JP2016030862A - Fibrillated fiber and method for producing the same - Google Patents

Fibrillated fiber and method for producing the same Download PDF

Info

Publication number
JP2016030862A
JP2016030862A JP2014152711A JP2014152711A JP2016030862A JP 2016030862 A JP2016030862 A JP 2016030862A JP 2014152711 A JP2014152711 A JP 2014152711A JP 2014152711 A JP2014152711 A JP 2014152711A JP 2016030862 A JP2016030862 A JP 2016030862A
Authority
JP
Japan
Prior art keywords
fiber
fibrillated
pva
water
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014152711A
Other languages
Japanese (ja)
Other versions
JP6383595B2 (en
Inventor
友浩 早川
Tomohiro Hayakawa
友浩 早川
川井 弘之
Hiroyuki Kawai
弘之 川井
敏道 楠木
Toshimichi Kusunoki
敏道 楠木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2014152711A priority Critical patent/JP6383595B2/en
Publication of JP2016030862A publication Critical patent/JP2016030862A/en
Application granted granted Critical
Publication of JP6383595B2 publication Critical patent/JP6383595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fibrillated fiber that is fibrillated from a polyvinyl alcohol (PVA) single polymer fiber and a method for producing the same.SOLUTION: (1) There is provided a fibrillated fiber which is fibrillated from a PVA single polymer cross-linked fiber that is obtained by introducing cross-linking into a PVA single polymer fiber having a saponification degree of 98 mol% or more and dissolves in water at a temperature of 100°C or more. (2) A water dispersion of a PVA single polymer cross-linked fiber which is formed of a PVA single polymer having a saponification degree of 98 mol% or more, dissolves in water at a temperature of 100°C or more, and has a fineness of 0.1 to 4 denier and a fiber length of 0.2 to 3 mm is injected at 150 to 275 MPa to collide and merge the water dispersion each other. Thus the PVA single polymer cross-linked fiber is fibrillated.SELECTED DRAWING: Figure 2

Description

本発明は、ポリビニルアルコール(以下、PVAと略記することがある)単独重合体を紡糸・熱延伸・架橋して得られた、水中溶解温度が100℃以上のPVA単独重合体架橋繊維をフィブリル化して得られるフィブリル化繊維およびその製造方法に関する。   The present invention fibrillates a PVA homopolymer crosslinked fiber having a water dissolution temperature of 100 ° C. or higher, obtained by spinning, hot drawing and crosslinking a polyvinyl alcohol (hereinafter sometimes abbreviated as PVA) homopolymer. It is related with the fibrillated fiber obtained by this, and its manufacturing method.

セパレーターの遮蔽性向上やフィルターの微細粒子補足のために、細かく微細化した(フィブリル化した)繊維から形成したシートを使用するのが有効であるがPVA単独重合体繊維は、6μm程度の繊度にするのが限度で、さらに細いフィブリル化した繊維は実用化されていない。
従来から、フィブリル化したPVA繊維を得ようと試みられてきた。特許文献1では、PVAを主成分とする連続相の中にポリアクリロニトリルを主成分とする独立相が均一に微分散し、さらにポリアクリロニトリルを主成分とする独立相のなかにPVAを主成分とする第三相が均一に分散された三相以上の構造を形成しているPVA系易フィブリル化繊維が開示されている。
特許文献2では、ビニルアルコール系ポリマー(A)と水不溶性セルロース系ポリマー(B)を共通の有機溶媒に溶解して、A成分を海成分、B成分を島成分とする海島層分離溶液を調整し、この溶液を紡糸原液として紡糸することにより易フィブリル化繊維を得ている。
In order to improve the shielding performance of the separator and to capture fine particles of the filter, it is effective to use a sheet formed from finely pulverized (fibrillated) fibers, but the PVA homopolymer fiber has a fineness of about 6 μm. However, finer fibrillated fibers have not been put into practical use.
In the past, attempts have been made to obtain fibrillated PVA fibers. In Patent Document 1, an independent phase mainly composed of polyacrylonitrile is uniformly finely dispersed in a continuous phase mainly composed of PVA, and PVA is mainly composed of the independent phase mainly composed of polyacrylonitrile. PVA-based easily fibrillated fibers forming a structure of three or more phases in which the third phase is uniformly dispersed are disclosed.
In Patent Document 2, a vinyl-alcohol-based polymer (A) and a water-insoluble cellulose-based polymer (B) are dissolved in a common organic solvent to prepare a sea-island layer separation solution in which the A component is a sea component and the B component is an island component. Then, the fibrillated fiber is obtained by spinning this solution as a spinning dope.

特開平8−81818号公報JP-A-8-81818 特開平10−102322号公報JP-A-10-102322

上記の先行文献ではいずれもPVAとポリアクリロニトリルやセルロースなどとからなる海島繊維を用いてフィブリル化を達成しようとしている。すなわち、PVAと他種のポリマーとが混合した繊維を形成し、これからフィブリル化した繊維を得ている。しかしながら、PVA単独重合体繊維は、延伸熱固定後、緻密な繊維構造を有しており、ビーター、シングルデイスクリファイアー、ダブルデイスクリファイアーなどにより叩解してもフィブリル化を行うことはできなかった。このため、PVAのフィブリル化繊維は実用化されていない。   In all of the above prior art documents, fibrillation is achieved using sea-island fibers made of PVA, polyacrylonitrile, cellulose and the like. That is, a fiber in which PVA and another kind of polymer are mixed is formed, and a fibrillated fiber is obtained therefrom. However, the PVA homopolymer fiber has a dense fiber structure after being stretched and fixed by heat, and even when beaten with a beater, a single descriptor, a double descriptor, or the like, it could not be fibrillated. For this reason, the fibrillated fiber of PVA has not been put into practical use.

本発明者らは、PVA単独重合体繊維をフィブリル化したフィブリル化繊維を得ることを解決すべき技術的課題であると設定した。   The present inventors set it as the technical subject which should be solved to obtain the fibrillated fiber which fibrillated the PVA homopolymer fiber.

本発明者らは、上記課題を解決すべく、PVA単独重合体繊維のフィブリル化について、鋭意検討を行ったところ、高圧噴射を利用した湿式微粒化装置を用いると従来フィブリル化が不可能であったPVA単独重合体をフィブリル化できる可能性があることを見出したが、一方で、PVA単独重合体繊維をフィブリル化するために、超高圧に加圧した原料粒子(PVA繊維の水分散体)同士を衝突させて微粒化(フィブリル化)を行おうとすると、水分散液の水温が上昇し、PVA単独重合体繊維が水に溶解して、フィブリル化繊維を得ることができないという問題が生じた。
この点について本発明者はさらに鋭意検討の結果、(1)PVA単独重合体に架橋を導入したPVA単独重合体架橋繊維を用いることによりPVA単独重合体繊維の溶解を防ぐとともに、(2)PVA繊維が分散したスラリー(水分散液)を高圧噴射して、高圧噴射したスラリー同士を1点で衝突合流させることにより、フィブリル化処理を行うことにより、繊維の溶解が起こることなく、微粒化(フィブリル化)を達成することができることを突き止め、本発明を完成させることができた。
In order to solve the above-mentioned problems, the present inventors have intensively studied about fibrillation of PVA homopolymer fibers, and it has been impossible to fibrillate using a wet atomizer using high-pressure injection. However, in order to fibrillate the PVA homopolymer fiber, the raw material particles (PVA fiber aqueous dispersion) pressed to an ultra-high pressure were found to be fibrillated. When attempting to atomize (fibrillate) by colliding each other, the water temperature of the aqueous dispersion rises, causing the problem that the PVA homopolymer fiber dissolves in water and fibrillated fibers cannot be obtained. .
As a result of further diligent investigations on this point, the present inventors, as a result of (1) preventing the dissolution of the PVA homopolymer fiber by using the PVA homopolymer crosslinked fiber in which crosslinking is introduced into the PVA homopolymer, and (2) PVA. The slurry in which the fibers are dispersed (aqueous dispersion) is sprayed at a high pressure, and the high pressure sprayed slurries are made to collide at one point to perform fibrillation treatment, so that the fibers can be atomized without causing the fibers to dissolve ( It has been found that fibrillation can be achieved, and the present invention has been completed.

本発明第1の構成は、けん化度が98モル%以上のPVA単独重合体の繊維に架橋が導入された、水中溶解温度が100℃以上のPVA単独重合体架橋繊維がフィブリル化しているフィブリル化繊維である。
なお、本発明において、PVA単独重合体とは、実質的に酢酸ビニルのみが重合した重合体(ポリ酢酸ビニル)がけん化度98モル%以上にけん化された重合体をいう。
また、PVA単独重合体架橋繊維とは、上記のPVA単独重合体のみから形成された繊維に架橋が導入された繊維であって、したがって、「PVA」には、繊維形成後、PVAのOH基に架橋が導入されることにより改質された改質PVAが含まれる。
The first configuration of the present invention is a fibrillation in which a PVA homopolymer fiber having a saponification degree of 98 mol% or more is introduced into the fiber and a PVA homopolymer crosslinked fiber having a water dissolution temperature of 100 ° C or more is fibrillated. Fiber.
In the present invention, the PVA homopolymer refers to a polymer obtained by saponifying a polymer obtained by polymerizing only vinyl acetate (polyvinyl acetate) to a saponification degree of 98 mol% or more.
Further, the PVA homopolymer crosslinked fiber is a fiber in which crosslinking is introduced into a fiber formed only from the above PVA homopolymer. Therefore, “PVA” includes an OH group of PVA after the fiber formation. The modified PVA is modified by introducing a cross-link.

前記架橋の導入が、ホルマール化による架橋導入であってもよく、ジアルデヒドによる架橋導入であってもよい。   The introduction of cross-linking may be cross-linking introduction by formalization or cross-linking introduction by dialdehyde.

前記フィブリル化繊維の平均繊維径が0.5〜3μmの範囲内にあることが好ましく、前記フィブリル化繊維の平均繊維径の変動係数が20〜50%の範囲内にあることが好ましい。   The average fiber diameter of the fibrillated fibers is preferably in the range of 0.5 to 3 μm, and the variation coefficient of the average fiber diameter of the fibrillated fibers is preferably in the range of 20 to 50%.

前記フィブリル化繊維の繊維長が0.2〜3mmの範囲にあることが好ましくは、0.2〜2mmの範囲にあることがさらに好ましい。   The fiber length of the fibrillated fiber is preferably in the range of 0.2 to 3 mm, and more preferably in the range of 0.2 to 2 mm.

本発明第2の構成は、けん化度が98モル%以上のPVA単独重合体から形成され、水中溶解温度が100℃以上であり、繊度が0.1〜4デニールおよび繊維長が0.2〜3mmの範囲内にあるPVA単独重合体架橋繊維の水分散体を、150〜275MPaで高圧噴射して、水分散体同士を一点で衝突合流させることにより、PVA単独重合体繊維のフィブリル化を行うフィブリル化繊維の製造方法である。   The second configuration of the present invention is formed from a PVA homopolymer having a saponification degree of 98 mol% or more, a dissolution temperature in water of 100 ° C. or more, a fineness of 0.1 to 4 denier, and a fiber length of 0.2 to PVA homopolymer fibers are fibrillated by injecting an aqueous dispersion of PVA homopolymer crosslinked fibers within a range of 3 mm at a high pressure of 150 to 275 MPa and causing the water dispersions to collide at one point. It is a manufacturing method of fibrillated fiber.

水分散体中の繊維濃度が0.1〜3.2重量%であることが好ましい。   The fiber concentration in the aqueous dispersion is preferably 0.1 to 3.2% by weight.

水分散体の温度が40℃を超えないようにコントロールされていることが好ましい。   It is preferable that the temperature of the aqueous dispersion is controlled so as not to exceed 40 ° C.

本発明第3の構成は、前記のフィブリル化繊維を配合した湿式不織布である。   The third configuration of the present invention is a wet nonwoven fabric in which the fibrillated fiber is blended.

本発明第1の構成では、従来、フィブリル化することのできなかったPVA単独重合体繊維であってもフィブリル化することができた。これにより、セルロースやアクリロニトリルなどの他のポリマーが混合していないPVA単独重合体フィブリル化繊維から湿式不織布などの製品を得ることができ、耐アルカリ性やゴム、セメントとの接着性を有するPVA繊維の特徴を生かした用途への適用を図ることができる。   In the first configuration of the present invention, even a PVA homopolymer fiber that could not be fibrillated conventionally can be fibrillated. As a result, a product such as a wet nonwoven fabric can be obtained from a PVA homopolymer fibrillated fiber in which other polymers such as cellulose and acrylonitrile are not mixed, and the PVA fiber having alkali resistance, adhesion to rubber and cement can be obtained. It can be applied to applications that make use of its features.

本発明第2の構成では、水中溶解温度が100℃以上のPVA単独重合体架橋繊維を用い、かつ、該繊維の水分散体を高圧噴射して、高圧噴射した水分散体同士を一点で衝突合流することにより、PVA繊維が処理中に溶解することなく、フィブリル化を行うことができる。   In the second configuration of the present invention, a PVA homopolymer crosslinked fiber having a dissolution temperature in water of 100 ° C. or more is used, and an aqueous dispersion of the fiber is injected at a high pressure, and the water dispersions injected at a high pressure collide at one point. By merging, fibrillation can be performed without dissolving the PVA fiber during the treatment.

本発明第3の構成では、このようなフィブリル化繊維により、緻密で強力が増加し、保水性の大きい機能紙(湿式不織布)を得ることができる。   In the third configuration of the present invention, a functional paper (wet nonwoven fabric) having high density and high water retention can be obtained by such a fibrillated fiber.

本発明において用いられるフィブリル化処理装置の一例を示す説明図である。It is explanatory drawing which shows an example of the fibrillation processing apparatus used in this invention. フィブリル化PVA繊維の一例を示す電顕写真(倍率:1000倍)である。It is an electron micrograph (magnification: 1000 times) showing an example of fibrillated PVA fiber. フィブリル化処理前のPVA繊維の一例を示す電顕写真(倍率:1000倍)である。It is an electron micrograph (magnification: 1000 times) which shows an example of the PVA fiber before a fibrillation process.

(PVA繊維)
本発明においてフィブリル化処理を行うPVA繊維は、PVA単独重合体(例えば、粘度平均重合度:1200〜3000、けん化度:98モル%以上、好ましくは99モル%以上、さらに好ましくは、99.8モル%以上)から形成される。
PVA単独重合体を溶剤(水、有機溶剤)に溶解した紡糸原液から湿式法(芒硝凝固浴紡糸、アルカリ凝固浴紡糸)、乾式法、または湿乾式法により紡糸原糸が形成される。PVA繊維の紡糸方法としては、芒硝凝固浴紡糸繊維、アルカリ凝固浴紡糸繊維、乾式紡糸繊維、有機溶剤系繊維のいずれの紡糸方法により得られる繊維を用いることができるが、なかでも、芒硝凝固浴紡糸繊維がフィブリル化しやすく好ましい。
この紡糸原糸を、熱延伸(湿熱延伸、乾熱延伸)・固定処理し、さらに架橋処理することにより、水中溶解温度100℃以上のPVA単独重合体架橋繊維を得ることができる。
なかでも、高圧水処理する際にPVA単独重合体繊維の溶解性を低くする点で、高けん化度(99.9モル%)のPVAを用いて繊維を形成して、繊維中に架橋を導入した繊維にすることが好ましい。
(PVA fiber)
In the present invention, the PVA fiber subjected to the fibrillation treatment is a PVA homopolymer (for example, viscosity average polymerization degree: 1200 to 3000, saponification degree: 98 mol% or more, preferably 99 mol% or more, more preferably 99.8 Mol% or more).
A spinning yarn is formed from a spinning solution obtained by dissolving a PVA homopolymer in a solvent (water, organic solvent) by a wet method (sodium salt coagulation bath spinning, alkali coagulation bath spinning), a dry method, or a wet-dry method. As a spinning method of PVA fiber, a fiber obtained by any one of spinning methods, such as salt cake coagulation bath spinning fiber, alkali coagulation bath spinning fiber, dry spinning fiber, and organic solvent fiber, can be used. The spun fiber is preferable because it is easily fibrillated.
A PVA homopolymer crosslinked fiber having a dissolution temperature in water of 100 ° C. or higher can be obtained by subjecting the spinning yarn to heat drawing (wet heat drawing, dry heat drawing) / fixing treatment and further crosslinking treatment.
Among these, in order to reduce the solubility of PVA homopolymer fibers during high-pressure water treatment, fibers are formed using PVA having a high saponification degree (99.9 mol%), and crosslinking is introduced into the fibers. It is preferable to make the fiber.

(架橋処理)
本発明において、フィブリル化処理を行う繊維として、紡糸延伸熱固定後(未アセタール化)、さらに架橋処理[ホルマール化、ジアルデヒド(グリオギザール、グルタルアルデヒドなど)によるアセタール化によるPVAの改質処理]を行った繊維を用いることが必要である。架橋の導入により、フィブリル化処理時におけるPVAの溶出が抑えることができる。
(Crosslinking treatment)
In the present invention, as a fiber to be subjected to fibrillation treatment, after spin-drawing heat setting (non-acetalization), further crosslinking treatment [formalization, PVA modification treatment by acetalization with dialdehyde (gliogizar, glutaraldehyde, etc.)] It is necessary to use the fiber which performed. By introducing cross-linking, elution of PVA during fibrillation treatment can be suppressed.

(繊度)
PVA単独重合体繊維における単繊維の繊度としては、特に限定されないが、出発原料繊維の単繊度が小さいほど、フィブリル化後の繊度も小さくなることから、例えば0.1〜4デニール(好ましくは、0.2〜3デニール)の範囲内から適宜選択されるのが好ましい。上記の繊度よりも小さい繊維は繊維製造が難しくなり、また繊度が大きすぎると、フィブリル化後の繊維の繊度が大きく、緻密な湿式不織布が得にくくなる傾向にある。
(Fineness)
The fineness of the single fiber in the PVA homopolymer fiber is not particularly limited. However, the smaller the single fineness of the starting raw material fiber is, the smaller the fineness after fibrillation is. For example, 0.1 to 4 denier (preferably, It is preferably selected from the range of 0.2 to 3 denier). Fibers smaller than the above-mentioned fineness are difficult to produce, and if the fineness is too large, the fineness of the fibers after fibrillation tends to be high, and a dense wet nonwoven fabric tends to be difficult to obtain.

(繊維長)
PVA繊維の繊維束をカッターにより例えば0.2〜3mm(好ましくは、0.5〜2mm)の長さにカットして、フィブリル化処理を行うための原料繊維が調整される。繊維長が長すぎると、処理装置内で分散液を噴射するノズル詰まりが起こりやすくなる傾向にあり、また、繊維長が短すぎると湿式不織布の強度が出にくくなるおそれがある。
(Fiber length)
A fiber bundle of PVA fibers is cut to a length of, for example, 0.2 to 3 mm (preferably 0.5 to 2 mm) by a cutter, and a raw fiber for performing a fibrillation treatment is adjusted. If the fiber length is too long, nozzle clogging for injecting the dispersion in the processing apparatus tends to occur, and if the fiber length is too short, the strength of the wet nonwoven fabric may be difficult to obtain.

(PVA単独重合体架橋繊維の水分散体の調整)
上記の繊維長にカットしたPVA単独重合体架橋繊維を、常法により、0.1〜5重量%、好ましくは0.1〜3.2重量%濃度で水に分散させたPVA単独重合体繊維の水分散体を調整する。繊維濃度が低すぎると所定の繊維量を処理するには効率が悪くなり、繊維濃度が高すぎるとスラリーの流動性が低下して、オリフィスノズルに詰まり処理できなくなる。
(Adjustment of aqueous dispersion of PVA homopolymer crosslinked fiber)
PVA homopolymer fiber obtained by dispersing the above-mentioned PVA homopolymer crosslinked fiber cut to the fiber length in water at a concentration of 0.1 to 5% by weight, preferably 0.1 to 3.2% by weight. Adjust the water dispersion. If the fiber concentration is too low, the efficiency for processing a predetermined amount of fiber is deteriorated. If the fiber concentration is too high, the fluidity of the slurry is lowered and the orifice nozzle cannot be clogged.

(フィブリル化処理)
フィブリル化処理は、前記水分散体を、高圧噴射流を利用して衝突させることにより行うことができる。例えば、このような処理を行うことのできる装置として、(株)スギノマシンが開発した高圧噴射を用いたスターバースト処理装置が挙げられる。
この処理装置を用いて、上記のPVA単独重合体架橋繊維の水分散体を、対向配置した二つのオリフィスノズル(ノズル径:0.1〜0.8mm)より高圧噴射(例えば、高圧噴射の圧力:150〜275MPa、噴射速度:440〜700m/s)して、水分散体同士を一点で衝突合流させることにより、水分散体中のPVA単独重合体架橋繊維のフィブリル化が始まる。そして、衝突合流させた水分散体は回収され、再度オリフィスノズルより分散流体同士を一点で衝突合流させる。この操作を20〜100回程度(好ましくは、30〜80回、さらに好ましくは40〜60回程度)繰り返すことによりフィブリル化が行われる。繰り返し回数が少なすぎるとフィブリル化が不十分となり、繰り返し回数を増加しすぎてもそれ以上のフィブリル化は進まず、一方では装置の生産性が低下する。
なお、前記架橋繊維の水分散体をオリフィスノズルから衝突用硬質体(セラミック製または金属製のボール状体または平板状体)に衝突させてもフィブリル化は可能である。
(Fibrillation treatment)
The fibrillation treatment can be performed by causing the water dispersion to collide using a high-pressure jet flow. For example, an apparatus capable of performing such processing includes a starburst processing apparatus using high-pressure injection developed by Sugino Machine Co., Ltd.
Using this processing apparatus, the aqueous dispersion of the above-mentioned PVA homopolymer crosslinked fiber is injected at high pressure (for example, pressure of high pressure injection) from two orifice nozzles (nozzle diameter: 0.1 to 0.8 mm) arranged opposite to each other. : 150 to 275 MPa, jetting speed: 440 to 700 m / s), and the aqueous dispersions collide and join at one point, whereby fibrillation of the PVA homopolymer crosslinked fiber in the aqueous dispersion starts. Then, the collided and joined water dispersion is recovered, and the dispersed fluids are again collided and joined at one point from the orifice nozzle. Fibrilization is performed by repeating this operation about 20 to 100 times (preferably about 30 to 80 times, more preferably about 40 to 60 times). If the number of repetitions is too small, fibrillation becomes insufficient, and even if the number of repetitions is increased too much, further fibrillation does not proceed, but on the other hand, the productivity of the apparatus decreases.
It is to be noted that fibrillation is possible even when the water dispersion of the cross-linked fiber is collided with an impact hard body (ceramic or metal ball or flat body) from an orifice nozzle.

(フィブリル化処理装置)
本発明で使用するフィブリル化処理装置の一例を図1に示す。図1に示されるフィブリル化処理装置14において、水分散体(分散液)30が入口22から流路24a,24aを通って供給され、この水分散体30をオリフィスノズル26a,26aから上記の噴射圧力で噴射する。オリフィスノズル26a,26aから噴射された高圧噴射流の噴射方向は、例えば、内壁面が平滑面に形成されたチャンバ28に貯留された水分散体30の液面に交差する方向とし、両高圧噴射流がチャンバ28に貯留された水分散体30の液面上で衝突合流するように、オリフィスノズル26a,26aの向きを調整するのが好ましい。このチャンバ28に貯留された水分散体は、オリフィスノズル26a,26aからの高圧噴射流の衝突合流によって生成するPVA単独重合体架橋繊維のフィブリル化物を含む水分散体30である。更に、チャンバ28からの水分散体(分散液)30の排出量を調整して、チャンバ28内に水分散体(分散液)30を貯留するとともに、供給タンクに貯留されている分散液をスターバースト処理装置14に供給するとともに、チャンバ28の分散液30及び処理済タンク内の分散液30を供給タンクに戻し、供給タンクから分散液30として、再度、オリフィスノズル26a,26aの各々から噴射することによって、水分散体中のPVA単独重合体架橋繊維に対し繰り返して高圧噴射流の衝突合流の衝撃を与える。かかる高圧噴射流の衝突合流の衝撃を、PVA単独重合体架橋繊維に対して上記のように例えば20〜100回程度与えるのが好ましい。
(Fibrilization processing equipment)
An example of the fibrillation apparatus used in the present invention is shown in FIG. In the fibrillation processing apparatus 14 shown in FIG. 1, an aqueous dispersion (dispersion) 30 is supplied from an inlet 22 through flow paths 24a and 24a, and the aqueous dispersion 30 is injected from the orifice nozzles 26a and 26a to the above-described jet. Inject with pressure. The injection direction of the high-pressure injection flow injected from the orifice nozzles 26a and 26a is, for example, a direction in which the inner wall surface intersects the liquid level of the water dispersion 30 stored in the chamber 28 having a smooth surface, and both high-pressure injections It is preferable to adjust the orientation of the orifice nozzles 26 a and 26 a so that the flow collides and merges on the liquid level of the water dispersion 30 stored in the chamber 28. The aqueous dispersion stored in the chamber 28 is an aqueous dispersion 30 containing a fibrillated product of PVA homopolymer cross-linked fibers generated by collision joining of high-pressure jets from the orifice nozzles 26a and 26a. Further, the discharge amount of the water dispersion (dispersion) 30 from the chamber 28 is adjusted to store the water dispersion (dispersion) 30 in the chamber 28 and to start the dispersion stored in the supply tank. While supplying to the burst processing apparatus 14, the dispersion liquid 30 in the chamber 28 and the dispersion liquid 30 in the processed tank are returned to the supply tank, and the dispersion liquid 30 is again sprayed from each of the orifice nozzles 26a and 26a as the dispersion liquid 30. Thus, the impact of the high-pressure jet collision is repeatedly applied to the PVA homopolymer crosslinked fiber in the aqueous dispersion. It is preferable to give the impact of such high-pressure jet collision to the PVA homopolymer crosslinked fiber, for example, about 20 to 100 times as described above.

このノズル26a,26aから噴射された高圧噴射流の噴射軌跡は、チャンバ28内に貯留された溶液30の液面と交差する方向である。ノズル26a,26aから高圧噴射流を噴射するには、ノズル26a,26aからの高圧噴射流の噴射方向を、高圧噴射流の噴射軌跡と高圧噴射流の衝突合流点からチャンバ28内に貯留した溶液30の液面に下ろした垂線との成す液面方向の噴射角度θ1,θ2が鈍角となるように調整することが好ましい。かかる噴射角度θ1,θ2を同一とすることによって、ノズル26a,26aの噴射方向の調整を容易に行うことができる。 The injection trajectory of the high-pressure injection flow injected from the nozzles 26 a and 26 a is a direction that intersects the liquid level of the solution 30 stored in the chamber 28. In order to inject a high-pressure injection flow from the nozzles 26a, 26a, the injection direction of the high-pressure injection flow from the nozzles 26a, 26a is the solution stored in the chamber 28 from the injection trajectory of the high-pressure injection flow and the collision confluence of the high-pressure injection flow. It is preferable to adjust so that the injection angles θ 1 and θ 2 in the liquid surface direction formed by the perpendicular line 30 to the liquid surface become obtuse. By making the injection angles θ 1 and θ 2 the same, the injection direction of the nozzles 26a and 26a can be easily adjusted.

高圧噴射流の衝突の繰り返しにより、分散液の温度が上昇して60〜70℃にもなる場合があり、PVA繊維の一部溶出のおそれがある。そこで、供給タンク内の分散液は、供給タンクを水冷により冷却し、分散液の温度が40℃、好ましくは30℃を超えないようにコントロールされていることが、分散液温度の上昇によりPVA繊維の溶解を防ぐことができることから好ましい。   Due to the repeated collision of the high-pressure jet flow, the temperature of the dispersion liquid may increase to 60 to 70 ° C., and there is a risk of partial elution of the PVA fibers. Therefore, the dispersion liquid in the supply tank is cooled so that the supply tank is cooled with water, and the temperature of the dispersion liquid is controlled so as not to exceed 40 ° C, preferably 30 ° C. It is preferable because dissolution of the can be prevented.

フィブリル化繊維の繊維径については、噴射時の高圧噴射の水圧、パス回数、繊維濃度を選ぶことにより変化させることができるが、例えば、繊維濃度0.8〜1.6%、水圧200〜275MPa、パス回数30回により、繊維径1.6〜1.8μmのフィブリル化繊維が得られ、パス回数50回により、繊維径1.3〜1.5μmのフィブリル化繊維を得ることができる。   The fiber diameter of the fibrillated fiber can be changed by selecting the water pressure of the high-pressure jet at the time of jetting, the number of passes, and the fiber concentration. For example, the fiber concentration is 0.8 to 1.6%, and the water pressure is 200 to 275 MPa. A fibrillated fiber having a fiber diameter of 1.6 to 1.8 μm can be obtained by 30 passes, and a fibrillated fiber having a fiber diameter of 1.3 to 1.5 μm can be obtained by 50 passes.

(PVA単独重合体架橋繊維のフィブリル化)
本発明においてフィブリル化とは、処理した繊維の中に含まれる少なくとも1本の単繊維が繊維軸の平行方向に分離して微細繊維になることを意味する。
本発明により得られるフィブリル化繊維は、通常、平均繊維径0.5〜3μm、繊維径の変動係数20〜50%であり、湿式不織布形成に好適なフィブリル化したポリビニルアルコール繊維を得ることができる。
(Fibrillation of PVA homopolymer crosslinked fiber)
In the present invention, fibrillation means that at least one single fiber contained in the treated fiber is separated in the direction parallel to the fiber axis to become a fine fiber.
The fibrillated fiber obtained by the present invention usually has an average fiber diameter of 0.5 to 3 μm and a fiber diameter variation coefficient of 20 to 50%, and a fibrillated polyvinyl alcohol fiber suitable for wet nonwoven fabric formation can be obtained. .

(湿式不織布形成)
湿式不織布を形成する場合には、例えば、上記のフィブリル化繊維を主体繊維として、また、必要に応じて上記のフィブリル化繊維に通常のポリビニルアルコール系主体繊維、パルプ等のセルロース繊維等を加え、さらに、ビニルアルコール系バインダーを加えて、抄紙法により湿式不織布が形成される。
本発明において用いられるPVA繊維は、水中溶解温度が100℃以上の、PVA繊維としては、高延伸された緻密な繊維構造を有する繊維である。従来の方法では、このようなPVA繊維(主体繊維)は、PVAバインダー繊維(水中溶解温度80℃以下)が少量配合されて抄紙され、湿式不織布が形成されていた。従来の方法では、主体繊維であるPVA繊維は、バインダー繊維の溶解により繊維間が接着されて、湿式不織布が形成されていたが、本発明に係るフィブリル化PVA繊維の場合には、バインダー繊維の溶解による繊維間の接着に加えて、フィブリル化により主体繊維間に形成される絡合が加わるため、より緻密な湿式不織布を形成することができる。
(Wet non-woven fabric formation)
In the case of forming a wet nonwoven fabric, for example, the fibrillated fiber as a main fiber, and if necessary, a normal polyvinyl alcohol-based main fiber, cellulose fibers such as pulp, etc. are added to the fibrillated fiber. Further, a wet non-woven fabric is formed by a papermaking method with the addition of a vinyl alcohol binder.
The PVA fiber used in the present invention is a fiber having a high-stretched dense fiber structure as a PVA fiber having a dissolution temperature in water of 100 ° C. or higher. In the conventional method, such PVA fibers (main fibers) are made by making a small amount of PVA binder fibers (dissolving temperature in water of 80 ° C. or less) and making a paper to form a wet nonwoven fabric. In the conventional method, the PVA fiber as the main fiber is bonded between the fibers by dissolution of the binder fiber to form a wet nonwoven fabric. However, in the case of the fibrillated PVA fiber according to the present invention, In addition to adhesion between fibers by dissolution, entanglement formed between the main fibers by fibrillation is added, so that a denser wet nonwoven fabric can be formed.

(バインダー繊維の使用)
本発明の湿式不織布形成に用いられるバインダーとしては、耐電解液性、吸液性の点からポリビニルアルコール系バインダーが好適に用いられる。形態としては、繊維状、粉末状、溶液状のものがあるが、湿式抄造によってセパレーターを抄造する場合は、繊維状バインダーが好ましい。
ポリビニルアルコール系バインダー繊維の水中溶解温度としては、60〜90℃が好ましく、さらに好ましくは70〜90℃である。また、粘度平均重合度は500〜3000程度、けん化度97〜99モル%のポリビニルアルコール系ポリマーから構成され、紡糸後の未延伸繊維であるか、軽度熱延伸繊維が好適に使用される。
(Use of binder fiber)
As the binder used for forming the wet nonwoven fabric of the present invention, a polyvinyl alcohol-based binder is preferably used from the viewpoint of resistance to electrolytic solution and liquid absorption. Although there are fibrous, powdery, and solution-like forms, a fibrous binder is preferred when the separator is made by wet papermaking.
The dissolution temperature of the polyvinyl alcohol-based binder fiber in water is preferably 60 to 90 ° C, more preferably 70 to 90 ° C. Further, it is composed of a polyvinyl alcohol polymer having a viscosity average degree of polymerization of about 500 to 3000 and a saponification degree of 97 to 99 mol%, and unspun fibers after spinning or lightly stretched fibers are preferably used.

(用途)
本発明に係るフィブリル化ポリビニルアルコール繊維が配合された湿式不織布は、
緻密性、遮蔽性、耐アルカリ性、不透明性、拭取り性、吸水性、吸油性、透湿性、保温性、耐候性、高強度、高引裂力、耐摩耗性、制電性、ドレープ性、染色性、安全性等に極めて優れるため、アルカリ電池セパレーター紙、エアフィルター、バグフィルター、液体フィルター等の各種フィルター用シート、コンデンサー紙、フロッピー(登録商標)ディスク包材等の各種電気器材用シート、FRPサーフェーサー、粘着テープ基布、吸油材、製紙フェルト等の各種工業用シート、家庭・業務・医療用ワイパー、印刷ロール用ワイパー、複写機クリーニング用ワイパー、光学機器用ワイパー等の各種ワイパー用シート、手術衣・ガウン、覆布、キャップ、マスク、シーツ、タオル、ガーゼ、バップ剤基布、おむつ、おむつライナー、おむつカバー、絆創膏基布、おしぼり、ティッシュ等の各種医療・衛材用シート、芯地、パット、ジャンバーライナー、ディスポ下着等の各種衣料用シート、人工・合成皮革基布、テーブルトップ、壁紙、障子紙、ブラインド、カレンダー、ラッピング、カイロ・乾燥剤袋、買物袋、風呂敷、スーツカバー、枕カバー等の各種生活資材用シート、寒冷紗、内張カーテン、べたがけ、遮光・防草シート、農薬包装材、育苗ポット下敷き紙等の各種農業用シート、防煙・防塵マスク、実験着、防塵服等の各種防護用シート、ハウスラップ、ドレン材、濾過材、分離材、オーバーレイ、ルーフィング、タフト・カーペット基布、結露防止シート、壁装材、防音・防振シート、木質ボード、養生シート等の各種土木建築用シート、フロアー・トランクマット、天井成型材、ヘッドレスト、内張布等の各種車輛内装材用シート等の用途に用いることができる。また、本発明の繊維を、無機微粒子と分散撹拌するとフィブリル化し、微粒子捕捉性と補強性に優れ、しかも耐熱難燃性に優れたフィブリルを得ることができ、摩擦材として有用である。またこのフィブリルをセメントに混合分散させると、セメント粒子の捕捉性に優れ、しかも補強性もあるので、高強度スレート板を容易に得ることができる。
(Use)
The wet nonwoven fabric blended with the fibrillated polyvinyl alcohol fiber according to the present invention,
Dense, shielding, alkali resistance, opacity, wiping, water absorption, oil absorption, moisture permeability, heat retention, weather resistance, high strength, high tearing force, wear resistance, antistatic, drape, dyeing Sheets for various electrical equipment such as alkaline battery separator paper, air filters, bag filters, liquid filters, condenser paper, floppy disk registration materials, FRP, etc. Various industrial sheets such as surfacer, adhesive tape base, oil absorbent, paper felt, various wiper sheets such as household / business / medical wiper, wiper for printing roll, wiper for copier cleaning, wiper for optical device, operation Clothes / gowns, cover cloths, caps, masks, sheets, towels, gauze, dressing base cloth, diapers, diaper liners, diaper bagsー, Various plaster bases, towels, tissue and other medical and hygiene sheets, interlining, pads, jumper liners, disposable underwear and other clothing sheets, artificial and synthetic leather bases, table tops, wallpaper, shoji paper , Blinds, calendars, wrapping, warmers / desiccant bags, shopping bags, furoshiki, suit covers, pillow covers, etc., sheets for daily life, chills, lining curtains, bedding, shading / anti-weed sheets, pesticide packaging materials, Various agricultural sheets such as nursery pot underlay paper, smoke / dust masks, experimental clothes, various protective sheets such as dust proof clothes, house wrap, drain material, filter material, separation material, overlay, roofing, tufted carpet base fabric , Anti-condensation sheets, wall coverings, sound / vibration-proof sheets, wooden boards, curing sheets such as curing sheets, floor trunk mats, Well molding material, head rest, can be used in applications of various vehicles interior materials for sheets or the like of the lining cloth. Further, when the fiber of the present invention is dispersed and stirred with inorganic fine particles, the fibers are fibrillated, and fibrils excellent in fine particle capturing and reinforcing properties and excellent in heat and flame resistance can be obtained, and are useful as friction materials. Further, when this fibril is mixed and dispersed in cement, it has excellent cement particle scavenging properties and also has reinforcing properties, so that a high-strength slate plate can be easily obtained.

以下、実施例によりさらに本発明を具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(水中溶解温度の測定)
繊維サンプルに500mg/drの重りをつるした状態で水中に浸漬し、1℃/分の昇温速度で昇温した際に繊維サンプルが破断した温度を観測し、該温度を水中溶解温度として求めた。
(Measurement of dissolution temperature in water)
The fiber sample is immersed in water with a weight of 500 mg / dr suspended, the temperature at which the fiber sample breaks when the temperature is raised at a rate of 1 ° C./min, and the temperature is determined as the dissolution temperature in water. It was.

(平均繊維径の測定)
電子顕微鏡((株)日立製作所製:S−340N)により倍率1000倍で撮影した風乾後の繊維塊の表面の拡大写真を10枚以上撮影し、無作為に写真ごとに15本以上の繊維を選び、それらの繊維径を測定する。すべての写真の平均値を求めて平均繊維径とした。
(Measurement of average fiber diameter)
Take 10 or more magnified photographs of the surface of the fiber mass after air-drying taken with an electron microscope (manufactured by Hitachi, Ltd .: S-340N) at a magnification of 1000 times. Randomly capture 15 or more fibers for each photograph. Select and measure their fiber diameter. The average value of all photographs was determined and used as the average fiber diameter.

(実施例1〜2)
繊度0.3デニール(平均繊維径5μm)、繊維長1mm、水中溶解温度100℃以上のPVA繊維[けん化度99.9モル%、粘度平均重合度1750のPVA単独重合体を水に溶解した紡糸原液を芒硝凝固浴中で凝固させ、熱延伸(湿熱延伸→乾熱延伸)・熱固定・ホルマール化(FA化)(ホルマール化度:27モル%)して形成]について、スターバースト処理装置(スギノマシン社製、スターバースト70)を用いて、表1に示す条件でフィブリル化処理を行った。表1において、パス回数50回とは、表1に示す繊維濃度の水分散体を二つのオリフィスノズルから噴射・衝突を50回行ったことを示している。
なお、水分散体の温度は、供給タンクを水冷により冷却することにより、30℃を超えないようにコントロールして行った。
(Examples 1-2)
PVA fiber having a fineness of 0.3 denier (average fiber diameter of 5 μm), fiber length of 1 mm, and a dissolution temperature in water of 100 ° C. or higher [spinning in which a PVA homopolymer having a saponification degree of 99.9 mol% and a viscosity average polymerization degree of 1750 is dissolved in water. The stock solution is solidified in a sodium sulfate coagulation bath and formed by hot drawing (wet heat drawing → dry heat drawing), heat setting, formalization (FA) (formalization degree: 27 mol%)] Using a starburst 70) manufactured by Sugino Machine, fibrillation treatment was performed under the conditions shown in Table 1. In Table 1, the number of passes of 50 means that the aqueous dispersion having the fiber concentration shown in Table 1 was jetted and collided 50 times from two orifice nozzles.
The temperature of the aqueous dispersion was controlled so as not to exceed 30 ° C. by cooling the supply tank by water cooling.

(比較例1〜5)
表1に示すように、繊度0.3デニール、繊維長1mmまたは5mm、水中溶解温度96℃または100℃以上の繊維を用いた。水中溶解度が100℃以上の繊維は、実施例1〜2と同じホルマール化された繊維である。比較例1で用いられた水中溶解度が96℃の繊維は、熱延伸・固定後の未アセタール化物である。
比較例1、比較例4〜5では、実施例1〜2と同じ高圧水流を用いた。比較例2では、
リファイナ(ワルドロン型ディスクリファイナー:(株)東洋精機製作所)、比較例3ではビーター(タッピ−スタンダードナイヤガラ試験ビーター:(株)安田精機製作所製)を用いてフィブリル化を試みた。
(Comparative Examples 1-5)
As shown in Table 1, fibers having a fineness of 0.3 denier, a fiber length of 1 mm or 5 mm, and a water dissolution temperature of 96 ° C. or 100 ° C. or higher were used. The fiber having a solubility in water of 100 ° C. or higher is the same formalized fiber as in Examples 1 and 2. The fiber having a water solubility of 96 ° C. used in Comparative Example 1 is an unacetalized product after hot drawing and fixing.
In Comparative Example 1 and Comparative Examples 4 to 5, the same high-pressure water flow as in Examples 1 and 2 was used. In Comparative Example 2,
Fibrilization was attempted using a refiner (Waldron type disc refiner: Toyo Seiki Seisakusho Co., Ltd.) and Comparative Example 3 using a beater (Tappy Standard Niagara Test Beater: Yasuda Seiki Seisakusho Co., Ltd.).

(実験結果)
(1)水中溶解温度96℃のPVA繊維の場合(比較例1)、スターバースト処理中に繊維が溶解した。
(2)処理装置として、リファイナ―(比較例2)、ビーター(比較例3)を用いた場合には、フィブリル化しなかった。
(3)水圧245MPaで、繊維濃度0.8重量%の場合(比較例4)も、3.2%重量の場合(比較例5)も、繊維長が5mmではノズル詰まりを生じた。
(4)実施例1〜2において、繊度0.3デニール(繊維径:5μm)の原料繊維をフィブリル化処理して、フィブリル化処理後の平均繊維径は、それぞれ1.4μm、1.5μmであった。
(Experimental result)
(1) In the case of PVA fiber having a dissolution temperature in water of 96 ° C. (Comparative Example 1), the fiber was dissolved during the starburst treatment.
(2) When a refiner (Comparative Example 2) or a beater (Comparative Example 3) was used as the processing apparatus, it was not fibrillated.
(3) Nozzle clogging occurred at a fiber length of 5 mm in both cases where the water pressure was 245 MPa and the fiber concentration was 0.8% by weight (Comparative Example 4) and 3.2% by weight (Comparative Example 5).
(4) In Examples 1 and 2, raw fiber having a fineness of 0.3 denier (fiber diameter: 5 μm) was fibrillated, and the average fiber diameter after fibrillation was 1.4 μm and 1.5 μm, respectively. there were.

(処理後のフィブリル化繊維の繊維径分布)
実施例1で処理されたフィブリル化繊維から、11サンプルを採取して、個々のサンプルについて繊維径の平均値(個々のサンプルについて、14〜23個のデータを採取して平均値を算出した)、最大値、最小値、変動係数を求めた結果を表2に示した。なお、サンプルの採取は、スラリーの固形分をピンセットで行った。
得られた結果は、繊度の平均値:1.39μm(最小値:0.56μm、最大値:2.81μm、変動係数:28.5%)であった。
処理前の繊維径が5μmであることを考慮すると、フィブリル化されていることは明らかである。
本実施例では、フィブリル化繊維の変動係数が、28.5%であることにより、均一性の高いフィブリル化繊維が得られたことがわかる。しかも、従来技術では達成されなかった、ポリビニルアルコールの単独重合体架橋繊維から形成されたフィブリル化繊維として得られた。
(Fiber diameter distribution of fibrillated fibers after treatment)
Eleven samples were collected from the fibrillated fibers treated in Example 1, and the average value of the fiber diameter of each sample (14 to 23 data was collected for each sample, and the average value was calculated). Table 2 shows the results obtained for the maximum value, minimum value, and coefficient of variation. The sample was collected by tweezers using the solid content of the slurry.
The obtained result was an average value of fineness: 1.39 μm (minimum value: 0.56 μm, maximum value: 2.81 μm, coefficient of variation: 28.5%).
Considering that the fiber diameter before treatment is 5 μm, it is clear that the fiber is fibrillated.
In this example, it can be seen that the fibrillated fiber having high uniformity was obtained when the variation coefficient of the fibrillated fiber was 28.5%. And it was obtained as a fibrillated fiber formed from a homopolymer crosslinked fiber of polyvinyl alcohol, which was not achieved by the prior art.

Figure 2016030862
Figure 2016030862


Figure 2016030862
Figure 2016030862

フィブリル化した繊維(実施例1)の電子顕微鏡断面写真を図2に、フィブリル化処理前の繊維の電子顕微鏡写真を図3に示した。図3と比較して図2を見ると、フィブリル化により繊維が分裂するとともに屈曲していることがわかる。   An electron microscope cross-sectional photograph of the fibrillated fiber (Example 1) is shown in FIG. 2, and an electron micrograph of the fiber before the fibrillation treatment is shown in FIG. When comparing FIG. 2 with FIG. 3, it can be seen that the fibers are split and bent due to fibrillation.

通気度が10cc/cm/secのフィブリル化したセルロースで構成された緻密な紙の一部を上記のフィブリル化したPVA繊維に置き換えても同様の通気度を示す緻密なサンプルとなった。 Even when a part of a dense paper composed of fibrillated cellulose having an air permeability of 10 cc / cm 2 / sec was replaced with the fibrillated PVA fiber, a dense sample showing the same air permeability was obtained.

本発明により、ポリビニルアルコール単独重合体から形成された、水中溶解温度が100℃以上のポリビニルアルコール単独重合体架橋繊維からフィブリル化繊維を得ることが可能になった。このフィブリル化繊維は、新たな湿式不織布などへの利用可能性があるので、産業上の利用可能性がある。   According to the present invention, fibrillated fibers can be obtained from polyvinyl alcohol homopolymer crosslinked fibers formed from a polyvinyl alcohol homopolymer and having a dissolution temperature in water of 100 ° C. or higher. This fibrillated fiber has industrial applicability because it can be used for new wet nonwoven fabrics and the like.

以上の通り、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲に含まれる。   As described above, the preferred embodiments of the present invention have been described, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention. Therefore, such a thing is also included in the scope of the present invention.

14 フィブリル化処理装置
15 配管
20 本体部
22 入口
24a 流路
26a オリフィスノズル
28 チャンバ
30 水分散体
θ1、θ2 噴射角度
DESCRIPTION OF SYMBOLS 14 Fibrilization processing apparatus 15 Piping 20 Main body part 22 Inlet 24a Flow path 26a Orifice nozzle 28 Chamber 30 Water dispersion body θ1, θ2 Injection angle

Claims (9)

けん化度が98モル%以上のポリビニルアルコール単独重合体の繊維に架橋が導入された、水中溶解温度が100℃以上のポリビニルアルコール単独重合体架橋繊維をフィブリル化しているフィブリル化繊維。   A fibrillated fiber in which cross-linking is introduced into a fiber of a polyvinyl alcohol homopolymer having a saponification degree of 98 mol% or more, and a polyvinyl alcohol homopolymer cross-linked fiber having a water dissolution temperature of 100 ° C or higher is fibrillated. 前記架橋の導入が、ホルマール化による架橋導入である請求項1に記載のフィブリル化繊維。   The fibrillated fiber according to claim 1, wherein the introduction of the crosslinking is introduction of crosslinking by formalization. 前記架橋の導入が、ジアルデヒドによる架橋導入である請求項1に記載のフィブリル化繊維。   The fibrillated fiber according to claim 1, wherein the introduction of the crosslinking is introduction of crosslinking by dialdehyde. 前記フィブリル化繊維の平均繊維径が0.5〜3μmの範囲内にある請求項1〜3のいずれか一項に記載のフィブリル化繊維。   The fibrillated fiber according to any one of claims 1 to 3, wherein an average fiber diameter of the fibrillated fiber is in a range of 0.5 to 3 µm. 前記フィブリル化繊維の平均繊維径の変動係数が20〜50%の範囲内にある請求項1〜4のいずれか一項に記載のフィブリル化繊維。   The fibrillated fiber according to any one of claims 1 to 4, wherein a variation coefficient of an average fiber diameter of the fibrillated fiber is in a range of 20 to 50%. けん化度が98モル%以上のポリビニルアルコール単独重合体から形成され、水中溶解温度が100℃以上であり、繊度が0.1〜4デニールおよび繊維長が0.2〜3mmの範囲内にあるポリビニルアルコール単独重合体架橋繊維の水分散体を、150〜275MPaで高圧噴射して、水分散体同士を一点で衝突合流させることにより、ポリビニルアルコール単独重合体架橋繊維をフィブリル化するフィブリル化繊維の製造方法。   Polyvinyl alcohol formed from a polyvinyl alcohol homopolymer having a saponification degree of 98 mol% or more, a dissolution temperature in water of 100 ° C. or more, a fineness of 0.1 to 4 denier, and a fiber length of 0.2 to 3 mm. Manufacture of fibrillated fibers for fibrillating polyvinyl alcohol homopolymer crosslinked fibers by injecting an aqueous dispersion of alcohol homopolymer crosslinked fibers at a high pressure of 150 to 275 MPa and causing the water dispersions to collide at one point. Method. 水分散体中の繊維濃度が0.1〜3.2重量%である請求項6に記載のフィブリル化繊維の製造方法。   The method for producing fibrillated fibers according to claim 6, wherein the fiber concentration in the aqueous dispersion is 0.1 to 3.2% by weight. 水分散体の温度が40℃を超えないようにコントロールされている請求項6または7に記載のフィブリル化繊維の製造方法。   The method for producing a fibrillated fiber according to claim 6 or 7, wherein the temperature of the aqueous dispersion is controlled so as not to exceed 40 ° C. 請求項1〜5のいずれか一項に記載のフィブリル化繊維を配合した湿式不織布。

The wet nonwoven fabric which mix | blended the fibrillated fiber as described in any one of Claims 1-5.

JP2014152711A 2014-07-28 2014-07-28 Fibrilized fiber and method for producing the same Active JP6383595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014152711A JP6383595B2 (en) 2014-07-28 2014-07-28 Fibrilized fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014152711A JP6383595B2 (en) 2014-07-28 2014-07-28 Fibrilized fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016030862A true JP2016030862A (en) 2016-03-07
JP6383595B2 JP6383595B2 (en) 2018-08-29

Family

ID=55441430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014152711A Active JP6383595B2 (en) 2014-07-28 2014-07-28 Fibrilized fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP6383595B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003936A1 (en) * 2016-06-30 2018-01-04 株式会社クラレ Separator for capacitor
WO2018123891A1 (en) * 2016-12-28 2018-07-05 株式会社クラレ Fibrillated polyvinyl alcohol fiber and production method therefor
JP2019194369A (en) * 2018-04-30 2019-11-07 日本バイリーン株式会社 Extra fine short fiber and composite comprising extra short fibers dispersed in resin composition
CN112871122A (en) * 2020-12-31 2021-06-01 哈尔滨工业大学 Reaction kettle for preparing nano silicon modified steel fibers in large batch and preparation method
CN114875716A (en) * 2022-04-12 2022-08-09 株洲时代新材料科技股份有限公司 Capacitor paper and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120107A (en) * 1986-11-05 1988-05-24 Toray Ind Inc High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPH08218271A (en) * 1995-02-10 1996-08-27 Kuraray Co Ltd High-strength polyvinyl alcohol-based fiber excellent in moist heat resistance and its production
JPH09170115A (en) * 1995-10-18 1997-06-30 Kuraray Co Ltd Easily fibrillating fiber and its production
EP1457591A1 (en) * 2003-03-10 2004-09-15 Kuraray Co., Ltd. Polyvinyl alcohol fibers, and nonwoven fabric comprising them
JP2004293027A (en) * 2003-03-10 2004-10-21 Kuraray Co Ltd Polyvinyl alcohol fiber, and nonwoven fabric comprising the same
WO2008149583A1 (en) * 2007-06-07 2008-12-11 Kuraray Co., Ltd. Resin-impregnated plane paper and pressure-sensitive adhesive tape employing the same
WO2010143722A1 (en) * 2009-06-12 2010-12-16 三菱化学株式会社 Modified cellulose fiber and cellulose complex comprising same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120107A (en) * 1986-11-05 1988-05-24 Toray Ind Inc High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPH08218271A (en) * 1995-02-10 1996-08-27 Kuraray Co Ltd High-strength polyvinyl alcohol-based fiber excellent in moist heat resistance and its production
JPH09170115A (en) * 1995-10-18 1997-06-30 Kuraray Co Ltd Easily fibrillating fiber and its production
EP1457591A1 (en) * 2003-03-10 2004-09-15 Kuraray Co., Ltd. Polyvinyl alcohol fibers, and nonwoven fabric comprising them
CN1530474A (en) * 2003-03-10 2004-09-22 �����ɷ� Polyvinyl acetal fibre and nonwoven cloth containing it
JP2004293027A (en) * 2003-03-10 2004-10-21 Kuraray Co Ltd Polyvinyl alcohol fiber, and nonwoven fabric comprising the same
WO2008149583A1 (en) * 2007-06-07 2008-12-11 Kuraray Co., Ltd. Resin-impregnated plane paper and pressure-sensitive adhesive tape employing the same
WO2010143722A1 (en) * 2009-06-12 2010-12-16 三菱化学株式会社 Modified cellulose fiber and cellulose complex comprising same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003936A1 (en) * 2016-06-30 2018-01-04 株式会社クラレ Separator for capacitor
CN109416981A (en) * 2016-06-30 2019-03-01 株式会社可乐丽 Separator for capacitor
JPWO2018003936A1 (en) * 2016-06-30 2019-04-18 株式会社クラレ Capacitor separator
US20190318884A1 (en) * 2016-06-30 2019-10-17 Kuraray Co., Ltd. Separator for capacitor
WO2018123891A1 (en) * 2016-12-28 2018-07-05 株式会社クラレ Fibrillated polyvinyl alcohol fiber and production method therefor
JPWO2018123891A1 (en) * 2016-12-28 2019-10-31 株式会社クラレ Fibrilized polyvinyl alcohol fiber and method for producing the same
JP2019194369A (en) * 2018-04-30 2019-11-07 日本バイリーン株式会社 Extra fine short fiber and composite comprising extra short fibers dispersed in resin composition
JP7154816B2 (en) 2018-04-30 2022-10-18 日本バイリーン株式会社 Ultrafine short fibers and a composite in which said ultrafine short fibers are dispersed in a resin composition
CN112871122A (en) * 2020-12-31 2021-06-01 哈尔滨工业大学 Reaction kettle for preparing nano silicon modified steel fibers in large batch and preparation method
CN114875716A (en) * 2022-04-12 2022-08-09 株洲时代新材料科技股份有限公司 Capacitor paper and preparation method and application thereof

Also Published As

Publication number Publication date
JP6383595B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6383595B2 (en) Fibrilized fiber and method for producing the same
US3785918A (en) Regenerated cellulose fibrous product
CN107847834B (en) Method for producing filter material for air filter
TWI290593B (en) Polyvinyl alcohol fibers, and nonwoven fabric comprising them and method for manufacture nonwoven fabric
AT503625B1 (en) WATER-IRRADIZED PRODUCT CONTAINING CELLULASIC FIBERS
RU2676430C2 (en) Fibres with filler
DE102005029793B4 (en) Nonwovens, processes for their preparation and their use
US5861213A (en) Fibrillatable fiber of a sea-islands structure
JP2010070870A (en) Method for producing nonwoven fabric, the nonwoven fabric, nonwoven fabric structure, and textile product
CN106048889A (en) 100% regenerated fiber spunlace non-woven fabric
CN110536981B (en) Cellulosic fiber nonwoven fabric with uniformly fused fibers
KR101716598B1 (en) Spinning nozzle, process for producing fibrous mass, fibrous mass, and paper
EP3159445A1 (en) Non-woven fabric
CN111636146A (en) Preparation method of non-woven fabric
US10501876B2 (en) Highly functional spunbonded fabric made from particle-containing fibres and method for producing same
JPS585283B2 (en) Gokusaisen Ishiyuugoutai Oyobi Sonoseizouhouhou Narabini Seizou Souchi
JP2000192335A (en) Fiber capable of forming ultra fine fiber, ultra fine fiber generated from it and sheet using the ultra fine fiber
JP3293180B2 (en) Liquid filter
JP5283823B2 (en) A fiber in which an acrylonitrile-based polymer and a cellulose-based polymer are uniformly mixed, a nonwoven fabric containing the same, and a method for producing a fiber in which an acrylonitrile-based polymer and a cellulose-based polymer are uniformly mixed.
JPH08284021A (en) Readily fibrillated fiber comprising polyvinyl alcohol and cellulosic polymer
JP2000160432A (en) Fiber from which superfine fibers can be generated, superfine fibers generated therefrom and fiber sheet using the superfine fibers
CN113862818A (en) Preparation and application method of electret material for degradable resin
JPH10102322A (en) Readily fibrillatable fiber
JP5362805B2 (en) A nonwoven fabric containing fibers in which an acrylonitrile polymer and a cellulose polymer are uniformly mixed.
JPH08127993A (en) Wet nonwoven fabric and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6383595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150