもよい。
The undrawn yarn thus obtained is then drawn, and the drawing is carried out in either a single step or in multiple steps, with the drawing temperature being in the range of 160 to 250°C, which is a temperature below the melting point of the PVA polymer. It's okay.

他方、前記脱溶媒処理の前にゲル化糸条を直ちに延伸す
る場合は、延伸温度をPVA系ポリマゲルの融点以下の
温度とするのがよい。この脱溶媒処理前の湿潤状態にあ
るゲル化糸条を加熱延伸し、次いで°脱溶媒処理すると
、脱溶媒処理に水を使用しても脱溶媒処理およびそれに
続く乾燥工程における単繊維間の融着を実質的に防止す
ることができ、柔軟で開繊性に冨む高強度・高弾性率P
VA系マルチフィラメントヤーンを工業的に有利に製造
することができる。しかしながら、上記ゲル状糸条の延
伸温度は、紡糸原液のゲル化温度によって相違するが、
たとえば紡糸原液のゲル化温度が110〜120℃付近
の場合には、常温で延伸すると延伸性が低く、高々2倍
程度しか延伸できないばかりか、延伸後の熱固定がされ
ず収縮する。
On the other hand, when the gelled yarn is immediately stretched before the solvent removal treatment, the stretching temperature is preferably set to a temperature equal to or lower than the melting point of the PVA-based polymer gel. If this gelled yarn in a wet state before the solvent removal treatment is heated and stretched and then subjected to the solvent removal treatment, even if water is used for the solvent removal treatment, the fusion between the single fibers during the solvent removal treatment and the subsequent drying process will increase. High strength and high elastic modulus P that can substantially prevent drying and is flexible and spreadable.
VA-based multifilament yarn can be advantageously produced industrially. However, the stretching temperature of the above-mentioned gel-like yarn varies depending on the gelation temperature of the spinning dope;
For example, when the gelling temperature of the spinning dope is around 110 to 120°C, stretching at room temperature will not only result in poor stretching properties, but will only be able to stretch at most twice as much, and will not be heat-set after stretching, resulting in shrinkage.

したがって、この場合に繊維を構成する高分子鎖が十分
に配向し、結晶化した繊維構造及び、十分な耐水性を有
する繊維糸条とするためには、60〜110’Cの範囲
で延伸するのがよい。
Therefore, in this case, in order to obtain a fiber yarn in which the polymer chains constituting the fiber are sufficiently oriented and have a crystallized fiber structure and sufficient water resistance, the stretching temperature is in the range of 60 to 110'C. It is better.

また、延伸装置としては、加熱チューブ、熱板、加熱ロ
ーラ、加熱ピン、加熱液体温、流動床などいずれの手段
でもよく、特に限定されるものではない。
Further, the stretching device may be any means such as a heating tube, a hot plate, a heating roller, a heating pin, a heated liquid temperature, or a fluidized bed, and is not particularly limited.

上記湿潤ゲル状態で延伸した糸条の脱溶媒処理は、水を
溶媒として使用することができ、前述したように工業的
に有利であるが、この場合の脱溶媒処理条件としては、
繊維を構成ザるPVA系ポリマの重合度、タフティシテ
ィなどにより相違するけれども、延伸糸条の単糸間融着
が起こらず、かつ脱溶媒効率のよい条件、好ましくは通
常10〜50℃の温度範囲内で処理すればよい。
The desolvation treatment of the yarn drawn in the wet gel state can use water as a solvent and is industrially advantageous as described above, but the conditions for the desolvation treatment in this case are as follows:
Although it varies depending on the degree of polymerization and toughness of the PVA polymer constituting the fiber, the conditions are such that fusion between single filaments of the drawn yarn does not occur and that the solvent is removed efficiently, preferably at a temperature of usually 10 to 50°C. It is sufficient to process within the temperature range.

