JPH05117911A - Production of highly strong polyvinyl alcohol fiber having excellent high temperature performance - Google Patents

Production of highly strong polyvinyl alcohol fiber having excellent high temperature performance

Info

Publication number
JPH05117911A
JPH05117911A JP3306505A JP30650591A JPH05117911A JP H05117911 A JPH05117911 A JP H05117911A JP 3306505 A JP3306505 A JP 3306505A JP 30650591 A JP30650591 A JP 30650591A JP H05117911 A JPH05117911 A JP H05117911A
Authority
JP
Japan
Prior art keywords
fiber
cross
linking agent
polyvinyl alcohol
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3306505A
Other languages
Japanese (ja)
Inventor
Akio Omori
昭夫 大森
Shunpei Naramura
俊平 楢村
Tomoyuki Sano
友之 佐野
Satoru Kobayashi
悟 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP3306505A priority Critical patent/JPH05117911A/en
Publication of JPH05117911A publication Critical patent/JPH05117911A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber having excellent high temperature performance and useful as a reinforcing material for automotive tires, etc., by spinning a specific spinning raw solution, adding the first crosslinking agent to the spun fiber, drying the fiber, imparting the second crosslinking agent to the surface of the fiber and subsequently dry-thermally drawing the fiber. CONSTITUTION:A spinning raw solution comprising polyvinyl alcohol having a polymerization degree of >=300 and dissolved in a solvent such as dimethyl sulfoxide is spun into an organic solvent bath or aqueous solidifying bath capable of coagulating or gelling the polyvinyl alcohol by a wet spinning method or by a dry-wet spinning method, treated with a small amount of the first crosslinking agent (preferably a long chain alkyl phosphate ester) compatible with the below-mentioned second crosslinking agent, extracted with a solvent and subsequently dried. The spun raw fiber is treated with the second crosslinking agent (preferably the same as the first one) in an amount larger than that of the first agent, drawn in a total draw ratio of >=14 times, and subsequently dry-thermally drawn at 230-265 deg.C to give the objective fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用タイヤやオイ
ルブレーキ用ホースなど高温で使用されるゴム資材分野
などの補強材として有用な耐熱水性や高温疲労性などの
高温性能に優れた高強力ポリビニルアルコール(以下P
VAと略記する)系繊維の製造方法に関する。
The present invention relates to a high strength material having excellent high temperature performance such as hot water resistance and high temperature fatigue resistance which is useful as a reinforcing material in the field of rubber materials used at high temperatures such as automobile tires and oil brake hoses. Polyvinyl alcohol (hereinafter P
Abbreviated as VA) -based fiber.

【0002】[0002]

【従来の技術】従来、汎用ポリマー繊維の中でPVA系
製造は、ポリエステル、ポリアミド、ポリアクリルニト
リル系繊維などに比べて強度、弾性率が高く、産業資材
用としてはもちろんセメント、ゴムなどの補強材用など
に実用されている。近年汎用ポリマーであるポリエチレ
ンにおいて超高分子量の原料をゲル紡糸し超延伸するこ
とにより、高強力高弾性率繊維が得られることがわかっ
た。しかしポリエチレン自体が低融点で耐熱性が不十分
であること及び補強用繊維としてはマトリックスとの接
着性がわるいなどの点で不十分である。
2. Description of the Related Art Conventionally, among general-purpose polymer fibers, PVA-based production has higher strength and elastic modulus than polyester, polyamide, polyacrylonitrile-based fibers, etc., and it is reinforced not only for industrial materials but also for cement and rubber. It is practically used for materials. In recent years, it has been found that, in polyethylene, which is a general-purpose polymer, high strength and high modulus fibers can be obtained by gel spinning and ultra-stretching an ultra high molecular weight raw material. However, polyethylene itself is insufficient in that it has a low melting point and insufficient heat resistance, and that it has poor adhesion to the matrix as a reinforcing fiber.

【0003】そこで他の汎用ポリマーにおいてもゲル紡
糸超延伸の手法を用いて高強力、高弾性率化の試みがな
されている。中でもPVAはポリエチレンと同じ平面ジ
グザグ構造を有し、しかも活性な水酸基を有するため、
分子間水素結合を生じ易く高強力、高弾性率、高耐熱
性、高親和性の繊維を得る可能性があり、例えば特開昭
59−100710号、特開昭59−130314号等
が提案されている。これらのPVA繊維は市販のPVA
繊維に比べると高強度、高弾性率となっており、耐熱性
も前記のポリエチレン繊維に比べると優れている。一方
PVA繊維はポリマー自体が水に溶けるため耐熱水性に
劣る問題がある。上記高強度、高弾性率のPVA繊維の
耐熱水性は従来のPVA繊維に比べると向上しているも
のの充分ではない。
Therefore, in other general-purpose polymers, attempts have been made to obtain high strength and high elastic modulus by using the technique of gel-spinning ultra-drawing. Among them, PVA has the same planar zigzag structure as polyethylene and has an active hydroxyl group,
There is a possibility of easily producing intermolecular hydrogen bonds and having high strength, high elastic modulus, high heat resistance and high affinity. For example, JP-A-59-100170 and JP-A-59-130314 have been proposed. ing. These PVA fibers are commercially available PVA
It has higher strength and higher elastic modulus than fibers, and is superior in heat resistance to the polyethylene fibers. On the other hand, PVA fiber has a problem that it is inferior in hot water resistance because the polymer itself is soluble in water. Although the hot water resistance of the PVA fiber having high strength and high elastic modulus is improved as compared with the conventional PVA fiber, it is not sufficient.

【0004】そこで高強力PVA系繊維の耐熱水性を改
善する提案がなされている。例えば特開昭63−120
107号においては、15倍以上延伸した延伸糸に5〜
15%のアセタール化を施こすことが提案されている。
しかし軽アセタール化のみでは耐熱水性向上効果が充分
でなく、かつ工程的にも複雑である。また特開平1−1
56517号においては、3倍以上に紡糸延伸し、部分
延伸糸の表面に有機過酸化物、イソシアネート系化合
物、エポキシ系化合物などの架橋性薬剤を付与し、その
後乾熱延伸を行なうことにより、繊維表面に架橋を施こ
すことが提案されている。しかし架橋性薬剤は主に表面
に存在させて表面架橋を主体としているため延伸性が不
十分となり、弾性率がせいぜい310g/dと低い。ま
た安全面、健康面で注意を要する特別な有機化合物を取
り扱わねばならないという問題もある。さらに特開平2
−84587号にはPVA繊維コードの耐疲労性を改善
するため、15g/d以上の強度を有するPVA繊維
を、アルデヒド、イソシアネート、有機過酸化物、カル
ボン酸等の有機化合物や、リン酸、塩酸、チタニウム等
の無機化合物などの架橋剤で処理することが提案されて
いる。しかし、分子の配向や結晶化が進んでいる延伸さ
れた高強度繊維に後処理を施こすため、高濃度及び/ま
たは高温及び/または長時間の処理とならざるを得ず、
繊維強度が低下するとともに製造工程上問題であり、ひ
いては製造コストが高くなる。また特開平2−1336
05号には、PVAとアクリル酸系ポリマーをブレンド
紡糸し、両ポリマー間で架橋を形成させたり、さらに有
機過酸化物など架橋性薬剤を付与することにより架橋さ
せることが提案されている。しかし強度に関与しないP
VA以外のものを2%程度以上含有させるため強度の点
で充分でない。さらにPVA以外のポリマーを原液に添
加するため種々の問題がある。
Therefore, proposals have been made to improve the hot water resistance of high-strength PVA fibers. For example, JP-A-63-120
In No. 107, a drawn yarn drawn 15 times or more has
It has been proposed to provide 15% acetalization.
However, the effect of improving hot water resistance is not sufficient when only light acetalization is performed, and the process is complicated. In addition, JP-A 1-1
No. 56517, a fiber is obtained by spin-drawing at least 3 times, applying a cross-linking agent such as an organic peroxide, an isocyanate compound, or an epoxy compound to the surface of the partially drawn yarn, and then performing dry heat drawing. It has been proposed to subject the surface to crosslinking. However, since the cross-linking agent is mainly present on the surface and mainly subject to surface cross-linking, the stretchability becomes insufficient and the elastic modulus is as low as 310 g / d at most. There is also a problem in that special organic compounds that require safety and health care must be handled. Furthermore, JP-A-2
In order to improve the fatigue resistance of PVA fiber cord, PVA fiber having a strength of 15 g / d or more is used as an organic compound such as aldehyde, isocyanate, organic peroxide, carboxylic acid, phosphoric acid or hydrochloric acid in order to improve fatigue resistance of PVA fiber cord. It has been proposed to treat with a crosslinking agent such as an inorganic compound such as titanium. However, since post-treatment is applied to the stretched high-strength fiber in which the orientation and crystallization of molecules are advanced, it is inevitable that high-concentration and / or high temperature and / or long-term treatment is required.
The fiber strength is reduced, and this is a problem in the manufacturing process, which in turn increases the manufacturing cost. Also, Japanese Patent Laid-Open No. 2-1336
No. 05 proposes that PVA and an acrylic acid-based polymer are blend-spun to form a cross-link between the two polymers, or a cross-linking agent such as an organic peroxide is added to perform cross-linking. However, P that is not related to strength
Since the content other than VA is about 2% or more, the strength is not sufficient. Furthermore, there are various problems because a polymer other than PVA is added to the stock solution.

【0005】さらに本発明者らの一部も、PVAの紡糸
工程中含液率が高い状態で架橋剤溶液に接触させること
により繊維内部まで均一架橋させる提案を行なっている
が、厳しい疲労性に対しては十分満足しうるレベルには
達していないことがわかった。
Further, some of the inventors of the present invention have also proposed to uniformly crosslink the inside of the fiber by contacting the crosslinker solution with a high liquid content during the spinning process of PVA. On the other hand, it was found that the level was not sufficiently satisfactory.

【0006】以上の如く、高強度PVA繊維の耐熱水性
や耐疲労性などの高温性能を改善するための架橋法は種
々提案されているが、性能及び製造コストの両方を満足
させる方法はない。
As described above, various crosslinking methods have been proposed for improving high temperature performance such as hot water resistance and fatigue resistance of the high strength PVA fiber, but there is no method satisfying both performance and manufacturing cost.

【0007】[0007]

【発明が解決しようとする課題】従って本発明は、タイ
ヤやホースなどの高温性能(特に疲労性や耐熱水性)が
優れることを要求される分野に有用な、高温性能に優れ
た高強力PVA繊維をシンプルな製造工程で得んとした
ものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a high-strength PVA fiber having excellent high-temperature performance, which is useful in a field requiring excellent high-temperature performance (particularly fatigue resistance and hot water resistance) of tires and hoses. Is obtained by a simple manufacturing process.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記課題を
追求し、後述の如く、紡糸工程中の含液率が高く、架橋
剤を繊維内部まで均一に付与し易い第1段階でまず架橋
剤を少量均一に付与し、次いで一旦乾燥して含液率を低
くし、架橋剤が繊維内部まで浸透し難く従って繊維表面
に偏在し易い第2段階で第1段階に使用した架橋剤と相
溶性のよい架橋剤(第1段階と同じ架橋剤でも可)を多
く付与することにより、繊維表面に均一に偏在させた延
伸原糸を作製し、これを230℃以上で乾熱延伸するこ
とにより、配向結晶化させるとともに、繊維内部での架
橋はマイルド、かつ繊維表面では繊維内部に比べより強
固にしかも均一に架橋した繊維とすることにより、内部
まで均一に架橋した繊維より強度、高温耐熱疲労性が優
れることを見出し、本発明に至ったものである。
Means for Solving the Problems The present inventors have pursued the above-mentioned problems, and as described below, in the first step, the liquid content in the spinning process is high and it is easy to uniformly apply the crosslinking agent to the inside of the fiber. A small amount of the cross-linking agent is uniformly applied, then once dried to reduce the liquid content, and the cross-linking agent hardly penetrates into the inside of the fiber and is therefore likely to be unevenly distributed on the fiber surface. By adding a large amount of a cross-linking agent having good compatibility (the same cross-linking agent as in the first step is possible), a stretched raw yarn that is uniformly unevenly distributed on the fiber surface is produced, and this is dry-heat stretched at 230 ° C or higher. The fibers are oriented and crystallized, and the cross-linking inside the fiber is mild, and the fiber surface is stronger and more uniform than the inside of the fiber. We found that fatigue was excellent Which has led to the present invention.

【0009】すなわち本発明は「PVAを溶媒に溶解し
て得た紡糸原液を、PVAに対し凝固作用もしくはゲル
化作用を有する有機溶媒系もしくは水系固化浴に湿式も
しくは乾湿式紡糸し、しかる後に溶媒を抽出し、乾燥
し、得られた紡糸原糸に全延伸倍率が14倍以上となる
よう乾熱延伸を行ってPVA系繊維を製造するに際し
て、(1)重合度が3000以上のPVAを用いるこ
と、(2)紡糸乾燥前の工程で、繊維内部および繊維表
面に、PVAに対して架橋能を有ししかも後工程で付与
する第2の架橋剤と相溶性のある第1の架橋剤を少量付
与すること、(3)紡糸乾燥後第2の架橋剤を繊維表面
に偏在させて付与すること、(4)熱延伸を230〜2
65℃で行なうこと、を特徴とするPVA系繊維の製造
方法。」である。
That is, according to the present invention, "a spinning dope obtained by dissolving PVA in a solvent is wet- or dry-wet spun in an organic solvent system or an aqueous solidification bath having a coagulating action or a gelling action on PVA, and then the solvent is added. (1) When PVA having a degree of polymerization of 3,000 or more is used for producing a PVA-based fiber by performing dry heat drawing so that the total draw ratio is 14 times or more (2) A first cross-linking agent having a cross-linking ability with respect to PVA and having compatibility with a second cross-linking agent to be applied in a post-step in the inside and the surface of the fiber in the step before the spin drying. Applying a small amount, (3) applying the second cross-linking agent unevenly on the fiber surface after spin drying, (4) hot drawing 230 to 2
A method for producing a PVA fiber, which is performed at 65 ° C. It is.

【0010】以下本発明をより具体的に説明する。本発
に用いるPVAの重合度は3000以上でなければなら
ない。重合度が3000未満では16g/d以上の高強
度が得難い上に、架橋による高温性能向上効果も充分で
はない。重合度が7000以上であると高強度が得易い
上に、架橋による高温性能向上効果も著しいので好まし
い。用いるPVAのケン化度は98モル%以上が好まし
く、99モル%以上であるとより好ましく、99.9モ
ル%以上であると耐熱水性が優れるので特に好ましい。
また用いるPVAは他のビニル基を有するモノマー、例
えばエチレン、イタコン酸、ビニルピロリドンなどのモ
ノマーを10モル%以下の比率で共重合したPVA系ポ
リマーであってもよい。
The present invention will be described in more detail below. The degree of polymerization of PVA used in the present invention should be 3000 or more. When the degree of polymerization is less than 3000, it is difficult to obtain a high strength of 16 g / d or more, and the effect of improving the high temperature performance by crosslinking is not sufficient. A degree of polymerization of 7,000 or more is preferable because high strength is easily obtained and the effect of improving high temperature performance by crosslinking is remarkable. The saponification degree of the PVA used is preferably 98 mol% or more, more preferably 99 mol% or more, and particularly preferably 99.9 mol% or more because hot water resistance is excellent.
The PVA used may be a PVA-based polymer obtained by copolymerizing another vinyl group-containing monomer, for example, a monomer such as ethylene, itaconic acid, or vinylpyrrolidone at a ratio of 10 mol% or less.

【0011】本発明にもちいるPVAの溶媒は、ジメチ
ルスルホキシド(以下DMSOと略記)、グリセリン、
エチレングリコール、ジメチルホルムアミド、ジメチル
イミダゾリジノン、水、ロダン塩水溶液などの溶媒及び
これら溶媒同志の混合溶媒などが挙げられる。PVAを
各溶媒に適した温度で溶解し脱泡して紡糸原液とする。
The solvent for PVA used in the present invention is dimethyl sulfoxide (hereinafter abbreviated as DMSO), glycerin,
Examples thereof include solvents such as ethylene glycol, dimethylformamide, dimethylimidazolidinone, water, and an aqueous solution of rhodanate, and mixed solvents of these solvents. PVA is dissolved at a temperature suitable for each solvent and defoamed to obtain a spinning dope.

【0012】得られた紡糸原液を、ノズルを通してPV
Aに対して凝固作用もしくはゲル化作用を有する有機溶
媒系もしくは水系固化浴に湿式もしくは乾湿式紡糸す
る。メタノール、エタノール、アセトンなどPVAに対
して凝固作用を示す有機溶媒を主体とする固化浴におい
ては浴温を20℃以下とする。もちろん固化浴として凝
固性有機溶媒と原液溶媒との混合溶媒も用いることがで
きる。固化浴の温度が20℃を越えると固化糸篠が不均
一となり、高強力繊維を得ることができない。固化浴温
度を10℃以下とすると固化糸篠がさらに均質となるの
で好ましい。なお所謂「ゲル化紡糸」は冷却のみで固化
する系であり、通常一旦空気中に押し出すので、明細書
でいう乾湿式紡糸なる記載は該「ゲル化紡糸」を包含し
た意味で用いている。
The spinning solution thus obtained is passed through a nozzle to form a PV.
Wet or dry-wet spinning is carried out in an organic solvent-based or water-based solidifying bath having a coagulating action or gelling action on A. The bath temperature is set to 20 ° C. or lower in a solidification bath mainly composed of an organic solvent having a coagulating action on PVA such as methanol, ethanol, and acetone. Of course, a mixed solvent of a coagulating organic solvent and a stock solution solvent can be used as the solidifying bath. If the temperature of the solidifying bath exceeds 20 ° C., the solidified filaments become non-uniform, and high strength fibers cannot be obtained. When the temperature of the solidifying bath is 10 ° C. or lower, the solidified yarn becomes more homogeneous, which is preferable. The so-called "gelling spinning" is a system that solidifies only by cooling and is usually extruded into the air. Therefore, the description of dry-wet spinning in the specification is used to include the "gelling spinning".

【0013】固化浴にて固化した糸篠は、その後常法に
より、湿延伸、溶媒抽出、乾燥し、得られた原糸に全延
伸倍率が14倍以上となるよう乾熱延伸を行なう。
The thread that has been solidified in the solidifying bath is then wet-drawn, solvent-extracted and dried by a conventional method, and the obtained raw thread is dry-heated drawn so that the total draw ratio is 14 times or more.

【0014】本発明者らは高温性能の優れたPVA繊維
とするには、架橋を、繊維内部にはマイルドに、かつ繊
維表面には強固に、しかも各々均一に作ることが重要で
あることを見出した。しかしこのような架橋構造とすた
めには、従来の如く原液から抽出の乾燥前で架橋剤を付
与しても、高含液率で繊維内部まで浸透するので繊維表
面を強固に架橋することは出来ず、また一旦乾燥後架橋
剤を付与すると表面に偏在させることはできるが架橋剤
の付着斑が大きく、いずれも満足なものが得られないこ
とがわかった。
The present inventors have found that in order to obtain PVA fibers having excellent high-temperature performance, it is important that crosslinks are made mild inside the fibers and strong on the fiber surface, and each is even. I found it. However, in order to obtain such a cross-linked structure, even if a cross-linking agent is added to the fiber before extraction and drying as in the conventional case, since it penetrates into the fiber at a high liquid content, the fiber surface cannot be strongly cross-linked. It was found that when the cross-linking agent was applied once after drying, it could be unevenly distributed on the surface, but the adhesion unevenness of the cross-linking agent was large, and neither was satisfactory.

【0015】そこで種々検討した結果、紡糸乾燥前と紡
糸乾燥後の2段に分けて架橋剤を付与することが重要と
わかり、本発明を達成した。すなわち本発明において
は、PVAに対して原液溶媒や固化抽出浴などの含有量
が多く、架橋剤が繊維内部及び表面に均一に付与し易い
乾燥以前の原液から抽出工程のいずれかにおいては、P
VAの第1の架橋剤を少量付与し、50℃以上(好まし
くは100℃以上)で乾燥し、乾燥によって含液率が低
下して架橋剤が内部に浸透し難く繊維表面に偏在し易い
乾燥後の工程で第1の架橋剤と相溶性のよい第2の架橋
剤を付与することにより、第2の架橋剤が繊維表面に偏
在し、しかも前以って相溶性のよい第1の架橋剤が表面
に均一に付与されているので第2の架橋剤の付与斑を極
力抑えることが出来る。従って架橋剤を繊維内部に少
量、繊維表面に多く、しかもいずれも均一に分布させる
ことが可能となる。本発明において第2の架橋剤は第1
の架橋より多く付与することが好ましい。2倍当量以上
付与することがさらに好ましい。本発明にいう第2の架
橋剤に相溶性のよい第1の架橋剤とは、第2の架橋剤と
親和性があり、第2の架橋剤を均一に分散させうるもの
であればよく、さらにまた第2の架橋剤を分散させる能
力がない場合でも第2の架橋剤の分散能を有する界面活
性剤との混合物をも包含意味するものとする。無論第1
と第2の架橋剤が同じものでもよい。
As a result of various examinations, it was found that it is important to apply the crosslinking agent in two stages before spinning drying and after spinning drying, and the present invention was accomplished. That is, in the present invention, the content of the stock solution solvent, the solidification extraction bath, etc. is large relative to PVA, and the crosslinking agent is easily applied uniformly to the inside and the surface of the fiber.
A small amount of the first cross-linking agent of VA is applied and dried at 50 ° C. or higher (preferably 100 ° C. or higher), and the liquid content is lowered by the drying, and the cross-linking agent hardly penetrates into the inside and is easily unevenly distributed on the fiber surface By providing a second cross-linking agent having good compatibility with the first cross-linking agent in a later step, the second cross-linking agent is unevenly distributed on the fiber surface, and the first cross-linking agent having good compatibility in advance is provided. Since the agent is uniformly applied to the surface, the unevenness of application of the second crosslinking agent can be suppressed as much as possible. Therefore, a small amount of the cross-linking agent inside the fiber and a large amount of the cross-linking agent on the fiber surface can be evenly distributed. In the present invention, the second crosslinking agent is the first
It is preferable to add more than the above-mentioned crosslinking. It is more preferable to give it at 2 times equivalent or more. The first cross-linking agent having good compatibility with the second cross-linking agent referred to in the present invention may be any as long as it has an affinity for the second cross-linking agent and can uniformly disperse the second cross-linking agent, Furthermore, it is meant to include a mixture with a surfactant having the dispersibility of the second cross-linking agent even when it has no ability to disperse the second cross-linking agent. Of course the first
And the second cross-linking agent may be the same.

【0016】本発明に用いるPVAの架橋剤としては、
アルデヒト類、ジイソシアネート類、エポキシ類、メチ
ロール類、有機過酸化物類、有機酸あるいは無機酸類、
熱延伸温度の250℃以下で上記架橋剤を反応生成する
化合物類であれば特に限定はないが、後工程の熱延伸時
にPVAを架橋させる化合物が、シンプルな工程で架橋
繊維を製造しうるので好ましい。従って好適な架橋剤は
有機酸あるいは無機酸類、250℃以下で酸性物質を生
成する化合物などである。また本発明において架橋剤は
繊維表面に均一に編成させることがポイントであるが、
このためには架橋剤はPVAと親和性が低く、分子量の
大きい化合物が好適である。従って本発明において最も
好適な架橋剤は、長鎖アルキルリン酸(モノ,ジ,ト
リ)エステル、同硫酸エステル、同硝酸エステル、リン
酸系縮合物あるいはホスフェートアミン化合物、アミン
又はアミドのホスフェート化合物又はスルホネート化合
物、並びにチオ化合物、あるいはアミド結合又は尿素結
合を有するアンモニューム化合物などがあげられる。ま
た熱延伸温度でラジカルを発生する有機過酸化物類も用
いうる。さらに第1の架橋剤と第2の架橋剤は相溶性が
よければ限定はないが、全く同じものが相溶性、工程の
シンプル性の点で最も好ましい。
The PVA crosslinking agent used in the present invention includes:
Aldechts, diisocyanates, epoxies, methylols, organic peroxides, organic acids or inorganic acids,
There is no particular limitation as long as it is a compound that reacts with the above-mentioned cross-linking agent at a hot drawing temperature of 250 ° C. or less, but a compound that cross-links PVA during hot drawing in the subsequent step can produce cross-linked fibers in a simple step. preferable. Therefore, a suitable crosslinking agent is an organic acid or an inorganic acid, a compound which forms an acidic substance at 250 ° C. or lower, and the like. In the present invention, the point is that the cross-linking agent is knitted uniformly on the fiber surface,
For this purpose, the crosslinking agent is preferably a compound having a low affinity with PVA and a large molecular weight. Therefore, the most preferable cross-linking agent in the present invention is a long-chain alkyl phosphoric acid (mono, di, tri) ester, a sulfuric acid ester, a nitric acid ester, a phosphoric acid condensate or a phosphate amine compound, a phosphate compound of an amine or an amide, or Examples thereof include sulfonate compounds, thio compounds, and ammonium compounds having an amide bond or a urea bond. Further, organic peroxides that generate radicals at the hot stretching temperature can also be used. Further, the first cross-linking agent and the second cross-linking agent are not limited as long as they have good compatibility, but the exact same ones are most preferable in terms of compatibility and process simplicity.

【0017】架橋剤の付与量は架橋剤の種類により大き
く異なり、10〜10,000ppmの範囲である。架
橋剤分子量、酸強度、1分子当たりの当量、ラジカル発
生量などによって、また後工程の熱延伸あるいは/及び
熱処理条件(温度と滞留時間)などによって付与量は適
正化する必要がある。前記の如く本発明の特徴は、繊維
の表面架橋を強固にするため架橋剤を表面に偏在させる
ことであり、このため第2の架橋剤は第1の架橋剤より
多く付与することが好ましい。第1の架橋剤より第2の
架橋剤の付与量が2倍当量以上だとさらに好ましく、4
倍当量以上であるともっとも好ましい。
The amount of the cross-linking agent applied varies greatly depending on the kind of the cross-linking agent and is in the range of 10 to 10,000 ppm. It is necessary to optimize the applied amount depending on the molecular weight of the cross-linking agent, the acid strength, the equivalent amount per molecule, the amount of radicals generated, and the heat stretching and / or heat treatment conditions (temperature and residence time) in the subsequent step. As described above, the feature of the present invention is that the cross-linking agent is unevenly distributed on the surface in order to strengthen the surface cross-linking of the fiber. Therefore, it is preferable to add the second cross-linking agent in a larger amount than the first cross-linking agent. It is more preferable that the amount of the second cross-linking agent applied to the first cross-linking agent is at least twice the equivalent amount.
Most preferably, it is a double equivalent or more.

【0018】内部架橋より表面架橋を強化した方が強
度、高温疲労性が優れる理由は不明であるが、架橋反応
は本質的には配向結晶化を阻害するので架橋度と共に繊
維強度は低下するが、同じ架橋度の場合、架橋が表面に
集中し、内部は架橋が少ない方が、均一架橋の場合より
配向結晶化が進むため高強度となり、しかも高温疲労性
は逆に表面架橋が強固であるため均一架橋の場合より高
温になっても繊維同志が融着しないため、優れた結果が
得られると推察される。
Although the reason why the strength of the surface crosslinks is stronger and the fatigue strength at high temperature is superior to the internal crosslinks is not clear, the crosslinking reaction essentially inhibits the oriented crystallization, so that the fiber strength decreases with the degree of crosslinking. , If the degree of cross-linking is the same, cross-linking concentrates on the surface and less cross-linking in the interior gives higher strength because oriented crystallization proceeds more than in the case of uniform cross-linking, and high temperature fatigue resistance is conversely surface cross-linking is strong. Therefore, it is presumed that excellent results can be obtained because the fibers do not fuse together even at a higher temperature than in the case of uniform crosslinking.

【0019】一旦乾燥後に架橋剤を再付与する方法は、
架橋剤そのものを、あるいは架橋剤の溶媒稀釈液をディ
ップニップ方式、ローラータッチ方式あるいはポンプに
よる一定量吐出方式などで付与することができるが、均
一性と付与量制御性の点で架橋剤の稀釈液をポンプによ
り一定量吐出させて付与する方式が最適と思われる。こ
の場合再乾燥の必要がある。なお乾燥前の、例えば固化
浴で架橋剤を付与する場合、その後の湿延伸浴、抽出
浴、油剤浴などの工程で架橋剤が流去される可能性があ
るので、架橋剤を付与した以降の全ての浴に架橋剤を同
じ程度の濃度添加することが好ましい。
The method of re-applying the crosslinking agent after once drying is as follows:
The cross-linking agent itself or the solvent dilution solution of the cross-linking agent can be applied by a dip nip method, a roller touch method, or a constant amount discharge method with a pump, but the cross-linking agent is diluted in terms of uniformity and control of the applied amount. It seems that the method of delivering a certain amount of liquid by a pump and applying it is optimal. In this case, it is necessary to re-dry. Before applying the cross-linking agent, for example, when the cross-linking agent is applied in a solidifying bath, the cross-linking agent may be washed out in the subsequent steps such as a wet drawing bath, an extraction bath, and an oil agent bath. It is preferable to add the crosslinking agent to all the baths in the same concentration.

【0020】以上のようにして架橋剤を繊維内部に少量
均一に浸透させ、かつ繊維表面に均一に偏在させた延伸
原糸を全延伸倍率(以後TDと略記)が14倍以上とな
るよう230〜265℃で熱延伸を行なわなければなら
ない。熱延伸を行なうことによりPVA分子の配向結晶
化を行なわせるとともに、架橋剤によってPVAを架橋
させることが本発明の重要なポイントの1つである。新
たな工程を追加せずとも、強度低下は軽微で耐熱水性と
高温耐疲労性を著しく改善させる強固な表面架橋を生じ
させることが本発明の特徴である。熱延伸温度が230
℃未満では重合度が3000以上のPVAを用いる本発
明の場合PVAの配向結晶化も架橋も不十分である。2
65℃を越える温度ではPVA結晶の融点以上であり、
配向結晶化しないばかりか、架橋というよりPVAの分
解が優先的になる。
As described above, the stretched raw yarn in which a small amount of the cross-linking agent is evenly penetrated into the inside of the fiber, and which is evenly distributed on the surface of the fiber, has a total draw ratio (hereinafter abbreviated as TD) of 14 times or more. Hot stretching must be done at ~ 265 ° C. One of the important points of the present invention is to perform oriented crystallization of PVA molecules by performing hot stretching and to crosslink PVA with a crosslinking agent. It is a feature of the present invention that the strength reduction is slight and strong surface cross-linking that significantly improves hot water resistance and high temperature fatigue resistance is generated without adding a new step. Hot stretching temperature is 230
In the case of the present invention using PVA having a degree of polymerization of 3000 or more at a temperature of less than 0 ° C, neither oriented crystallization nor crosslinking of PVA is sufficient. Two
Above the melting point of PVA crystals at temperatures above 65 ° C,
Not only oriented crystallization does not occur, but PVA decomposition becomes a priority rather than crosslinking.

【0021】架橋剤を付与した乾燥後原糸を乾熱延伸す
る場合、PVAが架橋することにより乾熱延伸性が大幅
に低下し、分子の配向結晶化が十分に行なえないのでは
ないかと危惧したが、適正な架橋性薬剤の種類、付着量
及び付着状態、さらに乾熱延伸温度を選択すれば、意外
にも乾熱延伸性は殆んど低下しないことを見出したこと
が本発明のキーポイントとなった。この理由は不明であ
るが、乾熱延伸時まず分子の配向結晶化の物理的構造変
化が優先し、次いで架橋反応などの化学構造変化が起る
ためと推定される。乾熱延伸前に付与する架橋剤は、こ
のような機能を有するため優れていると考えられる。前
述したが、繊維の強度及び架橋度は、付与する架橋剤の
種類と量、乾熱延伸温度と滞留時間のバランスによって
異なるので適宜選択すべきである。一例として、架橋剤
を付与しない状態で最も高強度となる延伸温度と滞留時
間を見出し、それとほぼ同じ延伸温度と延伸時間で、架
橋剤を付与した原糸を延伸し、所定の架橋度となるよう
使用する架橋剤の付与量を決定すればよい。
[0021] When the dry yarn drawn with a crosslinking agent after drying is subjected to dry heat drawing, it is feared that the cross-linking of PVA significantly reduces the dry heat drawability, and the oriented crystallization of molecules cannot be sufficiently performed. However, the key to the present invention was to find that unexpectedly, the dry heat drawability is hardly reduced by selecting an appropriate type of cross-linking agent, the amount and state of attachment, and the dry heat stretch temperature. It became a point. The reason for this is unknown, but it is presumed that during dry heat drawing, the physical structure change due to oriented crystallization of the molecules is prioritized, and then the chemical structure change such as the crosslinking reaction occurs. The crosslinking agent applied before the dry heat drawing is considered to be excellent because it has such a function. As described above, the strength and the degree of crosslinking of the fiber should be properly selected because they depend on the type and amount of the crosslinking agent to be applied, the balance between the dry heat drawing temperature and the residence time. As an example, a stretching temperature and a residence time that give the highest strength without a cross-linking agent are found, and the cross-linking agent-provided original yarn is stretched at a stretching temperature and a stretching time that are substantially the same as those to obtain a predetermined degree of cross-linking. The amount of the cross-linking agent to be used may be determined.

【0022】湿延伸と乾熱延伸を加えた全延伸倍率が1
4倍未満では繊維強度が低いので14倍以上としなけれ
ばならない。全延伸倍率は高い方が好ましいが、毛羽や
断糸の発生を考慮し最大延伸倍率の0.75〜0.95
倍とすべきである。乾熱延伸後さらに定長熱処理あるい
は乾熱収縮を施こして結晶化を促進するとともに、架橋
を促進させてもよい。
The total draw ratio including wet drawing and dry heat drawing is 1
If it is less than 4 times, the fiber strength is low, so it must be 14 times or more. It is preferable that the total draw ratio is high, but in consideration of the occurrence of fuzz and yarn breakage, the maximum draw ratio is 0.75 to 0.95.
Should be doubled. After the dry heat drawing, a fixed length heat treatment or a dry heat shrinkage may be further applied to accelerate crystallization and accelerate crosslinking.

【0023】以上をまとめると、高温性能の優れた高強
力PVA繊維を得るには、繊維内部に比べて繊維表面を
均一に強固に架橋することが重要であることがわかり、
このためには、PVAの架橋剤を、紡糸工程中の含液率
が高く架橋剤が均一に浸透し易い状態でまず少量付与
し、次いで一旦乾燥し、含液率が低く繊維内部までは浸
透し難く表面に偏在し易い状態で先の架橋剤と相溶性の
よい架橋剤を前より多く再付与することにより、架橋剤
が表面に均一に偏在するようになし、要すれば再乾燥
し、次いで熱延伸を施こすことにより、PVA分子を配
向結晶化させると同時に、繊維内部より表面をより強固
にしかも均一な架橋をさせることを可能にしたものであ
る。
In summary, it was found that in order to obtain a high-strength PVA fiber having excellent high-temperature performance, it is important to uniformly and strongly crosslink the fiber surface as compared with the inside of the fiber.
For this purpose, the PVA crosslinking agent is first applied in a small amount in a state where the liquid content in the spinning step is high and the crosslinking agent can easily permeate uniformly, and then it is dried once, and the liquid content is low, and it penetrates into the inside of the fiber. By re-adding more cross-linking agent that is compatible with the above-mentioned cross-linking agent in a state where it is difficult to unevenly distribute on the surface, the cross-linking agent is evenly unevenly distributed on the surface, and if necessary re-drying, Then, hot drawing is performed to allow the PVA molecules to be oriented and crystallized, and at the same time, to make the surface stronger and more uniform than the inside of the fiber.

【0024】[0024]

【実施例】以下実施例により具体的に説明するが、本発
明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0025】実施例1 粘度平均重合度4000、ケン
化度99.8モル%のPVAを濃度9.5重量%となる
ようにDMSOに添加し、80℃にて窒素雰囲気で溶解
した。得られた紡糸原液を孔径0.13mm、孔数50
0のノズルから3℃のメタノール/DMSO=7/3
(重量比)よりなる固化浴中に湿式紡糸し、得られた固
化糸を40℃のメタノール/DMSO=9/1の浴中で
4倍の湿延伸を行ない、次いで、下記の化学式1で示さ
れる長鎖アルキルフォスフェートのアミン中和物を架橋
剤とし、その0.3%を含有するメタノール浴でDMS
Oを抽出し、100℃で乾燥した。
Example 1 PVA having a viscosity average degree of polymerization of 4000 and a saponification degree of 99.8 mol% was added to DMSO so as to have a concentration of 9.5% by weight and dissolved at 80 ° C. in a nitrogen atmosphere. The spinning solution thus obtained was used to have a pore diameter of 0.13 mm and a pore number of 50.
Nozzle from 0 to 3 ° C methanol / DMSO = 7/3
Wet spinning is carried out in a solidifying bath consisting of (weight ratio), and the solidified yarn obtained is subjected to a 4-fold wet drawing in a bath of methanol / DMSO = 9/1 at 40 ° C., and then shown by the following chemical formula 1. The long-chain alkyl phosphate amine neutralized product used as a cross-linking agent was added to the DMS in a methanol bath containing 0.3% thereof.
O was extracted and dried at 100 ° C.

【0026】[0026]

【化1】 [Chemical 1]

【0027】このようにして上記の架橋剤を0.5%/
PVA含有する紡糸原糸を得た。これに上記架橋剤の3
%含有メタノール液をローラータッチ方式で接触させ、
80℃の熱ローラーで乾燥後直ちに第1炉180℃、第
2炉200℃、第3炉243℃の温度勾配を有する熱風
延伸炉中で5.5倍延伸し、TD22倍のサンプルを得
た。熱ローラーで乾燥後サンプリングし、ソックスレー
抽出により上記架橋剤の付着量を測定したところ2.5
%/PVAであり、架橋剤の付着量は紡糸乾燥前0.5
%/PVA、紡糸乾燥後2.5%/PVAであった。T
D22倍の熱延伸時の炉内滞留は合計で55秒であっ
た。
In this way, 0.5% of the above-mentioned cross-linking agent /
A spun raw yarn containing PVA was obtained. In addition to the above 3
% Contact methanol solution by roller touch method,
Immediately after drying with a hot roller of 80 ° C., it was drawn 5.5 times in a hot air drawing furnace having a temperature gradient of 180 ° C. in the first furnace, 200 ° C. in the second furnace, and 243 ° C. in the third furnace to obtain a sample of 22 times TD. .. The sample was dried with a hot roller, sampled, and the amount of the cross-linking agent attached was measured by Soxhlet extraction.
% / PVA, and the amount of the cross-linking agent attached is 0.5 before spinning and drying.
% / PVA and 2.5% / PVA after spinning and drying. T
The total residence time in the furnace during hot drawing of D22 times was 55 seconds.

【0028】この22倍延伸糸は紫色し着色し、PVA
の脱水架橋が起っていると推定された。ヤーンの強度は
18.3g/dで、オートクレーブ中200mg/d荷
重下の熱水溶断温度は155℃であり、重合度4000
のPVAとしては耐熱水性が極めて優れていた。またこ
のヤーンを撚糸し、RFL液に浸漬して得たディップコ
ードをベルトに埋め込み、得られたベルトを100℃で
3万回屈曲疲労させた後ベルトより取り出したコードの
強力を、疲労前のコード強度に対する保持率として測定
したところ70%と優れていた。この延伸糸を50℃の
50%塩化亜鉛水溶液中でPVAの結晶を溶解し、得ら
れたゲルの弾性率(繊維全体の架橋度の尺度としては有
用)を測定したところ、0.4×10-2g/dであっ
た。またこの延伸糸端を20℃の20%塩酸水溶液に1
分間浸漬し、水洗後濡れたままで糸端の膨潤状態を観察
したところ、表面皺が明確に観察され、塩酸に膨潤し難
い高架橋のものが繊維表面に存在していることを示すと
ともに、繊維内部は殆んど溶解しており架橋はあまり進
んでいないことが観察された。
This 22 times stretched yarn is purple and colored,
It was presumed that the dehydration cross-linkage had occurred. The strength of the yarn is 18.3 g / d, the hot water disconnection temperature under load of 200 mg / d in the autoclave is 155 ° C., and the degree of polymerization is 4000.
The hot water resistance of PVA was extremely excellent. The yarn was twisted and dipped in an RFL liquid to obtain a dip cord, which was embedded in the belt. The obtained belt was bent and fatigued 30,000 times at 100 ° C., and the strength of the cord taken out from the belt was measured before the fatigue. It was excellent as 70% when measured as a retention rate with respect to the cord strength. This drawn yarn was dissolved in 50% zinc chloride aqueous solution at 50 ° C. to dissolve PVA crystals, and the elastic modulus of the obtained gel (useful as a measure of the degree of crosslinking of the whole fiber) was measured. It was -2 g / d. In addition, the drawn yarn end was immersed in a 20% hydrochloric acid aqueous solution at 20 ° C.
When the swelling state of the yarn end was observed while it was soaked for a minute and washed with water while it was still wet, surface wrinkles were clearly observed, showing that a highly crosslinked material that is difficult to swell in hydrochloric acid is present on the fiber surface, It was observed that was almost dissolved and cross-linking was not so advanced.

【0029】比較例1 紡糸乾燥前及び後で実施例1の
架橋剤を付与しない以外は実施例1と同様に行なって未
架橋の22倍延伸糸を得た。色相は殆んど白色で、ヤー
ン強度は18.9g/d、オートクレーブ中熱水溶断温
度は130℃であった。実施例1と同様に100℃、3
万回のベルト屈曲疲労後の強力保持率は55%であり、
実施例1とは劣っていた。さらに実施例1と同様に塩化
亜鉛水溶液中でのゲル弾性率測定や塩酸中での膨潤状態
を観察してもいずれも糸が溶解し、架橋結合が生成して
いないことを示した。
Comparative Example 1 An uncrosslinked 22 times stretched yarn was obtained in the same manner as in Example 1 except that the crosslinking agent in Example 1 was not added before and after spinning and drying. The hue was almost white, the yarn strength was 18.9 g / d, and the hot water disconnection temperature in the autoclave was 130 ° C. 100 ° C. as in Example 1, 3
The strength retention rate after ten thousand belt bending fatigue is 55%,
It was inferior to Example 1. Further, in the same manner as in Example 1, measurement of gel elastic modulus in a zinc chloride aqueous solution and observation of a swollen state in hydrochloric acid showed that the yarn was dissolved and no cross-linking was formed.

【0030】比較例2 紡糸乾燥前の抽出浴の架橋剤の
濃度を0.9%に増加させることと紡糸乾燥後熱延伸前
の架橋剤の付着処理を省略すること以外は実施例1と同
様にして22倍延伸糸を得た。架橋剤の付着量はソック
スレー抽出の結果より1.4%/PVAであった。得ら
れた延伸糸は色相が紫色で、ヤーン強度は17.5g/
dと実施例1より低目、オートクレーブ中での熱水溶断
温度は156℃と実施例1と同等であったが、100
℃、3万回でのベルト屈曲疲労後の強力保持率は65%
と比較例1より良いが、実施例1より低かった。塩化亜
鉛水溶液でのゲル弾性率は0.3×10-2g/dと実施
例1並であったが、塩酸中での膨潤状態は表面皺が僅か
にみられ繊維内部がゲル玉状となり、表面架橋は少ない
ものの内部架橋は実施例1より多いことが認められた。
すなわち実施例1と比較例2では全体の架橋度に差はな
いものの、架橋分布は、実施例1が表面架橋タイプであ
るの対し比較例2は均一架橋タイプであることがわかっ
た。
Comparative Example 2 Same as Example 1 except that the concentration of the cross-linking agent in the extraction bath before spin-drying was increased to 0.9% and the adhesion treatment of the cross-linking agent after spin-drying and before hot drawing was omitted. As a result, a 22 times stretched yarn was obtained. The adhesion amount of the cross-linking agent was 1.4% / PVA based on the result of Soxhlet extraction. The obtained drawn yarn has a purple hue and a yarn strength of 17.5 g /
d, which is lower than that of Example 1, and the hot water cutoff temperature in the autoclave was 156 ° C., which was equivalent to that of Example 1, but 100
65% strength retention after belt bending fatigue at 30,000 cycles
Was better than Comparative Example 1, but lower than Example 1. The gel elastic modulus in the zinc chloride aqueous solution was 0.3 × 10 -2 g / d, which was about the same as in Example 1, but the swelling state in hydrochloric acid showed slight wrinkles on the surface and the inside of the fiber became gel beads. It was confirmed that the number of surface cross-links was small, but the number of internal cross-links was more than that in Example 1.
That is, although there was no difference in the overall degree of cross-linking between Example 1 and Comparative Example 2, it was found that the cross-linking distribution was that Example 1 was the surface cross-linking type, whereas Comparative Example 2 was the uniform cross-linking type.

【0031】実施例2 粘度平均重合度8500、ケン
化度99.9モル%のPVAにDMSOを加え、窒素雰
囲気下80℃で加熱溶解して濃度7.5%のPVA溶液
を得た。この紡糸原液を孔径0.16mm、孔数400
のノズルから10mmのエアギャップを通して4℃のメ
タノール/DMSO=7/3よりなる固化浴に乾湿式紡
糸した。得られた固化糸を40℃のメタノール/DMS
O=9/1で4倍の湿延伸を行なった後、メタノール浴
でDMSOを抽出した。次に下記の化学式2の長鎖アル
キルリン酸を架橋剤として、これを0.8%含有するヘ
キサン浴にローラータッチ方式で付与し、120℃の熱
風で乾燥した。
Example 2 DMSO was added to PVA having a viscosity average degree of polymerization of 8500 and a saponification degree of 99.9 mol% and was heated and dissolved at 80 ° C. in a nitrogen atmosphere to obtain a PVA solution having a concentration of 7.5%. This spinning dope was prepared with a hole diameter of 0.16 mm and a hole number of 400.
From the nozzle of No. 1 through the air gap of 10 mm, dry-wet spinning was performed at 4 ° C. in a solidification bath consisting of methanol / DMSO = 7/3. The solidified yarn obtained is treated with methanol / DMS at 40 ° C.
After performing wet stretching 4 times at O = 9/1, DMSO was extracted with a methanol bath. Next, a long-chain alkylphosphoric acid represented by the following chemical formula 2 was used as a cross-linking agent in a hexane bath containing 0.8% of the cross-linking agent by a roller touch method, and dried with hot air at 120 ° C.

【0032】[0032]

【化2】 [Chemical 2]

【0033】次いで2.4%の上記架橋剤を含有するヘ
キサン液に、得られた原糸をローラータッチ方式で接触
させ、熱風乾燥後第1炉150℃、第2炉170℃、第
3炉245℃の温度勾配を有する熱風延伸炉中で5倍に
延伸し、TD20倍のサンプルを得た。この時の延伸炉
内の全滞留時間は62秒であった。架橋剤の付着量をソ
ックスレー抽出で測定したところ、紡糸乾燥後は0.4
%/PVAで、熱延伸直前は2.3%/PVAであっ
た。
Then, the obtained raw yarn was brought into contact with a hexane solution containing 2.4% of the above-mentioned cross-linking agent by a roller touch method, dried with hot air, and the first furnace 150 ° C, the second furnace 170 ° C and the third furnace The sample was drawn 5 times in a hot air drawing furnace having a temperature gradient of 245 ° C. to obtain a sample with 20 times TD. At this time, the total residence time in the drawing furnace was 62 seconds. The amount of the cross-linking agent attached was measured by Soxhlet extraction and found to be 0.4 after spin drying.
% / PVA and 2.3% / PVA immediately before hot drawing.

【0034】この延伸糸は青味がかった紫色に着色し、
PVAの脱水架橋が起っていると推定された。ヤーンの
強度は19.6g/d、オートクレーブ中での熱水溶断
温度は165℃、100℃、3万回でのベルト屈曲疲労
後の強力保持率は81%と優れていた。塩化亜鉛水溶液
中でのゲル弾性率は0.8×10-2g/dで塩酸中での
膨潤状態の顕微鏡観察では実施例1よりさらに表面架橋
が強固であることがわかった。また繊維内部もゲル玉状
となっており、実施例1よりも内部架橋が進んでいるこ
とがわかった。
This drawn yarn was colored a bluish purple,
It was estimated that dehydration cross-linking of PVA had occurred. The strength of the yarn was 19.6 g / d, and the hot water disconnection temperatures in the autoclave were 165 ° C., 100 ° C., and the strength retention after belt bending fatigue at 30,000 cycles was 81%, which was excellent. The gel elastic modulus in a zinc chloride aqueous solution was 0.8 × 10 -2 g / d, and it was found by microscopic observation of the swollen state in hydrochloric acid that the surface cross-linking was stronger than in Example 1. Further, the inside of the fiber was in the form of gel beads, and it was found that the internal cross-linking was more advanced than in Example 1.

【0035】比較例3 紡糸乾燥前で実施例2の付与を
省略する以外は、実施例2と同様に紡糸延伸を行ない、
TD20倍の延伸糸を得た。この延伸糸には紫色から極
薄紫色の色斑が明確に認められ、オートクレーブ中での
熱水溶断温度は140〜162℃、ゲル弾性率は0.0
〜0.7×10-2g/dと架橋度が大きく変動し、満足
すべき糸は得られなかった。
Comparative Example 3 Spin-drawing was carried out in the same manner as in Example 2 except that the application of Example 2 was omitted before the spin-drying.
A drawn yarn with a TD of 20 times was obtained. Purple to ultra-violet color spots are clearly observed on this drawn yarn, the hot water cutoff temperature in the autoclave is 140 to 162 ° C, and the gel elastic modulus is 0.0.
The degree of cross-linking greatly fluctuated to about 0.7 × 10 -2 g / d, and a satisfactory yarn could not be obtained.

【0036】比較例4 紡糸乾燥前で実施例2の架橋剤
の0.8%ヘキサン溶液を付与する代りに、りん酸10
0ppmのメタノール溶液を付与する以外は実施例2と
同様に紡糸延伸を行ない、TD20倍の延伸系を得た。
得られた延伸糸は青紫色から薄紫色の色斑が明確に認め
られ、オートクレーブ中での熱水溶断温度は155〜1
62℃と変動は比較的少なかったものの、ゲル弾性率は
0.2〜0.7×10-2g/dと大きく変動し、単繊維
の架橋斑が認められた。これは第1の架橋剤として用い
たりん酸と第2の架橋剤の相溶性がわるく、第2の架橋
剤が付着斑となったためと推察される。
COMPARATIVE EXAMPLE 4 Instead of applying a 0.8% hexane solution of the crosslinker of Example 2 before spin drying, phosphoric acid 10
Spin-drawing was carried out in the same manner as in Example 2 except that 0 ppm methanol solution was applied to obtain a TD 20-fold drawing system.
The obtained drawn yarn has a clear blue-purple to light purple color spot, and the hot water disconnection temperature in the autoclave is 155-1.
Although the change was relatively small at 62 ° C., the gel elastic modulus was greatly changed to 0.2 to 0.7 × 10 −2 g / d, and cross-linking unevenness of the single fiber was recognized. It is presumed that this is because the compatibility between the phosphoric acid used as the first cross-linking agent and the second cross-linking agent was poor, and the second cross-linking agent became adhesion spots.

【0037】[0037]

【発明の効果】本発明により、繊維内部より繊維表面を
強固に、しかも均一に架橋することが可能となり、高温
性能、特に高温耐疲労性や高温高圧下での耐融着性が改
良されたので、自動車タイヤ用ブレーキホース用などの
ゴム資材や高温性能が要求される他の産業資材用として
有用である。また本発明方法は従来の紡糸延伸設備にほ
とんど付加することなく工程内で短時間に架橋処理が可
能であるので、工業的に安価である点も有用である。
According to the present invention, the fiber surface can be strongly and uniformly crosslinked from the inside of the fiber, and the high temperature performance, especially the high temperature fatigue resistance and the fusion resistance under high temperature and high pressure are improved. Therefore, it is useful as a rubber material for brake hoses for automobile tires and other industrial materials that require high-temperature performance. Further, since the method of the present invention can carry out the crosslinking treatment within a process in a short time with almost no addition to the conventional spinning / drawing equipment, it is also useful in that it is industrially inexpensive.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 悟 岡山県倉敷市酒津1621番地 株式会社クラ レ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Kobayashi 1621 Sakata, Kurashiki City, Okayama Prefecture Kuraray Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリビニルアルコールを溶媒に溶解して
得た紡糸原液を、ポリビニルアルコールに対して凝固作
用もしくはゲル化作用を有する有機溶媒系もしくは水系
固化浴に湿式もしくは乾湿式紡糸し、しかる後溶媒を抽
出し、乾燥し、得られた紡糸原糸に全延伸倍率が14倍
以上となるように乾熱延伸を行ってポリビニルアルコー
ル系繊維を製造するに際して、(1)重合度が3000
以上のポリビニルアルコールを用いること、(2)紡糸
乾燥前の工程で、繊維内部および繊維表面に、ポリビニ
ルアルコールに対して架橋能を有ししかも後工程で付与
する第2の架橋剤と相溶性のある第1の架橋剤を少量付
与すること、(3)紡糸乾燥後第2の架橋剤を繊維表面
に偏在させて付与すること、(4)熱延伸を230℃〜
265℃で行なうこと、を特徴とするポリビニルアルコ
ール系繊維の製造方法。
1. A spinning stock solution obtained by dissolving polyvinyl alcohol in a solvent is wet or dry-wet spun in an organic solvent system or an aqueous solidifying bath having a coagulating action or a gelling action for polyvinyl alcohol, and then the solvent. When a polyvinyl alcohol fiber is produced by dry-drawing the obtained spun raw yarn so that the total draw ratio is 14 times or more, (1) the degree of polymerization is 3000.
Using the above polyvinyl alcohol, (2) in the step before the spin drying, the inside and the surface of the fiber have a crosslinking ability with respect to the polyvinyl alcohol and are compatible with the second crosslinking agent to be applied in the subsequent step. A small amount of a certain first cross-linking agent is applied, (3) a second cross-linking agent is unevenly distributed on the fiber surface after spin-drying, and (4) hot stretching is performed at 230 ° C or higher.
A method for producing a polyvinyl alcohol fiber, which is performed at 265 ° C.
JP3306505A 1991-10-25 1991-10-25 Production of highly strong polyvinyl alcohol fiber having excellent high temperature performance Pending JPH05117911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3306505A JPH05117911A (en) 1991-10-25 1991-10-25 Production of highly strong polyvinyl alcohol fiber having excellent high temperature performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3306505A JPH05117911A (en) 1991-10-25 1991-10-25 Production of highly strong polyvinyl alcohol fiber having excellent high temperature performance

Publications (1)

Publication Number Publication Date
JPH05117911A true JPH05117911A (en) 1993-05-14

Family

ID=17957837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3306505A Pending JPH05117911A (en) 1991-10-25 1991-10-25 Production of highly strong polyvinyl alcohol fiber having excellent high temperature performance

Country Status (1)

Country Link
JP (1) JPH05117911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745708A2 (en) * 1995-05-22 1996-12-04 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745708A2 (en) * 1995-05-22 1996-12-04 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and manufacturing thereof
EP0745708A3 (en) * 1995-05-22 1997-06-04 Kuraray Co Polyvinyl alcohol-based fiber and manufacturing thereof

Similar Documents

Publication Publication Date Title
US4535027A (en) High strength polyacrylonitrile fiber and method of producing the same
KR0182655B1 (en) Polyvinyl alcohol-based fiber and manufacturing thereof
JPH01104815A (en) Polyvinyl alcohol fiber and production thereof
US4658004A (en) Polyacrylonitrile fiber with high strength and high modulus of elasticity
JPH05117911A (en) Production of highly strong polyvinyl alcohol fiber having excellent high temperature performance
KR100511724B1 (en) Devices for crosslinking and process for preparing polyvinyl alcohol fiber using them
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JPH076087B2 (en) High strength and high modulus PVA fiber and method for producing the same
JP2826182B2 (en) Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance
JP2833887B2 (en) Method for producing polyvinyl alcohol fiber with excellent strength
KR100494063B1 (en) Polyvinyl alcohol fiber for the reinforcement of tire and method for the production of the same
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JP2858923B2 (en) Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance
JP3466279B2 (en) Polyvinyl alcohol fiber excellent in dimensional stability in wet and dry conditions and method for producing the same
JP3366476B2 (en) High-strength polyvinyl alcohol-based fiber excellent in wet heat resistance and method for producing the same
JP2888502B2 (en) Method for producing high strength polyvinyl alcohol fiber with excellent hot water resistance
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP2927304B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JP2765951B2 (en) Glossy high-strength polyvinyl alcohol fiber and method for producing the same
JPH06235117A (en) Production of high strength polyvinyl alcohol fiber
KR20020048780A (en) Process for preparation of high-tenacity polyvinyl alcohol fiber with hot-water resistance
JPH0941216A (en) Polyvinyl alcoholic fiber and its production
JPH0457769B2 (en)
JPH1077572A (en) Hot water-resistant polyvinyl alcohol-based fiber and its production