JPS61289112A - Polyvinyl alcohol fiber having ultra-high tenacity - Google Patents

Polyvinyl alcohol fiber having ultra-high tenacity

Info

Publication number
JPS61289112A
JPS61289112A JP12440885A JP12440885A JPS61289112A JP S61289112 A JPS61289112 A JP S61289112A JP 12440885 A JP12440885 A JP 12440885A JP 12440885 A JP12440885 A JP 12440885A JP S61289112 A JPS61289112 A JP S61289112A
Authority
JP
Japan
Prior art keywords
yarn
fiber
spinning
polyvinyl alcohol
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12440885A
Other languages
Japanese (ja)
Other versions
JPH06102848B2 (en
Inventor
Masaharu Mizuno
正春 水野
Hiroyoshi Tanaka
宏佳 田中
Fujio Ueda
上田 富士男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60124408A priority Critical patent/JPH06102848B2/en
Publication of JPS61289112A publication Critical patent/JPS61289112A/en
Publication of JPH06102848B2 publication Critical patent/JPH06102848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled fiber composed of a polyvinyl alcohol polymer having a weight-average molecular weight higher than a specific level, having high tensile strength and suitable as tire cord, seat belt, general rubber reinforcing material, rope, cable, etc. CONSTITUTION:A polyvinyl alcohol polymer having a weight-average molecular weight of >=1X10<6>, preferably >=1.5X10<6> is dissolved in a solvent such as dimethyl sulfoxide to obtain a spinning dope. The dope is extruded through a spinning nozzle and coagulated or solidified by cooling. The solidified yarn is desolvated, dried and super-drawn to obtain an ultra-high tenacity polyvinyl alcohol fiber having a tensile strength of >=25/d. Preferably, the fiber has no long-period image in the small-angle X-ray scattering and the peak height of the principal mechanical loss tangent of the fiber is <=0.10.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超高強度のポリビニルアルコール(以下、PV
Aと略す)系繊維に係り、さらに詳しくは従来公知のP
VA繊維とは比較にならない、またアラミド繊維にも匹
敵する高度の機械的性質を有するPVA系繊維に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses ultra-high strength polyvinyl alcohol (hereinafter referred to as PV
(abbreviated as A) type fiber, more specifically, the conventionally known P
It relates to PVA-based fibers that have high mechanical properties that are incomparable to VA fibers and comparable to aramid fibers.

[従来技術] 従来、PVA繊維はナイロン、ポリエステルなどの繊維
に比較して機械的性質、耐薬品性、耐候性などに優れ、
その特性を活かして漁網、ロープ。
[Prior Art] Conventionally, PVA fibers have superior mechanical properties, chemical resistance, weather resistance, etc. compared to fibers such as nylon and polyester.
Fishing nets and ropes take advantage of these characteristics.

タイヤコード、ゴム補強材などの工業用ないし産業用繊
維素材として広く使用されている。
It is widely used as an industrial fiber material for tire cords, rubber reinforcing materials, etc.

かかるPVAI維は、通常PVA水溶液を紡糸原液とし
て用い、紡糸口金を通して凝固浴2例えば飽和無機塩類
水溶液中に吐出、凝固せしめ、得られた凝固糸条を水洗
、延伸、乾燥した後、アセタール化などの水不溶化処理
を施す工程を経由して製造されている。このような製造
法において、得られるPVA繊維の機械的強度を向上さ
せるために、紡糸原液として硼酸またはその塩を含有す
る水溶液を使用し、アルカリ性基凝固浴中に紡糸する方
法(特公昭48−9209号公報)PVA水溶液を濃厚
なアルカリ凝固浴中に紡糸する方法く特公昭47−81
86号公報)などが提案されている。
Such PVAI fibers are usually produced by using a PVA aqueous solution as a spinning stock solution, and extruding it through a spinneret into a coagulation bath 2, such as a saturated inorganic salt aqueous solution, and coagulating it.The obtained coagulated yarn is washed with water, stretched, dried, and then subjected to acetalization, etc. It is manufactured through a water insolubilization process. In such a manufacturing method, in order to improve the mechanical strength of the resulting PVA fiber, an aqueous solution containing boric acid or a salt thereof is used as a spinning stock solution, and spinning is carried out in an alkaline base coagulation bath (Japanese Patent Publication No. 48-1989). No. 9209) A method for spinning a PVA aqueous solution in a concentrated alkaline coagulation bath.
Publication No. 86) and the like have been proposed.

しかしながら、これらの方法によって得られるPVA繊
維は、確かに従来のPVA繊維に比べると機械的性質は
改良されているけれども、前記アラミド繊維(特にポリ
−パラフェニレンテレフタルアミド繊維)に匹敵するよ
うな高度の機械的性質を示すものではなかった。
However, although the PVA fibers obtained by these methods do have improved mechanical properties compared to conventional PVA fibers, they do not have a high It did not indicate any mechanical properties.

一方、最近になって超高分子量ポリオレフィン系ポリマ
の準稀薄溶液を口金孔から吐出し、吐出糸条を冷却させ
て−Hゲル化せしめた後、得られたゲル化糸条を脱溶媒
しく以下、ゲル紡糸法という)、超延伸すると、強度お
よび弾性率の著しく高い繊維が得られることがわかり(
例えば、特開昭56−15408号公報、同58−52
28号公報)、またPVA重合体についても前記ゲル紡
糸法を応用し、高強度・高弾性率を得る試みがなされて
いる(特開昭59−130314号公報)。
On the other hand, recently, after discharging a semi-diluted solution of an ultra-high molecular weight polyolefin polymer from a spinneret hole and cooling the discharged thread to form a -H gel, the resulting gelled thread was desolvated as shown below. It was found that fibers with significantly higher strength and modulus of elasticity can be obtained by ultra-stretching (referred to as gel spinning method).
For example, JP-A-56-15408, JP-A-58-52
28), and attempts have also been made to apply the gel spinning method to PVA polymers to obtain high strength and high elastic modulus (Japanese Unexamined Patent Publication No. 130314/1982).

