JPS6385105A - Organic high-strength yarn with excellent abrasion resistance - Google Patents

Organic high-strength yarn with excellent abrasion resistance

Info

Publication number
JPS6385105A
JPS6385105A JP22201886A JP22201886A JPS6385105A JP S6385105 A JPS6385105 A JP S6385105A JP 22201886 A JP22201886 A JP 22201886A JP 22201886 A JP22201886 A JP 22201886A JP S6385105 A JPS6385105 A JP S6385105A
Authority
JP
Japan
Prior art keywords
spinning
strength
fiber
fibers
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22201886A
Other languages
Japanese (ja)
Inventor
Masaharu Mizuno
正春 水野
Mitsuo Suzuki
三男 鈴木
Takashi Takemura
隆 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22201886A priority Critical patent/JPS6385105A/en
Publication of JPS6385105A publication Critical patent/JPS6385105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To produce the titled yarn having a high strength, a high elastic modulus and excellent flexural abrasion resistance and useful for producing ropes, hoses, fishing nets, etc., comprising filaments having a melting point, a tensile strength and a tensile modulus of higher than specific respective levels and also having a flexural abrasion strength of higher than a specific level. CONSTITUTION:The objective yarn comprises filaments having a melting point of >=160 deg.C, a tensile strength of >=15kg/d, preferably >=20g/d and a tensile modulus of >=300g/d, preferably >=350g/d and also having a flexural abrasion strength of >=2,000, preferably >=3,500. The yarn is preferably composed essentially of PVA.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐摩耗性に優れた有機系高強度繊維、特にロー
プ、ホース、シートベルト、縫糸、漁網などの産業資材
や、水産資材の用途において耐摩耗性に優れた高強度繊
維素材に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an organic high-strength fiber with excellent abrasion resistance, particularly for use in industrial materials such as ropes, hoses, seat belts, sewing threads, fishing nets, and marine materials. This invention relates to high-strength fiber materials with excellent abrasion resistance.

[従来の技術] 従来、有機系の高強度繊維を得る技術が種々検討され、
強度や弾性率を高くするためにはポリマ分子鎖を繊維軸
方向に配列することが効果的であることは知られている
[Prior art] Various techniques for obtaining organic high-strength fibers have been studied in the past.
It is known that arranging polymer molecular chains in the fiber axis direction is effective in increasing strength and elastic modulus.

例えば、ナイロン繊維、ポリエステル繊維の製糸工程に
おいて、延伸工程での引き伸ばし倍率を大きくすること
により、1qられる延伸糸の引張強度、引張弾性率を大
きくすることができるが、これはとりもなおさず、引き
伸ばしにより繊維を構成する結晶部、非結晶部の分子鎖
配向度が増すためである。
For example, in the spinning process of nylon fibers and polyester fibers, by increasing the stretching ratio in the drawing process, the tensile strength and tensile modulus of the drawn yarn obtained by 1q can be increased. This is because stretching increases the degree of molecular chain orientation in the crystalline and non-crystalline parts of the fiber.

またバラ配向型のアラミド繊維は、紡糸口金から紡出し
、脱溶媒してそのまま引取るだCプで、延伸工程を経ザ
して、高い強度と弾性率を達成できることがよく知られ
ている(例えば、特公昭47−2489号公報)。これ
も紡糸原液が特定条件下で液晶構造を形成し、口金の孔
から押出される際にずり応力により液晶が繊維軸方向に
配列するため。
In addition, it is well known that loosely oriented aramid fibers can be spun from a spinneret, removed from the solvent, and taken as is, and then subjected to a drawing process to achieve high strength and elastic modulus ( For example, Japanese Patent Publication No. 47-2489). This is because the spinning stock solution forms a liquid crystal structure under certain conditions, and when it is extruded from the hole in the spinneret, the liquid crystals align in the fiber axis direction due to shear stress.

結果として延伸工程を経プして、ポリマ分子鎖が繊維軸
方向によく配向するものと考えられている。
It is believed that as a result, the polymer molecular chains are well oriented in the fiber axis direction through the stretching process.

ざらに最近では、加熱溶融時に液晶構造を形成する仝芳
香族系の共重合ポリエステル(ボリアリレート)を溶融
紡糸し、分子鎖の配向度が高い繊維を形成せしめた後、
不活性雰囲気中で長時間加熱し、固相重合を進めること
により、高強度、かつ高弾性率の繊維が1q得られるこ
とも知られている(例えば、特開昭61−174408
号公報)。この繊維のMA造形成も上記アラミド繊維と
ほぼ同じ様に理解される。
Recently, after melt-spinning aromatic copolyester (polyarylate), which forms a liquid crystal structure when heated and melted, to form fibers with a high degree of molecular chain orientation,
It is also known that 1q of fibers with high strength and high elastic modulus can be obtained by heating in an inert atmosphere for a long time and proceeding with solid phase polymerization (for example, 1 q of fibers with high strength and high modulus of elasticity can be obtained).
Publication No.). The MA formation of this fiber can be understood in almost the same way as the above-mentioned aramid fiber.

し発明が解決しようとする問題点コ 上述の繊維化手段、特に液晶紡糸によれば従来の汎用合
成繊維に比べ著しく高い強度と1弾性率を有する有機繊
維が(qられるが、これらの繊維は何ずれも線状のポリ
マ分子鎖が繊維軸方向に極度に一次元配列をするため、
繊維軸に対し直角方向には弱い分子間力が働くのみで、
結合力が小さいため、横方向に弱い繊維構造となる。こ
のため強度と弾性率を上げるべく、ポリマ分子鎖の配向
度を高くすればするほど、繊維軸方向にフィブリルが発
達し、しかもフィブリル間同士の相互作用が小さいため
に、繰返し屈曲変形や、摩擦の負荷がかかるような使い
方がされる用途分野においては、耐久性に問題が生じる
Problems to be Solved by the Invention According to the above-mentioned fiberizing means, especially liquid crystal spinning, organic fibers having significantly higher strength and modulus of elasticity than conventional general-purpose synthetic fibers can be produced. In both cases, the linear polymer molecular chains are extremely one-dimensionally arranged in the fiber axis direction.
Only weak intermolecular forces act in the direction perpendicular to the fiber axis,
Since the binding force is small, the fiber structure is weak in the transverse direction. Therefore, in order to increase the strength and modulus of elasticity, the higher the degree of orientation of the polymer molecular chains, the more fibrils will develop in the fiber axis direction, and since the interaction between fibrils is small, repeated bending deformation and friction will occur. In applications where the product is used under heavy loads, durability becomes a problem.

ナイロン繊維、ポリエステル繊維は比較的屈曲変形や、
摩1寮に対し耐久性が優れているが、強度や2弾性率が
パラ配向型アラミド繊維などと比較すると、著しく低い
Nylon fibers and polyester fibers are relatively susceptible to bending deformation,
It has excellent durability compared to polyester fibers, but its strength and modulus of elasticity are significantly lower than those of para-oriented aramid fibers.

ロープ、ホース、シートベルト、縫糸、漁網などの産業
資材分野で、従来の汎用繊維(ナイロン系、ポリエステ
ル系、ビニロン系、アクリル系)よりも−段と強度1弾
性率の高い繊維素材が要求され、これに応じるべく各種
の高強度繊維素材が開発されているが、前述したように
、何ずれも繰返し屈曲変形や、摩擦の負荷がかかるよう
な使い方では、耐久性に問題があった。
In the field of industrial materials such as ropes, hoses, seat belts, sewing thread, and fishing nets, fiber materials with significantly higher strength and elasticity than conventional general-purpose fibers (nylon, polyester, vinylon, and acrylic) are required. Various high-strength fiber materials have been developed to meet this demand, but as mentioned above, all of them have problems with durability when used in situations where they are subjected to repeated bending deformation or frictional loads.

本発明の目的は、上記従来技術の問題点を排除し、汎用
繊維に比べ著しく引張強度が高く、かつ優れた屈曲摩耗
性を有するフィラメントからなる有機系41i維を提供
することにある。
An object of the present invention is to eliminate the above-mentioned problems of the prior art and to provide an organic 41i fiber made of filaments that has significantly higher tensile strength than general-purpose fibers and excellent bending abrasion resistance.

[問題点を解決するための手段] 本発明は、融点が160’C以上であり、15g/d以
上の引張強度と300a/d以上の引張弾性率を同時に
有し、かつ屈曲摩耗強さが2000以上であるフィラメ
ントからなる耐摩耗性に優れた有機系高強度繊維に関す
るものでおる。
[Means for Solving the Problems] The present invention has a melting point of 160'C or more, a tensile strength of 15 g/d or more, a tensile modulus of 300 a/d or more, and a flexural abrasion strength. This article relates to organic high-strength fibers with excellent abrasion resistance and consisting of filaments with a molecular weight of 2,000 or more.

すなわち、前記パラ配向型アラミド、ボリアリレートの
如き、紡糸原液(溶液または融液)が液晶構造をとるも
のは、紡糸して得られる繊維は柱状フィブリルの集束し
た構造をとり、フィブリルが独立した形となって、繊維
軸に対し横から力が加わる。あるいは軸方向に圧縮の力
が加わるような場合に、軸方向に割れ易い、あるいは座
屈し易い。例えば矢吹らが提唱しているような、ポリパ
ラフェニレンテレフタルアミド繊維の構造モデル[繊維
学会誌、 Vol、31.No、11.T−528(1
975)]でよく理解できるように、液晶紡糸により得
られる繊維の構造は、繊維軸に対して横方向の負荷に弱
いことから、液晶紡糸によらない9通常の等方性溶液か
ら紡糸し、フィブリル間の結び付きを強くする方向で鋭
意検討を進めた結果、 ■フィブリル内の分子間ノ〕およびフィブリル間の結合
を強めるために、比較的分子間力の強いポリマ種を選択
する。
In other words, when the spinning dope (solution or melt) has a liquid crystal structure, such as the para-oriented aramid or polyarylate, the fiber obtained by spinning has a structure in which columnar fibrils are concentrated, and the fibrils are in the form of independent fibrils. As a result, a force is applied from the side to the fiber axis. Or, when a compressive force is applied in the axial direction, it tends to crack or buckle in the axial direction. For example, the structural model of polyparaphenylene terephthalamide fiber as proposed by Yabuki et al. [Journal of the Japan Institute of Fiber Science and Technology, Vol. 31. No, 11. T-528 (1
975)], the structure of fibers obtained by liquid crystal spinning is weak against loads in the transverse direction to the fiber axis. As a result of intensive research into strengthening the bonds between fibrils, we selected a polymer species with relatively strong intermolecular forces in order to strengthen the bonds between the molecules within the fibrils and between the fibrils.

■フィブリルの分子鎖貫通度を多くするため、ポリマの
分子量を大きくする。
■Increase the molecular weight of the polymer to increase the degree of molecular chain penetration of fibrils.

■分子間の絡み合いを適度に増やし、また脱溶媒速度を
遅くし、緻密な繊維構造を形成せしめるために、紡糸原
液中のポリマ濃度を高くする。
■Increase the polymer concentration in the spinning stock solution in order to appropriately increase the entanglement between molecules, slow down the desolvation rate, and form a dense fiber structure.

という、三つの要素を巧みに結合させることによって、
本発明繊維が得られる。
By skillfully combining these three elements,
The fiber of the present invention is obtained.

本発明におけるポリマとしては、引張強度が15 c+
/d以上、好ましくは18g/d以上、より好ましくは
20c+/d以上、引張弾性率が300g/d以上、好
ましくは350q/d以上、および屈曲摩耗強さが20
00以上、好ましくは3000以上。
The polymer in the present invention has a tensile strength of 15 c+
/d or more, preferably 18 g/d or more, more preferably 20 c+/d or more, a tensile modulus of 300 g/d or more, preferably 350 q/d or more, and a flexural abrasion strength of 20
00 or more, preferably 3000 or more.

より好ましくは3500以上の繊維となすために、特に
分子間力の強いポリマ、例えばポリアミド系。
More preferably, in order to form fibers of 3,500 or more, a polymer with particularly strong intermolecular force, such as a polyamide system, is used.

ポリエステル系、ポリビニルアルコール系ポリマ等が挙
げられるが、最も好ましいポリマは結晶性の高いポリビ
ニルアルコール系ポリマである。
Examples include polyester polymers, polyvinyl alcohol polymers, and the most preferred polymer is highly crystalline polyvinyl alcohol polymers.

また該ポリマは繊維の融点を160°C以上とするだめ
に、融点150℃以上のポリマを選択すべきである。即
ち、各種の産業資材用途で有機系高強度繊維を使用する
場合において、加工工程、および使用時に加熱されるこ
とが多く、加熱による溶融、あるいは大きな変形ないし
品質低下を避けるために、繊維の融点を160°C以上
とした。
Further, in order to make the melting point of the fibers 160°C or higher, a polymer having a melting point of 150°C or higher should be selected. In other words, when organic high-strength fibers are used for various industrial material applications, they are often heated during processing and use. was set at 160°C or higher.

また本発明においては、繊維の引張強度をできる限り高
くするために、原料ポリマとして分子量の高いもの、例
えば数平均分子量で1×105゜好ましくは1.5X1
05を上回るものを用いる。
In addition, in the present invention, in order to make the tensile strength of the fiber as high as possible, a material having a high molecular weight is used as the raw material polymer, for example, a number average molecular weight of 1×105°, preferably 1.5×1
Use one that exceeds 05.

この種のポリマを紡糸するには、溶融紡糸方式では融液
の粘度が箸しく高く、安定して紡糸することが困難であ
る。このためある種の溶媒に溶解し、紡糸粘度を下げる
、即ち、溶液紡糸によらざるを得ない。
In order to spin this type of polymer, the viscosity of the melt is extremely high in the melt spinning method, making it difficult to spin the material stably. For this reason, it is necessary to dissolve it in a certain kind of solvent to lower the spinning viscosity, that is, to use solution spinning.

溶液紡糸には従来乾式紡糸法と湿式紡糸法の二つがある
が、乾式紡糸法では紡糸口金下での脱溶媒を速くするた
め、紡糸原液中のポリマ濃度をできる限り高く、例えば
、35%を上回る濃度にする必要があるが、高分子量の
ポリマを使用するために乾式紡糸に適した原液濃度では
これまた粘度が高すぎて製糸が困難となる。
Conventionally, there are two methods for solution spinning: dry spinning and wet spinning. In dry spinning, the polymer concentration in the spinning dope is as high as possible, for example, 35%, in order to speed up solvent removal under the spinneret. However, since a polymer with a high molecular weight is used, the viscosity of the stock solution suitable for dry spinning is too high, making spinning difficult.

一方、従来の湿式紡糸において、紡糸原液のポリマ濃度
を上げることにより、脱溶媒速度を低下させて緻密な@
造を有する凝固糸が得られることが知られているが、口
金が凝固浴中にあるために。
On the other hand, in conventional wet spinning, increasing the polymer concentration of the spinning stock solution reduces the desolvation rate and creates a dense @
It is known that a coagulated thread with a structure can be obtained, but because the ferrule is in the coagulation bath.

紡糸温度を高くできず、従って、高分子量のポリマを用
いた紡糸原液は高粘度となり、製糸性が著しく劣ること
になる。
The spinning temperature cannot be increased, and therefore, the spinning dope using a high molecular weight polymer has a high viscosity, resulting in extremely poor spinning properties.

これらの障害は、紡糸口金を凝固浴の外に配した。所謂
“乾湿式紡糸法パの採択によって解消できる。
These obstacles placed the spinneret outside the coagulation bath. This problem can be solved by adopting the so-called wet-dry spinning method.

すなわち、″乾湿式紡糸法゛′は紡糸原液吐出部分を凝
固浴から離すことにより、凝固浴とは独立させて紡糸原
液の温度設定が可能となるため、その温度を比較的自由
に高く設定することができる。
In other words, in the ``wet-dry spinning method,'' by separating the spinning dope discharge part from the coagulation bath, it is possible to set the temperature of the spinning dope independently of the coagulation bath, so the temperature can be set relatively freely and high. be able to.

このため乾湿式紡糸法は、高分子量ポリマを用いた高濃
度紡糸原液の粘度を適切に下げるべく紡糸温度を適宜高
く設定することができ゛る。
Therefore, in the dry-wet spinning method, the spinning temperature can be set appropriately high in order to appropriately lower the viscosity of a high-concentration spinning dope using a high molecular weight polymer.

上記紡糸原液のポリマQ度は、紡糸原液粘度の点から前
記ポリマ重合度と密接に関連するが、紡糸安定性を考慮
すると、13重但%〜24重量%、好ましくは15重但
%〜22重量%の範囲とすべきである。
The polymer Q degree of the above-mentioned spinning stock solution is closely related to the polymerization degree from the viewpoint of the viscosity of the spinning stock solution, but in consideration of spinning stability, it is 13% by weight to 24% by weight, preferably 15% by weight to 22% by weight. % by weight.

本発明繊維の製造例として、ポリビニルアルコール系繊
維について、以下に述べる。
As a manufacturing example of the fiber of the present invention, polyvinyl alcohol fiber will be described below.

従来の汎用のビニロン繊維と比べて強度2弾性率が著し
く高いポリビニルアルコール系繊維は特開昭60−12
6312号公報によって公知である。該公報には比較的
高い重合度を有するポリマを溶媒のジメヂルスルホキシ
ド(D)fsO)に溶解し、メタノールを主成分とする
凝固浴に乾湿式紡糸し、約20倍以上延伸して高強度の
繊維を1qることか記載されており、該繊維の引張強度
ヤ引張弾性率については確かに汎用のナイロン繊維、ポ
リエステル繊維、あるいはビニロン繊維などに比べて著
しく高い値を示している。しかしながら、その繊維の屈
曲摩耗特性、乃至その改良手段は何ら示されていない。
A polyvinyl alcohol fiber with significantly higher strength and modulus of elasticity than conventional general-purpose vinylon fibers was published in Japanese Patent Application Laid-open No. 60-12.
It is known from the publication No. 6312. According to this publication, a polymer having a relatively high degree of polymerization is dissolved in a solvent (dimethyl sulfoxide (D)fsO), spun in a coagulation bath containing methanol as a main component, and then stretched approximately 20 times or more to obtain high strength. It is described that the fibers have a weight of 1q, and the tensile strength and tensile modulus of these fibers are certainly significantly higher than those of general-purpose nylon fibers, polyester fibers, vinylon fibers, etc. However, there is no disclosure of the bending abrasion characteristics of the fibers or any means for improving them.

本発明繊維は高い強度2弾性率を保持しつつ、かつ耐屈
曲摩耗性を向上させるべく、使用するポリマの重合度と
紡糸原液濃度との関連を特定化し、これによって該公報
における如<20倍を越える高倍率の延伸によることな
く1本発明の所期の目的が達成できたのである。
In order to improve bending abrasion resistance while maintaining high strength and modulus of elasticity, the fiber of the present invention specifies the relationship between the degree of polymerization of the polymer used and the concentration of the spinning stock solution, thereby achieving The intended purpose of the present invention was achieved without drawing at a high magnification exceeding 1.

すなわち、本発明におけるポリマの重合度と紡糸原液温
度との関係は第1図の斜線部分で示すとおり、ポリマ重
合度が2500〜6000の範囲内で、紡糸原液濃度を
高く、かつ所定範囲(13重量2〜24重量%)のちと
に緻密な凝固糸となし、これを約14〜20倍程度の比
較的低倍率の延伸を施す。
That is, the relationship between the degree of polymerization of the polymer and the temperature of the spinning dope in the present invention is as shown by the shaded area in FIG. 2 to 24% by weight) and then formed into a dense coagulated thread, which is then drawn at a relatively low magnification of about 14 to 20 times.

本発明における製法が前記特開昭60−126312号
公報と大きく異なる点は、ポリマの重合度と紡糸原液濃
度範囲でおる。即ち、より高い重合度を有するポリマを
より高い原液濃度にして乾湿式紡糸する。
The manufacturing method of the present invention differs greatly from that of JP-A-60-126312 in the degree of polymerization of the polymer and the concentration range of the spinning dope. That is, a polymer having a higher degree of polymerization is wet-dry spun at a higher stock solution concentration.

該公報の方法によると、この濃度範囲では紡糸原液粘度
が著しく高くなり、紡糸が安定してできない。また紡糸
原液粘度を下げるべく、紡糸原液の温度を高くするとく
例えば90℃以上)、溶媒のDMSOが比較的強いアル
カリ性(例えばE)H=12)であるために、ポリマが
このDMSOで劣化。
According to the method disclosed in this publication, the viscosity of the spinning dope becomes extremely high in this concentration range, and stable spinning cannot be performed. In addition, in order to lower the viscosity of the spinning dope, the temperature of the spinning dope is raised (for example, 90° C. or higher), but since the solvent DMSO is relatively strongly alkaline (for example, E)H=12), the polymer deteriorates with this DMSO.

分子釘低下が生じ、製糸して得られる繊維の品質が著し
く劣ったものになる。そこで酸を添加して紡糸原液のp
Hを約5〜10の範囲になるよう調整した上で、紡糸に
供したところ、分子量低下を生じることなく、紡糸でき
ることがわかった。本工夫によって、初めて上記公報記
載の範囲を越えた高いポリマ濃度の紡糸原液を安定して
紡糸できるようになり、得られる繊維は品質が高く、屈
曲摩耗強さに優れたものとなる。
A decrease in molecular strength occurs, and the quality of the fiber obtained by spinning becomes significantly inferior. Therefore, acid is added to increase the p.p. of the spinning stock solution.
When H was adjusted to be in the range of about 5 to 10 and then subjected to spinning, it was found that spinning could be performed without causing a decrease in molecular weight. With this invention, for the first time, it has become possible to stably spin a spinning stock solution with a high polymer concentration exceeding the range described in the above publication, and the resulting fibers are of high quality and have excellent bending abrasion strength.

ポリマの重合度と紡糸原液濃度との関係が第1図の斜線
部分で示す範囲を外れると、繊維化が実質的に困難であ
ったり、一方たとえ高強度、高弾性率を示す繊維が得ら
れたとしても、耐屈曲摩耗性が不充分であり、ロープヤ
編織物では糸条を構成するフィラメントが互いにこすり
合いにより損傷され、所期の目的とするロープや編織物
として耐久性の優れたものが得られない。
If the relationship between the degree of polymerization of the polymer and the concentration of the spinning dope is outside the range shown by the shaded area in Figure 1, it may be substantially difficult to form fibers, or even if fibers exhibit high strength and high modulus of elasticity cannot be obtained. However, the bending abrasion resistance is insufficient, and the filaments that make up the yarn in rope yarn knitted fabrics are damaged by rubbing against each other, making it difficult to use ropes and knitted fabrics that are highly durable for their intended purpose. I can't get it.

なお、上記の製糸条件以外は全て公知の製糸条件に従え
ばよい。
It should be noted that all other than the above-mentioned yarn spinning conditions may be in accordance with known yarn spinning conditions.

かくして、融点が160℃以上、引張強度が1597d
以上、引張弾性率が300a/d以上で、かつ屈曲摩耗
強さが2000以上という、従来繊維に比較して特に耐
摩耗性の優れたポリビニルアルコール系繊維が得られる
Thus, the melting point is 160°C or higher and the tensile strength is 1597d.
As described above, a polyvinyl alcohol fiber having a tensile modulus of 300 a/d or more and a bending abrasion strength of 2000 or more, which is particularly excellent in abrasion resistance compared to conventional fibers, can be obtained.

ここにおける融点、引張強度、引張弾性率、および屈曲
摩耗強さは次の測定法に従った。
The melting point, tensile strength, tensile modulus, and bending abrasion strength here were measured according to the following measurement method.

(1)融点 示差走査熱量計(OSC)を用い、昇温速度10℃/分
で測定。融解曲線のピークを示す温度を融点とする。
(1) Melting point measured using a differential scanning calorimeter (OSC) at a heating rate of 10°C/min. The temperature at which the melting curve peaks is defined as the melting point.

(2)引張強度、引張弾性率 ASTM  D3379に準じた方法で測定した。(2) Tensile strength, tensile modulus Measured by a method according to ASTM D3379.

サンプル繊維(マルチフィラメントヤーン)は予め温度
20℃、相対湿度65%の雰囲気下で48時間放置し、
調整した。
The sample fiber (multifilament yarn) was left for 48 hours in an atmosphere with a temperature of 20°C and a relative humidity of 65%.
It was adjusted.

調整したサンプル繊維から、これを構成する単一のフィ
ラメントを取出し、ゲージ長さが2Qll1mとなるよ
うに、台紙に張り付ける。引張速度は10mm/分とし
、n数30の平均強力から強度を算出した。
A single filament constituting the prepared sample fiber is taken out and attached to a mount so that the gauge length is 2Qll1m. The tensile speed was 10 mm/min, and the strength was calculated from the average strength of 30 samples.

また引張弾性率はシステムコンプライアンスの補正をし
たものとする。
Furthermore, the tensile modulus is assumed to have been corrected for system compliance.

(3)屈曲摩耗強さ 第2図に示す測定装置を用い、2本のフィラメント1.
2をループ状に交叉させ、交叉角αが60°になるよう
に該測定装置のクランプ3およびバー4,4°に取付け
る。
(3) Bending abrasion strength Using the measuring device shown in Figure 2, two filaments 1.
2 are crossed in a loop shape and attached to the clamp 3 and bars 4 and 4 degrees of the measuring device so that the crossing angle α is 60 degrees.

クランプ3に取付けたフィラメント1の他端にはフィラ
メントデニール当り200maの荷重5を吊下げる(6
は滑車)。
A load 5 of 200 ma per filament denier is suspended from the other end of the filament 1 attached to the clamp 3 (6
is a pulley).

バー4,4°に取付けたフィラメント2を1分間当り6
0回転の速度で往復運動させ、フィラメントが切断する
までの往復回数を求めて屈曲摩耗強さとする。
6 per minute of filament 2 attached to bar 4, 4°
The filament is reciprocated at a speed of 0 rotations, and the number of reciprocations until the filament breaks is determined as the bending abrasion strength.

なお、サンプルの調整方法は前記(2)項と同様とする
Note that the sample adjustment method is the same as in the above section (2).

[発明の効果] 本発明の繊維は高強度、高弾性率であると共に、耐屈曲
摩耗性に優れ、ロープ、ホース、シートベルト、縫糸、
漁網などの産業資材や、水産資材の用途において製品を
高強力化することができる、あるいは高強度を活かし細
く、あるいは薄くできる(使用量を減らせる)、ざらに
この点が本発明の最大の特徴であるが、曲げ、圧縮、摩
擦などの負荷に対する耐久性を大きく向上させることが
できる。
[Effects of the Invention] The fiber of the present invention has high strength and high modulus of elasticity, and has excellent bending abrasion resistance, and can be used for ropes, hoses, seat belts, sewing threads,
The biggest advantage of the present invention is that it can be used as industrial materials such as fishing nets, or as marine materials, to make the product highly strong, or to make it thinner or thinner by taking advantage of its high strength (reducing the amount used). One of its characteristics is that it can greatly improve durability against loads such as bending, compression, and friction.

以下、本発明の効果を実施例により具体的に説明する。Hereinafter, the effects of the present invention will be specifically explained using examples.

実施例1 重合度2600.融点226℃の完全ケン生型ポリビニ
ルアルコールをDMSOに溶解して濃度18%、および
20%の紡糸原液を作成した。紡糸原液のpI−1はp
−トルエンスルホン酸を添加してpH=6.8に調整し
た。
Example 1 Degree of polymerization: 2600. Complete raw polyvinyl alcohol with a melting point of 226° C. was dissolved in DMSO to prepare spinning stock solutions with concentrations of 18% and 20%. The pI-1 of the spinning dope is p
-Toluenesulfonic acid was added to adjust the pH to 6.8.

これらの紡糸原液を紡糸温度100℃で夫々DMSOを
10%含むメタノールからなる凝固浴液中に乾湿式紡糸
した。
These spinning stock solutions were subjected to dry-wet spinning at a spinning temperature of 100° C. in a coagulation bath solution consisting of methanol containing 10% DMSO.

乾湿式紡糸における紡糸口金下の空間部分の長さは7m
mとした。
The length of the space under the spinneret in wet-dry spinning is 7 m.
It was set as m.

得られた未延伸糸をメタノールで洗浄してDMSOを除
去したのち、230℃の加熱空気中で熱延伸し、延伸倍
率19.5倍の延伸繊維(繊度:2、5 d)を得た。
The obtained undrawn yarn was washed with methanol to remove DMSO, and then hot-stretched in heated air at 230°C to obtain a drawn fiber (fineness: 2.5 d) with a draw ratio of 19.5 times.

なお、比較のため、ポリマ濃度16%、および25%の
紡糸原液について、上記同様の乾湿式紡糸と、熱延伸を
行なった(繊度;2.5d)。
For comparison, the same dry-wet spinning and hot stretching as above were performed for spinning stock solutions with polymer concentrations of 16% and 25% (fineness: 2.5 d).

得られた繊維(フィラメント)の物性を第1表に示した
。また該繊維の融点は238〜240℃であった。
The physical properties of the obtained fibers (filaments) are shown in Table 1. Moreover, the melting point of the fiber was 238-240°C.

(以下、余白) 第1表 * ;比較例 比較例1 実施例1と同じポリマを水を溶媒として溶解し、ポリマ
濃度18%の紡糸原液を作成した。これを硫酸ソーダ飽
和水溶液を凝固浴として、湿式紡糸した。
(Hereinafter, blank spaces) Table 1*; Comparative Example Comparative Example 1 The same polymer as in Example 1 was dissolved in water as a solvent to prepare a spinning stock solution with a polymer concentration of 18%. This was wet-spun using a saturated aqueous solution of sodium sulfate as a coagulation bath.

得られた未延伸糸を4倍に湿熱延伸し、乾燥させた後、
230℃の加熱空気中でさらに3.5倍延伸した。
The obtained undrawn yarn was subjected to moist heat stretching to 4 times, and after drying,
It was further stretched 3.5 times in heated air at 230°C.

得られた繊111(フィラメント)の物性は、強度10
、3a/d 、弾性率164a/dであり、屈曲摩耗強
さは780であった。
The physical properties of the obtained fiber 111 (filament) are as follows: strength: 10
, 3a/d, elastic modulus of 164a/d, and bending abrasion strength of 780.

実施例2 重合度3500、融点228℃の完全ケン化型ポリビニ
ルアルコールをDMSOに溶解して濃度15%、および
17%の紡糸原液を作成した。紡糸原液のpHはp−ト
ルエンスルホン酸を添加して1f=6.5に調整した。
Example 2 Completely saponified polyvinyl alcohol with a degree of polymerization of 3500 and a melting point of 228° C. was dissolved in DMSO to prepare spinning stock solutions with concentrations of 15% and 17%. The pH of the spinning dope was adjusted to 1f=6.5 by adding p-toluenesulfonic acid.

これらの紡糸原液を紡糸温度110℃で、夫々DMSO
を7%含むメタノールからなる凝固浴液中に乾湿式紡糸
した。乾湿式紡糸における紡糸口金下の空間部分の長さ
は5mmとした。
These spinning stock solutions were mixed with DMSO at a spinning temperature of 110°C.
Wet-dry spinning was carried out in a coagulation bath solution containing 7% methanol. The length of the space under the spinneret in wet-dry spinning was 5 mm.

得られた未延伸糸をメタノールで洗浄してDMSOを除
去したのち、メタノール浴中で4倍に延伸し、乾燥した
。引続いて240℃の加熱空気中で4.9倍延伸したく
全延伸倍率:19.6倍)。
The obtained undrawn yarn was washed with methanol to remove DMSO, and then stretched 4 times in a methanol bath and dried. Subsequently, the film was stretched 4.9 times in heated air at 240°C (total stretching ratio: 19.6 times).

なお、比較のため、ポリマ濃度13%、および25%の
紡糸原液について、上記同様の乾湿式紡糸と、延伸を行
なった。但し、ポリマ濃度が25@R%の場合は安定し
た紡糸ができなかった。
For comparison, dry-wet spinning and stretching were performed in the same manner as above for spinning stock solutions with polymer concentrations of 13% and 25%. However, when the polymer concentration was 25@R%, stable spinning could not be achieved.

得られた繊維(フィラメント)の物性を第2表に示した
The physical properties of the obtained fibers (filaments) are shown in Table 2.

第2表 ネ ;比較例 実施例3 重合度5500、融点232°Cの完全ケン生型ポリビ
ニルアルコールをDMSOに溶解して濃度16%の紡糸
原液を作成した。これらの紡糸原液を実施例2と同様の
乾湿式紡糸、メタノール浴中での延伸、および加熱空気
中での延伸を行なった(全延伸倍率;18.5倍)。
Table 2: Comparative Example Example 3 A spinning dope having a concentration of 16% was prepared by dissolving completely carbon-based polyvinyl alcohol having a degree of polymerization of 5500 and a melting point of 232°C in DMSO. These spinning stock solutions were subjected to dry-wet spinning, stretching in a methanol bath, and stretching in heated air in the same manner as in Example 2 (total stretching ratio: 18.5 times).

なお、比較のため、ポリマ重合度12%、および20%
の紡糸原液について、上記同様の乾湿式紡糸と、延伸を
行なった。ポリマ濃度20重量%の場合は紡糸原液の粘
度が著しく高く、紡糸が不安定であった。
For comparison, the polymerization degree was 12% and 20%.
The spinning dope was subjected to dry-wet spinning and stretching in the same manner as described above. When the polymer concentration was 20% by weight, the viscosity of the spinning dope was extremely high and spinning was unstable.

得られた繊維(フィラメント)の物性を第3表に示した
Table 3 shows the physical properties of the obtained fibers (filaments).

(以下、余白) 第3表 本:比較例 比較例2 本発明の繊維の性能を位置付けるため、各種の市販の高
強力繊維の性能と比べた結果を第4表にまとめた。
(Hereinafter, blank spaces) Table 3 Book: Comparative Example Comparative Example 2 In order to determine the performance of the fiber of the present invention, Table 4 summarizes the results of comparison with the performance of various commercially available high-strength fibers.

(以下、余白)(Hereafter, margin)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るポリビニルアルコール系繊維の紡
糸原液におけるポリマ重合度とポリマ濃度との関係を示
す概略図、第2図は本発明における屈曲摩耗強さの測定
装置の概略図でおる。
FIG. 1 is a schematic diagram showing the relationship between the degree of polymerization and polymer concentration in a spinning dope for polyvinyl alcohol fibers according to the present invention, and FIG. 2 is a schematic diagram of a measuring device for bending abrasion strength according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)融点が160℃以上であり、15g/d以上の引
張強度と300g/d以上の引張弾性率を同時に有し、
かつ屈曲摩耗強さが2000以上であるフィラメントか
らなる耐摩耗性に優れた有機系高強度繊維。
(1) has a melting point of 160°C or higher, a tensile strength of 15 g/d or higher, and a tensile modulus of 300 g/d or higher;
An organic high-strength fiber with excellent abrasion resistance comprising filaments having a bending abrasion strength of 2000 or more.
(2)繊維を構成するポリマが実質的にポリビニールア
ルコールである特許請求の範囲第(1)項記載の耐摩耗
性に優れた有機系高強度繊維。
(2) The organic high-strength fiber with excellent abrasion resistance according to claim (1), wherein the polymer constituting the fiber is substantially polyvinyl alcohol.
JP22201886A 1986-09-22 1986-09-22 Organic high-strength yarn with excellent abrasion resistance Pending JPS6385105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22201886A JPS6385105A (en) 1986-09-22 1986-09-22 Organic high-strength yarn with excellent abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22201886A JPS6385105A (en) 1986-09-22 1986-09-22 Organic high-strength yarn with excellent abrasion resistance

Publications (1)

Publication Number Publication Date
JPS6385105A true JPS6385105A (en) 1988-04-15

Family

ID=16775815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22201886A Pending JPS6385105A (en) 1986-09-22 1986-09-22 Organic high-strength yarn with excellent abrasion resistance

Country Status (1)

Country Link
JP (1) JPS6385105A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274606A (en) * 1988-09-05 1990-03-14 Unitika Ltd Polyvinyl alcohol fiber
JPH0340807A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH0340808A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH03294511A (en) * 1989-10-30 1991-12-25 Kuraray Co Ltd Polyvinyl alcohol-based synthetic fiber
US5264173A (en) * 1989-05-24 1993-11-23 Masatsugu Mochizuki Polyvinyl alcohol monofilament yarns and process for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130314A (en) * 1982-09-30 1984-07-26 アライド・コ−ポレ−シヨン High strength elastic polyvinyl alcohol fiber andproduction thereof
JPS60126311A (en) * 1983-12-12 1985-07-05 Toray Ind Inc Novel polyvinyl alcohol based fiber
JPS60126312A (en) * 1983-12-12 1985-07-05 Toray Ind Inc High-strength and high-modulus polyvinyl alcohol based fiber and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130314A (en) * 1982-09-30 1984-07-26 アライド・コ−ポレ−シヨン High strength elastic polyvinyl alcohol fiber andproduction thereof
JPS60126311A (en) * 1983-12-12 1985-07-05 Toray Ind Inc Novel polyvinyl alcohol based fiber
JPS60126312A (en) * 1983-12-12 1985-07-05 Toray Ind Inc High-strength and high-modulus polyvinyl alcohol based fiber and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274606A (en) * 1988-09-05 1990-03-14 Unitika Ltd Polyvinyl alcohol fiber
US5264173A (en) * 1989-05-24 1993-11-23 Masatsugu Mochizuki Polyvinyl alcohol monofilament yarns and process for producing the same
JPH0340807A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH0340808A (en) * 1989-07-03 1991-02-21 Kuraray Co Ltd Production of high-tenacity polyvinyl alcohol fiber
JPH03294511A (en) * 1989-10-30 1991-12-25 Kuraray Co Ltd Polyvinyl alcohol-based synthetic fiber

Similar Documents

Publication Publication Date Title
US4659529A (en) Method for the production of high strength polyacrylonitrile fiber
EP0150513B1 (en) High-tenacity, fine-denier polyvinyl alcohol fiber and a method for production thereof
JP3708030B2 (en) Polyketone fiber, polyketone fiber twisted product and molded article thereof
US4454091A (en) Solutions, which can be shaped, from mixtures of cellulose and polyvinyl chloride, and shaped articles resulting therefrom and the process for their manufacture
JPH11189916A (en) Aramide fiber and its production
US5133916A (en) Polyvinyl alcohol fiber having excellent resistance to hot water and process for producing the same
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
JP4570273B2 (en) Polyketone fiber, cord and method for producing the same
JP4172888B2 (en) Monofilament and method for producing the same
JPS6385105A (en) Organic high-strength yarn with excellent abrasion resistance
RU2623253C2 (en) Wholly aromatic couple-type sopoliamide drawn fiber and its manufacturing method
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JP2975420B2 (en) Polyester fiber and its manufacturing method
JPS59116411A (en) Novel polyamide yarn and its preparation
JP2905553B2 (en) Division method
TW202033850A (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JPH038830A (en) Manufacture of drawing rope
JP2960755B2 (en) Manufacturing method of polyester fiber
JPH04240207A (en) Polyvinyl alcoholic fiber and its production
JP3685270B2 (en) Polybenzazole code processing method
JPS63256713A (en) High-strength acrylic yarn and production thereof
JP2001131825A (en) Polyketone fiber and method for producing the same
JPH02300308A (en) Polyvinyl alcohol fiber and production thereof
JPH0657524A (en) Production of acrylic fiber