かくして得られた延伸・脱溶媒糸条は、乾燥されるが、
この場合に単糸間融着を緩和し、以降の後処理工程での
金属との摩擦抵抗を減少させ、静電気による単糸の拡が
りを抑制するために、各種の油剤で処理し、乾燥しても
よい。乾燥手段としては、公知の加熱ドラム、加熱チュ
ーブ、熱風などを採用することができる。
The drawn and desolventized yarn thus obtained is dried, but
In this case, in order to alleviate the fusion between single yarns, reduce the frictional resistance with the metal in the subsequent post-treatment process, and suppress the spreading of single yarns due to static electricity, they are treated with various oils and dried. Good too. As the drying means, a known heating drum, heating tube, hot air, etc. can be employed.

乾燥された延伸糸条には、前記加熱チューブ、熱板、加
熱ロール、加熱ビン、加熱液体、流動床などを用いて、
100〜250℃のm度範囲で一段ないし複数段の二次
延伸が施され、得られる糸条の全延伸倍率が少くとも1
3佑、好ましくは18〜30倍になるように延伸される
。この全延伸倍率は、本発明のPVA系繊維糸条を構成
する高分子鎖を繊維軸方向に高度に配向せしめ、その強
度および弾性率を高度に増加させるための重要な要件で
あり、これによって引張強度が18g・76以上、引張
弾性率が3500/d以上という卓越したIINにする
ことが可能になるのである。
The dried drawn yarn is heated using the heating tube, heating plate, heating roll, heating bottle, heating liquid, fluidized bed, etc.
One or more stages of secondary stretching is performed at a temperature of 100 to 250 degrees Celsius, and the total stretching ratio of the resulting yarn is at least 1.
It is stretched by 3 times, preferably 18 to 30 times. This total stretching ratio is an important requirement for highly oriented the polymer chains constituting the PVA fiber yarn of the present invention in the fiber axis direction and highly increasing its strength and elastic modulus. This makes it possible to obtain an outstanding IIN with a tensile strength of 18 g/76 or more and a tensile modulus of 3500/d or more.

[発明の作用・効果] 本発明によれば、PVA系ポリマとして商業的に入手可
能な重合度が少くとも1500好ましくは1500〜6
0oOのポリマを用いて極めて機械的強度の優れたPV
A系繊維を製造することができる。
[Operations and Effects of the Invention] According to the present invention, the polymerization degree of commercially available PVA-based polymers is at least 1500, preferably 1500-6.
PV with extremely excellent mechanical strength using 0oO polymer
A-type fibers can be produced.

上記重合度のPVA系ポリマから引張強度が少°くとも
18g/d、弾性率が350a/d以上と言う優れた物
性を有する繊維を得ることに成功したのは、PVA系ポ
リマの紡糸原液として、溶液の安定性、紡糸性のよい濃
度範囲のPVA系ポリマ溶液を見出し、この紡糸原液か
ら得られるゲル化糸条のポリマ8!度を該紡糸原液のポ
リマ濃度と実質的に同一にすることによって、得られる
ゲル化糸条または脱溶媒糸条の延伸性が高度に向上する
ことを見出し、これらの一体内結合によって本発明の目
的を達成したものである。
We succeeded in obtaining fibers with excellent physical properties such as a tensile strength of at least 18 g/d and an elastic modulus of 350 a/d or more from a PVA polymer with the above degree of polymerization. , a PVA-based polymer solution with a concentration range with good solution stability and spinnability was discovered, and gelled yarn polymer 8! obtained from this spinning stock solution! It has been found that by making the polymer concentration substantially the same as the polymer concentration of the spinning dope, the drawability of the resulting gelled yarn or desolvation yarn is highly improved, and by combining these in one piece, the present invention can be applied. The purpose has been achieved.

本発明において、湿潤ゲル化糸条を延伸した後、脱溶媒
処理するときは、脱溶媒処理の溶媒として水を使用する
ことができ、従来のメタノールのような引火性で毒性を
有する溶媒を使用しなくてもよいと言うメリットがあり
、単に水が安価であると言うだけではなくて、本発明の
超高強度PVA系繊維の工業的な製法を確立したものと
しての意楓は極めて大きい。
In the present invention, when the wet gelled yarn is drawn and then subjected to solvent removal treatment, water can be used as the solvent for the solvent removal treatment, and conventional flammable and toxic solvents such as methanol are used. The present invention has the advantage of not having to use water, and not only because the water is cheap, but also because it has established an industrial manufacturing method for the ultra-high strength PVA fiber of the present invention.