すなわち、特殊な重合法(酢酸ビニルモノマの厳密な精
留と一40℃以下での約100時間にも及ぶ長時間紫外
線重合)により得られる超高重合度PVAをグリセリン
などの多価アルコール系溶媒に溶解し、低濃度の紡糸原
液からゲル紡糸するもので、脱溶媒・延伸して約19 
g/dの従来にない高い引張強度を有するPVA繊維を
得ている。
In other words, ultra-high polymerization degree PVA obtained by a special polymerization method (strict rectification of vinyl acetate monomer and long-time ultraviolet polymerization lasting about 100 hours at temperatures below -40°C) is added to a polyhydric alcohol solvent such as glycerin. Gel spinning is performed from a low-concentration spinning stock solution, and after solvent removal and stretching, the
A PVA fiber with an unprecedentedly high tensile strength of g/d has been obtained.

しかしながら、上記繊維は前記アラミド繊維。However, the above-mentioned fiber is the above-mentioned aramid fiber.

例えば現在商業生産されているデュポン社、″ケブラー
″の引張強度が約22g/dでおるから、今一つこれに
劣っている。
For example, the tensile strength of "Kevlar" manufactured by DuPont, which is currently commercially produced, is about 22 g/d, which is considerably inferior to this.

本発明者らはこの″ケブラー″を越える引張強度を有す
る繊維を直鎖状超高分子量のPVA系重合体から得るべ
く、鋭意研究の結果、本発明に至ったのである。
The present inventors have conducted extensive research in order to obtain a fiber having a tensile strength exceeding that of "Kevlar" from a linear ultra-high molecular weight PVA-based polymer, and as a result, they have arrived at the present invention.

[発明が解決しようとする問題点] 本発明の目的は前記特開昭59−130314号公報記
載の実施例にあるPVA繊維の引張強度19g/dを大
きく上回り、またデュポン社、″ケブラー″に代表され
るアラミド繊維の引張強度をも上回る。超高強度のPV
A系繊維を提供するにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to greatly exceed the tensile strength of 19 g/d of the PVA fiber in the example described in JP-A-59-130314, and also to improve the It even exceeds the tensile strength of typical aramid fibers. Ultra-high strength PV
To provide A-based fibers.

[問題点を解決するための手段] 本発明の上記目的は、実質的にポリビニルアルコールで
あり、重量平均分子量が1×106以上のポリマからな
る2 5 g/d以上の引張強度を有する超高強度ポリ
ビニルアルコール系繊維によって達成できる。
[Means for Solving the Problems] The above-mentioned object of the present invention is to produce an ultra-high-grade polymer having a tensile strength of 25 g/d or more, which is essentially polyvinyl alcohol and is made of a polymer having a weight average molecular weight of 1 x 106 or more. Strength can be achieved by using polyvinyl alcohol fibers.

すなわち、本発明の25q/d以上の引張強度を有する
超高強度ポリビニルアルコール系繊維は、本発明者らの
綿密な実験によると、 (1)重量平均分子量が1×106以上のPVA系重合
体の溶液を紡糸原液とする。
That is, according to detailed experiments by the present inventors, the ultra-high strength polyvinyl alcohol fiber of the present invention having a tensile strength of 25 q/d or more is: (1) a PVA polymer having a weight average molecular weight of 1 x 106 or more; The solution is used as the spinning stock solution.

(2)該紡糸原液を紡糸ドラフト(定義後述)1゜0以
下で、かつ最終延伸糸の単糸繊度が5デニール以下とな
るような吐出量で乾湿式紡糸法(詳細後述)、あるいは
前記59−13031号公報に開示されているゲル紡糸
法により、ノズルから紡出し、凝固あるいは冷却固化せ
しめる。
(2) Dry-wet spinning method (details described below) using the spinning stock solution at a spinning draft (definition described below) of 1°0 or less and a discharge rate such that the single filament fineness of the final drawn yarn is 5 deniers or less; or According to the gel spinning method disclosed in Japanese Patent No. 13031, it is spun out from a nozzle and solidified or solidified by cooling.

(3)固化した糸条を溶媒抽出工程に通しくこの間延伸
が伴うこともある)、脱溶媒する。
(3) The solidified thread is passed through a solvent extraction step (during which drawing may be involved), and the solvent is removed.

(4)脱溶媒された糸条を、適切なる工程油剤を付与し
た後、乾燥する。
(4) After applying an appropriate process oil to the desolventized yarn, it is dried.

(5)乾燥した糸条を加熱した空気あるいは不活性雰囲
気(例えば窒素ガス)中で糸条の融解温度     (
”・1.9 直下で低速で超延伸する。             
 1、よよ91.わ。。8カ、ゎヵ1.よ。イ1、I明
の特徴的なところは、上記5項目の内、(1)項   
  j暑 の超高分子量の重合体を用いること、(2)項の−  
   !定ドラフト下で特別の紡糸法をとること、及び
(5)項の非接触タイプの乾熱延伸方法により特別の 
    11゜ 繊維構造を示すまで高倍率に延伸することであり、  
   。
(5) The melting temperature of the dried yarn in heated air or an inert atmosphere (e.g. nitrogen gas)
”・1.9 Ultra-stretch at low speed directly below.
1. Yoyo91. circle. . 8ka, waka1. Yo. A1.The distinctive feature of I-mei is item (1) of the above five items.
jUsing a hot ultra-high molecular weight polymer, (2) -
! By using a special spinning method under a constant draft, and by using the non-contact type dry heat stretching method described in (5),
11° Stretching at a high magnification until it shows a fiber structure,
.

これらの一体的な組み合せによって初めて本発明   
  ′。
The present invention was first achieved by an integral combination of these.
'.

の超高強度PVA系繊維が得られるのである。This results in ultra-high strength PVA fibers.

