JP2905545B2 - High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance - Google Patents

High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance

Info

Publication number
JP2905545B2
JP2905545B2 JP8541090A JP8541090A JP2905545B2 JP 2905545 B2 JP2905545 B2 JP 2905545B2 JP 8541090 A JP8541090 A JP 8541090A JP 8541090 A JP8541090 A JP 8541090A JP 2905545 B2 JP2905545 B2 JP 2905545B2
Authority
JP
Japan
Prior art keywords
hot water
fiber
pva
strength
water resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8541090A
Other languages
Japanese (ja)
Other versions
JPH0376807A (en
Inventor
洋文 佐野
駛視 吉持
文夫 中原
弘年 宮崎
健治 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KK
Original Assignee
KURARE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARE KK filed Critical KURARE KK
Publication of JPH0376807A publication Critical patent/JPH0376807A/en
Application granted granted Critical
Publication of JP2905545B2 publication Critical patent/JP2905545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度高弾性率を有し、しかも耐熱水性にす
ぐれたポリビニルアルコール(以下PVAと略記する)系
繊維に関するものであり、特に産業資材用および複合材
強化用で耐熱水性が要求されるような用途に適したPVA
系繊維に関するものである。
Description: TECHNICAL FIELD The present invention relates to a polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having a high strength and a high elastic modulus and excellent in hot water resistance. PVA suitable for applications that require hot water resistance for materials and composite reinforcement
It relates to a system fiber.

(従来の技術) 従来PVA系繊維はポリアミド、ポリエステル、ポリア
クリロニトリル系繊維に比べて強度、弾性率が高く、そ
の主用途である産業資材用繊維として利用されている以
外にも、アスベスト繊維代替としてセメント補強用繊維
等にも利用されてきている。
(Prior art) Conventional PVA fiber has higher strength and elastic modulus than polyamide, polyester and polyacrylonitrile fiber, and is used as a substitute for asbestos fiber in addition to being used as the main application fiber for industrial materials. It is also used for fibers for cement reinforcement.

最近の技術では、さらに高強度高弾性率を有するPVA
系繊維を得る方法として、高分子量ポリエチレンのゲル
紡糸−超延伸の考え方を応用した、特開昭59−100710
号、特開昭59−130314号、特開昭61−108711号が提案さ
れている。しかしながら、これらの方法では高強度高弾
性率のPVA系繊維は得られても、一部の用途分野で要求
されるような高度な耐熱水性を具備することはできなか
つた。
In recent technology, PVA with higher strength and higher elastic modulus
Japanese Patent Application Laid-Open No. 59-100710, which applies the concept of gel spinning and ultra-drawing of high molecular weight polyethylene as a method for obtaining a system fiber.
And JP-A-59-130314 and JP-A-61-108711 have been proposed. However, even with these methods, even though PVA-based fibers having high strength and high elastic modulus can be obtained, they cannot be provided with high hot water resistance required in some application fields.

PVA系繊維の耐熱水性を高めようとする試みは、古く
アセタール化による水不溶化処理に始まるが、最近の高
重合度高強力PVA系繊維では、非晶部の分子配向が進み
水に対する寸法安定性は上述の水不溶化処理を行なわな
くても達成できるようになつた。しかし、例えば120℃
の熱水中ではたちまち溶断し、オートクレーブ養生のセ
メント成形物の補強材や摩擦熱を受け易いロープ等の用
途にはまだまだ不満足であつた。
Attempts to increase the hot water resistance of PVA-based fibers have long begun with water-insolubilization treatment by acetalization.However, in recent high-polymerization and high-strength PVA-based fibers, the molecular orientation of the amorphous part has progressed and the dimensional stability to water has increased. Can be achieved without performing the above-described water insolubilization treatment. But for example 120 ° C
It quickly melted in hot water, and was still unsatisfactory for applications such as reinforcement for autoclaved cement moldings and ropes that are susceptible to frictional heat.

また、特開平1−156517号や特開平1−207435号、あ
るいは特開平1−104815号にみられる如くパーオキサイ
ド系化合物やイソシアネート化合物あるいはホウ酸など
により架橋処理により、耐熱水性を向上させる方法は公
知である。しかしこれらの方法は延伸前に架橋し延伸性
が損われ、分子配向が不十分のため強度や弾性率を低下
させる。一方延伸後に架橋させようとした場合は架橋剤
の繊維内部浸透を強化させるため繊維を膨潤させたり、
高温熱処理をする必要があり、その結果分子配向乱れや
PVAの分解、損傷が起こり、強度弾性率の低下を招き易
い問題があつた。
Also, as disclosed in JP-A-1-156517 and JP-A-1-207435, or as disclosed in JP-A-1-104815, a method of improving hot water resistance by crosslinking treatment with a peroxide compound, an isocyanate compound, boric acid, or the like is described. It is known. However, these methods crosslink prior to stretching, impairing stretchability, and lowering the strength and elastic modulus due to insufficient molecular orientation. On the other hand, when trying to crosslink after stretching, to swell the fiber to strengthen the penetration of the crosslinking agent inside the fiber,
It is necessary to perform high temperature heat treatment.
There was a problem that PVA was decomposed and damaged, and the elastic modulus of strength was easily reduced.

(発明が解決しようとする課題) 以上の背景をふまえて、本発明者は高強力高弾性率を
維持しながら、耐熱水性に優れたPVA系繊維を提供しよ
うとするものである。
(Problems to be Solved by the Invention) In view of the above background, the present inventors intend to provide a PVA-based fiber excellent in hot water resistance while maintaining high strength and high elastic modulus.

(課題を解決するための手段) 本発明者らは、上記課題解決に向けて鋭意検討した結
果、PVA系ポリマーの重合度に対応した強度弾性率を維
持しかつ耐熱水性が著しく高い繊維を見出し、本発明に
至つたものである。
(Means for Solving the Problems) As a result of intensive studies for solving the above problems, the present inventors have found fibers that maintain a strength elastic modulus corresponding to the degree of polymerization of a PVA-based polymer and have extremely high hot water resistance. This has led to the present invention.

ところで、PVAの重合度が増大すると、一般的に強度
弾性率、耐熱水性は向上するが、本発明の繊維は、重合
度を同じくして比較した場合従来法で得られる繊維に比
してはるかに高い耐熱水性を有する高強力高弾性率PVA
系繊維を提供せんとするものである。すなわち本発明
は、「紡糸原液に界面活性剤を添加して紡糸し延伸して
得られる、粘度平均重合度が3,000以上のポリビニルア
ルコール系ポリマーからなる繊維であつて、熱水溶解温
度が次式を満足し、かつ引張強度が16g/d以上、弾性率
が350g/d以上であることを特徴とする耐熱水性に優れた
高強度高弾性率PVA系繊維。
By the way, when the degree of polymerization of PVA increases, the strength elastic modulus and the hot water resistance generally improve, but the fiber of the present invention is far more compared with the fiber obtained by the conventional method when compared with the same degree of polymerization. High strength and high modulus PVA with extremely high hot water resistance
It is intended to provide a system fiber. That is, the present invention relates to a fiber comprising a polyvinyl alcohol-based polymer having a viscosity average degree of polymerization of 3,000 or more, which is obtained by adding a surfactant to a spinning dope, spinning and drawing, and having a hot water dissolution temperature of the following formula: A high-strength high-modulus PVA fiber excellent in hot water resistance, which satisfies the above, and has a tensile strength of 16 g / d or more and an elastic modulus of 350 g / d or more.

WTb≧1.2 0.35+115 (≧3,000) 但し WTbは荷重200mg/d下の熱水溶解温度 はPVA系ポリマーの粘度平均重合度」 に関するものである。WTb ≧ 1.2 A 0.35 +115 ( A ≧ 3,000) where WTb is the hot water dissolution temperature A under a load of 200 mg / d A is the viscosity average degree of polymerization of the PVA polymer.

このような本発明の耐熱水性に優れた高強度高弾性率
を有するPVA系繊維は、例えば、PVA原液に界面活性剤を
添加し、紡糸工程でそれを除くという方法を採用するこ
とによつて得られる。以下本発明の繊維並びにその製造
法について詳しく説明するが、本発明の繊維は、以下の
製法に限定されるものではない。
Such a PVA-based fiber having high strength and high elasticity excellent in hot water resistance of the present invention can be obtained, for example, by adopting a method of adding a surfactant to a stock solution of PVA and removing it in a spinning step. can get. Hereinafter, the fiber of the present invention and the production method thereof will be described in detail, but the fiber of the present invention is not limited to the following production method.

本発明に使用されるPVA系ポリマーとは30℃の水溶液
の極限粘度から求めた粘度平均重合度が3,000以上、好
ましくは6,000以上、さらに好ましくは10,000以上のも
のであり、ケン化度が98モル%以上で分岐度の低い直鎖
状のPVAが好ましい。なお2モル%以下の他のビニル化
合物を共重合したものや、3重量%以下のホウ酸、酸化
防止剤、紫外線吸収剤などの添加剤を加えることも可能
である。なお重合度3,000未満では耐熱水性を向上させ
る効果はほとんどなくなる。
The PVA-based polymer used in the present invention has a viscosity average degree of polymerization of 3,000 or more, preferably 6,000 or more, more preferably 10,000 or more, determined from the intrinsic viscosity of an aqueous solution at 30 ° C., and has a saponification degree of 98 mol. % Or more and a linear PVA with a low degree of branching is preferred. It is also possible to add an additive such as a copolymer of 2 mol% or less of another vinyl compound or 3 wt% or less of boric acid, an antioxidant and an ultraviolet absorber. When the degree of polymerization is less than 3,000, the effect of improving the hot water resistance is almost nil.

本発明に、使用されるPVA系ポリマーの溶剤としては
エチレングリコール、トリメチレングリコール、ジエチ
レングリコール、グリセリン等の多価アルコールやジメ
チルスルホキシド、ジメチルホルムアミド、ジエチレン
トリアミン、水さらにはこれらの2種以上の混合系、あ
るいはロダン塩水溶液、プロパノール水溶液等が挙げら
れる。特にこれらの中でも透明で均一なゲル状繊維を得
る上では多価アルコールやジメチルスルホキシドおよび
それらと水との混合溶剤が好ましい。
In the present invention, as a solvent for the PVA polymer used, ethylene glycol, trimethylene glycol, diethylene glycol, polyhydric alcohols such as glycerin, dimethyl sulfoxide, dimethylformamide, diethylene triamine, water and a mixed system of two or more of these, Alternatively, a rodan salt aqueous solution, a propanol aqueous solution and the like can be mentioned. Among these, polyhydric alcohol, dimethyl sulfoxide, and a mixed solvent thereof with water are preferable for obtaining transparent and uniform gel fibers.

界面活性剤はPVA溶液の中で100μ以下の大きさで分散
しているか又は溶解しているものが好ましい。500μを
超えて、大きな凝集物があると紡糸時に断糸したり、分
子配向を乱したり、除去時の空隙で欠陥部をつくり易
く、繊維性能が低下する。界面活性剤はPVA溶剤に微粒
子分散または溶解し、かつそれ自体分解や着色の少ない
ものであれば一般に市販されているノニオン系、アニオ
ン系、カチオン系および両性系のいずれであつてもまた
2種以上であつても何ら支障ない。
Preferably, the surfactant is dispersed or dissolved in the PVA solution in a size of 100 μm or less. If there is a large agglomerate exceeding 500μ, the fiber may be broken at the time of spinning, the molecular orientation may be disturbed, or a defect may be easily formed in a void at the time of removal, and the fiber performance may be reduced. Surfactants can be either nonionic, anionic, cationic, or amphoteric surfactants that are dispersed or dissolved in the PVA solvent in fine particles and have little decomposition or coloring. There is no problem at all.

PVA溶液への添加方法はPVAが溶剤に溶解する前添加混
合したり、予め該溶剤に界面活性剤を分散又は溶解し
て、PVA溶液に途中添加するなど界面活性剤が均一分散
又は溶解する方法ならいずれでも良い。
The addition method to the PVA solution is a method in which the surfactant is uniformly dispersed or dissolved, such as adding and mixing before the PVA is dissolved in the solvent, or dispersing or dissolving the surfactant in the solvent in advance, and adding the PVA solution on the way. If so, either is good.

添加量はPVAに対して1重量%以上、好ましくは3重
量%以上であるが、20重量%以上は耐熱水性の効果は変
らず、逆に除去する手間がかかつて好ましくない。
The amount of addition is 1% by weight or more, preferably 3% by weight or more based on PVA, but if it is 20% by weight or more, the effect of hot water resistance does not change, and on the contrary, it takes time and effort to remove it.

本製造法において、該界面活性剤を添加したPVA系ポ
リマー溶液(原液)をノズルより押出し繊維状に成形せ
しめる方法としては、一般に行なわれている乾式法、湿
式法および乾湿式法(ゲル紡糸法も含む)のいずれの方
法をも採用することが出来るが、本発明の目的とする耐
熱水に優れた高強度高弾性率繊維を得るには、PVA濃度
が下げられる湿式法または乾湿式法が好ましい。
In this production method, a PVA-based polymer solution (stock solution) to which the surfactant is added is extruded from a nozzle into a fibrous form by a dry method, a wet method, and a dry-wet method (gel spinning method). Any method can be employed, but in order to obtain a high-strength high-modulus fiber excellent in heat-resistant water as the object of the present invention, a wet method or a dry-wet method in which the PVA concentration is reduced is used. preferable.

凝固浴としては、メタノール、エタノールなどのアル
コール類、アセトンおよびそれらと溶剤または水との混
合系、あるいはアルカリや硫酸ナトリウムなどの無機塩
水溶液、さらには上記凝固浴に界面活性剤を添加したも
の等いずれでも良い。
Examples of the coagulation bath include alcohols such as methanol and ethanol, acetone and a mixture thereof with a solvent or water, or an aqueous solution of an inorganic salt such as an alkali or sodium sulfate, and those obtained by adding a surfactant to the coagulation bath. Either is acceptable.

本製造法では、溶剤の抽出、乾燥までに添加した界面
活性剤を除去する必要があり、残存量としてはPVA繊維
に対し2重量%以下、好ましくは1重量%以下である。
In this production method, it is necessary to remove the surfactant added until the solvent is extracted and dried, and the remaining amount is 2% by weight or less, preferably 1% by weight or less based on the PVA fiber.

界面活性剤が繊維中に多量に残つている場合は水に対
する親和性が増大したり、水の繊維内部への浸透を助長
して、耐熱水性を低下させるので好ましくない。
If a large amount of the surfactant remains in the fiber, the affinity for water increases, or the penetration of water into the fiber is promoted, and the hot water resistance is lowered, which is not preferable.

界面活性剤を添加し、除去することにより耐熱水性が
向上する理由は明らかでないが、PVAが溶解される時溶
液中でのPVA分子鎖の広がりやからみ状態が界面活性剤
添加により変化し、かつゲル形成と共に、界面活性剤が
除去されることにより、PVA微結晶間のタイ分子が多く
なつたり、その後の延伸で配向し易くなると言つた微細
構造の変化が原因と思われる。
The reason why the hot water is improved by adding and removing the surfactant is not clear, but when the PVA is dissolved, the spread and entanglement of the PVA molecular chains in the solution are changed by the addition of the surfactant, and It is considered that the removal of the surfactant together with the gel formation causes an increase in the number of tie molecules between the PVA microcrystals and a change in the microstructure, which is said to be likely to be oriented by subsequent stretching.

このようにして得られた乾燥紡糸原糸を常法により熱
延伸しPVA分子鎖の配向と結晶化を高める。なお紡糸工
程において溶剤を含んだ状態で2〜6倍湿延伸すること
は配向を促進する点で好ましいが、湿延伸倍率を含めて
全延伸倍率は16倍以上、好ましくは18倍以上、さらに好
ましくは20倍以上である。
The thus obtained dried spun yarn is hot-drawn by a conventional method to enhance the orientation and crystallization of PVA molecular chains. In the spinning step, it is preferable to perform wet stretching in a state of containing a solvent in a 2 to 6 times state in terms of promoting orientation, but the total stretching ratio including the wet stretching ratio is 16 times or more, preferably 18 times or more, and more preferably. Is more than 20 times.

熱延伸の温度は200℃以上、好ましくは230℃以上であ
り、高温高倍率延伸は高配向高結晶化を伴い、強度、弾
性率と友に耐熱水性も向上させるので望ましいが、高温
しすぎてPVAの分解が起らないように注意する必要があ
る。
The temperature of hot stretching is 200 ° C. or higher, preferably 230 ° C. or higher, and high-temperature high-magnification stretching involves high orientation and high crystallization, and is desirable because it also improves the strength, the elastic modulus and the hot water resistance. Care must be taken to ensure that PVA does not decompose.

本発明におけるPVA系繊維の熱水溶解温度は実験デー
タに基づいた次式を満足し、第1図の斜線上部に属する
ものである。
The hot water dissolution temperature of the PVA-based fiber in the present invention satisfies the following equation based on experimental data, and belongs to the upper portion of the hatched portion in FIG.

WTb≧1.2 0.35+115 (≧3,000) 但し、WTbは熱水溶解温度を表わし、単繊維25本にデ
ニール当り200mgの荷重をかけて水中に吊した後、1〜
2℃/minの昇温速度で加熱し繊維が溶断した時の温度を
意味する。なお200mg/dの荷重下では繊維の収縮が起こ
らず溶断するが、低荷重下では収縮が起こり易く、デー
タのバラツキが大きい。
WTb ≧ 1.2 A 0.35 +115 ( A ≧ 3,000) However, WTb indicates the hot water dissolution temperature, and after hanging a single fiber with a load of 200 mg per denier on 25 single fibers,
It means the temperature at which the fiber is melted by heating at a heating rate of 2 ° C./min. Under a load of 200 mg / d, the fibers do not shrink and fuse, but under a low load, the fibers tend to shrink, and the data vary widely.

はPVA系ポリマーの粘度平均重合度であり、JISK
−6726に準じ、30℃の水溶液の極限粘度〔η〕の測定値
よりlog=1.63log(〔η〕×104/8.29)の式から求
めた値である。
A is the viscosity-average degree of polymerization of the PVA-based polymer.
It is a value obtained from the measured value of the limiting viscosity [η] of the aqueous solution at 30 ° C. according to the formula of log A = 1.63 log ([η] × 10 4 /8.29) according to −6726.

一般に、熱水溶解温度は、高重合度ほど増大するが、
従来技術の界面活性剤未添加の延伸繊維では本発明より
低い温度(第1図の斜線下部)となり、いずれの重合度
においても、本発明の繊維は5〜50℃高い熱水溶解温度
を維持する。
Generally, the hot water dissolution temperature increases as the degree of polymerization increases,
The drawn fiber of the prior art without surfactant added has a lower temperature than the present invention (below the shaded area in FIG. 1), and the fiber of the present invention maintains a hot water dissolution temperature higher by 5 to 50 ° C. at any polymerization degree. I do.

本発明における繊維は、引張強度16g/d以上、弾性率3
50g/d以上を有するが、これらの値も重合度が高くなる
ほど増大し、例えば重合度4,000では、強度約18g/d、弾
性率約400g/d、重合度17,000では強度約22g/d、弾性率
約500g/dとなる。
The fiber in the present invention has a tensile strength of 16 g / d or more and an elastic modulus of 3
It has a value of 50 g / d or more, but these values also increase as the degree of polymerization increases, for example, at a degree of polymerization of 4,000, the strength is about 18 g / d, the elastic modulus is about 400 g / d, and at the degree of polymerization of 17,000, the strength is about 22 g / d, the elasticity. The rate becomes about 500 g / d.

一方界面活性剤未添加で公知の架橋処理などを施した
場合、各重合度に対し対熱水性は本発明と同程度となつ
たが、強度、弾性率は低くなり、本発明の如く強度、弾
性率、耐熱水性が共に高い繊維は得られなかつた。
On the other hand, when a known crosslinking treatment or the like is performed without the addition of a surfactant, the hot water resistance for each degree of polymerization is the same as that of the present invention, but the strength and elastic modulus are low, and the strength as in the present invention is low. Fiber having high elastic modulus and high hot water resistance was not obtained.

(発明の効果) 本発明の繊維は、従来に見られない高耐熱水性、高強
度、高弾性率のPVA系繊維であり、ロープ、帆布等の産
業資材、アスベスト代替セメント補強材、タイヤ補強
材、高温、高圧用ホース補強材、FRP用補強材、オート
クレーブ養生セメント補強材等幅広い活用が期待でき
る。
(Effect of the Invention) The fiber of the present invention is a PVA-based fiber having high hot water resistance, high strength and high elasticity, which has not been seen in the past, and is used for industrial materials such as ropes and canvases, asbestos substitute cement reinforcing material, and tire reinforcing material. It can be expected to be widely used for hose reinforcement for high temperature and high pressure, reinforcement for FRP, cement reinforcement for autoclave curing, etc.

(実施例) 以下実施例により本発明をさらに具体的に説明する。(Examples) Hereinafter, the present invention will be described more specifically with reference to examples.

なお引張強伸度、弾性率はJISL−1013に準じ、予め調
湿されたヤーンを試長20cmで0.25g/dの初荷重および100
%/minの引張速度にて破断強伸度および初期弾性率を求
め、10点以上の平均値を採用した。またデニールは重量
法により測定した。
The tensile strength and elongation and the elastic modulus are based on JISL-1013, and the yarn conditioned beforehand is tested at a test length of 20 cm with an initial load of 0.25 g / d and 100%.
The breaking elongation at break and the initial elastic modulus were determined at a tensile rate of% / min, and an average value of 10 or more points was adopted. Denier was measured by a gravimetric method.

実施例1、2および比較例1、2 粘度平均重合度が7,000(実施例1)および18,000
(実施例2)の完全ケン化PVAをそれぞれ9重量%およ
び5重量%になるようにグリセリンに混合し、同時にシ
ヨ糖脂肪酸エステルの界面活性剤をPVAに対し5重量%
になるように添加して180℃にて溶解せしめた。
Examples 1 and 2 and Comparative Examples 1 and 2 The viscosity average degree of polymerization was 7,000 (Example 1) and 18,000
The fully saponified PVA of (Example 2) was mixed with glycerin so as to be 9% by weight and 5% by weight, respectively, and at the same time, the surfactant of sucrose fatty acid ester was 5% by weight based on PVA.
And dissolved at 180 ° C.

実施例1、2いずれの場合も透明な溶液となつたが、
次いで該溶液をホール数150、孔径0.17mmのノズルより
空気中に吐出させ25mm下の凝固浴に落下させた。該凝固
液の組成は、メタノール/グリセリン=7/3(重量比)
であり、温度は0℃に保つた。この段階でいずれの場合
もほぼ真円に近い透明なゲル状繊維を得たが凝固浴で8
割〜9割の溶剤および界面活性剤が抽出された。続いて
40℃のメタノール中で4倍湿延伸し、さらに続くメタノ
ール浴でほぼ完全に溶剤および界面活性剤を抽出した後
80℃の熱風で乾燥して紡糸原糸を得た。
In each of Examples 1 and 2, a clear solution was obtained.
Next, the solution was discharged into the air from a nozzle having 150 holes and a hole diameter of 0.17 mm, and dropped into a coagulation bath 25 mm below. The composition of the coagulation liquid is methanol / glycerin = 7/3 (weight ratio)
And the temperature was kept at 0 ° C. At this stage, in each case, a transparent gel-like fiber having a shape close to a perfect circle was obtained.
About 90% to 90% of the solvent and surfactant were extracted. continue
After stretching 4 times wet in methanol at 40 ° C, and almost completely extracting the solvent and surfactant in the subsequent methanol bath
It was dried with hot air at 80 ° C. to obtain a spun yarn.

界面活性剤の残存量をNMRより求めたが実施例1は0.2
5重量%、実施例2は検知できなかつた。
The residual amount of the surfactant was determined by NMR.
5% by weight, Example 2 could not be detected.

次に該原糸を重合度7,000の場合は250℃の熱風炉で全
延伸倍率が19.6倍、重合度18,000の場合は256℃の熱風
炉で全延伸倍率が18.5倍、になるように延伸した。
Next, when the degree of polymerization was 7,000, the total stretching ratio was 19.6 times in a hot-air oven at 250 ° C., and when the degree of polymerization was 18,000, the total stretching ratio was 18.5 times in a hot-air oven at 256 ° C. .

比較例1、2として実施例1、2で界面活性剤を添加
しない場合を実施し、繊維性能の結果を第1表に併記し
た。
As Comparative Examples 1 and 2, the cases where no surfactant was added in Examples 1 and 2 were carried out, and the results of fiber performance are also shown in Table 1.

重合度7,000の実施例1ではヤーン強度19.6g/d、弾性
率492g/d、熱水溶解温度は159g/dを示し、界面活性剤未
添加の比較例1に比べて特に耐熱水性の向上がみられ
た。
In Example 1 having a degree of polymerization of 7,000, the yarn strength was 19.6 g / d, the elastic modulus was 492 g / d, the hot water dissolution temperature was 159 g / d, and the hot water resistance was particularly improved as compared with Comparative Example 1 in which no surfactant was added. Was seen.

重合度18,000の実施例2では強度22.4g/d、弾性率537
g/dとさらに高強度、高弾性となり、しかも熱水溶解温
度は178℃で、界面活性剤未添加の比較例2に比べて約3
0℃高くなつた。特に実施例2で得られた繊維は通常のP
VA繊維とは別のイメージを与え、前述の如く幅広い用途
に使用可能となつた。
In Example 2 having a degree of polymerization of 18,000, the strength was 22.4 g / d, and the elastic modulus was 537.
g / d, higher strength and higher elasticity, and the hot water dissolution temperature is 178 ° C, which is about 3 times that of Comparative Example 2 in which no surfactant is added.
0 ° C higher. In particular, the fiber obtained in Example 2
It gives a different image from VA fiber and can be used for a wide range of applications as described above.

また粘弾性測定より求めた動的弾性率E′の25℃と10
0℃での比E′100/E′25において、活性剤添加の実施例
1、2は共に未添加の比較例1、2より高い値となつ
た。これは高温での分子運動が束縛されていることを意
味し、非晶部がより強固な状態で結晶間を連結している
と思われ、これが耐熱水性を高める一因になつていると
推察される。
In addition, the dynamic elastic modulus E 'obtained from the viscoelasticity measurement was 25 ° C and 10 ° C.
In the ratio E ' 100 / E' 25 at 0 ° C., Examples 1 and 2 with the addition of the activator both gave higher values than Comparative Examples 1 and 2 without the addition. This means that the molecular motion at high temperature is constrained, and it is thought that the amorphous part connects the crystals in a stronger state, which is supposed to be a factor in increasing the hot water resistance. Is done.

実施例3 粘度平均重合度が17,000でケン化度が99.9モル%のPV
Aを5重量%になるようにジメチルスルホキシドに溶解
した。また界面活性剤としてノニポール−500(商品
名、三洋化成製、主成分 をPVAに対し5重量%加えた。溶解は98℃で3〜5時間
撹拌しながら実施した。得られた溶液を室温のメタノー
ル浴中にて乾湿式紡糸し、5.0倍の湿熱延伸をし、次い
で熱風乾燥により溶剤であるメタノールを除去した。更
に170℃及び235℃の2段階の輻射式ヒーターにて延伸
し、総延伸倍率23.0倍の延伸糸を得た。
Example 3 PV having a viscosity average degree of polymerization of 17,000 and a saponification degree of 99.9 mol%
A was dissolved in dimethyl sulfoxide to a concentration of 5% by weight. Nonipol-500 (trade name, manufactured by Sanyo Chemical Co., Ltd., Was added to PVA in an amount of 5% by weight. Dissolution was performed at 98 ° C. with stirring for 3-5 hours. The obtained solution was spin-dry-spun in a methanol bath at room temperature, stretched by 5.0 times in wet heat, and then dried with hot air to remove methanol as a solvent. Further, it was drawn by a two-stage radiant heater at 170 ° C. and 235 ° C. to obtain a drawn yarn having a total draw ratio of 23.0 times.

乾燥後の紡糸原糸における界面活性剤残存量は0.08重
量%であり、延伸8時間での単糸切れはなく、繊維に欠
陥部や形態斑が少ないことが裏付けられた。また延伸糸
に白化現象は認められなかつた。得られた延伸糸のヤー
ン強度は20.6g/d、弾性率は498g/dであつた。単糸はデ
ニールが3.8、強度が22.2g/d、伸度3.2%、弾性率520g/
dであつた。また熱水溶解温度は152℃を示し、耐熱水性
にすぐれた高強力、高弾性繊維となつた。
The residual amount of the surfactant in the dried spinning yarn was 0.08% by weight, and there was no breakage of the single yarn after 8 hours of drawing, which confirmed that the fiber had few defects and morphological irregularities. No whitening phenomenon was observed in the drawn yarn. The obtained drawn yarn had a yarn strength of 20.6 g / d and an elastic modulus of 498 g / d. Single yarn has a denier of 3.8, a strength of 22.2 g / d, an elongation of 3.2%, and an elasticity of 520 g / d.
d. In addition, the hot water dissolution temperature was 152 ° C, and it became a high-strength, high-elastic fiber with excellent hot water resistance.

実施例4 粘度平均重合度が4,100でケン化度が99.5モル%のPVA
を8重量%になるようにジメチルスルホキシドに混合
し、同時にPOE(40)ノニルフエノールエーテルを3重
量%添加して90℃にて溶解せしめた。得られた溶液は少
し白濁しており、界面活性剤の微粒子が分散していた。
次いで該溶液をホール数300、孔径0.12mmのノズルより
凝固浴に吐出させ湿式紡糸した。該凝固浴はエタノール
/ジメチルスルホキシド=8/2(重量比)であり、温度
は10℃に保つた。続いてエタノール中で5倍湿延伸し、
さらにエタノール浴でほぼ完全に溶剤および界面活性剤
を抽出し、乾燥して紡糸原糸を得た。
Example 4 PVA having a viscosity average degree of polymerization of 4,100 and a saponification degree of 99.5 mol%
Was mixed with dimethyl sulfoxide so as to be 8% by weight, and at the same time, 3% by weight of POE (40) nonylphenol ether was added and dissolved at 90 ° C. The obtained solution was slightly cloudy, and the fine particles of the surfactant were dispersed.
Next, the solution was discharged into a coagulation bath from a nozzle having 300 holes and a hole diameter of 0.12 mm, and wet-spun. The coagulation bath was ethanol / dimethyl sulfoxide = 8/2 (weight ratio), and the temperature was kept at 10 ° C. Subsequently, it is stretched 5 times in ethanol,
Further, the solvent and surfactant were almost completely extracted in an ethanol bath, and dried to obtain a spun yarn.

界面活性剤の残存量は0.22重量%であつた。 The residual amount of the surfactant was 0.22% by weight.

次いで該原糸を236℃の熱風炉で全延伸倍率が19.2倍
になるように延伸した。得られた延伸糸のヤーン強度は
18.5g/d、弾性率は435g/d、熱水溶解温度は148℃を示
し、耐熱水性に優れた高強度高弾性率のPVA繊維となつ
た。
Next, the raw yarn was drawn in a hot air oven at 236 ° C. so that the total draw ratio became 19.2 times. The yarn strength of the obtained drawn yarn is
18.5 g / d, the elastic modulus was 435 g / d, and the hot water dissolution temperature was 148 ° C., indicating that the PVA fiber had high strength and high elastic modulus with excellent hot water resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、熱水溶解温度(WTb)とPVA系ポリマーの重合
度()の関係を示した図であり、本発明繊維は斜線
上部の範囲に属し、従来の界面活性剤未添加繊維は斜線
下部の範囲に属することを示す。
FIG. 1 is a graph showing the relationship between the hot water dissolution temperature (WTb) and the degree of polymerization ( A ) of the PVA-based polymer. Indicates that it belongs to the range below the oblique line.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永松 健治 岡山県倉敷市酒津1621番地 株式会社ク ラレ内 審査官 渕野 留香 (56)参考文献 特開 平1−104815(JP,A) 特開 昭47−16724(JP,A) 特開 平3−167310(JP,A) (58)調査した分野(Int.Cl.6,DB名) D01F 6/14 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Kenji Nagamatsu 1621 Sazu, Kurashiki-shi, Okayama Pref. Kuraray Co., Ltd. Examiner Ruka Fuchino (56) References JP-A-1-104815 (JP, A) JP-A Sho 47-16724 (JP, A) JP-A-3-167310 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) D01F 6/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】紡糸原液に界面活性剤を添加して紡糸し延
伸して得られる、粘度平均重合度が3,000以上のポリビ
ニルアルコール系ポリマーからなる繊維であって、熱水
溶解温度が次式を満足し、かつ引張強度が16g/d以上、
弾性率が350g/d以上であることを特徴とする耐熱水性に
優れた高強度高弾性率ポリビニルアルコール系繊維。 WTb≧1.2PA 0.35+115 (PA≧3,000) 但し、WTbは荷重200mg/d下の熱水溶解温度、PAはポリビ
ニルアルコール系ポリマーの粘度平均重合度
1. A fiber comprising a polyvinyl alcohol-based polymer having a viscosity average degree of polymerization of 3,000 or more, which is obtained by adding a surfactant to a spinning solution, spinning and drawing, and having a hot water dissolution temperature represented by the following formula: Satisfaction and tensile strength is 16g / d or more,
A high-strength, high-modulus polyvinyl alcohol fiber excellent in hot water resistance, having an elastic modulus of 350 g / d or more. WTb ≧ 1.2P A 0.35 +115 (P A ≧ 3,000) where WTb is the hot water dissolution temperature under a load of 200mg / d, PA is the viscosity average degree of polymerization of polyvinyl alcohol polymer
JP8541090A 1989-04-27 1990-03-30 High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance Expired - Fee Related JP2905545B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-109998 1989-04-27
JP10999889 1989-04-27

Publications (2)

Publication Number Publication Date
JPH0376807A JPH0376807A (en) 1991-04-02
JP2905545B2 true JP2905545B2 (en) 1999-06-14

Family

ID=14524507

Family Applications (4)

Application Number Title Priority Date Filing Date
JP8541090A Expired - Fee Related JP2905545B2 (en) 1989-04-27 1990-03-30 High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JP9284690A Pending JPH03213512A (en) 1989-04-27 1990-04-06 Production of high-strength polyvinyl alcohol-based fiber
JP9284590A Pending JPH03206112A (en) 1989-04-27 1990-04-06 Preparation of polyvinyl alcohol synthetic fiber
JP10817190A Expired - Fee Related JP2869137B2 (en) 1989-04-27 1990-04-23 Method for producing polyvinyl alcohol fiber excellent in hot water resistance

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP9284690A Pending JPH03213512A (en) 1989-04-27 1990-04-06 Production of high-strength polyvinyl alcohol-based fiber
JP9284590A Pending JPH03206112A (en) 1989-04-27 1990-04-06 Preparation of polyvinyl alcohol synthetic fiber
JP10817190A Expired - Fee Related JP2869137B2 (en) 1989-04-27 1990-04-23 Method for producing polyvinyl alcohol fiber excellent in hot water resistance

Country Status (1)

Country Link
JP (4) JP2905545B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107299444A (en) * 2017-06-29 2017-10-27 顾渊 One kind releases fragrant fabric and preparation method thereof

Also Published As

Publication number Publication date
JPH03206112A (en) 1991-09-09
JP2869137B2 (en) 1999-03-10
JPH03206128A (en) 1991-09-09
JPH03213512A (en) 1991-09-18
JPH0376807A (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JPH04228613A (en) Polyketone fiber and its manufacture
JP3708030B2 (en) Polyketone fiber, polyketone fiber twisted product and molded article thereof
JP2569352B2 (en) High strength water-soluble polyvinyl alcohol fiber and method for producing the same
JP2588579B2 (en) Polyvinyl alcohol fiber excellent in hot water resistance and method for producing the same
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JP2000212828A (en) Polyvinyl alcohol-based fiber and its production
JP4156157B2 (en) Water-soluble thermoplastic polyvinyl alcohol fiber and method for producing the same
JP2537962B2 (en) Polyvinyl alcohol fiber suitable for reinforcement
JPH076087B2 (en) High strength and high modulus PVA fiber and method for producing the same
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
EP0327696A2 (en) High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
JP2858925B2 (en) Method for producing hot water-resistant polyvinyl alcohol fiber
JP2728737B2 (en) Hot water-resistant polyvinyl alcohol fiber and method for producing the same
JP2765951B2 (en) Glossy high-strength polyvinyl alcohol fiber and method for producing the same
JP2503092B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JP2656339B2 (en) High strength polyvinyl alcohol fiber
JPH08158149A (en) Production of polyvinyl alcohol-based fiber
JP2916242B2 (en) Spinning method of polyvinyl alcohol fiber
JPH0457769B2 (en)
JP2888502B2 (en) Method for producing high strength polyvinyl alcohol fiber with excellent hot water resistance
JPH0457770B2 (en)
JPH01192813A (en) Polyvinyl alcohol based fiber excellent in flexing fatigue property
JPH0299607A (en) Production of polyvinyl alcohol-based fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees