JPH0978349A - Production of polybenzazole fiber - Google Patents

Production of polybenzazole fiber

Info

Publication number
JPH0978349A
JPH0978349A JP22800995A JP22800995A JPH0978349A JP H0978349 A JPH0978349 A JP H0978349A JP 22800995 A JP22800995 A JP 22800995A JP 22800995 A JP22800995 A JP 22800995A JP H0978349 A JPH0978349 A JP H0978349A
Authority
JP
Japan
Prior art keywords
drying
filament
fiber
temperature
polybenzazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22800995A
Other languages
Japanese (ja)
Other versions
JP3651621B2 (en
Inventor
Michio Ishitobi
三千夫 石飛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP22800995A priority Critical patent/JP3651621B2/en
Priority to US08/707,546 priority patent/US5772942A/en
Publication of JPH0978349A publication Critical patent/JPH0978349A/en
Application granted granted Critical
Publication of JP3651621B2 publication Critical patent/JP3651621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the retention of the tenacity to be deteriorated, during drying and heat treatment, by treating the coagulated filament spun from the dope of a polybenzazole with a basic solution and drying the filament at a temperature depending on the fraction of the liquid remaining in the filament in a short time. SOLUTION: The dope of a polybenzazole mainly constituted with structural units of formula I to formula III in an acidic solvent is spun into filaments and coagulated through the air gap in the coagulation bath. Then, the filament is treated with a basic solution to develop the resistance to void formation thereby increasing the limitation temperature causing no void formation and dried at the temperature which is set relating to the fraction of the liquid remaining in the filament. This polybenzazole filament of excellent properties is obtained, even when the drying temperature is raised.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリベンズオキサゾール
やポリベンズチアゾール等のポリベンザゾールポリマー
から成る強度及び弾性率に優れた良質な繊維を得る方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for obtaining a high-quality fiber comprising a polybenzazole polymer such as polybenzoxazole or polybenzthiazole, which has excellent strength and elastic modulus.

【0002】[0002]

【従来技術】ライオトロピック液晶性のポリベンズオキ
サゾールとポリベンズチアゾールポリマーは熱可塑性を
示さない。これらはドライ・ジェット・ウェット・スピ
ニング法により繊維化される。すなわち、ポリベンザゾ
ールポリマーと酸溶媒を含むドープを紡糸口金より押し
出し、エアギャップで引き伸ばしを行う。その後ポリマ
ーを溶解させない非溶媒と接触させることによって凝固
を行い、同様に溶媒を希釈、脱溶媒を行ない乾燥させる
方法による。
2. Description of the Related Art Polybenzoxazole and polybenzthiazole polymers having lyotropic liquid crystallinity do not show thermoplasticity. These are fiberized by the dry jet wet spinning method. That is, a dope containing a polybenzazole polymer and an acid solvent is extruded from a spinneret and stretched in an air gap. Then, the polymer is coagulated by bringing it into contact with a non-solvent that does not dissolve the polymer, and the solvent is likewise diluted, desolvated and dried.

【0003】生産性向上のため多くのフィラメントを短
時間で高速で乾燥させる事が好ましい。しかし、脱溶媒
後のポリベンザゾール繊維は25重量%以上の多量の非
溶媒を含んでおり、これを乾燥する際には体積変化を生
ずる。フィラメントを短時間で高速で乾燥させる際に、
多量の非溶媒を含んだままの状態からいきなり高温の加
熱帯を通した場合、乾燥過程で欠陥を生じる。この欠陥
は糸の強度低下をもたらすため好ましくない。低温の加
熱帯で乾燥する事で、この欠陥の発現を防ぐことができ
るが、低温で乾燥を行った場合は乾燥に多大の時間を要
するため生産性に問題がある。
In order to improve productivity, it is preferable to dry many filaments in a short time at high speed. However, the polybenzazole fiber after desolvation contains a large amount of non-solvent of 25% by weight or more, and a volume change occurs when it is dried. When drying the filament at high speed in a short time,
When a large amount of non-solvent is left and when it is passed through a high temperature heating zone, defects occur in the drying process. This defect is not preferable because it causes a decrease in yarn strength. This defect can be prevented from appearing by drying in a low-temperature heating zone, but if drying is performed at a low temperature, it takes a lot of time to dry, which causes a problem in productivity.

【0004】そこで従来の方法として特願平5-304111に
記載されているように25重量%以上の非溶媒を含むポ
リベンザゾール繊維を170℃で84.3秒、200℃
で84.3秒、240℃で79.3秒乾燥し、欠陥を発
生させることなく非溶媒の含有率を1.5重量%迄減少
させ、乾燥時間をおよそ4分迄にする高速乾燥方法が例
示されている。しかしこの従来の方法による脱溶媒の工
程後の乾燥においてもまだ長時間必要とする。乾燥に必
要とする時間の短縮化を図るにはポリベンザゾール繊維
内部での非溶媒の拡散係数を高める必要がある。ポリベ
ンザゾール繊維内部での非溶媒の拡散係数を高める種々
の方法を検討した結果最も効果が大きいのは乾燥温度で
あった。即ち、従来の方法で使用できる乾燥温度では乾
燥時間を十分短くする事ができないので更にボイドを発
生させない限界温度を高める事による高速乾燥技術の開
発が望まれている。
Therefore, as a conventional method, as described in Japanese Patent Application No. 5-304111, polybenzazole fiber containing 25% by weight or more of a non-solvent is heated at 170 ° C. for 84.3 seconds at 200 ° C.
For 84.3 seconds and 240 ° C. for 79.3 seconds, the high-speed drying method can reduce the content of non-solvent to 1.5% by weight without causing defects and the drying time up to about 4 minutes. It is illustrated. However, the drying after the desolvation step by this conventional method still requires a long time. In order to shorten the time required for drying, it is necessary to increase the diffusion coefficient of the non-solvent inside the polybenzazole fiber. As a result of examining various methods for increasing the diffusion coefficient of the non-solvent inside the polybenzazole fiber, the most effective effect was the drying temperature. That is, since the drying time cannot be shortened sufficiently at the drying temperature that can be used in the conventional method, it is desired to develop a high-speed drying technique by further raising the limit temperature at which voids are not generated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、繊維中に欠
陥発生のない良質で強度、弾性率に優れたポリベンザゾ
ール繊維を極めて短かい乾燥時間で製造する方法を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a polybenzazole fiber which is free from defects in the fiber and has good quality and strength and elastic modulus in an extremely short drying time. To do.

【0006】[0006]

【課題を解決するための手段】即ち、ポリベンザゾール
ポリマーと酸性溶媒からなるドープからフィラメントを
紡糸し、凝固、洗浄及び乾燥する方法において、紡出し
たドープフィラメントを凝固後、塩基性溶液に接触さ
せ、その後、乾燥工程に供するフィラメント中の残存液
体分率に関連して設定した温度で乾燥することを特徴と
するポリベンザゾール繊維の製造方法である。
Means for Solving the Problems That is, in a method of spinning a filament from a dope composed of a polybenzazole polymer and an acidic solvent, coagulating, washing and drying, the spun dope filament is coagulated and then contacted with a basic solution. And then drying at a temperature set in relation to the residual liquid fraction in the filament to be subjected to the drying step.

【0007】ポリベンザゾール繊維とはポリベンザゾー
ル(PBZ)ポリマーからなる繊維をいう。ポリベンザ
ゾール(PBZ)とはポリベンゾオキサゾール(PB
O)ホモポリマー、ポリベンゾチアゾール(PBT)ホ
モポリマーおよびそれらPBO,PBTのランダム、シ
ーケンシャルあるいはブロック共重合ポリマーをいう。
ここでポリベンゾオキサゾール、ポリベンゾチアゾール
およびそれらのランダム、シーケンシャルあるいはブロ
ック共重合ポリマーは、例えばWolfe らの「Liquid Cry
stalline Polymer Compositions,Process and Product
s」 U.S.Patent 4,703,103(October 27,1987)、「Liqui
d Crystalline Polymer Compositions,Process and Pro
ducts」 U.S.Patent 4,533,692(August 6,1985)、「Liq
uid Crystalline Poly(2,6-Benzothiazole) Compositio
ns,Process and Products」 U.S.Patent 4,533,724(Aug
ust 6,1985)、「Liquid Crystalline Polymer Composit
ions,Process and Products」 U.S.Patent 4,533,693(A
ugust 6,1985)、Evers の「Thermooxdatively Stable A
rticulated p-Benzobisoxazole p-Benzobisthiazole Po
lymers 」 U.S.Patent 4,359,567(November 16,1982)
、Tsaiらの「Method forMaking Heterocyclic Block C
opolymer Compositions,Process and Products」U.S.Pa
tent 4,578,432(March 25,1986)などに記載されてい
る。
The polybenzazole fiber is a fiber made of polybenzazole (PBZ) polymer. What is polybenzazole (PBZ)?
O) homopolymer, polybenzothiazole (PBT) homopolymer and random, sequential or block copolymers of PBO and PBT.
Here, polybenzoxazole, polybenzothiazole and their random, sequential or block copolymers are described, for example, in "Liquid Cry" by Wolfe et al.
stalline Polymer Compositions, Process and Product
s '' US Patent 4,703,103 (October 27,1987), `` Liqui
d Crystalline Polymer Compositions, Process and Pro
ducts '' US Patent 4,533,692 (August 6,1985), `` Liq
uid Crystalline Poly (2,6-Benzothiazole) Compositio
ns, Process and Products '' US Patent 4,533,724 (Aug
(ust 6,1985), `` Liquid Crystalline Polymer Composit
ions, Process and Products '' US Patent 4,533,693 (A
(ugust 6,1985), Evers' `` Thermooxdatively Stable A
rticulated p-Benzobisoxazole p-Benzobisthiazole Po
lymers '' USPatent 4,359,567 (November 16,1982)
, Tsai et al. "Method for Making Heterocyclic Block C
opolymer Compositions, Process and Products '' USPa
tent 4,578,432 (March 25, 1986).

【0008】PBZポリマーに含まれる構造単位として
は、好ましくはライオトロピック液晶ポリマーから選択
される。モノマー単位は構造式(a)−(h)に記載さ
れている。そのポリマーは好ましくは、本質的に構造式
(a)−(h)から選択される分子鎖自体の剛直なモノ
マー単位からなり、さらに好ましくは本質的に構造式
(a)−(c)から選択されたモノマー単位からなる。
The structural unit contained in the PBZ polymer is preferably selected from lyotropic liquid crystal polymers. The monomer units are described in Structural Formulas (a)-(h). The polymer preferably consists essentially of rigid monomer units of the molecular chain itself selected from structural formulas (a)-(h), and more preferably consists essentially of structural formulas (a)-(c). Composed of monomer units.

【0009】[0009]

【化1】 Embedded image

【0010】[0010]

【化2】 Embedded image

【0011】PBZポリマーのドープを形成するための
好適な酸性溶媒としては、クレゾールやそのポリマーを
溶解し得る非酸化性の酸が含まれる。好適な酸溶媒の例
としては、ポリリン酸、メタンスルホン酸および高濃度
の硫酸あるいはそれらの混合物が挙げられる。更に適す
る溶媒は溶解度の高いポリリン酸およびメタンスルホン
酸である。また最も適する溶媒は、ポリリン酸である。
Suitable acidic solvents for forming the PBZ polymer dope include cresol and non-oxidizing acids capable of dissolving the polymer. Examples of suitable acid solvents include polyphosphoric acid, methanesulfonic acid and concentrated sulfuric acid or mixtures thereof. Further suitable solvents are the highly soluble polyphosphoric acids and methanesulphonic acids. The most suitable solvent is polyphosphoric acid.

【0012】溶液のポリマー濃度は好ましくは少なくと
も約7重量%であり、更に好ましくは、少なくとも約1
0重量%、最も好ましくは少なくとも14重量%であ
る。最大濃度は、例えばポリマーの溶解性やドープ粘度
といった実際上の取扱性により限定される。それらの限
界要因の為に、ポリマー濃度は通常では20重量%を越
える事はない。
The polymer concentration of the solution is preferably at least about 7% by weight, more preferably at least about 1%.
0% by weight, most preferably at least 14% by weight. The maximum concentration is limited by practical handling properties such as polymer solubility and dope viscosity. Due to these limiting factors, the polymer concentration usually does not exceed 20% by weight.

【0013】好適なポリマーやコポリマーあるいはドー
プは公知の手法により合成される。例えば、Wolfe らの
U.S.Patent 4,533,693(August 6,1985) 、SybertらのU.
S.Patent 4,772,678(September 20,1988) 、HarrisのU.
S.Patent 4,847,350(July 11,1989)に見られる。PBZ
ポリマーは、Gregory らのU.S.Patent 5,089,591(Febru
ary 18,1992)によると、脱水性の酸溶媒中での比較的高
温、高せん断条件下において高反応速度での高分子量化
が可能である。
Suitable polymers, copolymers or dopes are synthesized by known methods. For example, Wolfe et al.
USPatent 4,533,693 (August 6,1985), Sybert et al.
S.Patent 4,772,678 (September 20,1988), Harris U.
S.Patent 4,847,350 (July 11,1989). PBZ
The polymer is US Patent 5,089,591 (Febru
ary 18, 1992), it is possible to increase the molecular weight at a high reaction rate in a dehydrating acid solvent under relatively high temperature and high shear conditions.

【0014】ドープは公知の乾湿式紡糸法により製糸さ
れる。すなわちドープを口金から吐出した繊維状のドー
プは気体中を通過して、ポリマーを溶解しない程度の薄
い溶媒(非溶解性溶液)に接触させて(凝固)製糸され
る。凝固後繊維中の残留酸溶媒は洗浄される。洗浄後の
繊維は通常、25重量%から200重量%の残存液体分
率を有している。洗浄に用いる流体は水蒸気のような気
体であってもよいが、好ましくは液体が良く最も好まし
くは水溶液が良い。繊維は液体の浴中で接触させても、
スプレーで接触させてもよい。
The dope is produced by a known dry-wet spinning method. That is, the fibrous dope discharged from the die is passed through gas and brought into contact with a thin solvent (insoluble solution) that does not dissolve the polymer (coagulation) to form a yarn. After coagulation, the residual acid solvent in the fiber is washed. The washed fibers typically have a residual liquid fraction of 25% to 200% by weight. The fluid used for cleaning may be a gas such as water vapor, but is preferably a liquid and most preferably an aqueous solution. Even if the fibers are contacted in a liquid bath,
You may contact by spraying.

【0015】液浴は、特開昭63-12710号公報;特開昭51
-35716号公報、及び;特公昭44-22204号公報等に記載の
様々な形式のものを用いることができる。また、例えば
Guertin のU.S.P.5,034,250(July 23,1991) に記載され
ているような2つのローラーに繊維を走行させる間にス
プレーする方法を組み合わせて用いてもよい。洗浄され
た繊維は溶媒との相互拡散により約30重量%以上の非
溶解性液体を含んでおりこのまま、もしくは繊維表面に
付着た非溶解性液体を取り除き、塩基性溶液と接触させ
繊維中の残留酸溶媒と中和させる。塩基性液体は水蒸気
のような気体であってもよいが、好ましくは取り扱いの
簡単な液体が良く更に好ましくは水溶液が良い。
The liquid bath is disclosed in JP-A-63-12710; JP-A-51.
Various forms described in JP-A-35716 and JP-B-44-22204 can be used. Also, for example
A combination of two roller spraying methods may be used as the fibers are run, as described in Guertin USP 5,034,250 (July 23,1991). The washed fiber contains about 30% by weight or more of the insoluble liquid due to the mutual diffusion with the solvent. As it is, or the insoluble liquid adhering to the fiber surface is removed and the fiber is contacted with a basic solution to remain in the fiber. Neutralize with acid solvent. The basic liquid may be a gas such as water vapor, but a liquid that is easy to handle is preferable, and an aqueous solution is more preferable.

【0016】ここで塩基性溶液とは水酸化ナトリウム、
水酸化カルシウム、アンモニア、炭酸ナトリウム、炭酸
カルシウム、などを水又はメタノール、エタノール、ア
セトン等有機溶媒に溶解し塩基性を示すことが肝要であ
るがここに挙げた塩基性溶液に限定されるものではな
い。塩基性溶液の濃度は好ましくは0.001N以上、
更に好ましくは0.01N以上、望ましくは0.1N以
上、そして3.0Nは越えない範囲が望ましい。接触時
間は好ましくは0.1秒以上、更に好ましくは1秒以
上、望ましくは3秒以上で120秒は越えない範囲であ
る。接触時間は濃度が濃いほど一定の時間迄短く出来
る。
Here, the basic solution is sodium hydroxide,
It is essential that calcium hydroxide, ammonia, sodium carbonate, calcium carbonate, etc. be dissolved in water or an organic solvent such as methanol, ethanol, and acetone to show basicity, but the basic solutions listed here are not limited. Absent. The concentration of the basic solution is preferably 0.001 N or more,
More preferably, the range is 0.01 N or more, desirably 0.1 N or more, and the range not exceeding 3.0 N is desirable. The contact time is preferably 0.1 seconds or longer, more preferably 1 second or longer, desirably 3 seconds or longer and not longer than 120 seconds. The higher the concentration, the shorter the contact time can be to a certain time.

【0017】また塩基性溶液への接触方法は上記に記載
された液体と浴の中で接触させてもスプレーでもよく、
2つのローラーに繊維を走行させる間にスプレーする方
法を組み合わせて用いてもよいを組み合わせた方法であ
ってもよい。なお、上述の凝固、洗浄過程で塩基性溶液
で洗浄してもよいが、経済的観点から糸中残留酸溶媒濃
度ができるだけ低い段階で塩基性溶液と接触させて糸中
残留酸を中和させることが好ましい。溶媒残留率は好ま
しくは10000ppm以下、更に好ましくは5000
ppm以下である。ここで中和後の繊維内部の塩基/酸
のモル比は少なくとも0.5、より好ましくは0.75
以上で1.5は越えない範囲が望ましい。より好ましく
は1.25で最も好ましいのは1.0から1.3の間で
ある。1.0以上では糸中残留酸は完全に中和されてい
ると考えられる。例えば水酸化ナトリウムを使用した場
合のリン:ナトリウム比は蛍光X線分析装置等の適切な
分析装置によって測定できる。
The contact with the basic solution may be carried out by contacting with the liquid described above in a bath or spraying,
It is also possible to use a combination of methods of spraying while the fibers are running on the two rollers, or a combination of methods. In the coagulation and washing process described above, washing may be performed with a basic solution, but from an economical point of view, the residual acid in the yarn is neutralized by contact with the basic solution when the residual acid solvent concentration in the yarn is as low as possible. It is preferable. The residual solvent ratio is preferably 10,000 ppm or less, more preferably 5,000 ppm.
It is below ppm. Here, the neutralized base / acid molar ratio inside the fiber is at least 0.5, more preferably 0.75.
It is desirable that the range does not exceed 1.5. More preferably 1.25 and most preferably between 1.0 and 1.3. When it is 1.0 or more, the residual acid in the yarn is considered to be completely neutralized. For example, the phosphorus: sodium ratio when sodium hydroxide is used can be measured by an appropriate analyzer such as a fluorescent X-ray analyzer.

【0018】中和を行った目的は(1)繊維内部の残留
酸溶媒は、乾燥や熱処理の段階での加熱や光照射による
加水分解を引き起こす触媒の働きをするが、これを抑制
すること、(2)残留洗浄液の表面張力を小さくするこ
とにより、ボイドの発生を抑制することである。図1に
各残留非溶解性液体の含有率に基づいて決定される繊維
に欠陥が生じない最高温度を特願平5-304111号に掲載さ
れている技術と比較して示す。残留非溶解性液体の性質
を変えることで乾燥工程中での繊維の強力低下をもたら
すボイド欠陥の発生が従来の工程に比べ発生しにくくな
っていた。
The purpose of neutralization is as follows: (1) The residual acid solvent inside the fiber acts as a catalyst that causes hydrolysis by heating or light irradiation during the drying or heat treatment steps, but suppressing this (2) The generation of voids is suppressed by reducing the surface tension of the residual cleaning liquid. FIG. 1 shows the maximum temperature at which no defect occurs in the fiber, which is determined based on the content of each residual insoluble liquid, in comparison with the technique disclosed in Japanese Patent Application No. 5-304111. By changing the properties of the residual non-soluble liquid, the occurrence of void defects, which causes a decrease in fiber strength during the drying process, was less likely to occur than in the conventional process.

【0019】塩基性溶液との接触の後、この塩基性溶液
を除去するために塩基性溶液を溶解しうる流体で洗浄を
行なう。この流体は水蒸気のような気体であってもよい
が好ましくは取り扱いの簡単な液体がよい。溶媒の洗浄
に用いる流体は、ポリマー溶媒が易溶性であり、フィラ
メント中に拡散したものが後で取り除く事ができる事が
肝要である。好ましくは水溶液がよい。洗浄に使用する
液の酸性度はおよそpH6〜11がよい。
After contact with the basic solution, a washing with a fluid capable of dissolving the basic solution is carried out in order to remove the basic solution. The fluid may be a gas such as steam, but is preferably a liquid that is easy to handle. It is important that the fluid used for washing the solvent is that the polymer solvent is easily soluble and that the one diffused in the filament can be removed later. An aqueous solution is preferable. The acidity of the liquid used for washing is preferably about pH 6-11.

【0020】凝固・洗浄され、塩基性溶液と接触、洗浄
された繊維は通常約25%以上の残存液体を含んでい
る。次いで塩基性溶液に接触させ、洗浄された繊維を加
熱帯を通し乾燥する。加熱帯は電気炉もしくは加熱ロー
ラーもしくは加熱空気または加熱不活性ガス、もしくは
衝撃波、もしくは過熱水蒸気、もしくはオイル等の熱媒
等が使用できる。高温に保持して一部マイクロ波等の電
磁場を併用してもよい。またこれらの組み合わせで使用
してもよい。当該繊維をすばやく昇温できることが肝要
である。
The fibers which have been coagulated, washed, contacted with a basic solution and washed usually contain about 25% or more of the residual liquid. It is then contacted with a basic solution and the washed fibers are dried through a heating zone. For the heating zone, an electric furnace, a heating roller, heated air, a heated inert gas, a shock wave, superheated steam, or a heat medium such as oil can be used. You may hold | maintain at high temperature and use electromagnetic fields, such as a microwave, one part. Moreover, you may use it in these combinations. It is essential that the temperature of the fiber can be raised quickly.

【0021】乾燥工程では加熱帯を通し繊維内部の上記
残存液体をおよそ4%以下迄乾燥させる。これはパッケ
ージに捲いた後の糸の半径方向の収縮でチーズのす抜け
や耳落ちが生じるためその許容範囲の非溶媒含有率であ
る4%迄乾燥させる必要がある。例えば2段の加熱帯を
使用する場合、図1に示すように洗浄上がりのおよそ3
8重量%の非溶媒含有率の繊維を1段目の加熱体で22
0℃以下の温度で10重量%まで乾燥された繊維は2段
目加熱体で240℃以下の温度で3重量%まで乾燥され
る。図1に示される繊維に欠陥が生じない領域にしたが
って加熱される時間は工業的要請から3分以下が好まし
い。更に好ましくは120秒以下、最も好ましくは90
秒以下である。
In the drying step, the remaining liquid inside the fiber is dried to about 4% or less through a heating zone. This is because the shrinkage of the yarn in the radial direction after being wound in the package causes the cheese to come off and the edges of the cheese to be dried up to a permissible non-solvent content of 4%. For example, when using a two-stage heating zone, as shown in FIG.
Fiber with a non-solvent content of 8% by weight is used in the first heating element
The fibers dried at a temperature of 0 ° C. or lower to 10% by weight are dried by a second heating element at a temperature of 240 ° C. or lower to 3% by weight. From the industrial requirements, the heating time in the region shown in FIG. 1 in which no defects occur in the fiber is preferably 3 minutes or less. More preferably 120 seconds or less, most preferably 90 seconds.
It is less than a second.

【0022】加熱帯の雰囲気は空気もしくはヘリウム、
アルゴン等の不活性ガス、二酸化炭素等のガス分率が高
くてもよい。加熱帯の雰囲気は大気圧で使用するのが好
ましいが圧力を変化させてもよい。また加熱帯内の風速
を上げることは繊維表面からの物質移動を促し好適であ
る。
The atmosphere of the heating zone is air or helium,
An inert gas such as argon or a gas fraction such as carbon dioxide may be high. The atmosphere of the heating zone is preferably used at atmospheric pressure, but the pressure may be changed. Further, increasing the wind speed in the heating zone is preferable because it promotes mass transfer from the fiber surface.

【0023】繊維の平均引っ張り強度は単位デニール当
りの破断強力(g/d)で表され、好ましくは少なくと
も7.3g/d,更に好ましくは少なくとも12.7g
/d、より好ましくは少なくとも20g/d、さらによ
り好ましくは少なくとも29.8g/d、最も好ましく
は少なくとも45g/dである。また繊維内に光学顕微
鏡で観察されるボイドを写真に示す。このボイドが多く
発生することで繊維の引っ張り強度は強力保持率で約9
5%以下まで減少する。また繊維の平均引張弾性率は単
位デニール当りの初期引張抵抗度(g/d)で表され、
好ましくは少なくとも1100g/d、さらに好ましく
は1600g/dである。この繊維は必要に応じて引張
弾性率を上げる為に熱処理をする事ができる。適正な紡
糸油剤を付与してパッケージに捲き取る。熱処理はオン
ラインで行っても、一旦捲き上げて行ってもよい。
The average tensile strength of the fiber is expressed by the breaking strength per unit denier (g / d), preferably at least 7.3 g / d, more preferably at least 12.7 g.
/ D, more preferably at least 20 g / d, even more preferably at least 29.8 g / d, most preferably at least 45 g / d. In addition, the voids observed in the fiber with an optical microscope are shown in the photograph. Due to the large number of voids, the tensile strength of the fiber is about 9
Reduce to 5% or less. The average tensile modulus of the fiber is expressed by the initial tensile resistance per unit denier (g / d),
It is preferably at least 1100 g / d, more preferably 1600 g / d. This fiber can be heat treated to increase the tensile modulus, if desired. Apply a suitable spinning oil and wind it up into a package. The heat treatment may be performed online or may be rolled up once.

【0024】塩基性溶液に接触させることによる耐ボイ
ド発現性改善のメカニズムはよく分かっていないが繊維
内のおよそ30オングストローム以下の空隙にトラップ
されている非溶媒の表面張力特性が変化し乾燥によって
液がぬけた後の残存応力が低下するためでないかと考え
ている。そのため図1で点線で示す繊維に欠陥が発生し
ない温度が実線で示す従来の技術より広くなる。乾燥温
度を高くしても良好なポリベンザゾール繊維が得られる
ので短時間で乾燥できる。また塩基性溶液に接触させる
ことにより繊維の乾燥、熱処理による引張強度の保持率
を向上させる効果もある。
Although the mechanism for improving the resistance to void development by contact with a basic solution is not well understood, the surface tension characteristics of the non-solvent trapped in the voids of about 30 angstroms or less in the fiber are changed and the liquid is dried by drying. It is thought that this is because the residual stress after the breakage is reduced. Therefore, the temperature at which no defects occur in the fiber indicated by the dotted line in FIG. 1 is wider than that of the conventional technique indicated by the solid line. Even if the drying temperature is raised, a good polybenzazole fiber can be obtained, so that it can be dried in a short time. Further, contacting with a basic solution also has the effect of improving the retention of tensile strength by drying and heat treating the fibers.

【0025】[0025]

【実施例】以下の実施例は説明だけの目的であり、これ
らにより本発明はこの実施例により制約を受けるもので
はない。断りがない場合には分量およびパーセンテージ
はすべて重量で示す。残存非溶媒含有率の測定法は次に
示すとおりである。約1.0gの繊維を秤量(W1)
し、その繊維を静置乾燥機で230℃、30分乾燥さ
せ、再び秤量(W0)し、次式で算出する。 残存非溶媒含有率(%)={(W1−W0)/W0}×
100 繊維の欠陥の発生量と分散状態は、約4cmにカットし
た繊維片をスライドグラスに載せ、光学顕微鏡を使用し
て200倍で観察した。欠陥は繊維軸に沿った黒い筋
(ボイド)として観察され、繊維軸方向に角度を持った
筋(キンク)とは本発明で区別する。写真にボイドの例
を示す。欠陥のランクは、166フィラメント、18m
m当たりの欠陥の数を光学顕微鏡で測定し、無し(0
個)、非常にわずか(1〜2個)、非常にわずか〜わず
か(3〜4個)、僅か(5〜10個)、僅か〜多い(1
1〜15個)、非常に多い(16個以上)、と6ランク
に判別を行った。
The following examples are for purposes of illustration only, and the present invention is not limited thereby. All quantities and percentages are by weight unless otherwise noted. The method for measuring the residual non-solvent content is as follows. Weigh about 1.0 g of fiber (W1)
Then, the fiber is dried in a static dryer at 230 ° C. for 30 minutes, weighed again (W0), and calculated by the following formula. Residual non-solvent content (%) = {(W1-W0) / W0} ×
The generation amount and dispersion state of 100 fiber defects were observed at 200 times using an optical microscope by placing a piece of fiber cut into about 4 cm on a slide glass. The defects are observed as black streaks (voids) along the fiber axis, and are distinguished from streaks (kinks) having an angle in the fiber axis direction in the present invention. The photograph shows an example of voids. Defect rank is 166 filaments, 18m
The number of defects per m was measured with an optical microscope, and there was no (0
Very small (1 to 2), very small to small (3 to 4), small (5 to 10), small to large (1)
1 to 15) and a very large number (16 or more) were classified into 6 ranks.

【0026】実施例1 極限粘度数30dL/gのシス−ポリベンズオキサゾー
ルポリマーを14重量%溶かしたポリ燐酸溶液を、16
0℃に保たれた紡糸口金より押し出した。押し出された
フィラメントを室温のイオン交換水で凝固させこの糸を
洗浄過程に導き水洗した。中和工程では塩基性溶液とし
てNaOHの0.1N溶液を使用した。その後水洗工程
を経てエアー・ナイフで水を切った糸を温度が220℃
の加熱ロ−ラーに60秒間通し、さらに225℃の過熱
ローラーに通し残存液体分率が5.7%になるまで乾燥
し、さらに255℃の加熱ローラーにて乾燥を行った。
表1に乾燥状況、繊維の物理特性を示す。表1から図1
の欠陥の生じない乾燥温度条件(乾燥前残存液体分率3
8%、加熱帯温度220℃)では欠陥は生じていない。
また乾燥時間が従来の約4分と比較して飛躍的に早くな
っている。
Example 1 A polyphosphoric acid solution prepared by dissolving 14% by weight of a cis-polybenzoxazole polymer having an intrinsic viscosity of 30 dL / g was
It was extruded from a spinneret kept at 0 ° C. The extruded filament was coagulated with ion-exchanged water at room temperature, and this yarn was introduced into the washing process and washed with water. In the neutralization step, a 0.1N solution of NaOH was used as the basic solution. After that, the thread was washed with water and drained with an air knife.
Was heated for 60 seconds, further passed through a heating roller at 225 ° C. for drying until the residual liquid fraction became 5.7%, and further dried by a heating roller at 255 ° C.
Table 1 shows the dry condition and the physical properties of the fiber. Table 1 to FIG. 1
Temperature condition that does not cause defects in
8%, heating zone temperature 220 ° C.), no defects occurred.
In addition, the drying time is dramatically faster than the conventional 4 minutes.

【0027】比較例1、2 実施例1と同様に凝固、洗浄を行った後、中和を行わず
にエアナイフで水を切った糸の乾燥を行った。表1に乾
燥状況、繊維の物理特性を示す。中和を行わない場合、
繊維に欠陥を生じさせないで乾燥を行う場合には洗浄上
りの残存液体分率38%の糸を乾燥させるために最初に
適用できる温度は190℃以下までしか使用できないた
めに本発明に比べ非常に長い時間を必要とする(比較例
1)。また実施例1と同様の乾燥条件で乾燥すると塩基
性溶液と接触させていないため繊維に欠陥を発生させる
温度での乾燥となり欠陥の発生の為に繊維の引張強度が
低下する(比較例2)。
Comparative Examples 1 and 2 After coagulation and washing were carried out in the same manner as in Example 1, the yarn dried with an air knife was dried without neutralization. Table 1 shows the dry condition and the physical properties of the fiber. If you do not neutralize,
In the case where the fiber is dried without causing defects, the temperature that can be first applied to dry the yarn having a residual liquid fraction of 38% after washing is 190 ° C. or less, which is much higher than that of the present invention. It takes a long time (Comparative Example 1). When dried under the same drying conditions as in Example 1, the fiber is not contacted with the basic solution and is dried at a temperature at which defects are generated in the fiber, and the tensile strength of the fiber is lowered due to the occurrence of defects (Comparative Example 2). .

【0028】比較例3 実施例1と同様に凝固、洗浄、塩基性溶液と接触、洗浄
後、エアナイフで水を切った糸の乾燥を行った。表1に
乾燥状況、繊維の物理特性を示す。図1の欠陥を生じな
い乾燥温度条件をはずれるような場合においては繊維中
に欠陥が非常に多く発生し繊維の強度が著しく低下す
る。
Comparative Example 3 In the same manner as in Example 1, coagulation, washing, contact with a basic solution, washing, and drying of the thread drained with an air knife were performed. Table 1 shows the dry condition and the physical properties of the fiber. In the case where the drying temperature condition which does not cause the defects shown in FIG. 1 is deviated, a large number of defects are generated in the fiber and the strength of the fiber is remarkably lowered.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例2 実施例1と同様紡糸、洗浄、乾燥を行ったが中和工程に
おいてNaOHの溶液濃度を0.001Nへ変更した。
表2に乾燥状況、繊維の物理特性を示す。表2から図1
の欠陥の生じない乾燥温度条件内のような本発明の請求
の範囲条件の場合において塩基性溶液を変更しても実施
例1と比べも同程度の水分率迄乾燥させる事ができる。
また塩基性溶液が変化することでの乾燥状況、繊維の物
理特性には大きな影響は認められない。
Example 2 Spinning, washing and drying were carried out as in Example 1, but the concentration of NaOH solution was changed to 0.001 N in the neutralization step.
Table 2 shows the dry condition and the physical properties of the fiber. Table 2 to FIG. 1
Even when the basic solution is changed under the conditions of the claims of the present invention, such as the drying temperature condition in which the defect does not occur, the water content can be dried to the same extent as in Example 1.
In addition, the change in the basic solution has no significant effect on the drying condition and the physical properties of the fiber.

【0031】実施例3 実施例1と同様紡糸、洗浄、乾燥を行ったが紡糸速度を
600m/分へ変更した。表2に乾燥状況、繊維の物理
特性を示す。表2から紡糸速度が上がってもボイドが発
生することなくすばやく乾燥させる事ができる。
Example 3 Spinning, washing and drying were carried out as in Example 1, but the spinning speed was changed to 600 m / min. Table 2 shows the dry condition and the physical properties of the fiber. From Table 2, it is possible to dry quickly without generating voids even when the spinning speed is increased.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例4、5 実施例1と同様紡糸、洗浄、乾燥を行ったが乾燥工程に
おいて乾燥装置の変更を行った。表3に乾燥状況、繊維
の物理特性を示す。表3から図1の欠陥の生じない乾燥
温度条件内のような本発明の請求の範囲条件の場合では
乾燥オーブンおよび過熱水蒸気と乾燥ローラーの組合せ
で乾燥を行っても乾燥は同程度の時間ですばやく乾燥す
ることができた。また乾燥装置を変更した場合でも加熱
帯の温度をコントロールすることで乾燥状況を良好にす
ることができる。
Examples 4 and 5 Spinning, washing and drying were carried out as in Example 1, but the drying device was changed in the drying step. Table 3 shows the dry condition and the physical properties of the fiber. In the case of the conditions of the claims of the present invention, such as those in the drying temperature condition where no defect occurs in Table 3 to FIG. It was able to dry quickly. Even if the drying device is changed, the drying condition can be improved by controlling the temperature of the heating zone.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【発明の効果】本発明により繊維中のボイド欠陥を発生
させる事なく従来技術の乾燥方法より飛躍的に乾燥時間
を短縮したポリベンザゾール繊維の乾燥をすることが可
能となった。
Industrial Applicability According to the present invention, it becomes possible to dry polybenzazole fiber in which the drying time is drastically shortened as compared with the conventional drying method without generating void defects in the fiber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用するポリベンザゾール繊維の非溶
媒含有率と乾燥温度の関係を従来技術と比較した図。
FIG. 1 is a diagram comparing a relationship between a non-solvent content rate of a polybenzazole fiber used in the present invention and a drying temperature with that of a conventional technique.

【符号の説明】[Explanation of symbols]

1:塩基性溶液を接触させない場合のボイド発生限界上
限温度。 2:塩基性溶液を接触させた場合のボイド発生限界上限
温度。 3:本発明の初期乾燥条件(斜線部分)
1: Void generation limit upper limit temperature when a basic solution is not contacted. 2: Void generation limit upper limit temperature when a basic solution is contacted. 3: Initial drying condition of the present invention (hatched portion)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C08K 3/32 C08K 3/32 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // C08K 3/32 C08K 3/32

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ポリベンザゾールポリマーと酸性溶媒か
らなるドープからフィラメントを紡糸し、凝固、洗浄及
び乾燥する方法において、紡出したドープフィラメント
を凝固後、塩基性溶液に接触させ、その後、乾燥工程に
供するフィラメント中の残存液体分率に関連して設定し
た温度で乾燥することを特徴とするポリベンザゾール繊
維の製造方法。
1. A method of spinning filaments from a dope composed of a polybenzazole polymer and an acidic solvent, coagulating, washing and drying the spun dope filaments, coagulating them, and then contacting them with a basic solution, followed by a drying step. A method for producing a polybenzazole fiber, which comprises drying at a temperature set in relation to the residual liquid fraction in the filament to be subjected to.
【請求項2】 乾燥導入温度が190℃以上であること
を特徴とする請求項1記載のポリベンザゾール繊維の製
造方法。
2. The method for producing a polybenzazole fiber according to claim 1, wherein the drying introduction temperature is 190 ° C. or higher.
【請求項3】 乾燥工程に供するフィラメント中の残存
液体分率が25%以上の場合、乾燥導入温度を190〜
220℃とすることを特徴とする請求項2記載のポリベ
ンザゾール繊維の製造方法。
3. When the residual liquid fraction in the filament subjected to the drying step is 25% or more, the drying introduction temperature is 190 to
The method for producing a polybenzazole fiber according to claim 2, wherein the temperature is 220 ° C.
【請求項4】 乾燥後のフィラメント中の残留水分率を
6%以下とするまで乾燥することを特徴とする請求項1
〜3記載のポリベンザゾール繊維の製造方法。
4. The method according to claim 1, wherein the filament is dried until the residual water content in the dried filament is 6% or less.
[3] A method for producing a polybenzazole fiber according to [3].
【請求項5】 乾燥時間が3分以下であることを特徴と
する請求項1〜4記載のポリベンザゾール繊維の製造方
法。
5. The method for producing a polybenzazole fiber according to claim 1, wherein the drying time is 3 minutes or less.
JP22800995A 1995-09-05 1995-09-05 Method for producing polybenzazole fiber Expired - Lifetime JP3651621B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22800995A JP3651621B2 (en) 1995-09-05 1995-09-05 Method for producing polybenzazole fiber
US08/707,546 US5772942A (en) 1995-09-05 1996-09-05 Processes for producing polybenzazole fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22800995A JP3651621B2 (en) 1995-09-05 1995-09-05 Method for producing polybenzazole fiber

Publications (2)

Publication Number Publication Date
JPH0978349A true JPH0978349A (en) 1997-03-25
JP3651621B2 JP3651621B2 (en) 2005-05-25

Family

ID=16869754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22800995A Expired - Lifetime JP3651621B2 (en) 1995-09-05 1995-09-05 Method for producing polybenzazole fiber

Country Status (1)

Country Link
JP (1) JP3651621B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006105079A1 (en) * 2005-03-28 2006-10-05 E.I. Du Pont De Nemours And Company Processes for hydrolyzing polyphosphoric acid in shaped articles
US7671171B2 (en) 2005-03-28 2010-03-02 E. I. Du Pont De Nemours And Company Processes for preparing high inherent viscosity polyareneazoles using metal powders
US7683157B2 (en) 2005-03-28 2010-03-23 E.I. Du Pont De Nemours And Company Process for the production of polyarenazole polymer
US7683122B2 (en) 2005-03-28 2010-03-23 E. I. Du Pont De Nemours And Company Processes for increasing polymer inherent viscosity
US7754846B2 (en) 2005-03-28 2010-07-13 E. I. Du Pont De Nemours And Company Thermal processes for increasing polyareneazole inherent viscosities
US7776246B2 (en) 2005-03-28 2010-08-17 E. I. Du Pont De Nemours And Company Process for the production of polyarenazole yarn
US7851584B2 (en) 2005-03-28 2010-12-14 E. I. Du Pont De Nemours And Company Process for preparing monomer complexes
US7888457B2 (en) 2005-04-01 2011-02-15 E. I. Du Pont De Nemours And Company Process for removing phosphorous from a fiber or yarn
US7906613B2 (en) 2005-03-28 2011-03-15 Magellan Systems International, Llc Process for removing cations from polyareneazole fiber
US7906615B2 (en) 2005-03-28 2011-03-15 Magellan Systems International, Llc Process for hydrolyzing polyphosphoric acid in a spun yarn
US7968030B2 (en) 2005-03-28 2011-06-28 E.I. Du Pont De Nemours And Company Hot surface hydrolysis of polyphosphoric acid in spun yarns
US7968029B2 (en) 2005-03-28 2011-06-28 E. I. Du Pont De Nemours And Company Processes for hydrolysis of polyphoshoric acid in polyareneazole filaments
JP4769295B2 (en) * 2005-03-28 2011-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Process for subjecting polyphosphoric acid in spun multifilament yarns to hydrolysis without fusion.
JP4769290B2 (en) * 2005-03-28 2011-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for removing phosphorus from fibers or yarns
US8263221B2 (en) 2005-03-28 2012-09-11 Magellan Systems International, Llc High inherent viscosity polymers and fibers therefrom
JPWO2015170623A1 (en) * 2014-05-08 2017-04-20 国立研究開発法人産業技術総合研究所 Polybenzimidazole carbon fiber and method for producing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977453B2 (en) 2005-03-28 2011-07-12 E. I. Du Pont De Nemours And Company Processes for hydrolyzing polyphosphoric acid in shaped articles
US8263221B2 (en) 2005-03-28 2012-09-11 Magellan Systems International, Llc High inherent viscosity polymers and fibers therefrom
US7683157B2 (en) 2005-03-28 2010-03-23 E.I. Du Pont De Nemours And Company Process for the production of polyarenazole polymer
US7683122B2 (en) 2005-03-28 2010-03-23 E. I. Du Pont De Nemours And Company Processes for increasing polymer inherent viscosity
US7754846B2 (en) 2005-03-28 2010-07-13 E. I. Du Pont De Nemours And Company Thermal processes for increasing polyareneazole inherent viscosities
US7776246B2 (en) 2005-03-28 2010-08-17 E. I. Du Pont De Nemours And Company Process for the production of polyarenazole yarn
US7851584B2 (en) 2005-03-28 2010-12-14 E. I. Du Pont De Nemours And Company Process for preparing monomer complexes
US7968030B2 (en) 2005-03-28 2011-06-28 E.I. Du Pont De Nemours And Company Hot surface hydrolysis of polyphosphoric acid in spun yarns
US7906613B2 (en) 2005-03-28 2011-03-15 Magellan Systems International, Llc Process for removing cations from polyareneazole fiber
US7906615B2 (en) 2005-03-28 2011-03-15 Magellan Systems International, Llc Process for hydrolyzing polyphosphoric acid in a spun yarn
US7968029B2 (en) 2005-03-28 2011-06-28 E. I. Du Pont De Nemours And Company Processes for hydrolysis of polyphoshoric acid in polyareneazole filaments
US7671171B2 (en) 2005-03-28 2010-03-02 E. I. Du Pont De Nemours And Company Processes for preparing high inherent viscosity polyareneazoles using metal powders
JP4769295B2 (en) * 2005-03-28 2011-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Process for subjecting polyphosphoric acid in spun multifilament yarns to hydrolysis without fusion.
JP4769293B2 (en) * 2005-03-28 2011-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for producing polyarene azole yarn
WO2006105079A1 (en) * 2005-03-28 2006-10-05 E.I. Du Pont De Nemours And Company Processes for hydrolyzing polyphosphoric acid in shaped articles
JP4769290B2 (en) * 2005-03-28 2011-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for removing phosphorus from fibers or yarns
JP4769294B2 (en) * 2005-03-28 2011-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for subjecting polyphosphoric acid in a spun yarn to hydrolysis on a hot surface
JP4769291B2 (en) * 2005-03-28 2011-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for subjecting polyphosphoric acid in a spun yarn to hydrolysis
JP4769292B2 (en) * 2005-03-28 2011-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for subjecting polyphosphoric acid in polyareneazole filaments to hydrolysis
JP4769289B2 (en) * 2005-03-28 2011-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for subjecting polyphosphoric acid in molded articles to hydrolysis
US8202965B2 (en) 2005-03-28 2012-06-19 E.I. Du Pont De Nemours And Company Fusion free hydrolysis of polyphosphoric acid in spun multifilament yarns
US7888457B2 (en) 2005-04-01 2011-02-15 E. I. Du Pont De Nemours And Company Process for removing phosphorous from a fiber or yarn
JP2018104882A (en) * 2014-05-08 2018-07-05 国立研究開発法人産業技術総合研究所 Polybenzimidazole carbon fiber
JPWO2015170623A1 (en) * 2014-05-08 2017-04-20 国立研究開発法人産業技術総合研究所 Polybenzimidazole carbon fiber and method for producing the same

Also Published As

Publication number Publication date
JP3651621B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3651621B2 (en) Method for producing polybenzazole fiber
JP3564822B2 (en) Method for producing polybenzazole fiber
US5772942A (en) Processes for producing polybenzazole fibers
JP3613719B2 (en) Method for producing polybenzazole fiber
KR970010718B1 (en) A process for preparing aromatic polyamide fibers
US5429787A (en) Method for rapid drying of a polybenzazole fiber
JPH10110329A (en) Polybenzazole fiber and production thereof
JP2744973B2 (en) Poly (p-phenylene terephthalamide) yarn having improved fatigue resistance and method for producing the same
EP0783603B1 (en) Process for the preparation of polybenzazole filaments and fibres
US5585052A (en) Process for the preparation of polybenzazole staple fiber
JP3661802B2 (en) Method for producing polybenzazole fiber
KR101245890B1 (en) Aramide Fiber and Method for Manufacturing The Same
JP2009001917A (en) Method for producing lyotropic liquid crystal polymer multifilament
KR100930204B1 (en) Aramide fiber and method for manufacturing the same
EP2218807B1 (en) Heat treatment for increasing compressive strentgh of PPTA filaments
EP0672201B1 (en) Method for rapid drying of a polybenzazole fiber
JP3065467B2 (en) Method for drying polybenzazole fiber
KR101233449B1 (en) Aramide Fiber and Method for Manufacturing The Same
KR910001801B1 (en) Manufacturing method of aromatic polyamide fiber
JPS636108A (en) Production of poly(p-phenylene terephthalamide) fiber
JP3431102B2 (en) Method for producing polybenzazole short fiber
JP3702979B2 (en) Black polybenzazole fiber
KR100368064B1 (en) Polybenzazole monofilament and its manufacturing method
JP3386239B2 (en) Method for producing crimped short polybenzazole fiber
JP2009120989A (en) Method for producing lyotropic liquid crystal polymer multifilament

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050216

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

EXPY Cancellation because of completion of term