上記(5)項の非接触乾熱雰囲気での超延伸によ   
  )す、実質的に分子鎖が十分伸びきった繊維構造が
     1:形成され、非結晶部分も著しく配向が進
んでいる     )ゴ ため、結晶部分との密度差が少なく、繊維軸方向   
  1に長周期構造を有していない本発明のPVA系繊
     、))1] lff17’J” 1* 6 t″6・       
    ]・1本発明のPVA系w4#1はその引張強
度が従来の     唇側の中で最も高強度を有する前
記特開昭59−1     ・;30314号公報中の
実施例のPVA繊維(強度19g/d)を大きく上回り
、しかも長周期保が観測されず、かつ力学的主分散ピー
クのtanδ値が0.10以下であり、超分子配向性、
高結晶性を有する。全く新規な繊維である。
By ultra-stretching in a non-contact dry heat atmosphere as described in (5) above,
), a fiber structure in which the molecular chains are substantially fully extended is formed, and the amorphous part is also significantly oriented.
The PVA fiber of the present invention which does not have a long period structure in 1))1] lff17'J"1*6t"6・
]・1 The PVA fiber w4#1 of the present invention has the highest tensile strength among the conventional lip fibers. /d), and furthermore, no long-period retention was observed, and the tan δ value of the mechanical principal dispersion peak was 0.10 or less, and the supramolecular orientation,
Has high crystallinity. This is a completely new fiber.

次に、本発明に係る超高強度PVA系繊維の具体的な製
造例について述べる。
Next, a specific manufacturing example of the ultra-high strength PVA fiber according to the present invention will be described.

まず重量平均分子量が1X106LX上のPVA系重合
体を溶媒に溶解し、PVA系重合体を2〜12重口%含
有する溶液を造る。この溶液は複数の孔を有するノズル
から空気層または不活性気体雰囲気層を介して凝固浴中
、または冷却液体浴中に押出される。
First, a PVA polymer having a weight average molecular weight of 1.times.10.sup.6LX is dissolved in a solvent to prepare a solution containing 2 to 12 percent by weight of the PVA polymer. The solution is forced through a multi-hole nozzle through a layer of air or an inert gas atmosphere into a coagulation bath or into a cooling liquid bath.

ここにおいて、前者の凝固浴中に押出す紡糸法が゛乾湿
式紡糸法″であり、凝固浴中でPVA系重合体の溶媒と
凝固剤とが相互拡散を生じる。
Here, the former spinning method in which the fiber is extruded into a coagulation bath is a "dry-wet spinning method," and the solvent of the PVA-based polymer and the coagulant cause mutual diffusion in the coagulation bath.

一方、後者の冷却液体浴中に押出す紡糸法が前記特開昭
59−130314号公報に開示されているのと同様の
゛′ゲル紡糸法″であり、PVA系重合体の溶媒と冷却
液体とは混和性を有していないので相互拡散は生じない
、即ち、ノズルから押出された繊維状溶液が冷却によっ
てゲル化するだけでおり、得られるゲル化糸条は実質的
に紡糸原液と同じ組成を有している。
On the other hand, the latter spinning method in which the fibers are extruded into a cooling liquid bath is a ``gel spinning method'' similar to that disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 59-130314. Since they are not miscible with each other, mutual diffusion does not occur; in other words, the fibrous solution extruded from the nozzle only gels by cooling, and the resulting gelled yarn is substantially the same as the spinning dope. It has a composition.

本発明のPVA系lIi維は、上記例れの紡糸法によっ
ても得られるが、以下各々に付き詳細に述べる。
Although the PVA-based IIi fibers of the present invention can also be obtained by the above-mentioned spinning methods, each method will be described in detail below.

本発明のPVA系繊維を構成するPVA系重合体として
は、その重量平均分子!(MW)が1×10 以上、好
ましくは1.5×106以上、さらに好ましくは2×1
06以上であり、繊維形成性があれば特に限定されるも
のではなく、例えば部分ケン化PVA、完全ケン化PV
A、およびビニルアルコールと共重合可能なビニル系モ
ノマを少量共重合したPVA共重合体などを挙げること
ができるが、これらの中、完全ケン化PVAが最も好ま
しい。
As for the PVA polymer constituting the PVA fiber of the present invention, its weight average molecule! (MW) is 1×10 or more, preferably 1.5×106 or more, more preferably 2×1
06 or higher and is not particularly limited as long as it has fiber-forming properties, for example, partially saponified PVA, completely saponified PV
A, and PVA copolymers obtained by copolymerizing a small amount of vinyl monomers that are copolymerizable with vinyl alcohol, among which completely saponified PVA is most preferred.

乾湿式紡糸法においては、PVA系重合体の溶剤として
、ジメチルスルホキシド(DMSO)。
In the dry-wet spinning method, dimethyl sulfoxide (DMSO) is used as a solvent for the PVA-based polymer.

グリセリン、エチレングリコール、ジエチレントリアミ
ン、エチレンジアミン、およびフェノールなどの有機溶
媒、水や塩化亜鉛、ロダンソーダ。
Organic solvents such as glycerin, ethylene glycol, diethylene triamine, ethylene diamine, and phenol, water, zinc chloride, and rhodan soda.

塩化カルシウム、塩化アルミニウムなどの無機塩の水溶
液、またはこれらの混合溶媒などを挙げることができる
が、好ましくはポリマに対する溶解力の大きい溶剤、待
にDMSO,ジエチレントリアミン、エチレンジアミン
がよく、さらに好ましくはDMSOがよい。
Examples include aqueous solutions of inorganic salts such as calcium chloride and aluminum chloride, and mixed solvents thereof. Preferably, solvents with high dissolving power for the polymer are used, especially DMSO, diethylenetriamine, and ethylenediamine, and DMSO is more preferable. good.

また凝固剤としては、メタノール、エタノール2ブタノ
ールなどのアルコール類、アセトン、ベンゼン、トルエ
ンなど、またはこれらの一種以上とDMSOとの混合溶
媒、飽和無償塩類水溶液、カセイソーダ水溶液などがあ
るが、好ましくはメタノール、エタノール、およびアセ
トンがよい。
Examples of the coagulant include alcohols such as methanol, ethanol-di-butanol, acetone, benzene, toluene, etc., mixed solvents of one or more of these and DMSO, saturated free salt aqueous solutions, caustic soda aqueous solutions, etc., but methanol is preferable. , ethanol, and acetone are good.

さらに複数孔のノズルと凝固浴液面の間の距離(不活性
気体雰囲気)は、特に制限されないが、3#から200
sが適当であり、3#よりも短くなると該乾湿式紡糸を
安定に実施することが難しくなるし、200mよりも長
くなるとノズルから押出された繊維状溶液の安定波性が
難しくなり、僅かの糸揺れにより、この気体雰囲気中で
単糸間8着が生じるなどの問題を惹起することになる。
Further, the distance between the multi-hole nozzle and the coagulation bath liquid level (inert gas atmosphere) is not particularly limited, but is between 3# and 200mm.
s is appropriate; if it is shorter than 3#, it will be difficult to carry out the wet-dry spinning stably, and if it is longer than 200 m, it will be difficult to stabilize the fibrous solution extruded from the nozzle, and a slight The yarn swaying causes problems such as occurrence of 8 pieces between single yarns in this gas atmosphere.

さらにまた、この気体雰囲気中に押出された繊維状溶液
からは、僅かに溶剤が蒸発して扱けることもあるが、大
半の溶剤は凝固浴およびこれに続く抽出浴において除去
されることになる。
Furthermore, the fibrous solution extruded into this gaseous atmosphere may have a small amount of solvent evaporated, but most of the solvent will be removed in the coagulation bath and subsequent extraction bath. .

一方、ゲル紡糸法においては、PVA系重合体の溶剤と
して、該重合体を高温で加熱、溶解し、得られた溶液を
冷却するとゲル化するような溶剤が使用され、かつ該溶
剤は紡糸口金から紡糸原液を吐出し、その吐出糸条を冷
却したとき、形成されたゲル化糸条の重合体濃度が吐出
前の紡糸原液の重合体濃度と実質的に同一となるように
するため、該紡糸原液の紡糸条件下、不揮発性であるこ
とが必要である。
On the other hand, in the gel spinning method, as a solvent for the PVA polymer, a solvent is used that heats and dissolves the polymer at high temperature and gels when the resulting solution is cooled, and the solvent is used in the spinneret. When the spinning dope is discharged from the spinning dope and the discharged yarn is cooled, the polymer concentration of the formed gelled yarn is substantially the same as the polymer concentration of the spinning dope before being discharged. The spinning dope needs to be non-volatile under the spinning conditions.

また、PVA系重合体はその融点(約250 ’C)以
上の温度では重合体自体が熱的に分解されるため、前記
溶媒はPVA系重合体の融点以下の温度で溶解するもの
が選択される。このような溶剤としては、エチレングリ
コール、グリセリン、ジエチレングリコール、トリメヂ
ロールプロパン、ベンゼンスルホンアミド、カプロラク
タムなどが例示できる。
Furthermore, since the PVA polymer itself is thermally decomposed at temperatures above its melting point (approximately 250'C), the solvent should be selected to dissolve at a temperature below the melting point of the PVA polymer. Ru. Examples of such solvents include ethylene glycol, glycerin, diethylene glycol, trimedylolpropane, benzenesulfonamide, and caprolactam.

複数孔のノズルから押出された繊維状溶液をゲル化させ
る冷却液体としては、該溶液の重合体組成を変化させる
ことなく、冷却させるだけの動きをもったものがよく、
例えばデカリン、トリクロロエチレン、四塩化炭素、パ
ラフィンオイル、灯油などが好ましい。勿論、冷却温度
によっては、繊維状ゲル化糸条を溶解しないポリマの溶
剤そのものを冷却液体として用いてもよい。
The cooling liquid that gels the fibrous solution extruded from a multi-hole nozzle is preferably one that has enough movement to cool the solution without changing its polymer composition.
For example, decalin, trichloroethylene, carbon tetrachloride, paraffin oil, kerosene, etc. are preferred. Of course, depending on the cooling temperature, a polymer solvent itself that does not dissolve the fibrous gelled yarn may be used as the cooling liquid.

なあ、複数孔のノズルと冷却媒体浴液面の間の距離は前
記乾湿式紡糸法の場合と同様である。
Incidentally, the distance between the multi-hole nozzle and the liquid surface of the cooling medium bath is the same as in the case of the wet-dry spinning method.

前記乾湿式紡糸あるいはゲル紡糸により凝固あるいは冷
却ゲル化した糸条は引取られるが、この引取速度(vl
)は紡糸原液のノズル孔での吐出線速度(Vo)と連動
して、ある一定範囲内に設定することが好ましい。即ち
、その範囲とは次式で示される紡糸ドラフトDf : 紡糸ドラフト(Df)=V1 /V□ がDf≦1.0、 さらに好ましくは0.6≧Df≧0.06に設定するこ
とにより、糸条の固化過程で大きな応力を与えないで配
向を低く押え、これに続く延伸工程での超延伸性をあげ
ることができる。その結果として、全体として高倍率で
の延伸が可能となり、分子鎖が超高配向し、著しく高い
物性を有する延伸糸が得られる。
The yarn coagulated or cooled and gelled by the dry-wet spinning or gel spinning is taken off, but this taking-up speed (vl
) is preferably set within a certain range in conjunction with the linear velocity (Vo) of the spinning dope at the nozzle hole. That is, the range is the spinning draft Df expressed by the following formula: Spinning draft (Df)=V1/V□ By setting Df≦1.0, more preferably 0.6≧Df≧0.06, It is possible to keep the orientation low without applying large stress during the solidification process of the yarn, and to improve super-stretchability in the subsequent drawing process. As a result, it becomes possible to draw the yarn at a high magnification as a whole, and a drawn yarn with extremely high molecular chain orientation and extremely high physical properties can be obtained.

前記特開昭59−130314号公報ではゲル紡糸の際
、この紡糸ドラフトは1.7以上であり、その結果、延
伸性も低く、糸物性も低い。
In JP-A-59-130314, the spinning draft is 1.7 or more during gel spinning, and as a result, the drawability is low and the yarn properties are also low.

前記乾湿式紡糸法によって凝固した糸条は、引続き、脱
溶媒が進められる。
The yarn coagulated by the dry-wet spinning method is subsequently subjected to solvent removal.

一方、ゲル紡糸法により冷却されたゲル化糸条は、つづ
いて脱溶媒が施され、最終的には溶媒が脱溶媒に用いら
れる抽出剤によって置き換えられる。
On the other hand, the gelled thread cooled by the gel spinning method is subsequently subjected to solvent removal, and finally the solvent is replaced by the extractant used for solvent removal.

このようにして得られた凝固剤あるいは抽出剤を含んだ
糸条は、乾燥工程へ送られるが、乾燥の前に若干凝固剤
あるいは抽出剤中で延伸しても構    □わない。む
しろ、この部分で乾燥工程に引続く乾    1熱延伸
工程での延伸倍率の負担を軽減させるために、延伸を施
す方が好ましい。
The yarn containing the coagulant or extractant thus obtained is sent to a drying process, but it may be slightly stretched in the coagulant or extractant before drying. Rather, it is preferable to stretch this portion in order to reduce the burden on the stretching ratio in the dry one-hot stretching step that follows the drying step.

また、乾燥工程に入る前で、乾燥時の単糸間膠看を防ぐ
ため、糸条に油剤を付与しておくのが好ましい。
Further, before starting the drying process, it is preferable to apply an oil to the yarn in order to prevent glue between single yarns during drying.

かくして得られる乾燥糸条は、続いて熱延伸される。そ
の熱延伸に使用される装置としては、加熱チューブ、熱
板、加熱ロール、加熱ピン、加熱液体、流動床などを加
熱手段とする各種の装置を挙げることができるが、本発
明の超高強度PVAを得るためには加熱チューブが好ま
しい。
The dry yarn thus obtained is subsequently hot drawn. Examples of devices used for the hot stretching include various devices using heating tubes, hot plates, heating rolls, heating pins, heated liquids, fluidized beds, etc., but the ultra-high strength of the present invention A heated tube is preferred for obtaining PVA.

前記熱延伸装置のうち加熱チューブ以外の方式は、加熱
体が糸条に接触する方式であり、糸条をその融解温度直
下で延伸する際、微妙な温度設定が難しく、即ち、接触
加熱方式は加熱効率が良すぎるため、糸条の内部まで熱
が伝わり易く、融解温度直下で熱延伸する場合に僅かの
加熱体の温度の変動で糸条が融解したり、糸内部で流れ
を生じ、実質的な分子配向を伴わない等が生じる。これ
に反し、加熱チューブのような非接触乾熱雰囲気での超
延伸法では、糸条の加熱効率が低いため、糸イ。□工、
□。やユイ、13おい工あイイ。5.シ解あるいは糸内
部での流れを伴わずして延伸でき    1.。
Among the above-mentioned hot drawing devices, methods other than heating tubes are methods in which the heating body comes into contact with the yarn, and when drawing the yarn just below its melting temperature, it is difficult to set the temperature delicately. Because the heating efficiency is too high, heat is easily transmitted to the inside of the yarn, and when hot drawing is carried out just below the melting temperature, the yarn may melt or flow may occur within the yarn due to slight fluctuations in the temperature of the heating element, causing This results in problems such as no molecular orientation. On the other hand, in the ultra-stretching method in a non-contact dry heating atmosphere such as in a heating tube, the heating efficiency of the yarn is low, so the yarn is difficult to draw. □ Engineering,
□. Ya Yui, 13 Oi Kou Aii. 5. Can be stretched without curing or flow inside the yarn 1. .

る温度範囲が比較的幅広く設定できるので好まし   
 1い。本発明のX線小角散乱測定において長周明像 
   ]が観測されず・かつ主たる力学的損失正接(t
a     (nδ)ピークの高さが0.10以下でお
る。引張    1強度25q/d以上を有するPVA
系繊維を得るた    (めには、上記非接触乾熱雰囲
気中で糸条の融点直    ):“ 下の温度で超延伸するのが好ましい。        
  (1重量平均分子量が1×106以上のPVA系重
    ゛i′ 合体を原料として乾湿式紡糸法、あるいはゲル紡   
 :・。
This is preferable because the temperature range can be set relatively wide.
1. Long circumference bright image in X-ray small angle scattering measurement of the present invention
] is not observed and the principal mechanical loss tangent (t
The height of the a (nδ) peak is 0.10 or less. PVA with tensile strength 25q/d or more
In order to obtain a fiber based on fibers, it is preferable to carry out super-stretching at a temperature below the melting point of the yarn in the above-mentioned non-contact dry heating atmosphere.
(Dry-wet spinning method or gel spinning using a PVA-based polymer with a weight average molecular weight of 1 x 106 or more as a raw material)
:・.

糸法により適切な未延伸糸を得たとしても、これ   
 ;□”1・ に続く延伸工程の条件が不充分では本発明のPV   
  j′j゛ Δ糸繊維は得られない。              
  □;7”乾熱チューブの内気温度は、150〜27
0°C・)。
Even if a suitable undrawn yarn is obtained by the yarn method, this
;□"If the conditions of the stretching process following 1. are insufficient, the PV of the present invention
j′j゛Δ yarn fibers are not obtained.
□; The internal temperature of the 7” dry heat tube is 150-27
0°C.).

□、; の範囲で設定されるが、延伸される糸条の繊度ヤ供給速
度により該適正温度は異なり、繊度が太きくなるにつれ
、また供給速度が大きくなるにつれ    fI゛1:
! て適正延伸温度も高くなる。このため糸条の融断   
 ;5”温度を各場合につき測定しくTl1lbとする
)、これを基準としてTmb−5−0″CとTmbの間
、好ましくはTmb−30℃とTmbの間、更に好まし
くはTmb=15℃とTmbの間に設定する。
It is set within the range of fI゛1:
! Therefore, the appropriate stretching temperature also becomes higher. For this reason, the yarn is fused and broken.
; 5" temperature is measured in each case as Tl1lb), with reference to this between Tmb-5-0"C and Tmb, preferably between Tmb-30°C and Tmb, more preferably Tmb = 15°C. Set between Tmb.

本発明を達成するために、適正延伸温度に設定されてい
るかどうか、また超延伸の程度は充分かどうかについて
の判定は、延伸糸のX線小角散乱測定において長周期像
が観測されず、かつ主たる力学的損失正接(tanδ)
ピークの高さが0゜10以下であることが目安となる。
In order to achieve the present invention, it is necessary to judge whether the drawing temperature is set at an appropriate temperature and whether the degree of super-drawing is sufficient. Principal mechanical loss tangent (tanδ)
The standard is that the peak height is 0°10 or less.

乾熱チューブは熱媒を用いたジャケット方式が温度が安
定して好ましい。さらにチューブの中へ加熱した空気や
不活性ガスを糸条に添わせて流すのがよい。
For the dry heat tube, a jacket method using a heating medium is preferable because the temperature is stable. Furthermore, it is preferable to flow heated air or inert gas into the tube along with the yarn.

また延伸は多段延伸が好ましく、また更に必要に応じて
最終段で熱処理工程を入れてもよい。
Furthermore, multistage stretching is preferred, and a heat treatment step may be added in the final stage if necessary.

全工程を通じての総延伸倍率は、できる限り高くし、即
ち2例えば糸条の切断が生じる延伸倍率の80%以上、
あるいは好ましくは85%以上とし、延伸後の糸条のX
線小角散乱を測定したとき。
The total draw ratio throughout the entire process should be as high as possible, i.e. 2, for example, 80% or more of the draw ratio at which yarn breakage occurs,
Alternatively, it is preferably 85% or more, and the X of the yarn after drawing is
When measuring small-angle line scattering.

長周期像が観測されなくなるまで延伸を行なうのがよい
。その際、延伸に供する糸条は、延伸後の糸の単糸繊度
が5デニール、好ましくは2デニール以下となる太さに
止どめるべきである。5デニールを上回ると2本発明の
超高強度の繊維を得ることが困難になる、即ち単糸繊度
が細い方が紡糸後の固化過程以降熱延伸工程に至るまで
、繊維の構造が断面方向で均質となり易く、また材料力
学的な観点からも欠陥を含む確率が小さくなり、高強度
を発現するものと考えられる。
It is preferable to carry out stretching until a long-period image is no longer observed. In this case, the yarn to be drawn should be limited to a thickness such that the single filament fineness of the yarn after drawing is 5 deniers, preferably 2 deniers or less. If the denier exceeds 5 denier, it becomes difficult to obtain the ultra-high strength fiber of the present invention. In other words, the thinner the single filament fineness, the more the fiber structure remains in the cross-sectional direction from the solidification process after spinning to the hot drawing process. It is thought that it is easy to become homogeneous, and from the viewpoint of material mechanics, the probability of containing defects is reduced, resulting in high strength.

[発明の効果] 本発明の超高強度P、VA系繊維は、引張強度が25 
aid以上という、著しく高い物性を有するが故に、タ
イヤコード、シートベルト、一般ゴム補強材、ロープ・
ケーブル類、工業用コーティング布、スリング、セール
クロス、樹脂補強材、コンクリート補強材、工業用縫糸
、漁網等に非常に有用であり、これらの製品をより細か
く、より薄り。
[Effect of the invention] The ultra-high strength P, VA fiber of the present invention has a tensile strength of 25
Due to its extremely high physical properties, exceeding the AID, it is used in tire cords, seat belts, general rubber reinforcement materials, ropes
Very useful for cables, industrial coated fabrics, slings, sail cloths, resin reinforcements, concrete reinforcements, industrial sewing threads, fishing nets, etc., making these products finer and thinner.

より軽くできるために、従来とは著しく異なった使い方
も期待できる。
Since it can be made lighter, it can be used in a way that is significantly different from conventional methods.

[実施例] 以下、実施例を挙げて本発明の効果を具体的に説明する
[Example] Hereinafter, the effects of the present invention will be specifically explained with reference to Examples.

本例中、引張強度、X線小角散乱、力学的損失正接(t
anδ)は、次の測定法に従った。
In this example, tensile strength, small-angle X-ray scattering, mechanical loss tangent (t
anδ) was measured according to the following method.

a、引張強度 マルチフィラメントヤーンからなる繊維を試料として、
J l5−L−1017に規定されている試験法に準じ
て測定した。すなわち、繊維をカセ状態に巻取り、20
°C265%RHに調整された雰囲気に24時間放置し
たのち、この方セから試料を採取し、“′テンシロン”
UTM−41型引張試験機[東洋ボールドウィン(株)
製]を用いて、試料長25cm、引張速度30cm1分
で測定した。
a. Using a fiber made of tensile strength multifilament yarn as a sample,
It was measured according to the test method specified in J15-L-1017. That is, the fibers are wound into a skein, and
After leaving it in an atmosphere adjusted to 265% RH for 24 hours, a sample was taken from this side and "'Tensilon"
UTM-41 type tensile testing machine [Toyo Baldwin Co., Ltd.]
The sample length was 25 cm, and the tensile speed was 30 cm for 1 minute.

b、X線小角散乱 Kiessiq  Cameraを使用する公知の方法
に準じて測定した。測定条件として次の条件を設定した
b. Small-angle X-ray scattering Measured according to a known method using a Kiessiq Camera. The following conditions were set as measurement conditions.

理学電気(株)製RU−200型X線発生装置使用。An RU-200 X-ray generator manufactured by Rigaku Denki Co., Ltd. was used.

CIJ Kα線(Niフィルター使用)、出力;50K
V −150mA、0.38Φコリメータ使用、透過法
、カメラ半径:400m、露出時間;90分、フィルム
;コダック・ノー・スクリーンタイプ。
CIJ Kα ray (using Ni filter), output: 50K
V -150mA, 0.38Φ collimator used, transmission method, camera radius: 400m, exposure time: 90 minutes, film: Kodak no screen type.

C9力学的損失正接(tanδ) 東洋ボールドウィン(株)製 パイブロンDD−n型を
使用し、45〜55°Cの温度範囲に現れる主分散(C
a)ピークの高さを下記条件下で測定し、次式によりt
anδを求めた。
C9 Mechanical loss tangent (tan δ) Using Pyblon DD-n type manufactured by Toyo Baldwin Co., Ltd., the main dispersion (C
a) Measure the peak height under the following conditions, and calculate t using the following formula.
An δ was calculated.

測定条件: 撮動数:110H、昇温速度:3℃/分試料長;4cm 雰囲気;空気中〈23°C,50%R11〉計算式: %式% E−;貯蔵弾性率(dyne/デニール)E″ ;損失
弾性率(dyne/デニール)実施例1 重量平均分子量(MW )が1.2X106である完全
ケン化型(ケン化度99.5%以上)PVAをDMSO
に110℃で溶解し、P、VA濃度が8@量%の紡糸原
液を作成した。
Measurement conditions: Number of imaging: 110H, heating rate: 3°C/min Sample length: 4cm Atmosphere: In air <23°C, 50% R11> Calculation formula: % formula % E-; Storage modulus (dyne/denier )E″; Loss modulus (dyne/denier) Example 1 Completely saponified PVA (saponification degree of 99.5% or more) with a weight average molecular weight (MW) of 1.2×106 was dissolved in DMSO
was dissolved at 110°C to prepare a spinning stock solution with a P and VA concentration of 8% by weight.

該紡糸原液を孔径0.10mm、孔数50の紡糸口金か
ら100重量のDMSOを含有するメタノール凝固浴へ
吐出し、乾湿式紡糸した。
The spinning stock solution was discharged from a spinneret with a hole diameter of 0.10 mm and a number of holes of 50 into a methanol coagulation bath containing 100 weight of DMSO, and wet-dry spinning was performed.

紡糸口金面と凝固浴液面との距離はBmmに設定し、口
金からの紡糸原液の総吐出量は26.2ccZ分であり
、凝固糸条は10m/分で引取った。
The distance between the spinneret surface and the coagulation bath liquid level was set to Bmm, the total amount of spinning stock solution discharged from the spinneret was 26.2 ccZ, and the coagulated yarn was taken off at a rate of 10 m/min.

このとき、紡糸ドラフト(Df)は0.15である。At this time, the spinning draft (Df) is 0.15.

引取った凝固糸条はメタノールにより充分洗浄した後、
メタノール浴中で4倍に延伸し、油剤を付与して表面温
度が60℃であるホット・ロールにより乾燥した。次い
で乾燥糸条を長さ3mの加熱チューブ中、240℃で更
に5.5倍に延伸した。このとき、糸条の供給速度は1
m/分であり、加熱チューブには240℃に加熱した窒
素ガスを糸条の走行方向に流した。得られた延伸糸は次
の物性を有していた。
After thoroughly washing the coagulated thread with methanol,
The film was stretched 4 times in a methanol bath, coated with an oil agent, and dried using a hot roll with a surface temperature of 60°C. The dried yarn was then further stretched 5.5 times at 240° C. in a 3 m long heating tube. At this time, the yarn feeding speed is 1
m/min, and nitrogen gas heated to 240°C was flowed through the heating tube in the running direction of the yarn. The obtained drawn yarn had the following physical properties.

繊 度:93.7d (′単糸 1.87d> 引張強度:   26.3   (]/d切断伸度; 
  3.8  % 長周期像;  観測されない tanδピーク高ざ;O,Oa 比較例1 実施例1において、乾燥糸条を加熱チューブで延伸する
際、延伸温度を225℃にすると、最高延伸倍率は4.
7倍となり、得られた延伸糸は次の物性を有していた。
Fineness: 93.7d (Single yarn 1.87d> Tensile strength: 26.3 (]/d Cutting elongation;
3.8% Long-period image; unobserved tan δ peak height; O, Oa Comparative Example 1 In Example 1, when the dry yarn was stretched with a heating tube, when the stretching temperature was set to 225°C, the maximum stretching ratio was 4 ..
The resulting drawn yarn had the following physical properties.

繊  度:     110    d引張強度;  
 19.6   g/d切断伸度;   4.6  % 長周期像;  観測される(185人)tanδピーク
高ざ;0.12 比較例2 実施例1において、乾燥糸条を加熱チューブでなく、長
さ1mの熱板で延伸すると、225℃で最高延伸倍率は
4.9倍となり、得られた延伸糸は次の物性を有してい
た。
Fineness: 110 d Tensile strength;
19.6 g/d breaking elongation; 4.6% Long-period image; Observed (185 people) tan δ peak height; 0.12 Comparative Example 2 In Example 1, the dry yarn was not heated in a heating tube, When drawn with a hot plate having a length of 1 m, the maximum drawing ratio was 4.9 times at 225° C., and the obtained drawn yarn had the following physical properties.

繊  度:104d 引張強度:   20.1   g/d切断伸度:  
 4.7  % 長周明像;  観測される(197人)tanδピーク
高さ;0.11 実施例2 重量平均分子量(MW >が2.2X106である完全
ケン化型(ケン化度99.8%以上)PVAをグリセリ
ンに215°Cで溶解し、PVA1度が6重量%の紡糸
原液を作成した。
Fineness: 104d Tensile strength: 20.1 g/d Cutting elongation:
4.7% Changzhou Ming image; Observed (197 people) tan δ peak height; 0.11 Example 2 Completely saponified type with weight average molecular weight (MW>2.2X106) (degree of saponification 99.8%) Above) PVA was dissolved in glycerin at 215°C to prepare a spinning stock solution containing 6% by weight of PVA 1 degree.

該紡糸原液を孔径o、 2omm、孔数20の紡糸口金
から12mmの空気層を介し、12°Cのデカリン冷却
浴へ押出し、ゲル紡糸した。
The spinning stock solution was extruded from a spinneret with a hole diameter of o, 2 omm, and 20 holes through a 12 mm air layer into a decalin cooling bath at 12°C, and gel spinning was performed.

口金からの紡糸原液の総吐出量は13.6CC/分であ
り、冷却ゲル糸条は5m/分で引取った。
The total discharge rate of the spinning dope from the spinneret was 13.6 CC/min, and the cooled gel yarn was taken off at 5 m/min.

このとき、紡糸ドラフト(Df>は0.23である。At this time, the spinning draft (Df>) is 0.23.

引取ったグル糸条は、内気温度100°Cの加納チュー
ブで4倍に延伸した後、メタノールにより充分洗浄し、
乾燥した。次いで乾燥糸条を長ざ3mの加熱チューブ中
、実施例1と同様の条件で6.    “2倍に延伸し
た。得られた延伸糸は次の物性を有    1していた
The collected glue threads were stretched four times in a Kano tube at an internal temperature of 100°C, and then thoroughly washed with methanol.
Dry. Next, the dried yarn was heated in a heating tube with a length of 3 m under the same conditions as in Example 1 for 6. "The drawn yarn was drawn twice. The drawn yarn had the following physical properties.

繊 度:   64.2   d        II
引張強度:   29.4   g/d切断伸度:  
 3.8  % 長周期像;  観測されない tanδピーク高ざ:0.07           
(比較例3,4、実施例3 重量平均分子量(MΔ)が1.6X10,3.    
74X10 .1.1X106である完全ケン化型  
   1′二)。
Fineness: 64.2 d II
Tensile strength: 29.4 g/d Cutting elongation:
3.8% long-period image; unobserved tanδ peak height: 0.07
(Comparative Examples 3 and 4, Example 3 Weight average molecular weight (MΔ) is 1.6X10, 3.
74X10. Completely saponified type with 1.1X106
1'2).

PVAを、夫々PVla度が17.13.9重量   
 、(、%の紡糸原液を作成して、実施例2と同様にし
て     1′ゲル紡糸した。          
          □1゛1引取り・速度は5m/分
であり、引取ったゲル糸条     1:、:1、 は同様に4倍延伸し、脱溶媒後、加熱チューブで   
  ″:パ、:、 熱延伸した。このときの熱延伸倍率の最高値及び   
  □[゛延伸糸の物性は第1表に示すとありである。
PVA, PVla degree is 17.13.9 weight respectively
A spinning stock solution of .
□1゛1 The pulling speed was 5 m/min, and the pulled gel thread 1:, :1, was similarly stretched 4 times, and after solvent removal, it was drawn in a heating tube.
″:Pa、:、 Hot stretched.The highest value of the hot stretching ratio at this time and
□[゛The physical properties of the drawn yarn are shown in Table 1.

第1表Table 1

Claims (2)

【特許請求の範囲】[Claims] (1)実質的にポリビニルアルコールであり、重量平均
分子量が1×10^6以上のポリマからなる25g/d
以上の引張強度を有する超高強度ポリビニルアルコール
系繊維。
(1) 25 g/d consisting of a polymer that is essentially polyvinyl alcohol and has a weight average molecular weight of 1 x 10^6 or more
Ultra-high strength polyvinyl alcohol fiber with tensile strength of
(2)X線小角散乱測定において、長周期像が観測され
ず、かつ主たる力学的損失正接(tanδ)ピークの高
さが0.10以下である特許請求の範囲第1項記載の超
高強度ポリビニルアルコール系繊維。
(2) The ultra-high intensity according to claim 1, wherein no long-period image is observed in small-angle X-ray scattering measurement, and the height of the main mechanical loss tangent (tan δ) peak is 0.10 or less. Polyvinyl alcohol fiber.
JP60124408A 1985-06-10 1985-06-10 Ultra high strength polyvinyl alcohol fiber Expired - Lifetime JPH06102848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60124408A JPH06102848B2 (en) 1985-06-10 1985-06-10 Ultra high strength polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60124408A JPH06102848B2 (en) 1985-06-10 1985-06-10 Ultra high strength polyvinyl alcohol fiber

Publications (2)

Publication Number Publication Date
JPS61289112A true JPS61289112A (en) 1986-12-19
JPH06102848B2 JPH06102848B2 (en) 1994-12-14

Family

ID=14884724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60124408A Expired - Lifetime JPH06102848B2 (en) 1985-06-10 1985-06-10 Ultra high strength polyvinyl alcohol fiber

Country Status (1)

Country Link
JP (1) JPH06102848B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239044A2 (en) * 1986-03-24 1987-09-30 Biomaterials Universe, Inc. Method of preparing high strength and modulus poly (vinyl alcohol) fibers
EP0273755A2 (en) * 1986-12-27 1988-07-06 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof
JPS63165508A (en) * 1986-12-26 1988-07-08 Kuraray Co Ltd Production of polyvinyl alcohol fiber with high polymerization degree

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100710A (en) * 1982-11-25 1984-06-11 Kuraray Co Ltd Production of yarn having high toughness
JPS59130314A (en) * 1982-09-30 1984-07-26 アライド・コ−ポレ−シヨン High strength elastic polyvinyl alcohol fiber andproduction thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130314A (en) * 1982-09-30 1984-07-26 アライド・コ−ポレ−シヨン High strength elastic polyvinyl alcohol fiber andproduction thereof
JPS59100710A (en) * 1982-11-25 1984-06-11 Kuraray Co Ltd Production of yarn having high toughness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239044A2 (en) * 1986-03-24 1987-09-30 Biomaterials Universe, Inc. Method of preparing high strength and modulus poly (vinyl alcohol) fibers
JPS63165508A (en) * 1986-12-26 1988-07-08 Kuraray Co Ltd Production of polyvinyl alcohol fiber with high polymerization degree
EP0273755A2 (en) * 1986-12-27 1988-07-06 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof

Also Published As

Publication number Publication date
JPH06102848B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
US4698194A (en) Process for producing ultra-high-tenacity polyvinyl alcohol fiber
JP3883510B2 (en) Polyketone fiber and method for producing the same
JP3704015B2 (en) Polyketone fiber and method for producing the same
EP0351046B1 (en) Polyvinyl alcohol multifilament yarn and process for producing the same
US5419109A (en) Tire cord of polyvinyl multifilament yarn
JPH01229805A (en) High-strength water-soluble polyvinyl alcohol-based fiber and production thereof
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JP4172888B2 (en) Monofilament and method for producing the same
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPH0696807B2 (en) High-strength, high-modulus polyvinyl alcohol fiber manufacturing method
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
JP2537962B2 (en) Polyvinyl alcohol fiber suitable for reinforcement
JP2010031418A (en) Method for producing precursor fiber for carbon fiber
JPS61215708A (en) Production of multifilament yarn
JP2656339B2 (en) High strength polyvinyl alcohol fiber
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JPH01162816A (en) Novel polyethylene fiber
JPS6353286B2 (en)
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JPH02169709A (en) Method for drawing polyvinyl alcohol-based fiber