さらに本発明によれば、モノフィラメントから総繊度が
約100〜10000dのマルチフィラメントの各種多
様な繊維を容易に製造することができる。
Further, according to the present invention, it is possible to easily produce a variety of multifilament fibers having a total fineness of about 100 to 10,000 d from monofilaments.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、実施例中、繊維の物性は、次の条件で測定した値
である。。
In addition, in the examples, the physical properties of the fibers are values measured under the following conditions. .

測定サンプル:単糸 測定試長:100111m 測定時の引張り速度:100m/分 測定雰囲気:20℃、65%相対湿度 実施例 1 重合度2100.ケン化度99.5%のPVAをグリセ
リンを溶剤として170℃で溶解し、ポリマ濃度が17
.5重量%の紡糸原液を作製ルだ。
Measurement sample: Single yarn measurement length: 100111 m Tensile speed during measurement: 100 m/min Measurement atmosphere: 20°C, 65% relative humidity Example 1 Polymerization degree 2100. PVA with a saponification degree of 99.5% was dissolved at 170°C using glycerin as a solvent, and the polymer concentration was 17.
.. A 5% by weight spinning dope was prepared.

この紡糸原液を170℃に保ち、孔径o、osmm、ホ
ール数10個の紡糸ノズルから空気中に吐出し、ノズル
面から8111下の15℃のデカリンを冷却液とする浴
中に導いて冷却した。ノズルからの紡糸原液の総吐出量
は0.970G/分であり、冷却したゴム状ゲル化糸条
は5+a/分で引き取った。
This spinning dope was maintained at 170°C, discharged into the air from a spinning nozzle with a hole diameter of o, osmm, and 10 holes, and cooled by guiding it into a bath containing decalin at 15°C below the nozzle surface as a cooling liquid. . The total discharge rate of the spinning dope from the nozzle was 0.970 G/min, and the cooled rubbery gelled yarn was taken off at 5+a/min.

得られたゲル化糸条を長さ80CIIlの内気温度が1
00℃の加熱チューブ中で4.0倍に延伸し、プラスチ
ックボビンに巻き取った。巻き取った糸条をボビンごと
40℃の温水中に繰り返し浸漬し、糸条中のグリセリン
を抽出した。次いで糸条を乾燥して水分を除去し、表面
温度が230℃の熱板を用いて3.8倍および4.5倍
に延伸した。得られた全延伸倍率がそれぞ°れ16倍お
よび18倍の延伸糸条の物性を第1表に示した。
The obtained gelled yarn has a length of 80 CIIl and an internal air temperature of 1
It was stretched 4.0 times in a heated tube at 00°C and wound up on a plastic bobbin. The wound thread together with the bobbin was repeatedly immersed in warm water at 40°C to extract the glycerin in the thread. The yarn was then dried to remove moisture, and was stretched 3.8 times and 4.5 times using a hot plate with a surface temperature of 230°C. Table 1 shows the physical properties of the obtained drawn yarns with total stretching ratios of 16 times and 18 times, respectively.

また、これらの延伸糸条は、単繊維間に全く融着が認め
られず、柔軟性および開繊性に優れていた。
In addition, these drawn yarns showed no fusion between single fibers, and were excellent in flexibility and spreadability.

比較例 1 実施例1の脱溶媒処理後の熱板延伸において、延伸倍率
を1(これ以上延伸しないもの)、2゜0および2.7
に変更し、他は実施例1と同様にして延伸糸条を作製し
た。得られた繊維糸条の物性を第1表に示した。
Comparative Example 1 In the hot plate stretching after the solvent removal treatment in Example 1, the stretching ratios were 1 (no further stretching), 2°0 and 2.7.
A drawn yarn was produced in the same manner as in Example 1 except for the following changes. The physical properties of the obtained fiber threads are shown in Table 1.

表から判るように、全延伸倍率が13倍より低くなると
、得られる繊維糸条の物性も著しく低くなることが判る
As can be seen from the table, when the total stretching ratio is lower than 13 times, the physical properties of the resulting fiber yarns are also significantly lowered.

実施例 2 重合[3900,’yン化度99.6%(F)PVAe
グリセリンを溶媒として170℃で溶解し濃度が11.
0重量%の紡糸原液を作製した。
Example 2 Polymerization [3900, degree of nylation 99.6% (F) PVAe
When dissolved at 170°C using glycerin as a solvent, the concentration was 11.
A 0% by weight spinning stock solution was prepared.

この紡糸原液を170℃に保持して孔径0,06■、孔
数20個の紡糸ノズルから空気中に吐出し、ノズル面の
下方1oIIlに設置した15℃のデカリンを冷却液と
する冷却浴中に導き、吐出糸条をゲル化させた。ノズル
からの紡糸原液の総吐出量は0.97cc/分であり冷
却したゴム状ゲル化糸条は2m/分で引で取った。
This spinning stock solution was maintained at 170°C and discharged into the air from a spinning nozzle with a hole diameter of 0.06mm and 20 holes, and placed in a cooling bath with decalin at 15°C as a cooling liquid, which was placed 1oIIl below the nozzle surface. to gel the discharged thread. The total discharge rate of the spinning dope from the nozzle was 0.97 cc/min, and the cooled rubbery gelled yarn was drawn off at 2 m/min.

得られたゲル化糸条を長さ80cm、内気温度100℃
の加熱チューブ中で4.0倍に延伸し、プラスチックボ
ビンに巻き取った。巻き取った糸条をボビンごとに40
℃の温水中に繰り返し浸漬し、糸条中の溶剤を抽出した
。次いで糸条を乾燥して水を除去し、表面濃度が230
℃の熱板を用いてざらに、5.5倍に延伸した。
The obtained gelled yarn was heated to a length of 80 cm and an internal temperature of 100°C.
The film was stretched 4.0 times in a heating tube and wound up on a plastic bobbin. 40 pieces of wound yarn per bobbin
The yarn was repeatedly immersed in warm water at ℃ to extract the solvent in the yarn. The yarn is then dried to remove water and have a surface density of 230.
It was roughly stretched to 5.5 times using a hot plate at ℃.

得られた全延伸倍率が22倍の繊維糸条は、単糸間融着
のない単糸繊度が1.54dのマルチフィラメントヤー
ンであり、強度20.I+/d。
The obtained fiber yarn with a total drawing ratio of 22 times is a multifilament yarn with a single fiber fineness of 1.54 d without inter-filament fusion, and a strength of 20. I+/d.

伸度4.9%、弾性率4300/dの優れた物性を示し
た。
It exhibited excellent physical properties with an elongation of 4.9% and an elastic modulus of 4300/d.

比較例 2 実施例2において、紡糸原液をノズルから吐出し冷却す
ることによって得られたゲル化糸条を加熱チューブで延
伸することなく、直ちに40℃の温水中で繰り返し浸漬
して溶媒を抽出し、乾燥したところ、単糸間融着の著し
い糸条が形成され、この糸条を230℃の熱板を用いて
延伸した結果、最大延伸倍率が全延伸倍率で15倍であ
り、それ以上の延伸は困難であった。また、得られた糸
条は、融着が著しく、脆くてrjaIIA性に欠けてお
り、マルチフィラメントヤーンのまま物性を測定したと
ころ、強度13.8o/d、弾性率3270/dと低い
繊維物性を示した。
Comparative Example 2 In Example 2, the gelled yarn obtained by discharging the spinning stock solution from the nozzle and cooling it was immediately immersed repeatedly in 40°C warm water to extract the solvent without stretching it with a heating tube. When dried, a yarn with significant inter-filament fusion was formed, and as a result of stretching this yarn using a hot plate at 230°C, the maximum stretching ratio was 15 times as a total stretching ratio. Stretching was difficult. In addition, the obtained yarn was extremely fused, brittle, and lacked rjaIIA properties, and when its physical properties were measured as a multifilament yarn, the fiber physical properties were low, with a strength of 13.8 o/d and an elastic modulus of 3270/d. showed that.

実施例 3 実施例1において、ポリマの溶媒としてエチレングリコ
ールを用い、他は同一の条件で製糸したところ、全延伸
倍率が最高16倍、強度18.3a /d 、弾性率3
84g/dの単糸間融着のない開繊性の良好な糸条が得
られた。
Example 3 In Example 1, using ethylene glycol as the polymer solvent and spinning under the same conditions as above, the total draw ratio was at most 16 times, the strength was 18.3 a / d , and the elastic modulus was 3.
A yarn of 84 g/d with good spreadability and no inter-filament fusion was obtained.

比較例 3 ポリマの重合度が1300.ケン化度99.5%のPV
Aを160℃のグリセリンに溶解し、濃度20重量%の
紡糸原液を作製した。得られた紡糸原液を実施例2と同
様に、紡糸、ゲル化、延伸(但し、延伸倍率4倍)、脱
溶媒処理、乾燥、二次延伸(但し、230℃の熱板を用
いて4.8倍に延伸)した。
Comparative Example 3 The degree of polymerization of the polymer was 1300. PV with saponification degree of 99.5%
A was dissolved in glycerin at 160°C to prepare a spinning stock solution with a concentration of 20% by weight. The obtained spinning stock solution was subjected to spinning, gelling, stretching (however, the stretching ratio was 4 times), solvent removal treatment, drying, and secondary stretching (however, using a hot plate at 230° C.) in the same manner as in Example 2. (stretched 8 times).

得られた糸条の全延伸倍率は19.2倍であったが、繊
維物性は、強度13.5o/d、伸度6゜1%、弾性率
354o/dであった。
The total draw ratio of the obtained yarn was 19.2 times, and the fiber physical properties were strength 13.5 o/d, elongation 6.1%, and elastic modulus 354 o/d.

Claims (2)

【特許請求の範囲】[Claims] (1)重合度が少くとも1500であるポリビニルアル
コール系重合体を該重合体の融点以下、80℃以上の温
度で溶解する溶媒に溶解し、この溶液を紡糸原液として
紡糸口金孔から吐出し、吐出糸条をそのゲル化温度以下
に保たれた前記紡糸原液の溶剤に対して非混和性の冷却
浴中に導入してゲル化糸条を形成せしめた後、得られた
ゲル化糸条を延伸後脱溶媒または脱溶媒後延伸し、全延
伸倍率が少くとも13倍の延伸糸条とすることを特徴と
する高強度・高弾性率ポリビニルアルコール系繊維の製
造方法。
(1) A polyvinyl alcohol-based polymer having a degree of polymerization of at least 1500 is dissolved in a solvent that dissolves at a temperature below the melting point of the polymer and above 80°C, and this solution is discharged from the spinneret hole as a spinning stock solution, After forming a gelled yarn by introducing the discharged yarn into a cooling bath that is immiscible with the solvent of the spinning dope and maintained at a temperature below its gelling temperature, the resulting gelled yarn is A method for producing a high-strength, high-modulus polyvinyl alcohol fiber, which comprises removing the solvent after stretching or stretching after removing the solvent to obtain a drawn yarn with a total stretching ratio of at least 13 times.
(2)特許請求の範囲第1項において、紡糸原液の溶剤
が水に対して混和性を有する溶剤であり、かつ冷却浴中
でゲル化し糸条を熱延伸した後、水を用いて脱溶媒処理
し、ついで乾燥し、さらに二次延伸することを特徴とす
る高強度・高弾性率ポリビニルアルコール系繊維の製造
方法。
(2) In claim 1, the solvent of the spinning dope is a solvent that is miscible with water, and after gelling in a cooling bath and hot drawing the yarn, the solvent is removed using water. A method for producing high-strength, high-modulus polyvinyl alcohol-based fibers, which comprises processing, drying, and secondary stretching.
JP59230302A 1984-11-02 1984-11-02 Method for producing high-strength, high-modulus polyvinyl alcohol fiber Expired - Fee Related JPH0670283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59230302A JPH0670283B2 (en) 1984-11-02 1984-11-02 Method for producing high-strength, high-modulus polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230302A JPH0670283B2 (en) 1984-11-02 1984-11-02 Method for producing high-strength, high-modulus polyvinyl alcohol fiber

Publications (2)

Publication Number Publication Date
JPS61108712A true JPS61108712A (en) 1986-05-27
JPH0670283B2 JPH0670283B2 (en) 1994-09-07

Family

ID=16905698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230302A Expired - Fee Related JPH0670283B2 (en) 1984-11-02 1984-11-02 Method for producing high-strength, high-modulus polyvinyl alcohol fiber

Country Status (1)

Country Link
JP (1) JPH0670283B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328911A (en) * 1986-07-14 1988-02-06 Toyobo Co Ltd Production of high-strength and high-elastic modulus polyvinyl alcohol based fiber
JPS63190010A (en) * 1987-01-30 1988-08-05 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol based fiber
JPS63243316A (en) * 1987-03-30 1988-10-11 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
DE3828251A1 (en) * 1987-08-21 1989-03-02 Bridgestone Corp TIRE
JPH02307908A (en) * 1989-05-19 1990-12-21 Kuraray Co Ltd High-gloss, high-strength polyvinyl alcohol-based yarn and production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method
JPS59100710A (en) * 1982-11-25 1984-06-11 Kuraray Co Ltd Production of yarn having high toughness
JPS59130314A (en) * 1982-09-30 1984-07-26 アライド・コ−ポレ−シヨン High strength elastic polyvinyl alcohol fiber andproduction thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method
JPS59130314A (en) * 1982-09-30 1984-07-26 アライド・コ−ポレ−シヨン High strength elastic polyvinyl alcohol fiber andproduction thereof
JPS59100710A (en) * 1982-11-25 1984-06-11 Kuraray Co Ltd Production of yarn having high toughness

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328911A (en) * 1986-07-14 1988-02-06 Toyobo Co Ltd Production of high-strength and high-elastic modulus polyvinyl alcohol based fiber
JPS63190010A (en) * 1987-01-30 1988-08-05 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol based fiber
JPH0457769B2 (en) * 1987-01-30 1992-09-14 Kuraray Co
JPS63243316A (en) * 1987-03-30 1988-10-11 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH0457770B2 (en) * 1987-03-30 1992-09-14 Kuraray Co
DE3828251A1 (en) * 1987-08-21 1989-03-02 Bridgestone Corp TIRE
JPH02307908A (en) * 1989-05-19 1990-12-21 Kuraray Co Ltd High-gloss, high-strength polyvinyl alcohol-based yarn and production thereof

Also Published As

Publication number Publication date
JPH0670283B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JPH0135084B2 (en)
JP2569352B2 (en) High strength water-soluble polyvinyl alcohol fiber and method for producing the same
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JPS59100710A (en) Production of yarn having high toughness
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPH01104815A (en) Polyvinyl alcohol fiber and production thereof
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPS62299513A (en) Production of polyphenylene sulfide monofilament
JPS6241341A (en) High speed stretching of gel fiber
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPS61215708A (en) Production of multifilament yarn
JPH07238416A (en) Production of high-strength polyethylene fiber
US2555300A (en) Wet-spinning process
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
JPS62141110A (en) Production of gelatinous fiber
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JPH0457769B2 (en)
JPH01162816A (en) Novel polyethylene fiber
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
JPH0429765B2 (en)
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPH01266212A (en) Production of high-tenacity polyvinyl alcohol fiber
JPH02175913A (en) New polyethylene yarn and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees