JP2003013326A - Polyketone fiber, method of producing the same and polyketone twisted yarn - Google Patents

Polyketone fiber, method of producing the same and polyketone twisted yarn

Info

Publication number
JP2003013326A
JP2003013326A JP2001192739A JP2001192739A JP2003013326A JP 2003013326 A JP2003013326 A JP 2003013326A JP 2001192739 A JP2001192739 A JP 2001192739A JP 2001192739 A JP2001192739 A JP 2001192739A JP 2003013326 A JP2003013326 A JP 2003013326A
Authority
JP
Japan
Prior art keywords
polyketone
fiber
twisted
yarn
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001192739A
Other languages
Japanese (ja)
Other versions
JP3708030B2 (en
Inventor
Tatsu Taniguchi
龍 谷口
Toru Morita
徹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001192739A priority Critical patent/JP3708030B2/en
Publication of JP2003013326A publication Critical patent/JP2003013326A/en
Application granted granted Critical
Publication of JP3708030B2 publication Critical patent/JP3708030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Woven Fabrics (AREA)
  • Tires In General (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyethers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyketone fiber having excellent mechanical properties such as high strength, high elastic modulus, together with free from agglutination of single yarns, low in coefficient of dynamic friction between fiber-fiber, homogeneous and low in defects, having an excellent utilization factor of twisted yarn strength, expressing high strength after twisting and excellent in fatigue resistance, and twisted yarn of the fiber is expected to have a wide range of applications as a high strength industrial material, especially useful as a reinforcing material for rubber, FRP or the like. SOLUTION: This polyketone fiber is made of a polyketone comprising 1- oxotrimethylene composing 95 to 100 wt.% of repeating units and possesses properties meeting the following (a) to (e): (a) a degree of crystallization >=60%; (b) a degree of crystalline orientation >=90%; (c) tensile strength >=10 cN/dtex; (d); rate of agglutination of single yarn <=30%, (e); deposit efficiency of finishing materials = 0.3 to 15 wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度・高弾性率
の優れた力学特性、高融点、高耐熱性の優れた熱特性を
有するポリケトン繊維であって、耐疲労性、耐撚り性、
撚糸後の強力利用率に優れ、延伸時や撚糸時、後加工時
の工程通過性にも優れるポリケトン繊維とその製造法、
およびそれからのポリケトン撚糸物に関する。本発明の
ポリケトン繊維は撚糸物に加工して家庭用資材、生活資
材、産業用資材など幅広い用途に適用可能であり、とり
わけ撚糸物として高強度が要求される産業資材用途、具
体的にはタイヤやベルト、ホース等のゴム補強用繊維材
料やロープとして極めて有用である。
TECHNICAL FIELD The present invention relates to a polyketone fiber having excellent mechanical properties such as high strength and high elastic modulus, a high melting point, and excellent thermal properties such as high heat resistance, which are fatigue resistance, twist resistance, and
Polyketone fiber with excellent tenacity factor after twisting, and excellent processability during drawing, twisting, and post-processing, and its manufacturing method,
And polyketone twists therefrom. The polyketone fiber of the present invention can be processed into a twisted product and applied to a wide range of applications such as household materials, daily life materials, industrial materials, and particularly industrial material applications where high strength is required as a twisted product, specifically tires. It is extremely useful as a rubber-reinforcing fiber material for ropes, belts, hoses, and ropes.

【0002】[0002]

【従来の技術】近年、一酸化炭素とエチレン、プロピレ
ンといったオレフィンとをパラジウムやニッケル等を触
媒として用いて重合させることにより、一酸化炭素とオ
レフィンが完全交互共重合したポリケトンが得られるこ
とが知られている。ポリケトンからなる繊維は高強度、
高弾性率、高耐熱性、接着性、耐クリープ特性を有し、
タイヤコード、ベルト等のゴム補強繊維、コンクリート
補強用繊維といった産業資材用途への展開が期待されて
いる。特に、エチレンと一酸化炭素の繰り返し単位(1
−オキソトリメチレン)を主成分とするポリケトンは結
晶性や融点が高く、高強度・高弾性率、高温下での物性
変化や収縮率が小さい等の熱安定性にも最も優れてい
る。このポリケトン繊維については、これまで多くの繊
維化が検討されている。
2. Description of the Related Art Recently, it has been known that a polyketone in which carbon monoxide and an olefin are completely alternating-copolymerized can be obtained by polymerizing carbon monoxide and an olefin such as ethylene or propylene using palladium, nickel or the like as a catalyst. Has been. Fibers made of polyketone have high strength,
It has high elastic modulus, high heat resistance, adhesiveness and creep resistance,
It is expected to be applied to industrial materials such as rubber cords for tire cords and belts and fibers for concrete reinforcement. In particular, repeating units of ethylene and carbon monoxide (1
The polyketone containing (-oxotrimethylene) as a main component has high crystallinity and melting point, and has the highest thermal stability such as high strength and high elastic modulus, small change in physical properties at high temperature and small shrinkage. As for this polyketone fiber, many fiberizations have been studied so far.

【0003】具体的には、特開平2−112413号公
報、特開平4−228613号公報、特表平4−505
344号公報、特表平7−508317号公報等にて、
ヘキサフルオロイソプロパノール、m−クレゾール、ク
ロロフェノール、レゾルシン/水、フェノール/アセト
ン、プロピレンカーボネート/ヒドロキノン、ピロー
ル、レゾルシン/プロピレンカーボネート、ピリジン、
ギ酸等の有機溶剤を用いて湿式紡糸したポリケトン繊維
が知られている。しかしながら、これら文献においては
高強度・高弾性率、高融点のポリケトン繊維についての
技術の開示はあるものの、ポリケトン繊維の単糸膠着の
問題や繊維−繊維間の摩擦の少ないポリケトン繊維につ
いての技術の開示はない。唯一、特表平7−50831
7号公報にレゾルシン/水の溶剤とメタノール凝固浴を
用いて、凝固の後に室温で予備延伸することで単糸膠着
を抑制した高強度のポリケトン繊維が開示されている
が、この発明においては単糸膠着の少ない高強度のポリ
ケトンマルチフィラメントが示されているのみであり、
繊維の摩擦抵抗の低減に関しては一切記されていない。
Specifically, JP-A-2-112413, JP-A-4-228613 and JP-A-4-505
In Japanese Patent No. 344, Japanese Patent Publication No. 7-508317, etc.,
Hexafluoroisopropanol, m-cresol, chlorophenol, resorcin / water, phenol / acetone, propylene carbonate / hydroquinone, pyrrole, resorcin / propylene carbonate, pyridine,
There is known a polyketone fiber which is wet-spun using an organic solvent such as formic acid. However, in these documents, although there is disclosure of a technology for high-strength / high-modulus, high-melting-point polyketone fiber, there is a problem of polyketone fiber having a problem of single thread sticking of polyketone fiber and fiber-fiber friction. There is no disclosure. Only Tokuhyo 7-50831
No. 7 discloses a high-strength polyketone fiber in which single yarn sticking is suppressed by pre-stretching at room temperature after coagulation using a solvent of resorcin / water and a methanol coagulation bath. Only high-strength polyketone multifilaments with low thread sticking are shown,
No mention is made of reducing the frictional resistance of the fibers.

【0004】このようなポリケトン繊維は確かに高強
度、高弾性率であるものの、単糸膠着がないためにかえ
って繊維の集束性が低下し、繊維−繊維間摩擦や繊維−
金属間摩擦抵抗が大きくなり、延伸時や撚糸時に摩擦抵
抗により単糸が切断する問題、繊維表面が擦過してフィ
ブリル状物が生成し単糸間で絡み合う問題、さらには撚
糸物の品位が悪くなる、撚糸物の力学強度や耐疲労性が
低下する等の問題が生じる。また、WO99/1814
3号、WO00/09611号、特開2001−115
007号公報等では、亜鉛塩、カルシウム塩、鉄塩等の
金属塩溶液を用いて湿式紡糸した高強度・高弾性率のポ
リケトン繊維に関する技術が知られている。
Although such polyketone fiber is certainly high in strength and high in elastic modulus, it does not have a single yarn sticking property, so that the converging property of the fiber is rather deteriorated and the fiber-fiber friction and the fiber-
Friction resistance between metals becomes large, single yarn breaks due to friction resistance during drawing and twisting, fibril-like material is generated by rubbing the fiber surface and entanglement between single yarns, and further the quality of twisted yarn is poor. There is a problem that the mechanical strength and fatigue resistance of the twisted yarn are reduced. In addition, WO99 / 1814
3, WO 00/09611, JP 2001-115A.
In Japanese Patent Laid-Open No. 007, etc., there is known a technique related to a high-strength, high-modulus polyketone fiber that is wet-spun using a metal salt solution such as a zinc salt, a calcium salt, and an iron salt.

【0005】しかし、金属塩溶液を溶剤として用いてマ
ルチフィラメントの湿式紡糸を行った場合、乾燥時に激
しい単糸膠着を起こすことが明らかになった。このよう
な単糸膠着は熱延伸後の繊維および加工後の最終繊維製
品まで残り、毛羽、断糸等の工程安定性、品位の低下の
原因となるばかりか、撚糸を行った際の撚糸物の強度が
大幅に低くなる問題がある。これまで知られている金属
塩溶液を用いる湿式紡糸に関する発明においては、単糸
膠着の問題およびその解決方法については一切記載され
ておらず、また、繊維−繊維間の摩擦の低減や繊維−金
属間の摩擦の低減による延伸時や撚糸時の工程通過性の
向上、撚糸後の撚糸物の物性向上に関する技術について
は一切記載されていない。以上のように、これまでポリ
ケトン繊維に関して、単糸膠着の問題が無く、かつ、繊
維−繊維間の摩擦が少なく優れた撚糸工程通過性を有
し、撚糸後も優れた品位と力学物性、耐疲労性を発現可
能なポリケトン繊維については全く知られていない。
However, it has been revealed that when wet spinning of multifilaments is carried out using a metal salt solution as a solvent, severe single yarn sticking occurs during drying. Such single yarn sticking remains in the fiber after hot drawing and in the final fiber product after processing, which not only causes fluff, yarn breakage, etc. in process stability and quality, but also twists when twisted. There is a problem that the strength of is significantly reduced. In the inventions related to wet spinning using a metal salt solution known so far, there is no description about the problem of single yarn sticking and a solution thereof, and further, reduction of friction between fibers and fiber-metal. There is no mention of any technique relating to improvement of processability during drawing or twisting by reduction of friction between fibers and improvement of physical properties of a twisted product after twisting. As described above, regarding the polyketone fiber, until now, there is no problem of single yarn sticking, and the fiber-fiber has less friction and excellent passability in the twisting process, and even after twisting, excellent quality and mechanical properties, resistance No polyketone fiber capable of exhibiting fatigue properties is known.

【0006】一方、ポリケトン繊維からなる撚糸物につ
いてもいくつかの文献が知られている。特開平9−32
9198号公報において、溶融紡糸法で得られたポリケ
トン繊維およびヘキサフルオロイソプロパノールを溶剤
とする湿式紡糸法で得られたポリケトン繊維からなる撚
糸物の記載があるが、単糸膠着や繊維−繊維間の摩擦に
関して一切の記載がなく、本発明に関して何らの知見を
与えるものではない。また、特開平1−124617号
公報においてポリケトン繊維を撚り合わせた記載がある
が、この発明で用いられているのは低融点のポリケトン
を溶融紡糸して得た力学物性・耐熱性の低いポリケトン
繊維であり、しかも、ポリケトン繊維の単糸膠着や繊維
の摩擦に関する技術については全く記載されていない。
また、特開平11−334313号公報、特開平11−
336957号公報にておいては、溶融紡糸法によって
得られたポリケトン繊維と1−オキソトリメチレンのみ
からなるポリケトン繊維(ECO繊維)からなる撚糸物
の記載があるが、これらの発明においても単糸膠着の抑
制や繊維−繊維間の摩擦の低減、ポリケトン繊維の撚糸
強力利用率を高める技術に関しては一切示唆されていな
い。以上のように、単糸膠着がなく繊維−繊維間の摩擦
の小さいポリケトン繊維からなるポリケトン撚糸物であ
って、優れた撚糸工程通過性、撚糸強力利用率、およ
び、耐疲労性に優れるポリケトン撚糸物に関する技術は
これまで全く知られていない。
[0006] On the other hand, several documents are known about a twisted yarn made of polyketone fiber. JP-A-9-32
No. 9198 discloses a twisted product composed of polyketone fibers obtained by a melt spinning method and polyketone fibers obtained by a wet spinning method using hexafluoroisopropanol as a solvent. There is no description regarding friction, and no knowledge is given regarding the present invention. Further, in JP-A-1-124617, there is a description in which polyketone fibers are twisted together, but the present invention uses polyketone fibers having low mechanical properties and heat resistance obtained by melt spinning a low melting point polyketone. Moreover, there is no description about a technique relating to single thread sticking of polyketone fiber and friction of fiber.
Further, JP-A-11-334313 and JP-A-11-33413
In 336957, there is a description of a twisted yarn composed of a polyketone fiber obtained by a melt spinning method and a polyketone fiber consisting of only 1-oxotrimethylene (ECO fiber), but also in these inventions, a single yarn There is no suggestion of a technique for suppressing sticking, reducing fiber-fiber friction, and increasing the twisting strength utilization rate of polyketone fibers. As described above, a polyketone twisted yarn comprising a polyketone fiber having no single yarn sticking and having a small fiber-fiber friction, and having excellent twisting process passability, twisting yarn strength utilization factor, and fatigue resistance. Until now, no technology related to goods has been known.

【0007】[0007]

【発明が解決しようとする課題】本発明が解決しようと
する課題としては、一つの課題は高強度・高弾性率の優
れた力学物性を有すると共に、単糸膠着がなく繊維−繊
維間および繊維−金属間の摩擦が小さく、優れた撚糸工
程通過性、撚糸強力利用率、耐疲労性を有するポリケト
ン繊維およびその製造方法を提供するものであり、二つ
目の課題は高強力であり、かつ、撚糸強力利用率が高く
耐疲労性に優れるポリケトン撚糸物を提供するものであ
る。
One of the problems to be solved by the present invention is that it has excellent mechanical properties such as high strength and high elastic modulus, and has no single yarn sticking and fiber-to-fiber and fiber-to-fiber bonding. To provide a polyketone fiber having small friction between metals, excellent passability in a twisting process, a high twist yarn utilization factor, and fatigue resistance, and a method for producing the same, and a second problem is high strength, and The present invention provides a polyketone twisted yarn having a high twist yarn tenacity utilization ratio and excellent fatigue resistance.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記の課題
を達成するためにポリケトン繊維の構造および製造方法
を鋭意検討した結果、高強度化技術と共に単糸膠着の低
減、繊維−繊維間の摩擦係数の低減、繊維断面形状の均
質化、単糸繊度の適正化がその対策となることを見出
し、さらに検討した結果、本発明に達した。即ち、本発
明は;基本的に繰り返し単位の95〜100質量%が下
記構造式(1)で示される1−オキソトリメチレンにより
構成されるポリケトン繊維であって、下記の(a) 〜(e)
の要件を満足することを特徴とするポリケトン繊維に関
する。 (a) :結晶化度≧60% (b):結晶配向度≧90% (c) :引張強度≧10cN/dtex (d) :単糸膠着率≦30% (e) :仕上げ剤付着率=0.3〜15質量%
Means for Solving the Problems As a result of intensive studies on the structure and manufacturing method of the polyketone fiber in order to achieve the above-mentioned objects, the inventors of the present invention have found that as a result of the high strength technology, the reduction of single yarn sticking, the fiber-to-fiber It was found that the reduction of the friction coefficient, homogenization of the fiber cross-sectional shape, and optimization of the single yarn fineness are the countermeasures, and as a result of further studies, the present invention was reached. That is, the present invention is basically a polyketone fiber in which 95 to 100% by mass of repeating units are composed of 1-oxotrimethylene represented by the following structural formula (1), and the following (a) to (e) )
The present invention relates to a polyketone fiber characterized by satisfying the above requirement. (a): Crystallinity ≧ 60% (b): Crystal orientation ≧ 90% (c): Tensile strength ≧ 10 cN / dtex (d): Single yarn sticking rate ≦ 30% (e): Finishing agent adhesion rate = 0.3-15% by mass

【化3】 [Chemical 3]

【0009】本発明のポリケトン繊維は、繰り返し単位
の95〜100質量%が1−オキソトリメチレンから構
成されるポリケトンである。繰り返し単位中の1−オキ
ソトリメチレンの割合が高いほど分子鎖の規則性が上が
り、高結晶性、高配向度の繊維が得られるようになり、
結果として高強度・高弾性率、高耐熱性の繊維が得られ
る。このため、1−オキソトリメチレンの割合は好まし
くは97〜100質量%、最も好ましくは100質量%
であることが望ましい。また、必要に応じてプロペン、
ヘキセン等のエチレン以外のオレフィンやメチルメタク
リレート、アリルスルホン酸ナトリウム等の不飽和炭化
水素を有する化合物を共重合してもよい。
The polyketone fiber of the present invention is a polyketone in which 95 to 100% by mass of the repeating unit is composed of 1-oxotrimethylene. The higher the proportion of 1-oxotrimethylene in the repeating unit, the higher the regularity of the molecular chain, and the higher the degree of crystallinity, the higher the degree of orientation of the fiber can be obtained.
As a result, a fiber having high strength, high elastic modulus and high heat resistance can be obtained. Therefore, the proportion of 1-oxotrimethylene is preferably 97 to 100% by mass, most preferably 100% by mass.
Is desirable. Also, if necessary, propene,
An olefin other than ethylene such as hexene, or a compound having an unsaturated hydrocarbon such as methyl methacrylate or sodium allylsulfonate may be copolymerized.

【0010】ポリケトンの重合度は、極限粘度で2〜1
0であることが好ましい。極限粘度が2未満である場合
はポリケトン繊維の強度や紡糸性が低下する。また、極
限粘度が10を超える場合に重合コスト、紡糸コストが
高くなり実用的な価格でポリケトン繊維を得ることが困
難となる。このため、ポリケトンの重合度としては、極
限粘度が2〜10の範囲、さらに好ましくは3〜6の範
囲であることが望ましい。
The degree of polymerization of polyketone is 2-1 in terms of intrinsic viscosity.
It is preferably 0. If the intrinsic viscosity is less than 2, the strength and spinnability of the polyketone fiber will decrease. Further, when the intrinsic viscosity exceeds 10, the polymerization cost and the spinning cost become high, and it becomes difficult to obtain the polyketone fiber at a practical price. Therefore, the degree of polymerization of the polyketone is preferably such that the intrinsic viscosity is in the range of 2 to 10, more preferably 3 to 6.

【0011】本発明のポリケトン繊維は、高強度・高弾
性率、高耐熱性の特性を発現するために結晶化度、結晶
配向度が特定範囲にあることが必要である。結晶化度
(a) は結晶構造の量比を表す構造パラメーターであり、
この値が60%未満では、ポリケトン繊維が十分な強
度、弾性率、耐熱性を発現することが出来ない。結晶化
度(a) は高いほど高強度、高寸法安定性、高耐熱性、高
耐薬品性となるため、60%以上であることが必要であ
り、より好ましくは70%以上、特に好ましくは80%
以上であることが望ましい。また、結晶配向度 (b)は、
繊維中の分子鎖が繊維軸方向に配列する規則性の度合い
を表す構造パラメーターであり、この値が90%未満で
は分子鎖の配列が不十分で弾性率が低く、荷重に対する
寸法安定性が不十分となる。結晶配向度 (b)は高いほど
高弾性率で寸法安定性に優れる繊維となるため、90%
以上であることが必要であり、より好ましくは95%以
上、特に好ましくは97%以上であることが望ましい。
また、本発明のポリケトン繊維は引張強度に優れた繊維
である。引張強度(c)が高いほど、高強度の撚糸物が得
られるほか、延伸時や撚糸時の張力による毛羽、断糸が
起こりにくくなる。このため、引張強度(c) としては1
0cN/dtex以上であることが必要であり、より好
ましくは13cN/dtex以上、さらに好ましくは1
5cN/dtex以上、特に好ましくは17cN/dt
ex以上であることが望ましい。
The polyketone fiber of the present invention is required to have crystallinity and crystal orientation in a specific range in order to exhibit high strength / high elastic modulus and high heat resistance. Crystallinity
(a) is a structural parameter representing the amount ratio of the crystal structure,
If this value is less than 60%, the polyketone fiber cannot exhibit sufficient strength, elastic modulus, and heat resistance. The higher the crystallinity (a), the higher the strength, the high dimensional stability, the high heat resistance and the high chemical resistance. Therefore, the crystallinity (a) needs to be 60% or more, more preferably 70% or more, and particularly preferably 80%
The above is desirable. The crystal orientation degree (b) is
It is a structural parameter that represents the degree of regularity in which the molecular chains in the fiber are arranged in the fiber axis direction. If this value is less than 90%, the molecular chains are not well arranged and the elastic modulus is low, resulting in poor dimensional stability under load. Will be enough. The higher the degree of crystal orientation (b), the higher the elastic modulus and the more excellent the dimensional stability.
It is necessary that the content be not less than 100%, more preferably not less than 95%, particularly preferably not less than 97%.
Further, the polyketone fiber of the present invention is a fiber having excellent tensile strength. The higher the tensile strength (c) is, the higher the strength of the twisted yarn is obtained, and the more the fluff and the yarn breakage due to the tension during the drawing and the twisting are less likely to occur. Therefore, the tensile strength (c) is 1
It is necessary to be 0 cN / dtex or more, more preferably 13 cN / dtex or more, and further preferably 1
5 cN / dtex or more, particularly preferably 17 cN / dt
It is desirable to be ex or more.

【0012】高強度のポリケトン繊維は繊維軸方向に高
度に配向したものであるため、撚糸を行った場合、
繊維軸方向以外の方向の力を受けて強度が低下する問
題、繊維表面同士の擦過によって単糸が切れたりフィ
ブリルが発生して単糸間で絡まりあい工程通過性、品位
が低下する問題が頻発するようになる。本発明の最も重
要な技術課題は、高度に結晶化、配向した高強度のポリ
ケトン繊維であっても、やの問題が起こらない繊維
を提供することであり、本発明者らはこれらの問題を解
決するには、(i) 単糸膠着がないこと、(ii)繊維−繊維
間の摩擦が小さいこと、(iii) 単糸繊度が小さいこと、
(iv)毛羽やフィブリル状物がないことが重要であり、特
に(i) と(ii)を同時に満足するポリケトン繊維は、撚糸
による強力低下や工程通過性の低下に対して極めて優れ
た特性を示すことを見いだした。
Since the high-strength polyketone fiber is highly oriented in the fiber axis direction, when twisted,
Frequently, there is a problem that the strength decreases due to the force other than the fiber axis direction, the single yarn breaks or fibrils are generated due to the rubbing between the fiber surfaces, and the single yarns are entangled with each other and the process passability and quality deteriorate. Come to do. The most important technical problem of the present invention is to provide a fiber which does not cause the problem of irritation even if it is a highly crystallized and oriented high-strength polyketone fiber. To solve, (i) no single yarn sticking, (ii) small friction between fibers, (iii) small single yarn fineness,
(iv) It is important that there are no fluffs or fibrils, and in particular, polyketone fibers satisfying (i) and (ii) at the same time have extremely excellent properties against a reduction in strength due to twisting and a reduction in process passability. I found something to show.

【0013】本発明のポリケトン繊維の単糸膠着につい
ては、下式(4) で定義される単糸膠着率(d) が30%以
下である。 単糸膠着率(d) =[1−(見かけの単糸数/単糸数)]×100(%) ・・・(4) (ここで、単糸膠着率(d) とは、マルチフィラメント中
の膠着した単糸の数的割合を表す値である。)具体的な
例で説明すると、10個のホール数を持った紡糸口金を
用いて製造された繊維において、2本の単糸が膠着して
いるものが2組あるとすれば、単糸数は10で、見かけ
の単糸本数は8となり、単糸膠着率(d) は20%とな
る。単糸膠着率(d) が30%より大きい場合に、繊維が
硬くなるほか、単糸に無理な力がかかりやすくなって撚
糸時に毛羽、断糸が発生するし、撚糸後の強度が低下す
る等問題が顕在化する。単糸膠着率(d) としてはさらに
好ましくは20%以下であり、特に好ましくは10%以
下、最も好ましくは0%である。
Regarding the single thread sticking of the polyketone fiber of the present invention, the single thread sticking rate (d) defined by the following formula (4) is 30% or less. Single thread sticking rate (d) = [1- (apparent single thread number / single thread number)] x 100 (%) (4) (Here, single thread sticking rate (d) means This is a value representing the numerical ratio of the stuck single yarns.) Explaining in a concrete example, two single yarns are stuck together in a fiber manufactured by using a spinneret having 10 holes. If there are two sets, the number of single yarns is 10, the apparent number of single yarns is 8, and the single yarn sticking rate (d) is 20%. If the sticking rate (d) of the single yarn is more than 30%, the fiber becomes hard, and excessive force is easily applied to the single yarn to cause fluffing and breakage during the twisting, and the strength after twisting decreases. Such problems become apparent. The single thread sticking ratio (d) is more preferably 20% or less, particularly preferably 10% or less, and most preferably 0%.

【0014】また、繊維−繊維間の摩擦が小さいことも
重要であり、これを達成するにはポリケトン繊維に0.
1〜20質量%の仕上げ剤を含有せしめて、繊維の集束
・制電による無駄な接触抵抗の低減、油膜の形成による
繊維表面の摩擦係数の低減をすることが極めて有効であ
る。仕上げ剤の成分については特に制限はなく、例えば
特願2000−19995号に記載の仕上げ剤を使用す
ることができる。具体的には、仕上げ剤の構成成分とし
て、(1) エステル化合物、(2) 鉱物油、(3) ポリエーテ
ルから選ばれた少なくとも1種を必須成分とし、その合
計量が仕上げ剤中に30〜100重量%、好ましくは5
0〜80重量%含有されている仕上げ剤が好ましい。こ
のような仕上げ剤を付与することにより、ポリケトン繊
維の表面に強固な油膜が形成し、この油膜によって繊維
表面が滑るので、延伸時や撚糸時に繊維が短期間に摩耗
することがない。
It is also important that the fiber-to-fiber friction is small.
It is extremely effective to contain a finishing agent in an amount of 1 to 20% by mass to reduce wasteful contact resistance due to fiber focusing and antistatic, and to reduce the friction coefficient of the fiber surface by forming an oil film. The components of the finishing agent are not particularly limited, and for example, the finishing agent described in Japanese Patent Application No. 2000-19995 can be used. Specifically, at least one selected from (1) ester compound, (2) mineral oil, and (3) polyether is an essential component as a component of the finishing agent, and the total amount thereof is 30% in the finishing agent. ~ 100% by weight, preferably 5
A finish containing 0 to 80% by weight is preferred. By applying such a finishing agent, a strong oil film is formed on the surface of the polyketone fiber, and the surface of the fiber is slipped by this oil film, so that the fiber is not worn in a short period of time during drawing or twisting.

【0015】エステル化合物(1) は、ポリケトン繊維表
面の平滑性・耐摩耗性を向上させる成分であり、具体例
としては、ステアリン酸オクチル、オレイン酸ラウリル
等が挙げられ、その分子量は平滑性、工程通過性の観点
から500〜3000が好ましい。鉱物油(2) もまた、
ポリケトン繊維表面の平滑性・耐摩耗性を向上させる成
分であり、パラフィン系又はナフテン系のものが好まし
く、その粘度は30℃におけるレッドウッド粘度が40
〜800秒が好ましい。ポリエーテル(3) は、その仕上
げ剤が繊維表面に形成する油膜の強度を高める働きがあ
り、具体的には、プロピレンオキシドとエチレンオキシ
ドの共重合してなるポリオレフィンオキシドを主成分と
するポリエーテルが好ましく、その分子量としては耐摩
耗性の観点から1500〜20000が好ましい。
The ester compound (1) is a component for improving the smoothness and abrasion resistance of the surface of the polyketone fiber, and specific examples thereof include octyl stearate and lauryl oleate, the molecular weight of which is smooth. From the viewpoint of process passability, it is preferably 500 to 3000. Mineral oil (2) is also
It is a component that improves the smoothness and abrasion resistance of the polyketone fiber surface, and is preferably a paraffin-based or naphthene-based component having a redwood viscosity of 40 at 30 ° C.
~ 800 seconds is preferred. Polyether (3) has the function of increasing the strength of the oil film formed on the surface of the fiber by the finishing agent, and specifically, a polyether whose main component is polyolefin oxide formed by copolymerization of propylene oxide and ethylene oxide is used. The molecular weight is preferably 1500 to 20000 from the viewpoint of wear resistance.

【0016】また、本発明で用いる仕上げ剤は、乳化剤
(例えばポリオキシエチレンステアリルエーテル等)や
制電剤(アニオン性界面活性剤等)、酸化防止剤を含有
することが好ましい。以上のような仕上げ剤の付着率
(e) は、0.3質量%未満であると摩擦抵抗の低減効果
が不十分であり、また15質量%を超えると油膜同士の
接触抵抗が増大し逆に繊維−繊維間の摩擦が増大するた
め、仕上げ剤の付着率(e) はポリケトン繊維に対して
0.3〜15質量%が好ましく、より好ましくは0.5
〜10質量%、さらに好ましくは1〜5質量%である。
仕上げ剤はそのままストレートで付与して、あるいは、
水に分散させてエマルジョン仕上げ剤として繊維に付着
させることができる。特に、単糸数の多いポリケトン繊
維では繊維間に均一に油剤を浸透させることが重要であ
り、浸透剤としてエステル基やケトン基、エーテル基を
有する活性剤を併用するとポリケトン繊維間に仕上げ剤
を均等に分散せしめて付与することが出来て効果的であ
る。
The finishing agent used in the present invention preferably contains an emulsifier (eg, polyoxyethylene stearyl ether), an antistatic agent (eg, anionic surfactant), and an antioxidant. Adhesion rate of finishing agents as above
When (e) is less than 0.3% by mass, the effect of reducing the frictional resistance is insufficient, and when it exceeds 15% by mass, the contact resistance between the oil films increases and conversely the friction between the fibers increases. Therefore, the adhesion rate (e) of the finishing agent is preferably 0.3 to 15 mass% with respect to the polyketone fiber, and more preferably 0.5.
It is -10% by mass, more preferably 1-5% by mass.
Finishing agent can be applied straight as it is, or
It can be dispersed in water and attached to the fiber as an emulsion finish. In particular, for polyketone fibers with a large number of single yarns, it is important to uniformly permeate the oil agent between the fibers, and if an activator having an ester group, a ketone group, or an ether group is used as a penetrant, a finishing agent will be evenly distributed between the polyketone fibers. It is effective because it can be dispersed and applied to.

【0017】また、繊維−繊維間の抵抗を低減せしめる
手段としては繊維の断面を摩擦しにくい形状にすること
が効果的である。本発明のポリケトン繊維の断面形状は
特に制限はなく、円、楕円、三角、四角、菱形、アルフ
ァベット形、星形、中空等目的に応じて選定出来るが、
極めて高い撚糸強力利用率、撚糸時の工程通過性を得る
ためには円形(丸断面または楕円)が望ましく、さらに
真円率(g)が1.0〜1.2である丸断面であることが
より好ましい。ここで、真円率(g)とはポリケトン繊維
断面の最小外接円半径/最大内接円半径から求められる
値であり、1.0に近いほど真円に近いことを意味す
る。真円率(g)は1.0に近いほど、単糸間の接触面積
が小さくなり繊維−繊維間の摩擦抵抗が減少し、撚糸物
の耐疲労性、撚糸強力利用率が高くなり、撚糸時の工程
通過性が良くなる。真円率(g)は、より好ましくは1.
0〜1.1であることが望ましい。
Further, as a means for reducing the resistance between fibers, it is effective to make the cross-section of the fiber into a shape that does not easily rub. The cross-sectional shape of the polyketone fiber of the present invention is not particularly limited, and can be selected according to the purpose such as circle, ellipse, triangle, square, rhombus, alphabet, star, and hollow.
A circular shape (round cross section or elliptical shape) is desirable in order to obtain extremely high twisting yarn strength utilization ratio and process passability during twisting, and a circular cross section with a roundness (g) of 1.0 to 1.2. Is more preferable. Here, the circularity (g) is a value obtained from the minimum circumscribed circle radius / maximum inscribed circle radius of the polyketone fiber cross section, and the closer to 1.0, the closer to the perfect circle. The closer the circularity (g) is to 1.0, the smaller the contact area between single yarns, the less the friction resistance between fibers, the higher the fatigue resistance of twisted yarns and the higher utilization factor of twisted yarns. The time passability is improved. The roundness (g) is more preferably 1.
It is desirable that it is 0 to 1.1.

【0018】本発明のポリケトン繊維は、仕上げ剤付与
および繊維断面形状の設計によって繊維−繊維間の動摩
擦係数(f) (以下μと略することがある)が0.01〜
0.5とすることが望ましい。μが0.5を超える場
合、撚糸時に負荷が掛かり毛羽や断糸が頻発し、撚糸強
力利用率も大きく低下する。また、μが0.01未満の
場合、マルチフィラメントの集束性が低下し、たるみが
生じて撚糸強力利用率(h) および品位が低下する他、加
工性・取り扱い性が悪くなる。このため、μの値として
は好ましくは0.03〜0.4、より好ましくは0.0
5〜0.3であることが望ましい。
The polyketone fiber of the present invention has a fiber-to-fiber dynamic friction coefficient (f) (hereinafter may be abbreviated as μ) of 0.01 to depending on the addition of a finishing agent and the design of the fiber cross-sectional shape.
It is desirable to set it to 0.5. When μ exceeds 0.5, a load is applied during twisting, fluffing and yarn breakage occur frequently, and the twisting yarn strength utilization factor is greatly reduced. On the other hand, when μ is less than 0.01, the bundle-converging property of the multifilament is deteriorated and sagging is caused, whereby the twisting yarn strength utilization ratio (h) and the quality are deteriorated, and the processability and handleability are deteriorated. Therefore, the value of μ is preferably 0.03 to 0.4, and more preferably 0.0.
It is desirable to be 5 to 0.3.

【0019】さらに、本発明のポリケトン繊維には毛羽
やフィブリル状物が少ないことは当然重要である。ここ
で毛羽とは、単糸が切断して生成した片端が拘束されて
いない繊維である。また、フィブリル状物とは、衝撃や
摩耗によって剥離生成する、直径0.01〜数μm、長
さ1μm〜数十mmのポリケトンからなる円筒状物であ
る。これら毛羽やフィブリル状物はポリケトン繊維の強
度を低下させるばかりでなく、隣接する単糸や付近の2
本以上の単糸と絡み合って結節点を形成し撚糸強力利用
率(h) を低下させる。毛羽数としては、好ましくは1個
/10m以下、より好ましくは1個/100m以下、さ
らに好ましくは1個/10000m以下であることが望
ましい。また、フィブリル数としては繊維束を光学顕微
鏡で観察した際に100視野中1個以下、好ましくは1
00視野中0個であることが望ましい。
Further, it is of course important that the polyketone fiber of the present invention has a small amount of fluff and fibrils. Here, the fluff is a fiber whose one end is not constrained, which is generated by cutting a single yarn. In addition, the fibrillar material is a cylindrical material made of polyketone having a diameter of 0.01 to several μm and a length of 1 μm to several tens of mm, which is peeled off due to impact or abrasion. These fluffs and fibrils not only reduce the strength of the polyketone fiber, but also the adjacent single yarn and the adjacent two yarns.
Entangled with more than one single yarn to form knot points and reduce the twisting yarn strength utilization rate (h). The number of fluffs is preferably 1 piece / 10 m or less, more preferably 1 piece / 100 m or less, and further preferably 1 piece / 10,000 m or less. The fibril number is 1 or less, preferably 1 in 100 fields of view when the fiber bundle is observed with an optical microscope.
It is desirable that there be 0 in 00 fields of view.

【0020】ポリケトン繊維の単糸繊度は特に制限はな
いが、撚糸強力利用率および工程通過性の観点から0.
1〜10dtexであることが望ましい。単糸繊度が
0.1dtex未満の場合、紡糸時や撚糸時に毛羽や断
糸が起こり製品の品位および工程通過性が低下する。ま
た、単糸繊度が10dtexを超えると、強撚時の撚糸
強力利用率が低くなる問題がある。このため、単糸繊度
としてはより好ましくは0.5〜5dtex、特に好ま
しくは0.8〜2dtexであることが望ましい。ま
た、ポリケトン繊維の総繊度は用途や使用部位により異
なるため特に制限はないが、通常は10〜10000d
tex、好ましくは300〜3000dtexである。
The single yarn fineness of the polyketone fiber is not particularly limited, but it is 0.
It is preferably 1 to 10 dtex. If the single yarn fineness is less than 0.1 dtex, fluff or yarn breakage occurs during spinning or twisting, and the product quality and process passability deteriorate. Further, if the single yarn fineness exceeds 10 dtex, there is a problem that the twisting yarn strength utilization ratio during strong twisting is lowered. Therefore, the single yarn fineness is more preferably 0.5 to 5 dtex, and particularly preferably 0.8 to 2 dtex. Further, the total fineness of the polyketone fiber is not particularly limited because it depends on the application and the site to be used, but usually 10 to 10,000 d
tex, preferably 300 to 3000 dtex.

【0021】本発明のポリケトン繊維は、高強度であり
ながら単糸膠着がなく、仕上げ剤を有し且つ動摩擦係数
(f) μが小さく撚糸性に優れた繊維であるが、撚糸性の
具体的な範囲として、撚り係数Kが10000となるよ
う撚糸した際の撚糸強力利用率(h) が65%以上である
ことが望ましい。なお、本発明において、撚糸強力利用
率(h) とは撚糸後のポリケトン撚糸物の強力を撚糸前の
ポリケトン繊維の強力で除した100分率である。例え
ば、複数本のポリケトン繊維を撚り合わせる場合には、
撚糸後のポリケトン撚糸物の強力を、撚り合わせたポリ
ケトン繊維の強力の和で除した100分率を撚糸強力利
用率(h) とする。また、Kは下式(1) で定義される撚糸
物の撚り係数である。 K=Y×D0.5 (T/m・dtex0.5) ・・・(1) 〔ただし、式(1) において、Yはポリケトン撚糸物1m
あたりの撚り数(T/m)、Dはポリケトン撚糸物の総
表示繊度(dtex)である。〕
The polyketone fiber of the present invention has high strength but no single yarn sticking, has a finishing agent, and has a dynamic friction coefficient.
(f) A fiber having a small μ and excellent in twistability, but as a specific range of the twistability, the twisting strength utilization factor (h) when twisted so that the twisting coefficient K becomes 10,000 is 65% or more. Is desirable. In the present invention, the twisting yarn strength utilization ratio (h) is a 100-percentage obtained by dividing the strength of the twisted polyketone product by the strength of the untwisted polyketone fiber. For example, when twisting multiple polyketone fibers,
The strength of the twisted polyketone twisted product is divided by the sum of the strengths of the twisted polyketone fibers to obtain a 100-percentage ratio as the twisted yarn strength utilization rate (h). K is the twist coefficient of the twisted yarn defined by the following formula (1). K = Y × D 0.5 (T / m · dtex 0.5 ) (1) [In the formula (1), Y is a polyketone twisted product 1 m
The number of twists per unit (T / m) and D are the total indicated fineness (dtex) of the twisted polyketone yarn. ]

【0022】ここで、総表示繊度とは撚糸に用いた全ポ
リケトン繊維の繊度の和である。例えば、1670dt
exのポリケトン繊維を3本撚り合わせた場合、撚糸物
の総表示繊度は5010dtex(1670/3)とな
る。複数のポリケトン繊維を撚り合わせ、下撚り、上撚
り等の多段の撚りを加えた場合、最後に加えた撚りの回
数を撚り数Yとして撚り係数を算出する。タイヤコード
やベルト、ホース等のゴム補強材料、あるいはロープや
ネット、漁網等の用途に用いる場合、撚り係数Kが10
000〜30000の範囲の撚糸物を用いることが多
い。ポリケトン繊維においては撚糸強力利用率(h) は撚
り係数Kが大きくなるに連れて低下し、Kが10000
におけるポリケトン繊維の撚糸強力利用率(h) が65%
未満の場合、Kが10000〜30000における撚糸
強力利用率(h) は65%よりさらに小さくなる。このた
め、ほとんどの用途において高強度のポリケトン繊維を
用いても撚糸物の強度は実用的な強度を有さなくなるほ
か、撚糸工程時に毛羽や断糸等のトラブルが多発し、工
程通過性や品位の低下が起こる。このため、撚り係数K
が10000における撚糸強力利用率(h) は65%以上
であることが好ましく、より好ましくは75%、さらに
好ましくは80%以上であることが望ましい。
Here, the total indicated fineness is the sum of the fineness of all polyketone fibers used for the twisted yarn. For example, 1670dt
When three polyketone fibers of ex are twisted together, the total fineness of the twisted yarn product is 5010 dtex (1670/3). When a plurality of polyketone fibers are twisted together and a multi-stage twist such as a lower twist and an upper twist is added, the twisting coefficient is calculated by setting the number of twists added last as the twist number Y. When used for rubber reinforcing materials such as tire cords, belts and hoses, or for applications such as ropes, nets and fishing nets, the twist coefficient K is 10
The twisted yarn in the range of 000 to 30,000 is often used. In the polyketone fiber, the twisting yarn strength utilization factor (h) decreases as the twisting coefficient K increases, and K is 10000.
Utilization rate (h) of polyketone fiber in polyester is 65%
If it is less than K, the twisting yarn strength utilization factor (h) at K of 10,000 to 30,000 becomes smaller than 65%. Therefore, in most applications, the strength of twisted yarns will not have practical strength even if high-strength polyketone fibers are used, and troubles such as fluffs and yarn breakage frequently occur during the twisting process, resulting in process passability and quality. Lowering occurs. Therefore, the twist coefficient K
It is preferable that the twisting yarn tenacity utilization ratio (h) at 10000 is 65% or more, more preferably 75%, and further preferably 80% or more.

【0023】また、ポリケトン繊維の撚糸強力利用率
(h) は撚糸条件(用いるポリケトン繊維の繊度、撚糸数
等)により大きく変化し、ポリケトン繊維の繊度が小さ
いほど、また、撚糸数が少ないほど撚糸強力利用率(h)
が高くなる。このため、本発明のポリケトン繊維は、撚
り係数Kに対して、下式(2) の範囲内にあることが好ま
しい。 撚糸強力利用率(h) (%)≧100−K/300 ・・・(2)
Further, the twisting strength utilization factor of the polyketone fiber
(h) varies greatly depending on the twisting conditions (fineness of the polyketone fiber used, number of twisted yarns, etc.). The smaller the fineness of the polyketone fiber and the smaller the number of twisted yarns, the higher the yarn twisting strength utilization rate (h)
Becomes higher. Therefore, the polyketone fiber of the present invention preferably has a twist coefficient K within the range of the following formula (2). Twisted yarn strength utilization rate (h) (%) ≧ 100-K / 300 ・ ・ ・ (2)

【0024】ポリケトン繊維は、タイヤやベルト、ホー
ス等のゴム補強材料等の高い荷重を受ける用途への展開
が期待されている。これらの用途では、通常下撚りをし
た繊維を2本あるいは3本以上撚り合わせ、更に下撚り
とは逆方向に上撚りを加えて撚糸物として、得られる撚
糸物には高い強力が要求される。本発明者らは、上述の
単糸膠着率、仕上げ剤の組成・付与方法、繊維断面形
状、フィブリルの抑制、単糸繊度を最適な条件で行うこ
とによって、従来のポリケトン繊維を凌駕する極めて優
れた撚糸強力利用率(h) を有するポリケトン繊維を見出
した。この高撚糸強力利用率のポリケトン繊維は、撚糸
強力利用率(h) が下式(3) の範囲にあり、ゴム補強材料
やロープ等の高荷重のかかる用途へ極めて有用なもので
ある。 撚糸強力利用率(%)≧100×(1−4.79×10-9×K1.78) ・・・(3) 上記式(3) で示される撚糸強力利用率(h) の値として
は、具体的には撚り係数Kが5000の時に98%以
上、撚り係数Kが10000の時に94%以上、撚り係
数Kが15000の時に87%以上、撚り係数Kが20
000の時に78%以上、撚り係数Kが25000の時
に68%以上であり、甘撚りから強撚まで高い撚糸強力
利用率(h) を維持するものである。
The polyketone fiber is expected to be applied to applications such as tires, belts, hoses and the like, which are subjected to a high load such as rubber reinforcing materials. In these applications, usually two or three or more twisted fibers are twisted together, and further twisted in the opposite direction to the twisted twist to obtain a twisted yarn, and the obtained twisted yarn requires high strength. . The inventors of the present invention are extremely excellent over conventional polyketone fibers by performing the above-mentioned single yarn sticking rate, finish composition / applying method, fiber cross-sectional shape, fibril suppression, and single yarn fineness under optimum conditions. A polyketone fiber having a high twist utilization factor (h) was found. The polyketone fiber having a high utilization factor of the high twisted yarn has a high utilization factor of the twisted yarn (h) in the range of the following formula (3), and is extremely useful for applications such as rubber reinforcing materials and ropes under high load. Twisted yarn strength utilization factor (%) ≧ 100 × (1−4.79 × 10 −9 × K 1.78 ) (3) As the value of the twisted yarn strength utilization factor (h) shown by the above formula (3), Specifically, when the twist coefficient K is 5000, 98% or more, when the twist coefficient K is 10,000, 94% or more, when the twist coefficient K is 15000, 87% or more, and the twist coefficient K is 20% or more.
It is 78% or more at 000, and 68% or more at a twist coefficient K of 25,000, and maintains a high twisting yarn strength utilization rate (h) from sweet twist to strong twist.

【0025】また、本発明のポリケトン繊維は短繊維と
して用いてもよい。ポリケトン短繊維は、上述のポリケ
トンフィラメントを糸長方向にカットすることで得られ
る。短繊維の長さについては特に制限はなく、使用環
境、使用目的に応じて任意の長さにカットすれば良い
が、通常は短繊維の平均長で0.1〜100mm、好ま
しくは0.5〜50mmの長さのものが好適に用いられ
る。なお、本発明において短繊維の平均長Lは、1本の
短繊維の長手方向(繊維軸方向)の長さを繊維長Li
して、任意に選ばれた100本の短繊維の平均の長さと
して下式(5) で算出される。このような短繊維は、コン
クリートなどの補強材料として、或いは紡績糸として編
物やロープなどの用途に有用である。
The polyketone fiber of the present invention may be used as a short fiber. The polyketone short fiber is obtained by cutting the above-mentioned polyketone filament in the yarn length direction. The length of the short fibers is not particularly limited and may be cut to any length depending on the use environment and purpose of use, but the average length of the short fibers is usually 0.1 to 100 mm, preferably 0.5. Those having a length of up to 50 mm are preferably used. In the present invention, the average length L of the short fibers is an average length of 100 short fibers arbitrarily selected, where the length of one short fiber in the longitudinal direction (fiber axis direction) is the fiber length L i. It is calculated by the following equation (5). Such short fibers are useful as a reinforcing material for concrete or as a spun yarn in applications such as knitting and ropes.

【数1】 [Equation 1]

【0026】本発明のもう一つの形態は、上述の高強度
・高弾性率で優れた撚糸性を有するポリケトン繊維を撚
糸して得られるポリケトン撚糸物である。本発明におい
て撚糸物とは、繊維が10回/m以上の割合で撚りを加
えられてなる繊維材料を意味し、繊維材料に対して10
0質量%未満であれば樹脂や接着剤、油等の繊維材料以
外の物質を含有していてもよい。本発明の撚糸物は、撚
糸物を構成する繊維材料の少なくとも一部に本発明のポ
リケトン繊維を含有するものである。
Another aspect of the present invention is a polyketone twisted product obtained by twisting the above-mentioned polyketone fiber having high strength and high elastic modulus and excellent twistability. In the present invention, the twisted yarn means a fiber material in which fibers are twisted at a rate of 10 times / m or more, and the fiber material is 10
If it is less than 0% by mass, it may contain substances other than fiber materials such as resins, adhesives and oils. The twisted product of the present invention contains the polyketone fiber of the present invention in at least a part of the fiber material constituting the twisted product.

【0027】撚糸物に占めるポリケトン繊維の割合は高
ければ高いほど高強力で高力学特性、高耐熱性となるた
め、好ましくは撚糸物の50〜100質量%、より好ま
しくは撚糸物の80〜100質量%が本発明のポリケト
ン繊維であることが望ましい。中でも、繊維材料の10
0質量%が本発明のポリケトン繊維から構成されるポリ
ケトン撚糸物は高強力繊維材料として有用である。特
に、撚糸強力利用率(h) が下式(3) の範囲のポリケトン
撚糸物は、広範な撚糸範囲において極めて高い力学特性
を示し、従来のポリケトン撚糸物では得られなかった高
強力を有するものである。 撚糸強力利用率(h) (%)≧100×(1−4.79×10-9×K1.78) ・・・(3)
The higher the proportion of the polyketone fiber in the twisted yarn, the higher the strength, the high mechanical properties and the high heat resistance. Therefore, the twisted yarn preferably has 50 to 100% by mass, more preferably 80 to 100%. It is desirable that the mass% is the polyketone fiber of the present invention. Among them, 10 of fiber materials
A polyketone twisted yarn composed of 0% by mass of the polyketone fiber of the present invention is useful as a high-strength fiber material. In particular, polyketone twisted yarns having a twisting yarn strength utilization ratio (h) in the range of the following formula (3) show extremely high mechanical properties in a wide twisting yarn range, and have high tenacity that cannot be obtained by conventional polyketone twisted yarn products. Is. Twisted yarn strength utilization rate (h) (%) ≧ 100 × (1-4.79 × 10 −9 × K 1.78 ) ... (3)

【0028】本発明のポリケトン撚糸物の強度(強力)
は、撚糸条件、用途、使用部位等により異なり一概に定
義することは難しいが、撚り係数Kが10000の場合
で好ましくは10cN/dtex以上、より好ましくは
13cN/dtex以上、特に好ましくは15cN/d
tex以上であり、撚り係数Kが20000の場合で好
ましくは8cN/dtex以上、より好ましくは10c
N/dtex以上、特に好ましくは12cN/dtex
以上であることが望ましい。ここで、撚糸物の強度は、
撚糸物の強力を撚糸に用いた繊維の総表示繊度で除した
値である。
Strength (strength) of the twisted polyketone of the present invention
Is difficult to unconditionally define depending on the twisting condition, application, use part, etc., but when the twisting coefficient K is 10,000, preferably 10 cN / dtex or more, more preferably 13 cN / dtex or more, particularly preferably 15 cN / d.
tex or more, and when the twist coefficient K is 20,000, preferably 8 cN / dtex or more, more preferably 10 c
N / dtex or more, particularly preferably 12 cN / dtex
The above is desirable. Here, the strength of the twisted product is
It is a value obtained by dividing the strength of the twisted yarn by the total fineness of the fibers used in the twisted yarn.

【0029】また、必要に応じてポリケトン繊維以外の
繊維(例えば、ポリエステル繊維、アラミド繊維、セル
ロース繊維、ポリアミド繊維、ポリビニルアルコール繊
維等)を含有していてもよい。ポリケトン撚糸物の撚糸
形態に特に制限はなく、撚り糸の種類としては例えば、
片撚り糸、もろ撚り糸、ピッコもろ撚り糸、強撚糸など
が挙げられ、撚糸の本数も1本撚りであっても、2本撚
り、3本撚りあるいは4本以上の多本撚りであってもよ
い。撚糸物の太さは用途に応じて適宜選定され、ゴム補
強材料用途においては直径0.1〜10mm、ロープや
ネット用途においては直径1〜100mmのものが好適
に用いられる。撚糸数についても用途、部位等に応じて
適宜選定出来るが、上述の撚り係数Kが100〜500
00の範囲が好適に用いられ、より好ましくは1000
〜30000の範囲が好適に用いられる。
If desired, fibers other than polyketone fibers (for example, polyester fibers, aramid fibers, cellulose fibers, polyamide fibers, polyvinyl alcohol fibers, etc.) may be contained. There is no particular limitation on the twisted form of the polyketone twisted product, and as the type of twisted yarn, for example,
Examples of the single twisted yarn, the twisted yarn, the picco-twisted yarn, the strong twisted yarn, and the like, the number of twisted yarns may be one twisted, two twisted, three twisted, or four or more twisted. The thickness of the twisted yarn is appropriately selected according to the application, and a diameter of 0.1 to 10 mm is suitably used for the rubber reinforcing material application, and a diameter of 1 to 100 mm is suitably used for the rope or net application. The number of twisted yarns can also be appropriately selected according to the application, part, etc., but the twisting coefficient K is 100 to 500.
A range of 00 is preferably used, more preferably 1000
The range of up to 30,000 is preferably used.

【0030】また、本発明のポリケトン撚糸物をゴム補
強材料として用いる場合には、ゴムとの接着性を高める
目的で接着剤を付着せしめることがある。接着剤の種類
は特に制限はなく、従来公知のものをそのまま、あるい
は目的に応じて条件を変えて使用してもよい。接着剤と
しては、レゾルシン−ホルマリン−ラテックス(RF
L)樹脂が好適に用いられ、RFL樹脂の付着率は繊維
に対して0.1〜10質量%が好ましく、より好ましく
は1〜7質量%が望ましい。
When the twisted yarn of polyketone of the present invention is used as a rubber reinforcing material, an adhesive may be attached in order to improve the adhesiveness with rubber. The type of adhesive is not particularly limited, and a conventionally known adhesive may be used as it is, or the conditions may be changed according to the purpose. As the adhesive, resorcin-formalin-latex (RF
L) resin is preferably used, and the adhesion rate of the RFL resin is preferably 0.1 to 10% by mass, more preferably 1 to 7% by mass with respect to the fiber.

【0031】本発明のポリケトン繊維およびポリケトン
撚糸物を含有する成形体は高い力学特性を有し、また、
単糸膠着や毛羽が少なく、繊維−繊維間の摩擦係数が低
いことから耐疲労性にも優れるものとなる。本発明にお
いて成形体とは、ロープ、織物、編物、ネット、網等の
繊維製品はもちろんのこと、タイヤ、ベルト、ホース、
無限軌道体等のゴム製品、FRP等の樹脂製品等の人工
物を意味する。
A molded product containing the polyketone fiber and the twisted polyketone product of the present invention has high mechanical properties, and
Fatigue resistance is also excellent because there is little sticking of single yarns and fluff and the coefficient of friction between fibers is low. In the present invention, the molded article includes not only fiber products such as ropes, woven fabrics, knitted fabrics, nets and nets, but also tires, belts, hoses,
It means artificial products such as rubber products such as endless tracks and resin products such as FRP.

【0032】次に、本発明のポリケトン繊維およびポリ
ケトン撚糸物の製造方法について説明する。本発明のポ
リケトン繊維の製造法は特に限定されないが、取扱性、
毒性、引火性、ポリケトンの変性、コスト等の観点から
金属塩溶液を溶剤とする湿式紡糸法が好適である。以
下、金属塩溶液を溶剤とする湿式紡糸法による本発明の
ポリケトン繊維の製造法を説明する。ポリケトンの溶解
に用いる金属塩溶液はポリケトンを溶解する能力を有す
るものであれば特に制限はなく、例えばハロゲン化亜
鉛、ハロゲン化アルカリ金属塩、ハロゲン化アルカリ土
類金属塩等が挙げられる。金属塩溶液は、爆発性、取扱
性、コストの観点から水溶液が好ましく、10〜80質
量%のハロゲン化亜鉛(塩化亜鉛、ヨウ化亜鉛等)を含
有する水溶液が特に好適に用いられる。また、上記の金
属塩以外の化合物を本発明の目的を阻害しない範囲で混
合しても良い。
Next, the method for producing the polyketone fiber and the twisted polyketone product of the present invention will be described. The production method of the polyketone fiber of the present invention is not particularly limited, handleability,
From the viewpoint of toxicity, flammability, modification of polyketone, cost, etc., a wet spinning method using a metal salt solution as a solvent is preferable. Hereinafter, a method for producing the polyketone fiber of the present invention by a wet spinning method using a metal salt solution as a solvent will be described. The metal salt solution used for dissolving the polyketone is not particularly limited as long as it has the ability to dissolve the polyketone, and examples thereof include zinc halide, alkali metal halide salt, and alkaline earth metal halide salt. The metal salt solution is preferably an aqueous solution from the viewpoint of explosiveness, handleability, and cost, and an aqueous solution containing 10 to 80% by mass of zinc halide (zinc chloride, zinc iodide, etc.) is particularly preferably used. In addition, compounds other than the above metal salts may be mixed within a range that does not impair the object of the present invention.

【0033】金属塩溶液の塩濃度は50〜80質量%で
あることが好ましい。50質量%より低い塩濃度の場合
や、または80質量%より高い塩濃度では、紡糸が不安
定になる。塩濃度は下式(6) で定義される値である。 塩濃度(質量%)=[塩の質量/(塩の質量+溶媒の質量)]×100 ・・・ (6) 金属塩溶液に溶解するポリケトンのポリマー濃度は、溶
解性、紡糸性、製造コストの観点から0.1〜40質量
%が好ましいが、より好ましくは3〜20質量%であ
る。ポリマー濃度は、下式(7) で定義される値である。 ポリマー濃度(質量%)=[ポリマー質量/(ポリマー質量+金属塩溶液の 質量)]×100 ・・・(7)
The salt concentration of the metal salt solution is preferably 50 to 80% by mass. At salt concentrations below 50% by weight, or above 80% by weight, spinning becomes unstable. The salt concentration is a value defined by the following formula (6). Salt concentration (mass%) = [mass of salt / (mass of salt + mass of solvent)] × 100 (6) The polymer concentration of the polyketone dissolved in the metal salt solution is solubility, spinnability, and manufacturing cost. From the viewpoint of 0.1 to 40% by mass, more preferably 3 to 20% by mass. The polymer concentration is a value defined by the following formula (7). Polymer concentration (mass%) = [polymer mass / (polymer mass + metal salt solution mass)] × 100 (7)

【0034】得られたポリケトン溶液を必要に応じてフ
ィルターで濾過した後、紡糸口金から凝固浴へ押出し、
繊維状に成形する。押出し時のポリケトン溶液の温度と
凝固浴の温度の差が大きいときは、紡糸口金から出た繊
維状物が空気相を経て浴に入る方法、いわゆるエアギャ
ップ法が好ましい。凝固浴の組成及び温度について特に
限定はないが、溶剤の回収コストを下げる点で、溶剤に
用いた塩の水溶液であることが好ましい。凝固浴外へ引
き上げられた繊維状物を水洗し、必要に応じて塩酸、硫
酸、リン酸等を含んだpHが4以下の水溶液を用いて金
属塩を実質的に除去する。特に、金属塩溶液が、塩濃度
が59〜64質量%である塩化カルシウム/塩化亜鉛
(質量比は68/32〜61/39)の水溶液であり、
紡糸口金から押出すときのポリケトン溶液の温度が60
〜150℃、凝固浴の温度が−50〜20℃の場合、単
糸膠着率(d) を下げる効果が大きくなることに加え、強
度を高める効果もあり、好ましい。
The polyketone solution obtained is filtered with a filter as required, and then extruded from the spinneret into a coagulating bath,
Form into fibrous form. When there is a large difference between the temperature of the polyketone solution at the time of extrusion and the temperature of the coagulation bath, the so-called air gap method is preferred, in which the fibrous material discharged from the spinneret enters the bath through the air phase. The composition and temperature of the coagulation bath are not particularly limited, but an aqueous solution of the salt used as the solvent is preferable from the viewpoint of reducing the recovery cost of the solvent. The fibrous material that has been pulled out of the coagulation bath is washed with water and, if necessary, the metal salt is substantially removed using an aqueous solution containing hydrochloric acid, sulfuric acid, phosphoric acid and the like and having a pH of 4 or less. In particular, the metal salt solution is an aqueous solution of calcium chloride / zinc chloride (mass ratio 68/32 to 61/39) having a salt concentration of 59 to 64% by mass,
The temperature of the polyketone solution when extruding from the spinneret is 60
When the coagulation bath temperature is ˜150 ° C., and the coagulation bath temperature is −50 to 20 ° C., the effect of lowering the single thread sticking ratio (d) is large and the strength is also increased, which is preferable.

【0035】次に、繊維に含まれた水を除去するために
乾燥を行う。乾燥方法に特に限定はなく、トンネル型乾
燥機、ロール加熱機やネットプロセス型乾燥機等の公知
の設備を用い、延伸しながら、定長下で或いは収縮させ
ながら乾燥を行うことができる。乾燥温度は特に制約は
ないが、好ましくは100℃〜260℃、より好ましく
は120℃〜250℃、最も好ましくは150℃〜24
0℃である。次いで、この乾燥糸を引き続き1段もしく
は2段以上の多段延伸により熱延伸を行う。
Next, drying is performed to remove water contained in the fibers. The drying method is not particularly limited, and drying can be performed while stretching, while keeping a constant length or shrinking, using known equipment such as a tunnel dryer, a roll heater, and a net process dryer. The drying temperature is not particularly limited, but is preferably 100 ° C to 260 ° C, more preferably 120 ° C to 250 ° C, most preferably 150 ° C to 24 ° C.
It is 0 ° C. Then, the dried yarn is subsequently subjected to hot drawing by multi-step drawing of one step or two or more steps.

【0036】延伸は何段で行ってもよく、多段延伸を行
う場合には延伸温度を徐々に高くしていく方法が好まし
い。延伸温度は150℃〜ポリケトン繊維の融点である
ことが好ましい。150℃より低い温度では高強度・高
弾性率のポリケトン繊維を得ることが困難であり、ま
た、ポリケトン繊維の融点より高い温度では延伸時に糸
が溶融して切断する。延伸性および繊維物性の観点から
150℃〜ポリケトン繊維の融点が好ましく、より好ま
しくは200℃〜ポリケトン繊維の融点−5℃で延伸す
ることが望ましい。また、得られるポリケトン繊維の力
学特性の観点から、全延伸倍率は好ましくは10倍以
上、より好ましくは15倍以上とすることが望ましい。
熱延伸装置としては、加熱ロールまたは加熱プレート上
あるいは加熱気体中を走行させる方法や、走行糸にレー
ザーやマイクロ波、赤外線を照射する等の従来公知の装
置をそのままあるいは改良して採用することができる。
Stretching may be performed in any number of stages, and when performing multi-stage stretching, it is preferable to gradually increase the stretching temperature. The stretching temperature is preferably 150 ° C. to the melting point of the polyketone fiber. At a temperature lower than 150 ° C., it is difficult to obtain a polyketone fiber having high strength and a high elastic modulus, and at a temperature higher than the melting point of the polyketone fiber, the yarn is melted and cut during drawing. From the viewpoint of stretchability and fiber physical properties, the melting point of the polyketone fiber is preferably 150 ° C., more preferably 200 ° C. to the melting point of the polyketone fiber −5 ° C. From the viewpoint of mechanical properties of the obtained polyketone fiber, the total draw ratio is preferably 10 times or more, more preferably 15 times or more.
As the hot drawing apparatus, a method of running on a heating roll or a heating plate or in a heated gas, or a conventionally known apparatus such as irradiating a running yarn with a laser, a microwave, or infrared rays may be used as it is or after improvement. it can.

【0037】金属塩を用いる湿式紡糸法においては、乾
燥工程で単糸膠着が発生し易いため、単糸膠着を防止す
る方策を施すことが極めて重要である。単糸膠着を防ぐ
方法としては、繊維に外力を加え単糸間をずらす方法、
膠着が起こる前の繊維表面に離形剤を付与する方法、単
糸同士の静電反発力により単糸間をずらす方法等が挙げ
られ、特に、得られる繊維の物性および工程通過性の観
点から繊維に外力を加え単糸間をずらす方法、繊維表面
に離形剤を付与する方法が好適に用いられる。
In the wet spinning method using a metal salt, single yarn sticking is apt to occur in the drying step, and therefore it is extremely important to take measures to prevent single yarn sticking. As a method of preventing single yarn sticking, a method of applying an external force to the fibers to shift the single yarns,
Examples include a method of applying a release agent to the fiber surface before sticking occurs, a method of shifting the single yarns by electrostatic repulsion between the single yarns, and the like. Particularly, from the viewpoint of physical properties and process passability of the obtained fiber. A method of applying an external force to the fiber to shift the distance between the single yarns and a method of applying a release agent to the fiber surface are preferably used.

【0038】単糸間のずれを生ずる外力を加える場合、
乾燥工程および/または延伸工程終了までのいずれかの
段階で1回または複数回にわたり外力を加えられるが、
この際に水分率が0〜40質量%である繊維を処理する
ことが重要である。なお、本発明において水分率は次式
(8) で定義される。 水分率(質量%)=[(残水繊維質量−絶乾繊維質量)/残水繊維質量]× 100 ・・・(8) ここで、絶乾繊維質量とは105℃で5時間乾燥し、水
分を完全に除去したときの繊維質量である。繊維の水分
率が40質量%より高い場合、単糸間のずれを生ずる外
力を加えたときに、単糸断面が変形したり、繊維に傷が
付いたり、たるみが起こる等の問題が生じやすく、水分
率を30質量%以下とすることがより好ましい。一方、
水分率が0〜1質量%と低い場合、繊維−繊維間や繊維
−製造装置間の摩擦により静電気が発生し易いため、装
置に導電性の材料を用いることや、また、制電効果のあ
る油剤を付与する等の静電気除去の方策を併せて講じる
ことが望ましい。
When applying an external force that causes deviation between single yarns,
External force can be applied once or multiple times at any stage until the completion of the drying process and / or the stretching process,
At this time, it is important to treat fibers having a water content of 0 to 40% by mass. In the present invention, the moisture content is
Defined in (8). Moisture content (mass%) = [(mass of residual water fiber−mass of absolutely dry fiber) / mass of residual water fiber] × 100 (8) Here, the mass of absolutely dry fiber means drying at 105 ° C. for 5 hours, It is the fiber mass when water is completely removed. If the moisture content of the fiber is higher than 40% by mass, problems such as deformation of the cross section of the single yarn, damage to the fiber, and slack are likely to occur when an external force is applied to cause displacement between the single yarns. It is more preferable that the water content is 30% by mass or less. on the other hand,
When the moisture content is as low as 0 to 1% by mass, static electricity is easily generated due to friction between fibers and between fibers and a manufacturing apparatus. Therefore, it is possible to use a conductive material for the apparatus and have an antistatic effect. It is desirable to take measures to remove static electricity, such as applying an oil agent.

【0039】単糸間のずれとは、相接する単糸同士の相
対的な位置関係が変化すること(相接する単糸間の側面
が離れること、相接する単糸間の側面に沿って滑ること
等)であり、これにより単糸間の膠着を防いだり、ある
いは、一旦発生した膠着を取り除くことができ、単糸膠
着率の低いポリケトン繊維が得られる。単糸間のずれを
生ずる外力としては、繊維をしごくことや繊維に振動を
与えることが有効である。具体的には、ピンガイドやロ
ールに通して繊維をしごく方法、超音波発生機で繊維を
振動させる方法、繊維に圧縮気体を吹き付ける方法等が
挙げられる。単糸断面の変形や傷が生じ難く真円率(g)
の高い繊維が得られ、また、操作性が良く、単糸膠着率
の低い繊維が得られ易いという点で繊維に圧縮気体を吹
き付ける方法が好適に用いられる。圧縮気体の組成は特
に制限はないが、安全性、取り扱い性の観点から空気、
窒素が好ましく、空気が最も好ましい。
The deviation between the single yarns means that the relative positional relationship between the single yarns that are in contact with each other changes (the side faces between the single yarns that are in contact with each other are separated from each other, and the side faces between the single yarns that are in contact with each other are separated from each other. Slipping) and thereby preventing sticking between single yarns or removing sticking that has occurred once, and a polyketone fiber having a low sticking rate of single yarns can be obtained. As the external force that causes the displacement between the single yarns, it is effective to squeeze the fibers or to give vibration to the fibers. Specifically, a method of squeezing the fiber through a pin guide or a roll, a method of vibrating the fiber with an ultrasonic generator, a method of blowing a compressed gas to the fiber and the like can be mentioned. Circularity (g) that is unlikely to cause deformation or scratches on the single yarn cross section
The method of blowing a compressed gas to the fibers is preferably used in that fibers having a high fiber density can be obtained, and that the operability is good and the fibers having a low single yarn sticking rate are easily obtained. The composition of the compressed gas is not particularly limited, but from the viewpoint of safety and handleability, air,
Nitrogen is preferred and air is most preferred.

【0040】繊維を傷つけることなく単糸膠着率(d) の
低いポリケトン繊維を得るためには、繊維にかかる張力
と圧縮気体の吹き付ける速度を適正な範囲とすることが
重要である。具体的には、繊維にかかる張力を0〜1c
N/dtexの範囲とし、吹き付ける速度を0.1〜1
00m/秒、好ましくは10〜50m/秒の範囲とす
る。単糸膠着率(d) が高い場合には、繊維に掛かる張力
を下げること、および気体の吹き付け速度を速くするこ
とが効果的である。圧縮気体を吹き付ける装置、方法や
吹き付け孔の形状については特に制限はなく、インター
レーサーや仮撚りノズル等の従来公知の圧気処理装置や
圧気配管の先端に任意の形状(丸型や楕円型、矩形、長
方形等)の孔を取り付けたものでもよい。
In order to obtain a polyketone fiber having a low single thread sticking ratio (d) without damaging the fiber, it is important to set the tension applied to the fiber and the blowing speed of the compressed gas within an appropriate range. Specifically, the tension applied to the fiber is 0 to 1c.
N / dtex range, spraying speed 0.1-1
The range is 00 m / sec, preferably 10 to 50 m / sec. When the single thread sticking ratio (d) is high, it is effective to reduce the tension applied to the fiber and to increase the gas blowing speed. There is no particular limitation on the device for spraying the compressed gas, the method, and the shape of the spray hole, and any shape (round shape, elliptical shape, rectangular shape) at the tip of the conventionally known compressed air processing device such as an interlacer or a false twist nozzle or compressed air piping can be used. , Rectangle, etc.) may be attached.

【0041】単糸膠着が発生する前に繊維表面に離形剤
を塗布する場合、離形剤はその後の乾燥、熱延伸で膠着
を防止する作用のあるものであれば特に制限はない。な
お、本発明において、離形剤とは2本の平行に位置する
ポリケトン繊維表面に離形剤化合物を塗布した後に、2
本のポリケトン繊維が繊維軸方向に渡って接合するよう
に配列し、225℃で1分間の定長熱処理を行った場合
に、ポリケトン繊維同士が容易に解繊する作用のある化
合物を離形剤とする。このような離形剤の例としては、
例えば非水溶性の粒子状物(金属酸化物微粒子、金属微
粒子、シリコン系化合物微粒子、フッ素系化合物微粒
子)、非水溶性の有機物(鉱物油、高分子量エステル化
合物、高分子量エーテル化合物)およびその分散液等が
挙げられ、ポリケトン繊維間への均一分散や取り扱い性
の観点から金属酸化物微粒子、シリコン系微粒子を主成
分とする微粒子分散液が好適に用いられる。微粒子分散
液の平均粒径としては、0.1〜100μmが好まし
く、より好ましくは0.2〜10μmであることが望ま
しい。微粒子分散液の分散媒体は取扱性、安全性の観点
から水が好ましい。
When the release agent is applied to the surface of the fiber before the single yarn sticking occurs, the release agent is not particularly limited as long as it has an action of preventing sticking by subsequent drying and hot drawing. In the present invention, the term "releasing agent" means that after the releasing agent compound is applied to the surface of two polyketone fibers positioned in parallel,
When the polyketone fibers are arranged so as to be bonded along the fiber axis direction and subjected to a fixed length heat treatment at 225 ° C. for 1 minute, a compound having an action of easily defibrating the polyketone fibers from each other is used as a release agent. And Examples of such release agents include:
For example, water-insoluble particles (metal oxide particles, metal particles, silicon compound particles, fluorine compound particles), water-insoluble organic materials (mineral oil, high molecular weight ester compounds, high molecular weight ether compounds) and dispersions thereof. Examples thereof include liquids, and from the viewpoint of uniform dispersion between polyketone fibers and handleability, a fine particle dispersion liquid containing metal oxide fine particles or silicon-based fine particles as a main component is preferably used. The average particle size of the fine particle dispersion is preferably 0.1 to 100 μm, more preferably 0.2 to 10 μm. The dispersion medium of the fine particle dispersion liquid is preferably water from the viewpoint of handleability and safety.

【0042】また、離形剤の付着量はポリケトン繊維に
対して0.1〜20質量%とすることが好適である。離
形剤の付着量が0.1質量%未満の場合、十分な単糸膠
着防止効果が得られず、また20質量%を超える場合に
は得られるポリケトン繊維の物性が低下するほか、延伸
性にも悪影響を及ぼす。このため、離形剤の付着量とし
ては好ましくは0.3〜10質量%、より好ましくは
0.5〜5質量%とすることが望ましい。離形剤を付与
する場合重要な点は、洗浄工程〜乾燥工程終了のいずれ
かの段階でポリケトン繊維の水分率が40%を超える段
階で離形剤を付与することである。
The amount of the release agent attached is preferably 0.1 to 20% by mass with respect to the polyketone fiber. When the amount of the release agent attached is less than 0.1% by mass, the effect of preventing single thread sticking is not obtained, and when it exceeds 20% by mass, the physical properties of the obtained polyketone fiber are deteriorated and the stretchability is also increased. It also has an adverse effect. Therefore, the amount of the release agent deposited is preferably 0.3 to 10% by mass, more preferably 0.5 to 5% by mass. An important point in applying the release agent is to apply the release agent at a stage where the water content of the polyketone fiber exceeds 40% at any stage from the washing process to the end of the drying process.

【0043】水分率が40%以下となると、単糸膠着が
発生し始め離形剤を付与しても十分な単糸膠着防止効果
が得られない。このため、離形剤の付与はポリケトン繊
維の水分率が40%を超える段階で行うことが必要であ
り、より好ましくは水分率60%以上、さらに好ましく
は水分率100%以上の段階で付与することが望まし
い。また、離形剤の付与が凝固完了前の場合、単糸内部
に離形剤が入り込み繊維物性が極端に低下するため、酸
洗浄工程入口以降で行うことが望ましく、より好ましく
は水洗工程入口以降、さらに好ましくは水洗工程終了後
に付与することが望ましい。離形剤の付与は1段で行っ
ても、また、多段で行っても良く、単糸膠着を起こさな
い範囲であれば離形剤にその他の成分を混合してもよ
い。
When the water content is 40% or less, single thread sticking starts to occur and a sufficient effect of preventing single thread sticking cannot be obtained even if a release agent is added. Therefore, it is necessary to apply the release agent at a stage where the water content of the polyketone fiber exceeds 40%, more preferably at a water content of 60% or more, further preferably at a water content of 100% or more. Is desirable. Further, if the release agent is applied before the completion of solidification, the release agent enters the inside of the single yarn and the physical properties of the fiber are extremely deteriorated. Therefore, it is desirable to perform after the acid washing step inlet, and more preferably after the water washing step inlet. It is more preferable to apply after the washing step. The release agent may be applied in one step or in multiple steps, and other components may be mixed with the release agent as long as the single yarn sticking does not occur.

【0044】また、単糸膠着防止手段とは別に、乾燥工
程終了後〜熱延伸終了の任意の段階で仕上げ剤を付与
し、μを低減することが必要である。仕上げ剤の付与は
1回もしくは複数回行っても良く、熱延伸工程前や熱延
伸工程途中で付与してもよい。仕上げ剤の組成は特に限
定されず、ストレートで付与しても、また、溶剤で希釈
して、あるいはエマルジョンやサスペンジョンとして供
給することが出来る。熱延伸終了後に水性溶液や水性エ
マルジョンや水性サスペンジョンとして仕上げ剤を付与
する場合には、繊維間に残存する水分によりμが増大し
撚糸強力利用率(h) が低下することがあるため、仕上げ
剤付与後に水分を乾燥する工程を設けることが望まし
い。仕上げ剤の付与装置は特に限定されず、ノズル給
油、ロール給油等従来公知の装置をそのまま、あるいは
目的に応じて修正して用いることが出来る。
In addition to the means for preventing single yarn sticking, it is necessary to add a finishing agent at any stage after the completion of the drying process to the end of the hot drawing to reduce μ. The finishing agent may be applied once or plural times, and may be applied before or during the hot stretching step. The composition of the finishing agent is not particularly limited, and it may be applied straight, diluted with a solvent, or supplied as an emulsion or suspension. When a finishing agent is applied as an aqueous solution, an aqueous emulsion or an aqueous suspension after the completion of hot drawing, μ may increase due to moisture remaining between the fibers and the twisting yarn strength utilization rate (h) may decrease, so the finishing agent It is desirable to provide a step of drying water after application. The device for applying the finishing agent is not particularly limited, and conventionally known devices such as nozzle oil supply and roll oil supply can be used as they are or after being modified according to the purpose.

【0045】また、延伸工程中の毛羽やフィブリル状物
の発生を抑制するために、延伸工程中に繊維と接触する
装置(速度規制ロールを除く)はポリケトン繊維との摩
擦係数の小さい材質のものを用いることが望ましく、具
体的には繊維−金属間の動摩擦係数が0.1以下、好ま
しくは0.01〜0.08の材質(例えば、表面粗度の
大きい金属酸化物や金属)が好ましい。また、これら材
料は導電性とし、摩擦により発生する静電気を徐電する
ことが望ましい。
Further, in order to suppress the generation of fluff and fibril-like substances during the drawing process, the device (excluding the speed regulating roll) that comes into contact with the fibers during the drawing process is made of a material having a small friction coefficient with the polyketone fiber. Is preferable, and specifically, a material having a dynamic friction coefficient between fiber and metal of 0.1 or less, preferably 0.01 to 0.08 (for example, metal oxide or metal having a large surface roughness) is preferable. . In addition, it is desirable that these materials be electrically conductive so that static electricity generated by friction is gradually discharged.

【0046】熱延伸工程終了後のポリケトン繊維をその
まま連続して、あるいは、一旦巻き取った後に撚糸を行
う。撚糸数は用途、使用環境に応じて選定され、一般的
には、上述の撚り係数Kが1000〜30000の範囲
で撚糸される。撚糸物の力学物性、品位の観点から撚糸
張力としては、下撚り張力/上撚り張力共に0.01〜
0.2cN/dtexとすることが好ましい。
The polyketone fiber after the hot drawing step is continuously wound as it is, or is once wound and then twisted. The number of twisted yarns is selected according to the application and the usage environment, and generally, the above twist factor K is twisted in the range of 1000 to 30,000. From the viewpoint of the mechanical properties and quality of the twisted yarn, the twisting yarn tension is 0.01 to 0.01 for both the lower twisting tension and the upper twisting tension.
It is preferably 0.2 cN / dtex.

【0047】ゴム補強用繊維とする場合には撚り合わさ
れたポリケトン撚糸物を、引き続き濃度10〜30質量
%のRFL液を付着させ、樹脂を固着させる工程(いわ
ゆるDip処理工程)を通す。RFL液の好ましい組成
としては、レゾルシンを0.1〜10質量%、ホルマリ
ンを0.1〜10質量%、ラテックスを1〜28質量%
であり、より好ましい組成としてはレゾルシン0.5〜
3質量%、ホルマリン0.5〜3質量%、ラテックス1
0〜25質量%が望ましい。また、RFL液の乾燥温度
としては好ましくは100〜250℃、より好ましくは
140〜200℃であり、少なくとも10秒、好ましく
は20〜120秒間乾燥熱処理することが望ましい。
In the case of using a rubber-reinforcing fiber, the twisted polyketone twisted product is passed through a step of adhering an RFL liquid having a concentration of 10 to 30 mass% and fixing a resin (so-called Dip treatment step). The preferable composition of the RFL solution is 0.1 to 10% by mass of resorcin, 0.1 to 10% by mass of formalin, and 1 to 28% by mass of latex.
And a more preferred composition is resorcin 0.5-
3% by weight, formalin 0.5 to 3% by weight, latex 1
0 to 25 mass% is desirable. The drying temperature of the RFL solution is preferably 100 to 250 ° C., more preferably 140 to 200 ° C., and it is desirable that the RFL liquid be subjected to a drying heat treatment for at least 10 seconds, preferably 20 to 120 seconds.

【0048】乾燥後の撚糸物は、引き続きヒートセット
ゾーンおよびノルマライジングゾーンにて熱処理を受け
る。ヒートセットゾーンでの温度、張力、時間はそれぞ
れ、150〜250℃、0.1〜0.7cN/dte
x、10〜300秒とすることが望ましい。また、ノル
マライジングゾーンでの温度、張力、時間はそれぞれ、
150〜250℃、0.01〜0.3cN/dtex、
10〜300秒とすることが望ましい。
The dried twisted yarn is subsequently subjected to heat treatment in the heat setting zone and the normalizing zone. The temperature, tension and time in the heat setting zone are 150 to 250 ° C. and 0.1 to 0.7 cN / dte, respectively.
x, preferably 10 to 300 seconds. Also, the temperature, tension and time in the normalizing zone are
150-250 ° C, 0.01-0.3 cN / dtex,
It is desirable to set it to 10 to 300 seconds.

【0049】以上の方法で得られたポリケトン繊維は高
強度・高弾性率、および高撚糸強力利用率の優れた力学
物性を有し、撚糸物とした際には原糸の強度を高いレベ
ルで維持し、耐疲労性に優れる高強度繊維材料として有
用である。特に、タイヤコードやホース、ベルト等のゴ
ム補強材料、ロープ、ネット、漁網等の繊維を強撚して
用いる産業資材用分野において極めて有用である。
The polyketone fiber obtained by the above method has excellent mechanical properties such as high strength, high elastic modulus and high twist yarn strength utilization factor, and when it is used as a twisted yarn, the strength of the raw yarn is at a high level. It is useful as a high-strength fiber material that maintains and has excellent fatigue resistance. In particular, it is extremely useful in the field of industrial materials in which rubber reinforcing materials such as tire cords, hoses and belts, and fibers such as ropes, nets and fishing nets are strongly twisted and used.

【0050】[0050]

【実施例】本発明を、下記の実施例などにより更に詳し
く説明するが、それらは本発明の範囲を限定するもので
はない。実施例の説明中に用いられる各測定値の測定方
法は次の通りである。 (1) 極限粘度 極限粘度[η〕は次の定義式に基づいて求められる値で
ある。 (定義式中のt及びTは、純度98%以上のヘキサフル
オロイソプロパノール及び該ヘキサフルオロイソプロパ
ノールに溶解したポリケトンの希釈溶液の25℃での粘
度管の流過時間である。また、Cは上記100ml中の
グラム単位による溶質質量値である。) (2) 結晶化度(a) 示差熱測定装置Pyris1(商標;パーキンエルマー
社製)を用いて下記条件で測定を行う。サンプルは糸長
を5mmにカットした短繊維を用いる。 サンプル質量: 1mg 測定温度 : 30℃→300℃ 昇温速度 : 20℃/分 雰囲気 : 窒素、流量=200mL/分 得られる吸発熱曲線において200〜300℃の範囲に
観測される最大の吸熱ピークの面積から計算される熱量
H(J/g)より下記式により算出する。 結晶化度=ΔH/225×100 (%)
The present invention will be described in more detail with reference to the following examples, which are not intended to limit the scope of the present invention. The measuring method of each measured value used in the description of the examples is as follows. (1) Intrinsic viscosity Intrinsic viscosity [η] is a value calculated based on the following definition formula. (In the definition formula, t and T are the flow-through time of a viscous tube at 25 ° C. of a dilute solution of hexafluoroisopropanol having a purity of 98% or more and polyketone dissolved in the hexafluoroisopropanol. Further, C is 100 ml above. (2) Crystallinity (a) Crystallinity (a) A differential thermal analyzer Pyris1 (trademark; manufactured by Perkin Elmer Co., Ltd.) is used for measurement under the following conditions. As the sample, short fibers whose thread length is cut to 5 mm are used. Sample mass: 1 mg Measurement temperature: 30 ° C. → 300 ° C. Temperature rising rate: 20 ° C./min Atmosphere: Nitrogen, flow rate = 200 mL / min The maximum endothermic peak observed in the range of 200 to 300 ° C. in the obtained endothermic curve It is calculated by the following formula from the heat quantity H (J / g) calculated from the area. Crystallinity = ΔH / 225 × 100 (%)

【0051】(3) 結晶配向度 (b) 株式会社リガク製イメージングプレートX線回折装置、
RINT(登録商標)2000を用いて下記の条件で繊
維の回折像を取り込む。 X線源 : CuK瘰 出力 : 40KV 152mA カメラ長 : 94.5mm 測定時間 : 3分 得られた画像の2θ=21°付近に観察される(11
0)面を円周方向にスキャンして得られる強度分布の半
値幅Hから下記式により算出する。 結晶配向度=[(180−H)/180]×100
(%) (4) 繊度、強力、強度 繊度は、試料を25℃、55%湿度下で48時間静置
後、試料100mの質量W1を計量し、W1×100を繊
維の総繊度(dtex)とする。この試料を、試料長2
50mm、クロスヘッド速度300mm/分にて引張
り、強力および強度を測定する。また、総繊度を繊維の
作製に用いた紡糸口金のホール数で除した値を単糸繊度
とする。
(3) Crystal orientation (b) Imaging plate X-ray diffractometer manufactured by Rigaku Corporation,
RINT (registered trademark) 2000 is used to capture a diffraction image of the fiber under the following conditions. X-ray source: CuK soot output: 40KV 152mA Camera length: 94.5mm Measurement time: 3 minutes Observed around 2θ = 21 ° in the obtained image (11
0) Calculated by the following formula from the half value width H of the intensity distribution obtained by scanning the surface in the circumferential direction. Crystal orientation degree = [(180−H) / 180] × 100
(%) (4) Fineness, strength, and strength Fineness is measured by allowing the sample to stand at 25 ° C. and 55% humidity for 48 hours, measuring the mass W 1 of the sample 100 m, and measuring W 1 × 100 as the total fineness of the fiber ( dtex). This sample is sample length 2
Tensile strength and strength are measured at 50 mm and a crosshead speed of 300 mm / min. Further, a value obtained by dividing the total fineness by the number of holes of the spinneret used for producing the fiber is defined as a single yarn fineness.

【0052】(5) 単糸膠着率(d) (A) 単糸数 ポリケトン繊維をエポキシモノマー〔ケトール812
(商品名、日新EM社製)〕と硬化剤(ドデシルサクソ
ニックアンハイドライド、メチルナディックアンハイド
ライド)の混合溶液に浸漬した後、開始剤〔DMP−3
0(商品名、日新EM社製)〕を加え、60℃の加熱条
件下で24時間処理して重合を行い、繊維を樹脂によっ
て包埋する。樹脂包埋した繊維をミクロトームで切断
し、繊維断面を電子顕微鏡にて撮影する。撮影したネガ
画像を画像解析装置(IP1000−PC:商品名、旭
化成社製)を用いて、以下の方法で計測する。スキャナ
ーを使用して、ネガ画像を白黒256階調で取り込む。
取り込んだ256階調の画像に対し、2値化処理を行
う。この際に設定するパラメーターは、(1) しきい値
(=自動)、(2) シェーディング補正処理(=有り)、
(3) 穴埋め処理(=有り)、(4) ガンマ補正処理(=補
正値γ=2.2)、(5) 小図形面積(1μm以下除去)
である。得られた2値化画像より、粒子解析ソフトによ
り単糸数を計算する。
(5) Single yarn sticking rate (d) (A) Number of single yarns Polyketone fiber is replaced with epoxy monomer [Ketol 812
(Commercial name, manufactured by Nisshin EM Co., Ltd.)] and a curing agent (dodecyl saxonic unhydride, methyl nadick unhydride), and then the initiator [DMP-3
0 (trade name, manufactured by Nisshin EM Co., Ltd.)] is added, and the mixture is treated under heating conditions of 60 ° C. for 24 hours for polymerization, and the fibers are embedded in the resin. The resin-embedded fiber is cut with a microtome, and the cross section of the fiber is photographed with an electron microscope. The photographed negative image is measured by the following method using an image analyzer (IP1000-PC: trade name, manufactured by Asahi Kasei Corp.). A negative image is captured in 256 gray levels in black and white using a scanner.
Binarization processing is performed on the captured 256 gradation image. The parameters to be set at this time are (1) threshold value (= automatic), (2) shading correction processing (= present),
(3) Fill-in processing (= Yes), (4) Gamma correction processing (= correction value γ = 2.2), (5) Small figure area (1 μm or less removed)
Is. From the obtained binarized image, the number of single yarns is calculated using particle analysis software.

【0053】(B) 見かけの単糸数 黒色台紙上でポリケトン繊維をチョークで軽く20回擦
って繊維を解繊し、100倍の拡大鏡にてフィラメント
数を数える。膠着して分繊出来ないものについては1本
の単糸として数え、3回の測定の平均値を見かけの単糸
数とする。ポリケトン繊維の単糸数が多い場合は1度に
解繊処理を行わず、解繊前に以下の式(9) に基づいてポ
リケトン繊維をn個に分割し、分割された単位ごとに解
繊処理を行いフィラメント数を計測していき、その和を
見かけの単糸数とする。 N/200≧n≧N/300 ・・・(9) 〔ただし、N=単糸数(Aでの計測値)〕計測した単糸
数、見かけの単糸数から下式(10)により単糸膠着率を求
める。 単糸膠着率=[1−(見かけの単糸数/単糸数)]×100(%) ・・・(10)
(B) Apparent number of single yarns Polyketone fibers are lightly rubbed with chalk 20 times on a black mount to defibrate the fibers, and the number of filaments is counted with a 100 × magnifying glass. Those that cannot be separated due to sticking are counted as one single yarn, and the average value of three measurements is used as the apparent number of single yarns. If the number of single polyketone fiber filaments is large, do not perform defibration treatment at one time, divide the polyketone fiber into n pieces based on the following formula (9) before defibration, and defibration treatment for each divided unit Perform the above procedure to measure the number of filaments, and use the sum as the apparent number of single yarns. N / 200 ≧ n ≧ N / 300 (9) [where N = number of single yarns (measured value at A)] Measured number of single yarns, apparent number of single yarns from the following formula (10) Ask for. Single thread sticking rate = [1- (apparent number of single threads / number of single threads)] × 100 (%) (10)

【0054】(6) 仕上げ剤付着率(e) 繊維を50℃のメチルエチルケトンにて洗浄し、洗浄前
の質量W2(g)、洗浄後の質量をW3(g)とし、下式
(11)により仕上げ剤付着率(e) を求める。なお、繊維の
質量(W2およびW3)は、計量前に105℃で5時間加
熱し絶乾状態として測定する。 仕上げ剤付着率(e) =(W2−W3)/W3×100(%)・・・(11) (7) 樹脂付着率 撚糸物1mを105℃で5時間加熱した後に絶乾質量W
4(g)を計量する。次いで、ロープを1mm長に細断
して、ヘキサフルオロイソプロパノールにて攪拌下で6
0℃、2時間溶解する。溶解後ろ過し、得られた残さを
105℃で5時間加熱処理した後に質量W5(g)を精
秤し、下式(12)から樹脂付着率を求める。 樹脂付着率=[W5/(W4−W5)]×100(%)・・・(12)
(6) Finishing agent adhesion rate (e) The fiber was washed with methyl ethyl ketone at 50 ° C., the mass before cleaning was W 2 (g), and the mass after cleaning was W 3 (g).
Obtain the finish adhesion rate (e) from (11). The mass of the fibers (W 2 and W 3 ) is measured by heating at 105 ° C. for 5 hours before being weighed in an absolutely dry state. Finish adhesion rate (e) = (W 2 -W 3) / W 3 × 100 (%) ··· (11) (7) bone dry weight of the resin adhesion rate twisting was 1m after heating for 5 hours at 105 ° C. W
4 Weigh (g). Then, the rope was chopped into 1 mm lengths, and the mixture was stirred with hexafluoroisopropanol for 6 minutes under stirring.
Dissolve at 0 ° C for 2 hours. After dissolution, the mixture is filtered, the obtained residue is heat-treated at 105 ° C. for 5 hours, the mass W 5 (g) is precisely weighed, and the resin adhesion rate is calculated from the following formula (12). Resin adhesion rate = [W 5 / (W 4 −W 5 )] × 100 (%) (12)

【0055】(8) 繊維−繊維間動摩擦係数(f) 約690mの繊維を円筒の周りに、綾角15°で約10
gの張力を掛けて巻き付け、更に上述と同じ繊維30.
5cmをこの円筒に掛けた。この時、この繊維は円筒の
上にあり、円筒の巻き付け方向と平行にする。グラム数
で表した荷重の値が円筒上に掛けた繊維の総繊度の0.
1倍になる重りを円筒に掛けた繊維の片方の端に結び、
他方の端にはストレインゲージを連結させた。次に円筒
を18m/分の周速で回転させ、張力をストレインゲー
ジで測定する。こうして測定した張力から繊維−繊維間
静摩擦係数(f) を以下の式(13)に従って求めた。 μ=1/π×ln(T2/T1)・・・(13) (ここで、T1は繊維に掛けた重りの重さ、T2は測定し
た時の張力、lnは自然対数、πは円周率を示す。)
(8) Fiber-Fiber Dynamic Friction Coefficient (f) About 690 m of fiber is wound around a cylinder at a traverse angle of 15 ° to be about 10
g of the same fiber 30.g.
5 cm was hung on this cylinder. At this time, the fibers are on the cylinder and are parallel to the winding direction of the cylinder. The value of the load, expressed in grams, is 0.
Tie one weight to one end of the fiber on the cylinder,
A strain gauge was connected to the other end. Next, the cylinder is rotated at a peripheral speed of 18 m / min, and the tension is measured with a strain gauge. From the tension thus measured, the fiber-fiber static friction coefficient (f) was determined according to the following equation (13). μ = 1 / π × ln (T 2 / T 1 ) ... (13) (where T 1 is the weight of the weight applied to the fiber, T 2 is the tension when measured, ln is the natural logarithm, π indicates the pi.)

【0056】(9) 真円率(g) (5) −Aで得られたポリケトン繊維断面写真画像を、異
形度測定装置FMS−2000(商品名、ユニオンシス
テム社製)により単糸の最小外接円直径R1および最大
内接円直径R2を求める。断面写真内の任意の50本の
単糸についてR1/R2を求め、その平均値を真円率(g)
とする。
(9) Roundness (g) (5) The cross-sectional photographic image of the polyketone fiber obtained in (A) was used to measure the minimum circumscribing of a single yarn by using a deformity measuring device FMS-2000 (trade name, manufactured by Union System Co.). The circle diameter R 1 and the maximum inscribed circle diameter R 2 are determined. R 1 / R 2 was calculated for any 50 single yarns in the cross-sectional photograph, and the average value was calculated as the circularity (g).
And

【0057】(10) 撚糸強力利用率(h) 撚糸強力利用率(%)として、F/F0 ×100で表さ
れるものである。(ただし、Fは撚糸後の強力であり、
0 は撚糸に用いた全ポリケトン繊維の強力の和であ
る。)なお、RFL処理後の撚糸強力利用率=RFL処
理撚糸物の強力/撚糸に用いるポリケトン繊維の強力の
和に相当する。
(10) Twisted yarn strength utilization ratio (h) The twisted yarn strength utilization ratio (%) is expressed by F / F 0 × 100. (However, F is strong after twisting,
F 0 is the sum of the tenacities of all the polyketone fibers used for the twisted yarn. It should be noted that the twisted yarn strength utilization ratio after RFL treatment corresponds to the sum of the strength of the RFL-treated twisted product / the strength of the polyketone fiber used for the twisted yarn.

【0058】(ポリケトン繊維)(Polyketone fiber)

【実施例1】常法により調製したエチレンと一酸化炭素
が完全交互共重合した極限粘度5.9のポリケトンを、
塩化カルシウム40質量%/塩化亜鉛22質量%を含有
する水溶液に添加し、80℃で2時間攪拌後さらに90
℃で1時間溶解しポリマー濃度6.8質量%のドープを
得た。得られたドープを80℃に加温し、20μm径の
フィルターでろ過した後に、紡口径0.15mmφ、L
/D=1、ホール数50の丸紡口より10mmのエアー
ギャップを通した後に、2質量%の塩化カルシウム及び
1.1質量%の塩化亜鉛、0.1質量%の塩酸を含有す
る−2℃の水からなる凝固浴に吐出量4.5cc/分の
速度で押出し凝固糸条とした。さらに、ポリケトン凝固
糸を温度30℃、濃度2質量%の塩酸水溶液で洗浄し、
さらに40℃の水で仕上げ洗浄を行った後、速度5m/
分で巻取った。得られた凝固糸を簡易脱水した後、IR
GANOX(登録商標、チバスペシャリティケミカルス
社製)1098、IRGANOX(登録商標、チバスペ
シャリティケミカルス社製)1076をそれぞれ0.0
5質量%ずつ(対ポリケトン)含浸せしめ、引き続き温
度225℃で1分間の定長乾燥した。
Example 1 A polyketone having an intrinsic viscosity of 5.9, which was prepared by a conventional method and in which ethylene and carbon monoxide were completely alternating-polymerized,
It was added to an aqueous solution containing 40% by mass of calcium chloride / 22% by mass of zinc chloride, and the mixture was stirred at 80 ° C. for 2 hours and further 90 minutes.
It was melted at 0 ° C. for 1 hour to obtain a dope having a polymer concentration of 6.8% by mass. The obtained dope was heated to 80 ° C., filtered with a filter having a diameter of 20 μm, and then the spinneret diameter was 0.15 mmφ, L
/ D = 1, after passing through an air gap of 10 mm from a round spinneret with 50 holes, it contains 2% by mass of calcium chloride, 1.1% by mass of zinc chloride, and 0.1% by mass of hydrochloric acid-2 A coagulated yarn was extruded into a coagulation bath composed of water at 0 ° C. at a discharge rate of 4.5 cc / min. Further, the polyketone coagulated yarn is washed with a hydrochloric acid aqueous solution having a temperature of 30 ° C. and a concentration of 2% by mass,
After further finishing washing with water at 40 ° C, speed 5m /
Rolled up in minutes. After the obtained coagulated yarn is simply dehydrated, IR
GANOX (registered trademark, manufactured by Ciba Specialty Chemicals) 1098 and IRGANOX (registered trademark, manufactured by Ciba Specialty Chemicals) 1076 are each 0.0.
It was impregnated with 5% by mass (relative to polyketone) and then dried at a temperature of 225 ° C. for 1 minute.

【0059】この繊維に0.02cN/dtexの張力
をかけた状態で、圧気処理装置(HemaJet(登録
商標、日本ヘバライン社製)T−341)を用いて0.
2MPaの圧縮空気を吹き付けて解繊した。このときの
ポリケトン繊維の水分率は0.2%であった。この繊維
を、225℃の加熱炉で1段目(7倍)の延伸を行った
後に、この延伸糸をさらに0.05cN/dtexの張
力をかけた状態で圧気処理装置〔HemaJet(登録
商標、日本ヘバライン社製)T−321〕を用いて0.
1MPaの圧縮空気を吹き付けて解繊した。このときの
ポリケトン繊維の水分率は0%であった。解繊後、引続
き240℃の加熱炉で2段目(1.8倍)、さらに25
8℃の加熱炉で3段目(1.35倍)の延伸を行った。
With a tension of 0.02 cN / dtex applied to the fiber, a pressure treatment device (HemaJet (registered trademark, manufactured by Japan Hebaline Co., Ltd.) T-341) was used to give a value of 0.
The compressed air of 2 MPa was blown to disintegrate. The water content of the polyketone fiber at this time was 0.2%. This fiber was drawn at the first stage (7 times) in a heating furnace at 225 ° C., and then the drawn yarn was further tensioned with 0.05 cN / dtex to obtain a pressure treatment device [HemaJet (registered trademark, T-321] (manufactured by Japan Hebaline Co., Ltd.).
It was disintegrated by blowing compressed air of 1 MPa. At this time, the water content of the polyketone fiber was 0%. After disintegration, continue to the second stage (1.8 times) in a heating furnace at 240 ° C, and further 25
The third stage (1.35 times) stretching was performed in a heating furnace at 8 ° C.

【0060】得られた延伸糸に仕上げ剤を付与し、0.
5cN/dtexの張力をかけながら180℃で10秒
間の熱処理を行い、50.1dtex/50fのポリケ
トン繊維を得た。仕上げ剤は以下の組成のものを用い
た。オレイン酸ラウリルエステル/ビスオキシエチルビ
スフェノールA/ポリエーテル(プロピレンオキシド/
エチレンオキシド=35/65:分子量20000)/
ポリエチレンオキシド10モル付加オレイルエーテル/
ポリエチレンオキシド10モル付加ひまし油エーテル/
ステアリルスルホン酸ナトリウム/ジオクチルリン酸ナ
トリウム=30/30/10/5/23/1/1(質量
%比)。
A finishing agent was added to the obtained drawn yarn, and
Heat treatment was performed at 180 ° C. for 10 seconds while applying a tension of 5 cN / dtex to obtain a polyketone fiber of 50.1 dtex / 50 f. The finishing agent used had the following composition. Oleic acid lauryl ester / bisoxyethyl bisphenol A / polyether (propylene oxide /
Ethylene oxide = 35/65: molecular weight 20000) /
Polyethylene oxide 10 mol addition oleyl ether /
Addition of 10 mol of polyethylene oxide Castor oil ether /
Sodium stearyl sulfonate / sodium dioctyl phosphate = 30/30/10/5/23/1/1 (mass% ratio).

【0061】紡糸、乾燥、延伸の工程通過性は極めて良
好で毛羽や断糸等のトラブルは全く発生しなかった。こ
のポリケトン繊維は、引張強力は9.27N、強度1
8.5cN/dtexと極めて優れた強度を有するもの
であった。また、この繊維の単糸膠着率(d) は0%、μ
は0.11であり、繊維に0.05cN/dtexの荷
重をかけた状態で1500回/mの撚りをかけたところ
(撚り係数=10617)、撚糸強力利用率(h) は8
6.5%と極めて優れた値を示した。本発明の実施例の
ポリケトン繊維の構造および撚糸特性を下記の実施例2
〜実施例13および比較例1〜11の結果と併せて表1
にまとめて示す。
The processability of spinning, drying and drawing was extremely good, and no trouble such as fluff or yarn breakage occurred. This polyketone fiber has a tensile strength of 9.27 N and strength of 1
It had a very excellent strength of 8.5 cN / dtex. The single thread sticking ratio (d) of this fiber is 0%, μ
Is 0.11, and when a twist of 1500 times / m is applied to the fiber with a load of 0.05 cN / dtex (twist coefficient = 10617), the twisting yarn strength utilization rate (h) is 8
An extremely excellent value of 6.5% was shown. The structure and twisting properties of the polyketone fibers of the examples of the present invention are shown in Example 2 below.
Table 1 together with the results of Example 13 and Comparative Examples 1 to 11
Are shown together.

【0062】[0062]

【実施例2】実施例1で得られたポリケトン繊維に10
00回/mの撚りをかけたところ(撚り係数=707
8)、撚糸強力利用率(h) は90.6%と極めて優れた
値を示した。
Example 2 The polyketone fiber obtained in Example 1 has 10 parts.
When twisted at 00 times / m (twist coefficient = 707
8), the twisting yarn strength utilization factor (h) was 90.6%, which was an extremely excellent value.

【実施例3】実施例1で得られたポリケトン繊維に20
00回/mの撚りをかけたところ(撚り係数=1415
6)、撚糸強力利用率(h) は78.2%と優れた値を示
した。
Example 3 The polyketone fiber obtained in Example 1 was added with 20
When twisted at 00 times / m (twist coefficient = 1415
6), the twisting yarn strength utilization rate (h) was 78.2%, which was an excellent value.

【実施例4】実施例1において、乾燥途中の水分率25
%の繊維を張力0.04cN/dtexの張力をかけて
セラミックス製のガイドでしごいて解繊し、延伸途中の
解繊を行わない以外は同様にして紡糸、乾燥、延伸、仕
上げ剤付与を行った。得られたポリケトン繊維の単糸膠
着率(d) は6%と良好で、1500回/mの撚りをかけ
たとき(撚り係数=10532)の撚糸強力利用率(h)
は81.8%と極めて優れた性能を示した。
[Example 4] In Example 1, the water content was 25 during the drying process.
% Fiber with a tension of 0.04 cN / dtex to squeeze and defibrate it with a ceramic guide, and perform spinning, drying, drawing, and applying a finishing agent in the same manner except that defibration is not performed during drawing. went. The polyketone fiber obtained had a single thread sticking ratio (d) of 6%, which was good, and a twisting yarn strength utilization ratio (h) of 1,500 twists / m (twisting coefficient = 10532).
Showed an extremely excellent performance of 81.8%.

【0063】[0063]

【実施例5】実施例1において乾燥工程入り口にてポリ
ケトン繊維(水分率=1200%)に平均粒径5μmの
シリカ微粒子エマルジョンを付与し、乾燥工程および延
伸工程にて圧気処理を行わない以外は同様にして、紡
糸、洗浄、乾燥、延伸、仕上げ剤付与を行った。得られ
たポリケトン繊維の単糸膠着率(d) は10%と良好で、
1500回/mの撚りをかけたとき(撚り係数=108
37)の撚糸強力利用率(h) は81.2%と極めて優れ
た性能を示した。
[Example 5] In Example 1, except that silica fine particle emulsion having an average particle size of 5 µm was applied to polyketone fiber (water content = 1200%) at the entrance of the drying step, and no pressure treatment was performed in the drying step and the stretching step. In the same manner, spinning, washing, drying, drawing, and finishing agent application were performed. The polyketone fiber obtained had a single thread sticking ratio (d) of 10%, which was good.
When twisted 1500 times / m (twist coefficient = 108
The strength utilization factor (h) of the twisted yarn 37) was 81.2%, which was an extremely excellent performance.

【実施例6】実施例1において、1段延伸後の解繊処理
後に仕上げ剤を付与し、延伸終了後の仕上げ剤付与と併
せて2段階付与とする以外は同様にしてポリケトン繊維
を得た。得られたポリケトン繊維の単糸膠着率(d) は4
%と良好で、1500回/mの撚りをかけたとき(撚り
係数=10817)の撚糸強力利用率(h) は74.7%
と良好な性能を示した。
Example 6 A polyketone fiber was obtained in the same manner as in Example 1, except that a finishing agent was applied after the defibration treatment after one-stage drawing and two steps were added together with the finishing agent application after the stretching. . The single thread sticking ratio (d) of the obtained polyketone fiber was 4
%, The twisting yarn strength utilization rate (h) when twisted at 1500 times / m (twist coefficient = 10817) is 74.7%.
And showed good performance.

【0064】[0064]

【実施例7】実施例1において仕上げ剤の付与量を2.
2%から5.2%(対ポリケトン繊維)と増やす以外は
同様にしてポリケトン繊維を得た。得られたポリケトン
繊維のμは0.11から0.08へと小さくなり、15
00回/mの撚りをかけたとき(撚り係数=1076
5)の撚糸強力利用率(h) は87.3%と極めて優れた
性能を示した。
[Embodiment 7] In Embodiment 1, the amount of the finish applied is 2.
A polyketone fiber was obtained in the same manner except that the amount was increased from 2% to 5.2% (relative to the polyketone fiber). Μ of the obtained polyketone fiber decreased from 0.11 to 0.08,
When twisted at 00 times / m (twist coefficient = 1076
The twisting yarn strength utilization ratio (h) of 5) was 87.3%, which was an extremely excellent performance.

【実施例8】実施例1において、仕上げ剤に以下の組成
のものを用いる以外は同様にしてポリケトン繊維を得
た。オレイン酸ソルビタンエステル/ポリエチレンオキ
シド10モル付加ヒマシ油エステル/ビスフェノールA
ラウリル酸エステル/ポリエチレンオキシド硬化ヒマシ
油マレイン酸エステル/ポリエーテル(プロピレンオキ
シド/エチレンオキシド=35/65:分子量2000
0)/ステアリルスルホン酸ナトリウム/ジオクチルリ
ン酸ナトリウム=30/30/20/13/5/1/1
(質量比)。得られたポリケトン繊維は、1500回/
mの撚りをかけたとき(撚り係数=10638)の撚糸
強力利用率(h) は83.9%と極めて優れた性能を示し
た。
Example 8 A polyketone fiber was obtained in the same manner as in Example 1, except that the finishing agent having the following composition was used. Oleic acid sorbitan ester / polyethylene oxide 10 mol addition castor oil ester / bisphenol A
Lauric acid ester / polyethylene oxide hydrogenated castor oil maleic acid ester / polyether (propylene oxide / ethylene oxide = 35/65: molecular weight 2000
0) / sodium stearyl sulfonate / sodium dioctyl phosphate = 30/30/20/13/5/5/1
(Mass ratio). The polyketone fiber obtained was 1500 times /
When the twist of m was applied (twisting coefficient = 10638), the twisting yarn strength utilization ratio (h) was 83.9%, which was an extremely excellent performance.

【0065】[0065]

【実施例9】実施例1において、ポリケトンの溶剤を塩
化亜鉛/塩化ナトリウム=65質量%/10質量%を含
有する水溶液とし、ポリケトンの濃度を8.2質量%と
する以外は同様にして紡糸、洗浄、乾燥、解繊処理、延
伸、仕上げ剤付与を行った。得られたポリケトン繊維の
単糸膠着率は16%とまずまず良好で、1500回/m
の撚りをかけたとき(撚り係数=11165)の撚糸強
力利用率(h) は74.5%と良好な性能を示した。
Example 9 Spinning was carried out in the same manner as in Example 1 except that the solvent of polyketone was an aqueous solution containing zinc chloride / sodium chloride = 65% by mass / 10% by mass and the concentration of polyketone was 8.2% by mass. , Washing, drying, defibration treatment, stretching, and finishing agent application. The single yarn sticking rate of the obtained polyketone fiber was reasonably good at 16%, 1500 times / m.
When twisted (twisting coefficient = 11165), the twisting yarn strength utilization ratio (h) was 74.5%, which was a good performance.

【実施例10】実施例1において、紡口径を0.18m
mφとし、吐出量を6.75cc/分とする以外は同様
にして紡糸、洗浄、乾燥、解繊処理、延伸、仕上げ剤付
与を行った。得られたポリケトン繊維の単糸膠着率は0
%と良好で、1200回/mの撚りをかけたとき(撚り
係数=10475)の撚糸強力利用率(h) は79.5%
と良好な性能を示した。
[Example 10] In Example 1, the spinneret diameter was 0.18 m.
Spinning, washing, drying, defibration treatment, stretching and application of finishing agent were performed in the same manner except that mφ was used and the discharge rate was 6.75 cc / min. The single thread sticking rate of the obtained polyketone fiber is 0.
%, The twisting yarn strength utilization rate (h) when twisted at 1200 times / m (twisting coefficient = 10475) is 79.5%.
And showed good performance.

【0066】[0066]

【実施例11】実施例1において、紡口径を0.25m
mφとし、吐出量を11.25cc/分とする以外は同
様にして紡糸、洗浄、乾燥、解繊処理、延伸、仕上げ剤
付与を行った。得られたポリケトン繊維の単糸膠着率
(d) は0%と良好で、1000回/mの撚りをかけたと
き(撚り係数=11203)の撚糸強力利用率(h) は7
6.2%と良好な性能を示した。
[Embodiment 11] In Embodiment 1, the spinneret diameter is 0.25 m.
Spinning, washing, drying, defibration treatment, stretching, and application of a finishing agent were performed in the same manner except that mφ was used and the discharge rate was 11.25 cc / min. Single yarn sticking rate of the obtained polyketone fiber
(d) is as good as 0%, and when the yarn is twisted 1000 times / m (twisting coefficient = 11203), the yarn utilization factor (h) is 7
The performance was as good as 6.2%.

【実施例12】実施例1において、紡口数を300と
し、吐出量を27cc/分とし、乾燥条件を160℃で
20秒処理後225℃で1分間の定長乾燥とする以外は
同様にして紡糸、洗浄、乾燥、解繊処理、延伸、仕上げ
剤付与を行った。得られたポリケトン繊維の単糸膠着率
(d) は1%と良好で、600回/mの撚りをかけたとき
(撚り係数=10775)の撚糸強力利用率(h) は8
3.2%と極めて良好な性能を示した。
[Example 12] The same procedure as in Example 1 except that the number of spins was 300, the discharge rate was 27 cc / min, and the drying conditions were a treatment at 160 ° C for 20 seconds and a constant length drying at 225 ° C for 1 minute. Spinning, washing, drying, defibration treatment, stretching, and finish application were performed. Single yarn sticking rate of the obtained polyketone fiber
(d) is as good as 1%, and the twisting yarn tenacity utilization rate (h) is 8 when twisted at 600 times / m (twist coefficient = 10775).
The performance was extremely good at 3.2%.

【0067】[0067]

【実施例13】実施例12において1段延伸および解繊
処理を行ったポリケトン繊維5本を合糸して3890d
tex/1500fとし、引続き2段延伸、3段延伸、
仕上げ剤付与を行う以外は同様にしてポリケトン繊維を
作製した。得られたポリケトン繊維の単糸膠着率(d) は
1%と良好で、250回/mの撚りをかけたとき(撚り
係数=10078)の撚糸強力利用率(h) は84.3%
と極めて良好な性能を示した。
Example 13 Five polyketone fibers which had been subjected to the one-step drawing and defibration treatment in Example 12 were combined to form 3890d.
tex / 1500f, followed by 2-stage drawing, 3-stage drawing,
A polyketone fiber was produced in the same manner except that a finishing agent was applied. The polyketone fiber obtained had a single yarn sticking ratio (d) as good as 1%, and a twisting yarn strength utilization ratio (h) of 84.3% when a twist of 250 times / m was applied (twisting coefficient = 10078).
And showed extremely good performance.

【0068】[0068]

【比較例1】実施例1において、解繊処理を一切行わ
ず、延伸後の仕上げ剤付与も行わない以外は同様にして
紡糸、洗浄、乾燥、延伸を行った。得られたポリケトン
繊維は単糸膠着率(d) が55%と悪く、1400回/m
の撚りをかけたとき(撚り係数=9919)の撚糸強力
利用率(h) も59.3%と低く、本発明の範囲外のもの
であった。
Comparative Example 1 Spinning, washing, drying and stretching were carried out in the same manner as in Example 1 except that no defibration treatment was performed and no finishing agent was applied after stretching. The obtained polyketone fiber has a poor single thread sticking ratio (d) of 55% and is 1400 times / m.
The twisting yarn strength utilization factor (h) when twisted (twisting coefficient = 9919) was as low as 59.3%, which was outside the range of the present invention.

【比較例2】実施例9において、解繊処理を一切行わ
ず、延伸後の仕上げ剤付与も行わない以外は同様にして
紡糸、洗浄、乾燥、延伸を行った。得られたポリケトン
繊維は単糸膠着率(d) が72%と極めて悪く、1400
回/mの撚りをかけたとき(撚り係数=9880)の撚
糸強力利用率(h) も53.2%と極めて低く、本発明の
範囲外のものであった。
Comparative Example 2 Spinning, washing, drying and stretching were carried out in the same manner as in Example 9 except that no defibration treatment was performed and no finishing agent was applied after stretching. The obtained polyketone fiber had a very poor single thread sticking ratio (d) of 72%, which was 1400.
The twisting yarn high-strength utilization factor (h) when twisted at twists / m (twisting coefficient = 9880) was also extremely low at 53.2%, which was outside the range of the present invention.

【0069】[0069]

【比較例3】実施例1において、乾燥工程入り口(ポリ
ケトン繊維の水分率=1100%)で圧力0.2MPa
にて実施例1と同じ圧気処理をしたところ、断糸や毛
羽、たるみが多発し延伸することが出来なかった。
[Comparative Example 3] In Example 1, the pressure was 0.2 MPa at the entrance of the drying process (water content of polyketone fiber = 1100%).
However, when the same air pressure treatment as in Example 1 was performed, yarn breakage, fluff, and sagging frequently occurred, and stretching could not be performed.

【比較例4】実施例1において、洗浄工程終了後、温
度150℃で35秒間の乾燥を施したポリケトン繊維
(水分率=59%)を圧力0.2MPaにて実施例1と
同じ圧気処理をして、1段延伸後の圧気処理を行わな
い、延伸後の仕上げ剤付与を行わない、以外は同様に
してポリケトン繊維を作製した。得られたポリケトン繊
維は単糸膠着率(d) が44%と悪く、1400回/mの
撚りをかけたとき(撚り係数=9969)の撚糸強力利
用率(h) も62.0%と不十分で、本発明の範囲外のも
のであった。
Comparative Example 4 In Example 1, after completion of the washing step, polyketone fiber (water content = 59%) dried at a temperature of 150 ° C. for 35 seconds was subjected to the same pressure treatment as in Example 1 at a pressure of 0.2 MPa. Then, a polyketone fiber was produced in the same manner except that the pressure treatment after the first stage drawing was not performed and the finish agent was not applied after the drawing. The obtained polyketone fiber has a poor single yarn sticking ratio (d) of 44% and a twisting yarn strength utilization ratio (h) of 62.0% when twisted at 1400 turns / m (twisting coefficient = 9969). Sufficient and outside the scope of the invention.

【0070】[0070]

【比較例5】実施例5において、シリカ微粒子エマルジ
ョンの付与位置を乾燥工程出口(ポリケトン繊維の水分
率=0.2%)とする以外は同様にしてポリケトン繊維
を作製した。得られたポリケトン繊維は単糸膠着率(d)
が59%と悪く、1400回/mの撚りをかけたとき
(撚り係数=10047)の撚糸強力利用率(h) も5
4.5%と全く不十分で、本発明の範囲外のものであっ
た。
Comparative Example 5 A polyketone fiber was produced in the same manner as in Example 5, except that the silica fine particle emulsion was applied at the outlet of the drying step (water content of polyketone fiber = 0.2%). The obtained polyketone fiber has a single yarn sticking rate (d)
Is poor at 59%, and when twisted at 1400 turns / m (twist coefficient = 10047), the twisting yarn strength utilization rate (h) is also 5
It was completely insufficient at 4.5%, which was outside the scope of the present invention.

【比較例6】実施例5において、シリカ微粒子エマルジ
ョンの付与位置を凝固浴出口(洗浄工程入り口前)とす
る以外は同様にして洗浄、乾燥後、延伸を行ったとこ
ろ、延伸時に断糸して延伸することが出来なかった。
[Comparative Example 6] In Example 5, washing, drying and stretching were performed in the same manner except that the silica fine particle emulsion was applied at the coagulation bath outlet (before the washing process inlet). It could not be stretched.

【0071】[0071]

【比較例7】比較例1において、延伸終了後に実施例1
と同じ仕上げ剤を付与し、180℃で10秒間の熱処理
する以外は同様にしてポリケトン繊維を作製した。得ら
れたポリケトン繊維はμが0.11と良好であったもの
の、単糸膠着率(d) が65%と悪く、1400回/mの
撚りをかけたとき(撚り係数=10211)の撚糸強力
利用率(h) も58.3%と全く不十分で、本発明の範囲
外のものであった。
Comparative Example 7 In Comparative Example 1, Example 1 was performed after the stretching was completed.
A polyketone fiber was produced in the same manner except that the same finishing agent was applied and heat treatment was performed at 180 ° C. for 10 seconds. The obtained polyketone fiber had a good μ of 0.11, but had a poor single yarn sticking ratio (d) of 65% and a twisting strength of 1400 turns / m (twisting coefficient = 10211). The utilization factor (h) was 58.3%, which was completely inadequate, which was outside the scope of the present invention.

【比較例8】実施例1において、延伸終了後に仕上げ剤
を付与しないでポリケトン繊維を巻き取った。得られた
ポリケトン繊維30本を張力0.2cN/dtexで引
き揃え合糸した。このポリケトン繊維を250回/mの
撚りをかけたとき(撚り係数=9614)の撚糸強力利
用率(h) は74.8%と良好であったが、撚糸物には多
数の毛羽が観察された。このポリケトン繊維は仕上げ剤
が付着していないため、μが高く、繊維を擦り合わせる
と容易に断糸が起こった。擦過部を電子顕微鏡で観察す
ると直径0.1〜1μmのフィブリル状物が多数観察さ
れた。
Comparative Example 8 In Example 1, the polyketone fiber was wound up without applying a finishing agent after the completion of stretching. Thirty obtained polyketone fibers were aligned and combined with a tension of 0.2 cN / dtex. When this polyketone fiber was twisted 250 times / m (twist factor = 9614), the twisting yarn strength utilization factor (h) was 74.8%, which was good, but many fluffs were observed in the twisted yarn. It was Since this polyketone fiber did not have a finishing agent attached thereto, μ was high, and when the fibers were rubbed together, yarn breakage easily occurred. When the scraped portion was observed with an electron microscope, many fibril-like substances having a diameter of 0.1 to 1 μm were observed.

【0072】[0072]

【比較例9】実施例1で用いたポリケトンを、75質量
%のレゾルシンを含む水溶液に添加し、80℃、2時間
攪拌、溶解し、ポリマー濃度8質量%のドープを得た。
得られたドープを紡口径0.15mmφ、L/D=1、
ホール数50の紡口より吐出量5.8cc/分の速度で
吐出し、10mmのエアーギャップを経て、−5℃のメ
タノール浴中に押出して凝固糸を得た。得られた凝固糸
を20℃のメタノール中で1.2倍に引張りながら洗浄
後、100℃にて定長乾燥し未延伸糸を得た。この未延
伸糸を加熱板上で225℃で5倍、引続き240℃で
2.5倍、さらに258℃で1.3倍の延伸を行い延伸
糸とした。この延伸糸24本を合糸して巻き取った。こ
の繊維は単糸膠着率(d) 12%であり、250回/mの
撚りをかけたとき(撚り係数=10293)の撚糸強力
利用率(h) は69.5%であった。
Comparative Example 9 The polyketone used in Example 1 was added to an aqueous solution containing 75% by mass of resorcin, and stirred and dissolved at 80 ° C. for 2 hours to obtain a dope having a polymer concentration of 8% by mass.
The obtained dope was made with a spinneret diameter of 0.15 mmφ, L / D = 1,
The coagulated yarn was obtained by ejecting from a spinneret having 50 holes at a discharge rate of 5.8 cc / min, and extruded through a 10 mm air gap into a methanol bath at -5 ° C. The obtained coagulated yarn was washed while being drawn 1.2 times in methanol at 20 ° C. and then dried at 100 ° C. for a fixed length to obtain an undrawn yarn. This unstretched yarn was drawn on a heating plate 5 times at 225 ° C, 2.5 times at 240 ° C, and 1.3 times at 258 ° C to obtain a drawn yarn. The 24 drawn yarns were combined and wound. This fiber had a single yarn sticking ratio (d) of 12%, and a twisting yarn strength utilization ratio (h) of 69.5% when a twist of 250 times / m was applied (twisting coefficient = 10293).

【0073】[0073]

【比較例10】実施例1で用いたポリケトンをヘキサフ
ルオロイソプロパノールに添加し、30℃で2時間攪拌
して溶解し、ポリマー濃度7重量%のドープを得た。得
られたドープを紡口径0.15mmφのL/D=1、ホ
ール数50の紡口より吐出量6.3cc/分の速度で1
0℃のアセトン浴中に押出して凝固糸を得た。得られた
凝固糸を温度40℃、風速1m/分の窒素が流れる長さ
10mのチャンバー中を通し、4m/分の速度で巻き取
り凝固糸を得た。得られた凝固糸を30℃、24時間静
置し乾燥し未延伸糸を得た。この未延伸糸を加熱板上で
225℃で5倍、引き続き240℃で2.5倍、さらに
258℃で1.3倍の延伸を行い延伸糸とした。この延
伸糸24本を合糸し、実施例1と同じ仕上げ剤を付与し
て巻き取った。この繊維は単糸膠着率(d) が38%と本
発明の範囲外であり、250回/mの撚りをかけたとき
(撚り係数=10338)の撚糸強力利用率(h) は6
4.2%と不十分であった。
Comparative Example 10 The polyketone used in Example 1 was added to hexafluoroisopropanol and dissolved by stirring at 30 ° C. for 2 hours to obtain a dope having a polymer concentration of 7% by weight. The dope thus obtained was discharged from the spinneret having a spinneret diameter of 0.15 mmφ and L / D = 1 and a hole number of 50 at a discharge rate of 6.3 cc / min.
A coagulated yarn was obtained by extruding into an acetone bath at 0 ° C. The obtained coagulated yarn was passed through a chamber having a temperature of 40 ° C. and a nitrogen flow rate of 1 m / min and a length of 10 m and a winding coagulated yarn at a speed of 4 m / min. The obtained coagulated yarn was allowed to stand at 30 ° C. for 24 hours and dried to obtain an undrawn yarn. This unstretched yarn was drawn on a heating plate 5 times at 225 ° C, 2.5 times at 240 ° C, and 1.3 times at 258 ° C to obtain a drawn yarn. Twenty-four of these drawn yarns were combined, and the same finishing agent as in Example 1 was applied and wound up. This fiber has a single yarn sticking rate (d) of 38%, which is outside the range of the present invention, and when twisted at 250 times / m (twisting coefficient = 10338), the twisting strength utilization rate (h) is 6
It was insufficient at 4.2%.

【0074】[0074]

【比較例11】比較例2で作製したポリケトン繊維に実
施例1で用いた仕上げ剤を付与した繊維30本を合糸
し、再び実施例1で用いた仕上げ剤を付与した後に18
0℃、10秒間の熱処理を行いポリケトン繊維とした。
この繊維は単糸膠着率(d) が72%であり、250回/
mの撚りをかけたとき(撚り係数=9906)の撚糸強
力利用率(h) は58.1%と全く不十分で本発明の範囲
外あった。
[Comparative Example 11] The polyketone fiber prepared in Comparative Example 2 was combined with 30 fibers to which the finishing agent used in Example 1 was applied, and the finishing agent used in Example 1 was applied again.
Heat treatment was performed at 0 ° C. for 10 seconds to obtain a polyketone fiber.
This fiber has a single yarn sticking ratio (d) of 72% and is 250 times /
When the twist of m was applied (twisting coefficient = 9906), the twisting yarn strength utilization factor (h) was 58.1%, which was completely inadequate and out of the range of the present invention.

【0075】(ポリケトン撚糸物)(Polyketone twisted product)

【実施例14】実施例13で調製したポリケトン繊維を
Z方向に390回/mで下撚り(下撚り張力0.05c
N/dtex)し、これを2本双糸しS方向に390回
/m上撚り(上撚り張力0.05cN/dtex)して
撚糸物を得た。このポリケトン撚糸物は撚り係数は22
233であり、撚糸強力利用率(h) は80.1%と極め
て高く、撚糸物強度も14.2cN/dtexと極めて
優れたものであった。さらにポリケトン撚糸物を、下記
の液組成のRFL液に浸漬した後に、乾燥ゾーン(張力
3Nで160℃で120秒の熱処理)、ヒートセットゾ
ーン(張力4.2Nで220℃で60秒の熱処理)、ノ
ルマライジングゾーン(張力2.8Nで220℃、60
秒の熱処理)を通してRFL処理ポリケトン撚糸物を得
た。
Example 14 The polyketone fiber prepared in Example 13 was pretwisted in the Z direction at 390 times / m (pretwisting tension 0.05c).
N / dtex), and two twin yarns of this were twisted in the S direction 390 times / m (twisting tension 0.05 cN / dtex) to obtain a twisted product. The twist coefficient of this polyketone twisted product is 22.
233, the twisting yarn strength utilization ratio (h) was 80.1%, which was extremely high, and the twisted yarn strength was 14.2 cN / dtex, which was extremely excellent. Furthermore, after twisting the polyketone twisted product in an RFL liquid having the following liquid composition, a drying zone (heat treatment at a tension of 3N at 160 ° C. for 120 seconds) and a heat setting zone (heat treatment at a tension of 4.2N at 220 ° C. for 60 seconds) , Normalizing zone (220 ℃, tension 2.8N, 60
RFL-treated polyketone twisted product was obtained through a heat treatment for 2 seconds.

【0076】 (RFL液組成) レゾルシン 22.0部 ホルマリン(30質量%) 30.0部 水酸化ナトリウム(10質量%) 14.0部 水 570.0部 ビニルピリジンラテックス(41質量%) 364.0部 得られたRFL樹脂付着ポリケトン撚糸物は撚糸強力利
用率(h) が79.5%と極めて高く、撚糸物の強度も1
4.1cN/dtexと極めて優れたものであった。
(RFL liquid composition) Resorcinol 22.0 parts Formalin (30% by mass) 30.0 parts Sodium hydroxide (10% by mass) 14.0 parts Water 570.0 parts Vinyl pyridine latex (41% by mass) 364. The RFL resin-adhered polyketone twisted yarn obtained in 0 parts had a very high twisting yarn utilization factor (h) of 79.5%, and the twisted yarn strength was 1 as well.
It was an extremely excellent value of 4.1 cN / dtex.

【0077】本発明の実施例において、撚糸条件、RF
L処理条件および撚糸物の性能を以下の実施例15〜1
7および比較例12〜17の結果と併せて表2にまとめ
て示す。
In the examples of the present invention, twisting conditions, RF
The L treatment conditions and the performance of the twisted yarn are shown in Examples 15 to 1 below.
7 and the results of Comparative Examples 12 to 17 are collectively shown in Table 2.

【実施例15】撚糸条件を下撚り数および上撚り数をそ
れぞれ290T/mとする以外は、実施例14と同様の
処方でポリケトン撚糸物を作製した。得られたポリケト
ン撚糸物(撚り係数16533)は撚糸強力利用率(h)
が90.5%と極めて高く、撚糸物の強度も16.0c
N/dtexと極めて優れたものであり、RFL処理後
のポリケトン撚糸物も極めて優れた撚糸強力利用率(h)
および強度を有していた。
Example 15 A polyketone twisted yarn was produced in the same formulation as in Example 14, except that the twisting conditions were the number of lower twists and the number of upper twists of 290 T / m, respectively. The obtained polyketone twisted yarn (twisting factor 16533) has a high twisting yarn utilization factor (h).
Is extremely high at 90.5%, and the strength of the twisted product is 16.0c.
N / dtex is extremely excellent, and the polyketone twisted product after RFL treatment is also very excellent. Twisted yarn strength utilization rate (h)
And had strength.

【実施例16】撚糸条件を下撚り数および上撚り数をそ
れぞれ190T/mとする以外は、実施例14と同様の
処方でポリケトン撚糸物を作製した。得られたポリケト
ン撚糸物(撚り係数10832)は撚糸強力利用率(d)
が97.1%と極めて高く、撚糸物の強度も17.2c
N/dtexと極めて優れたものであり、RFL処理後
のポリケトン撚糸物も極めて優れた撚糸強力利用率(h)
および強度を有していた。
Example 16 A polyketone twisted yarn was produced in the same formulation as in Example 14 except that the twisting conditions were a lower twist number and an upper twist number of 190 T / m, respectively. The obtained polyketone twisted product (twisting factor 10832) has a high twisting yarn utilization factor (d).
Is as high as 97.1%, and the strength of the twisted product is 17.2c.
N / dtex is extremely excellent, and the polyketone twisted product after RFL treatment is also very excellent. Twisted yarn strength utilization rate (h)
And had strength.

【0078】[0078]

【実施例17】実施例14において、下撚りしたポリケ
トン撚糸物3本を撚り合わせたものを上撚りする以外は
同様にして撚糸を行った。得られたポリケトン撚糸物
(撚り係数20248)は撚糸強力利用率(h) が84.
1%と極めて高く、撚糸物の強度も14.9cN/dt
exと極めて優れたものであり、RFL処理後のポリケ
トン撚糸物も極めて優れた撚糸強力利用率(h) および強
度を有していた。
Example 17 A twisted yarn was prepared in the same manner as in Example 14 except that three twisted polyketone twisted yarns which were twisted underneath were twisted over. The obtained polyketone twisted product (twisting factor 20248) has a twisting yarn strength utilization ratio (h) of 84.
Extremely high at 1% and the strength of the twisted yarn is 14.9 cN / dt
It was extremely excellent as ex, and the twisted polyketone product after RFL treatment also had a very good twist yarn strength utilization ratio (h) and strength.

【0079】[0079]

【比較例12】比較例9で作製したポリケトン繊維を用
い、実施例14と同様の条件で上撚り/下撚り共に39
0回/mの撚糸を行った。撚糸性は不良で撚糸時に多数
の毛羽が発生した。また、得られたポリケトン撚糸物
(撚り係数22714)は撚糸強力利用率(h) が60.
5%と本発明のポリケトン撚糸物に比べて不十分なもの
であった。また、RFL液処理後の撚糸物の撚糸強力利
用率(h) および撚糸物強度も本発明のポリケトン撚糸物
と比べて不十分なものであった。
COMPARATIVE EXAMPLE 12 Using the polyketone fiber produced in Comparative Example 9, both upper twist and lower twist were 39 under the same conditions as in Example 14.
Twisting was performed 0 times / m. The twistability was poor and many fluffs were generated during twisting. In addition, the obtained polyketone twisted yarn (twisting coefficient 22714) has a twisted yarn strength utilization ratio (h) of 60.
It was 5%, which was insufficient as compared with the twisted yarn of the polyketone of the present invention. Further, the twisting strength utilization factor (h) and the twisted product strength of the twisted product after the RFL liquid treatment were insufficient as compared with the polyketone twisted product of the present invention.

【比較例13】比較例12において、撚糸回数を上撚り
/下撚り共に290回/mとする以外は同様にして撚糸
を行った。撚糸性は不良で撚糸時に多数の毛羽が発生し
た。得られたポリケトン撚糸物(撚り係数16890)
は撚糸強力利用率(h) が77.9%と本発明のポリケト
ン撚糸物に比べて不十分なものであった。また、RFL
液処理後の撚糸物の撚糸強力利用率(h) および撚糸物強
度も本発明のポリケトン撚糸物と比べて不十分なもので
あった。
COMPARATIVE EXAMPLE 13 A twisted yarn was prepared in the same manner as in Comparative Example 12 except that the number of times of twisting was 290 times / m for both upper twisting and lower twisting. The twistability was poor and many fluffs were generated during twisting. The obtained polyketone twisted product (twist coefficient 16890)
The twist utilization factor (h) was 77.9%, which was insufficient as compared with the twisted yarn of the polyketone of the present invention. Also, RFL
The twisting strength utilization factor (h) and the strength of the twisted product of the twisted product after the liquid treatment were also insufficient as compared with the polyketone twisted product of the present invention.

【0080】[0080]

【比較例14】比較例10で作製したポリケトン繊維を
用い、実施例14と同様の条件で上撚り/下撚り共に3
90回/mの撚糸を行った。得られたポリケトン撚糸物
(撚り係数22807)は撚糸強力利用率(h) が62.
5%、撚糸物の強度は5.1cN/dtexと本発明の
ポリケトン撚糸物に比べて大きく劣るものであった。ま
た、RFL液処理後の撚糸物の撚糸強力利用率(h) およ
び撚糸物強度も本発明のポリケトン撚糸物と比べて大き
く劣るものであった。
[Comparative Example 14] Using the polyketone fiber produced in Comparative Example 10, under the same conditions as in Example 14, both upper twist and lower twist were 3
90 times / m of twisted yarn was performed. The obtained polyketone twisted product (twisting coefficient 22807) had a twisting yarn strength utilization ratio (h) of 62.
The strength of the twisted yarn was 5%, which was 5.1 cN / dtex, which was significantly inferior to the twisted yarn of the polyketone of the present invention. Also, the twist strength utilization factor (h) and the twisted product strength of the twisted product after the RFL liquid treatment were significantly inferior to the polyketone twisted product of the present invention.

【比較例15】比較例2で作製したポリケトン繊維30
本を合糸し、実施例14と同様の条件で上撚り/下撚り
共に390回/mの撚糸を行った。撚糸物のたるみが多
く、また、撚糸時に毛羽が多発して十分な品位の撚糸物
を得ることが出来なかった。
Comparative Example 15 Polyketone Fiber 30 Produced in Comparative Example 2
The books were combined, and under the same conditions as in Example 14, both upper twisting and lower twisting were performed at 390 times / m. There was a large amount of slack in the twisted yarn, and fluffs frequently occurred during twisting, and a twisted yarn of sufficient quality could not be obtained.

【0081】[0081]

【比較例16】比較例8で作製したポリケトン繊維を用
い、実施例14と同様の条件で上撚り/下撚り共に39
0回/mの撚糸を行った。撚糸性は不良で撚糸時に多数
の毛羽が発生した。得られたポリケトン撚糸物(撚り係
数21211)は撚糸強力利用率(h) が64.9%と本
発明のポリケトン撚糸物に比べて劣り、また多数の毛羽
があり品位が悪く、単糸間で毛羽やフィブリルが絡まっ
たものであった。
[Comparative Example 16] Using the polyketone fiber produced in Comparative Example 8, both the upper twist and the lower twist were 39 under the same conditions as in Example 14.
Twisting was performed 0 times / m. The twistability was poor and many fluffs were generated during twisting. The obtained polyketone twisted yarn (twisting coefficient 21211) had a twisting yarn high-strength utilization rate (h) of 64.9%, which was inferior to the polyketone twisted yarn product of the present invention, and had a large number of fluffs, resulting in poor quality and It was entwined with fluff and fibrils.

【比較例17】比較例11で作製したポリケトン繊維を
用い、実施例14と同様の条件で上撚り/下撚り共に3
90回/mの撚糸を行った。得られたポリケトン撚糸物
(撚り係数21854)は撚糸強力利用率(h) が63.
1%と本発明のポリケトン撚糸物に比べて大きく劣るも
のであった。原糸の強度は実施例14と同等にも関わら
ず、撚糸物の強度は10.6cN/dtexと全く劣る
ものであった。また、RFL液処理後の撚糸物の撚糸強
力利用率(h)および撚糸物強度も本発明のポリケトン撚
糸物と比べて大きく劣るものであった。
[Comparative Example 17] Using the polyketone fiber produced in Comparative Example 11, under the same conditions as in Example 14, both upper twist and lower twist were 3
90 times / m of twisted yarn was performed. The obtained polyketone twisted yarn (twisting coefficient 21854) had a twisting yarn strength utilization ratio (h) of 63.
1%, which was significantly inferior to the twisted polyketone of the present invention. Although the strength of the raw yarn was the same as that of Example 14, the strength of the twisted yarn was 10.6 cN / dtex, which was completely inferior. Further, the twisting strength utilization factor (h) and the twisted product strength of the twisted product after the RFL liquid treatment were significantly inferior to the polyketone twisted product of the present invention.

【0082】[0082]

【表1】 表1は、本発明のポリケトン繊維および比較例のポリケ
トン繊維の特性を示す表である。
[Table 1] Table 1 is a table showing characteristics of the polyketone fiber of the present invention and the polyketone fiber of the comparative example.

【0083】[0083]

【表2】 [Table 2]

【0084】(注)*;REL処理後の撚糸強力利用率
(h) =REL処理撚糸物の強力/撚糸に用いるポリケト
ン繊維の強力の和 **;式(3) =100×(1−4.79×10-9×K
1.78) 表2は、本発明のポリケトンポリケトン撚糸物および比
較例のポリケトン撚糸物の特性を示す表である。
(Note) *; Strength utilization factor of twisted yarn after REL treatment
(h) = strength of REL-treated twisted yarn / sum of strength of polyketone fiber used for twisted yarn **; Formula (3) = 100 x (1-4.79 x 10-9 x K
1.78 ) Table 2 is a table showing characteristics of the twisted polyketone polyketone of the present invention and the twisted polyketone of Comparative Example.

【0085】[0085]

【発明の効果】本発明のポリケトン繊維は高強度、高弾
性率の優れた力学特性を有すると共に、単糸膠着がな
く、繊維−繊維間の動摩擦係数が小さく均質で欠陥の少
ない繊維であり、優れた撚糸強力利用率を有し、撚糸後
にも高い強度を発現し、さらには耐疲労性にも優れる繊
維である。本発明のポリケトン繊維を撚糸物とすること
で高強度産業資材として幅広い分野(例えば、網、ネッ
トやロープ、ケーブル等の土木・工業用資材、タイヤ・
ベルト・ホース等のゴム補強材、プラスチック強化繊維
等の補強材料等)へ展開することが期待される。特に、
高い力学的負荷を受け、補強材である撚糸物に高強度が
要求される用途、例えばタイヤやベルト、ホースのゴム
補強材料やFRP等の補強材料として極めて有用であ
る。
EFFECT OF THE INVENTION The polyketone fiber of the present invention has excellent mechanical properties such as high strength and high elastic modulus, has no single yarn sticking, has a small dynamic friction coefficient between fibers, is homogeneous, and has few defects. It is a fiber that has an excellent utilization factor of twisted yarn strength, exhibits high strength even after twisted yarn, and is also excellent in fatigue resistance. By using the polyketone fiber of the present invention as a twisted product, it can be used in a wide range of fields as high-strength industrial materials (for example, nets, nets, ropes, cables, and other civil engineering / industrial materials, tires,
It is expected to be applied to rubber reinforcing materials such as belts and hoses, reinforcing materials such as plastic reinforced fibers, etc.). In particular,
It is extremely useful as a reinforcing material such as a rubber reinforcing material for tires, belts and hoses, and FRP for applications in which a twisted yarn that is a reinforcing material is required to have high strength under a high mechanical load.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D02G 3/26 D02G 3/26 4L048 3/36 3/36 3/48 3/48 D03D 1/00 D03D 1/00 D 3/02 3/02 15/00 15/00 A D06M 15/41 D06M 15/41 15/693 15/693 // C08L 73:00 C08L 73:00 D06M 101:30 D06M 101:30 Fターム(参考) 4F072 AA02 AA04 AA07 AA08 AB02 AB24 AC04 AD02 4L033 AA06 AB03 AB05 AC11 CA34 CA68 4L035 AA04 BB03 BB04 BB10 BB15 BB16 BB22 BB60 BB61 BB66 BB69 BB79 BB81 BB89 BB91 CC02 CC08 DD01 DD19 EE08 EE09 EE20 FF01 4L036 MA04 MA24 MA33 PA01 PA03 PA18 PA21 RA24 4L038 AA09 AB07 AB08 BA11 BB07 CA01 DA10 4L048 AA19 AA42 AA48 AB01 AB12 AC09 BB04 CA01 CA09 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) D02G 3/26 D02G 3/26 4L048 3/36 3/36 3/48 3/48 D03D 1/00 D03D 1 / 00 D 3/02 3/02 15/00 15/00 A D06M 15/41 D06M 15/41 15/693 15/693 // C08L 73:00 C08L 73:00 D06M 101: 30 D06M 101: 30 F term (Reference) 4F072 AA02 AA04 AA07 AA08 AB02 AB24 AC04 AD02 4L033 AA06 AB03 AB05 AC11 CA34 CA68 4L035 AA04 BB03 BB04 BB10 BB15 BB16 BB22 BB60 BB61 PA36 MA01EE01 DD24 PA21 RA24 4L038 AA09 AB07 AB08 BA11 BB07 CA01 DA10 4L048 AA19 AA42 AA48 AB01 AB12 AC09 BB04 CA01 CA09

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 繰り返し単位の95〜100質量%が下
記構造式(1)で示される1−オキソトリメチレンにより
構成されるポリケトン繊維であって、下記のa〜eの要
件を満足することを特徴とするポリケトン繊維。 (a) :結晶化度≧60% (b):結晶配向度≧90% (c) :引張強度≧10cN/dtex (d) :単糸膠着率≦30% (e) :仕上げ剤付着率=0.3〜15質量% 【化1】
1. A polyketone fiber in which 95 to 100% by mass of the repeating unit is composed of 1-oxotrimethylene represented by the following structural formula (1) and which satisfies the following requirements a to e: Characteristic polyketone fiber. (a): Crystallinity ≧ 60% (b): Crystal orientation ≧ 90% (c): Tensile strength ≧ 10 cN / dtex (d): Single yarn sticking rate ≦ 30% (e): Finishing agent adhesion rate = 0.3 to 15 mass% [Chemical formula 1]
【請求項2】 繰り返し単位の100質量%が下記構造
式(1)で示される1−オキソトリメチレンにより構成さ
れるポリケトン繊維であって、下記のa〜eの要件を満
足することを特徴とする請求項1記載のポリケトン繊
維。 (a) :結晶化度≧70% (b):結晶配向度≧95% (c) :引張強度≧15cN/dtex (d) :単糸膠着率≦10% (e) :仕上げ剤付着率=1〜5質量% 【化2】
2. A polyketone fiber composed of 1-oxotrimethylene represented by the following structural formula (1), wherein 100% by mass of the repeating unit satisfies the following requirements a to e: The polyketone fiber according to claim 1. (a): Crystallinity ≧ 70% (b): Crystal orientation ≧ 95% (c): Tensile strength ≧ 15 cN / dtex (d): Single yarn sticking rate ≦ 10% (e): Finishing agent adhesion rate = 1-5% by mass
【請求項3】 単糸膠着率(d) が30%以下であり、か
つ繊維−繊維間動摩擦係数(f) が0.01〜0.5であ
ることを特徴とする請求項1又は2記載のポリケトン繊
維。
3. The single yarn sticking ratio (d) is 30% or less, and the fiber-fiber dynamic friction coefficient (f) is 0.01 to 0.5. Polyketone fiber.
【請求項4】 ポリケトン繊維が丸断面の単糸の集合体
であって、断面の真円率(g)が1.0〜1.2であるこ
とを特徴とする請求項1〜3のいずれかに記載のポリケ
トン繊維。
4. The polyketone fiber is an aggregate of single yarns having a round cross section, and the circularity (g) of the cross section is 1.0 to 1.2. The polyketone fiber according to Crab.
【請求項5】 単糸繊度が0.1〜10dtexである
ことを特徴とする請求項1〜4のいずれかに記載のポリ
ケトン繊維。
5. The polyketone fiber according to claim 1, wherein the single yarn fineness is 0.1 to 10 dtex.
【請求項6】 撚り係数Kが10000となるよう撚糸
した際の撚糸強力利用率(h) が65%以上であることを
特徴とする請求項1〜5のいずれかに記載のポリケトン
繊維。〔ここで、撚糸強力利用率(h) とは撚糸後のポリ
ケトン撚糸物の強力を撚糸前のポリケトン繊維の強力で
除した100分率であり、Kは下式(1)で定義される撚
糸物の撚り係数である。 K=Y×D0.5 (T/m・dtex0.5) ・・・(1) 式(1)において、Yはポリケトン撚糸物1mあたりの撚
り数(T/m)、Dはポリケトン撚糸物の総表示繊度
(dtex)である。〕
6. The polyketone fiber according to claim 1, wherein a twisting yarn strength utilization factor (h) when twisted so that a twisting coefficient K becomes 10,000 is 65% or more. [Here, the twisting yarn strength utilization rate (h) is a 100-percentage obtained by dividing the strength of the polyketone twisted product after twisting by the strength of the polyketone fiber before twisting, and K is the twisting yarn defined by the following formula (1). It is the twist coefficient of the product. K = Y × D 0.5 (T / m · dtex 0.5 ) (1) In the formula (1), Y is the number of twists per 1 m of polyketone twisted yarn (T / m), and D is the total indication of polyketone twisted yarn. The fineness (dtex). ]
【請求項7】 撚糸強力利用率(h) が下式(2) の範囲内
であることを特徴とする請求項1〜6のいずれかに記載
のポリケトン繊維。 撚糸強力利用率(h) (%)≧100−K/300 ・・・(2)
7. The polyketone fiber according to any one of claims 1 to 6, wherein the twisting yarn tenacity utilization factor (h) is within the range of the following formula (2). Twisted yarn strength utilization rate (h) (%) ≧ 100-K / 300 ・ ・ ・ (2)
【請求項8】 ポリケトン繊維の撚糸強力利用率(h) が
下式(3) の範囲であることを特徴とする請求項1〜7の
いずれかに記載のポリケトン繊維。 撚糸強力利用率(h) (%)≧100×(1−4.79×10-9×K1.78) ・・・(3)
8. The polyketone fiber according to claim 1, wherein the twisting strength utilization factor (h) of the polyketone fiber is in the range of the following formula (3). Twisted yarn strength utilization rate (h) (%) ≧ 100 × (1-4.79 × 10 −9 × K 1.78 ) ... (3)
【請求項9】 請求項1〜8のいずれかに記載のポリケ
トン繊維からなる短繊維であって、平均繊維長が0.1
〜100mmであることを特徴とするポリケトン短繊
維。
9. A short fiber comprising the polyketone fiber according to claim 1, having an average fiber length of 0.1.
Polyketone short fibers characterized by having a length of -100 mm.
【請求項10】 オレフィンと一酸化炭素との共重合し
てなるポリケトンを金属塩溶液に溶解し、その溶液を紡
糸口金から凝固浴へ押出し、続いて得られた繊維状物か
ら金属塩を洗浄除去した後、乾燥工程を経た繊維を熱延
伸するポリケトン繊維の製造法において、乾燥工程から
熱延伸工程終了の間のいずれかの段階で水分率が0〜4
0質量%にある繊維に単糸間のずれを生ずる外力を加え
る工程、および乾燥工程終了から熱延伸工程終了の間の
いずれかの段階でポリケトン繊維に対して0.1〜20
質量%の仕上げ剤を付与する工程を含むことを特徴とす
るポリケトン繊維の製造方法。
10. A polyketone obtained by copolymerizing an olefin and carbon monoxide is dissolved in a metal salt solution, the solution is extruded from a spinneret into a coagulation bath, and then the metal salt is washed from the obtained fibrous material. In the method for producing a polyketone fiber, in which the fiber that has undergone the drying step after being removed is subjected to hot drawing, the water content is 0 to 4 at any stage between the drying step and the end of the hot drawing step.
0.1 to 20 with respect to the polyketone fiber at any stage between the step of applying an external force that causes a deviation between single yarns to the fiber at 0% by mass, and the end of the drying step to the end of the hot drawing step.
A method for producing a polyketone fiber, comprising the step of applying a mass% of a finishing agent.
【請求項11】 オレフィンと一酸化炭素との共重合し
てなるポリケトンを金属塩溶液に溶解し、その溶液を紡
糸口金から凝固浴へ押出し、続いて得られた繊維状物か
ら金属塩を洗浄除去した後、乾燥工程を経た繊維を熱延
伸するポリケトン繊維の製造法において、洗浄工程〜乾
燥工程終了前までのポリケトン繊維の水分率が40質量
%を超える段階で、ポリケトン繊維に対して0.1〜2
0質量%の離形剤を付与する工程を含むことを特徴とす
るポリケトン繊維の製造方法。
11. A polyketone obtained by copolymerizing an olefin and carbon monoxide is dissolved in a metal salt solution, the solution is extruded from a spinneret into a coagulation bath, and then the metal salt is washed from the obtained fibrous material. In the method for producing a polyketone fiber in which the fiber that has been subjected to a drying step and then subjected to a hot drawing is hot-stretched in the stage where the water content of the polyketone fiber exceeds 40% by mass from the washing step to the end of the drying step in the polyketone fiber. 1-2
A method for producing a polyketone fiber, comprising the step of applying 0% by mass of a release agent.
【請求項12】 請求項1〜9のいずれかに記載のポリ
ケトン繊維を少なくとも一部に含有し、撚糸物を構成す
る繊維が10回/m以上の割合で撚糸されていることを
特徴とする撚糸物。
12. The polyketone fiber according to any one of claims 1 to 9 is contained in at least a part thereof, and the fibers constituting the twisted product are twisted at a rate of 10 times / m or more. Twisted yarn.
【請求項13】 撚糸物の50〜100質量%が請求項
1〜9のいずれかに記載のポリケトン繊維であることを
特徴とする請求項12記載の撚糸物。
13. The twisted yarn according to claim 12, wherein 50 to 100% by mass of the twisted yarn is the polyketone fiber according to any one of claims 1 to 9.
【請求項14】 繰り返し単位の95〜100質量%が
1−オキソトリメチレンであるポリケトン繊維を撚り係
数Kが100〜50000で撚糸したポリケトン撚糸物
であって、撚糸強力利用率(h) が下式(3) の範囲である
ことを特徴とするポリケトン撚糸物。 撚糸強力利用率(h) (%)≧100×(1−4.79×10-9×K1.78) ・・・(3)
14. A polyketone twisted product obtained by twisting a polyketone fiber having 95 to 100% by mass of repeating units of 1-oxotrimethylene with a twisting coefficient K of 100 to 50,000, and having a low twisting yarn strength utilization factor (h). A polyketone twisted yarn characterized by being in the range of formula (3). Twisted yarn strength utilization rate (h) (%) ≧ 100 × (1-4.79 × 10 −9 × K 1.78 ) ... (3)
【請求項15】 撚り係数Kが10000以上であるポ
リケトン撚糸物であって、撚糸物の強度が15cN/d
tex以上であることを特徴とするポリケトン撚糸物。
(ただし、撚糸物の強度は撚糸物の強力を撚糸に用いた
ポリケトン繊維の総表示繊度で除したものである。)
15. A polyketone twisted product having a twisting coefficient K of 10,000 or more, wherein the twisted product has a strength of 15 cN / d.
A twisted yarn of polyketone characterized by having a tex or more.
(However, the strength of the twisted product is the strength of the twisted product divided by the total indicated fineness of the polyketone fiber used for the twisted yarn.)
【請求項16】 撚り係数Kが20000以上であるポ
リケトン撚糸物であって、撚糸物の強度が12cN/d
tex以上であることを特徴とするポリケトン撚糸物。
(ただし、撚糸物の強度は撚糸物の強力を撚糸に用いた
ポリケトン繊維の総表示繊度で除したものである。)
16. A polyketone twisted product having a twisting coefficient K of 20,000 or more, wherein the twisted product has a strength of 12 cN / d.
A twisted yarn of polyketone characterized by having a tex or more.
(However, the strength of the twisted product is the strength of the twisted product divided by the total indicated fineness of the polyketone fiber used for the twisted yarn.)
【請求項17】 ポリケトン繊維に対して0.1〜10
質量%のレゾルシン−ホルマリン−ラテックス樹脂が付
着していることを特徴とする請求項12〜16のいずれ
かに記載のポリケトン撚糸物。
17. A polyketone fiber with respect to 0.1 to 10
Mass% of resorcin-formalin-latex resin is attached, The twisted polyketone product according to any one of claims 12 to 16, wherein
【請求項18】 請求項1〜9のいずれかに記載のポリ
ケトン繊維、および/または請求項12〜17のいずれ
かに記載のポリケトン撚糸物を含有することを特徴とす
る成形体。
18. A molded article comprising the polyketone fiber according to any one of claims 1 to 9 and / or the twisted polyketone product according to any one of claims 12 to 17.
【請求項19】 成形体がタイヤ、ベルト、ホース、無
限軌道体の群から選ばれるゴム製品であることを特徴と
する請求項18記載の成形体。
19. The molded product according to claim 18, wherein the molded product is a rubber product selected from the group consisting of tires, belts, hoses, and endless tracks.
JP2001192739A 2001-06-26 2001-06-26 Polyketone fiber, polyketone fiber twisted product and molded article thereof Expired - Lifetime JP3708030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001192739A JP3708030B2 (en) 2001-06-26 2001-06-26 Polyketone fiber, polyketone fiber twisted product and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001192739A JP3708030B2 (en) 2001-06-26 2001-06-26 Polyketone fiber, polyketone fiber twisted product and molded article thereof

Publications (2)

Publication Number Publication Date
JP2003013326A true JP2003013326A (en) 2003-01-15
JP3708030B2 JP3708030B2 (en) 2005-10-19

Family

ID=19031152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001192739A Expired - Lifetime JP3708030B2 (en) 2001-06-26 2001-06-26 Polyketone fiber, polyketone fiber twisted product and molded article thereof

Country Status (1)

Country Link
JP (1) JP3708030B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049339A (en) * 2001-08-03 2003-02-21 Asahi Kasei Corp Cord fabric
JP2003055855A (en) * 2001-08-20 2003-02-26 Asahi Kasei Corp Polyketone intertwisted cord
JP2003082542A (en) * 2001-09-04 2003-03-19 Asahi Kasei Corp Spun yarn
JP2006199190A (en) * 2005-01-21 2006-08-03 Bridgestone Corp Pneumatic safety tire
WO2007023640A1 (en) * 2005-08-26 2007-03-01 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2007063875A1 (en) * 2005-11-29 2007-06-07 Bridgestone Corporation Pneumatic tire for motorcycle
WO2007074719A1 (en) * 2005-12-26 2007-07-05 Bridgestone Corporation Pneumatic tire
JP2007168717A (en) * 2005-12-26 2007-07-05 Bridgestone Corp Pneumatic radial tire for off-road
JP2007168732A (en) * 2005-12-26 2007-07-05 Bridgestone Corp Pneumatic radial tire for heavy load
JP2007191155A (en) * 2005-01-21 2007-08-02 Bridgestone Corp Pneumatic tire
JP2007191154A (en) * 2005-01-21 2007-08-02 Bridgestone Corp Pneumatic tire
JP2007283896A (en) * 2006-04-17 2007-11-01 Bridgestone Corp Pneumatic tire
WO2007136055A1 (en) * 2006-05-23 2007-11-29 Bridgestone Corporation Pneumatic tire
WO2007142077A1 (en) * 2006-06-06 2007-12-13 Bridgestone Corporation Run-flat pneumatic radial tire
WO2008010388A1 (en) * 2006-07-19 2008-01-24 Bridgestone Corporation Run-flat tire
WO2008010531A1 (en) * 2006-07-19 2008-01-24 Bridgestone Corporation Pneumatic tire
JP2008190078A (en) * 2007-02-05 2008-08-21 Asahi Kasei Fibers Corp Reinforcing fiber
JP2009061986A (en) * 2007-09-07 2009-03-26 Bridgestone Corp Pneumatic safety tire
JP2009242810A (en) * 2009-07-28 2009-10-22 Asahi Kasei Fibers Corp Fiber-reinforced composite material and manufacturing method therefor
JP2016533935A (en) * 2013-09-18 2016-11-04 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Tire including a reinforcing body for reinforcing a sidewall
JP2019157285A (en) * 2018-03-07 2019-09-19 東レ・デュポン株式会社 Textile high strength fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716231B1 (en) * 2015-05-27 2017-03-14 주식회사 효성 Polyketone cryogenic superconducting cable inculding polyketone fiber

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049339A (en) * 2001-08-03 2003-02-21 Asahi Kasei Corp Cord fabric
JP4584503B2 (en) * 2001-08-03 2010-11-24 旭化成せんい株式会社 Weave fabric
JP2003055855A (en) * 2001-08-20 2003-02-26 Asahi Kasei Corp Polyketone intertwisted cord
JP4563624B2 (en) * 2001-08-20 2010-10-13 旭化成せんい株式会社 Polyketone twisted cord
JP2003082542A (en) * 2001-09-04 2003-03-19 Asahi Kasei Corp Spun yarn
JP4646467B2 (en) * 2001-09-04 2011-03-09 旭化成せんい株式会社 Spun yarn
JP2007191155A (en) * 2005-01-21 2007-08-02 Bridgestone Corp Pneumatic tire
JP4683934B2 (en) * 2005-01-21 2011-05-18 株式会社ブリヂストン Pneumatic safety tire
JP2007191154A (en) * 2005-01-21 2007-08-02 Bridgestone Corp Pneumatic tire
JP2006199190A (en) * 2005-01-21 2006-08-03 Bridgestone Corp Pneumatic safety tire
WO2007023640A1 (en) * 2005-08-26 2007-03-01 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP4889654B2 (en) * 2005-11-29 2012-03-07 株式会社ブリヂストン Pneumatic tires for motorcycles
WO2007063875A1 (en) * 2005-11-29 2007-06-07 Bridgestone Corporation Pneumatic tire for motorcycle
JP2007168732A (en) * 2005-12-26 2007-07-05 Bridgestone Corp Pneumatic radial tire for heavy load
JP2007168717A (en) * 2005-12-26 2007-07-05 Bridgestone Corp Pneumatic radial tire for off-road
WO2007074719A1 (en) * 2005-12-26 2007-07-05 Bridgestone Corporation Pneumatic tire
JP4743762B2 (en) * 2005-12-26 2011-08-10 株式会社ブリヂストン Heavy duty pneumatic radial tire
JP4702886B2 (en) * 2005-12-26 2011-06-15 株式会社ブリヂストン Pneumatic radial tire for off-road use
WO2007122984A1 (en) * 2006-04-17 2007-11-01 Bridgestone Corporation Pneumatic tire
JP2007283896A (en) * 2006-04-17 2007-11-01 Bridgestone Corp Pneumatic tire
JP2007313930A (en) * 2006-05-23 2007-12-06 Bridgestone Corp Pneumatic tire
WO2007136055A1 (en) * 2006-05-23 2007-11-29 Bridgestone Corporation Pneumatic tire
WO2007142077A1 (en) * 2006-06-06 2007-12-13 Bridgestone Corporation Run-flat pneumatic radial tire
JP2007326417A (en) * 2006-06-06 2007-12-20 Bridgestone Corp Pneumatic runflat radial tire
WO2008010388A1 (en) * 2006-07-19 2008-01-24 Bridgestone Corporation Run-flat tire
WO2008010531A1 (en) * 2006-07-19 2008-01-24 Bridgestone Corporation Pneumatic tire
JP2008024093A (en) * 2006-07-19 2008-02-07 Bridgestone Corp Run-flat tire
US8215357B2 (en) 2006-07-19 2012-07-10 Bridgestone Corporation Pneumatic tire
JP5216587B2 (en) * 2006-07-19 2013-06-19 株式会社ブリヂストン Pneumatic tire
JP2008190078A (en) * 2007-02-05 2008-08-21 Asahi Kasei Fibers Corp Reinforcing fiber
JP2009061986A (en) * 2007-09-07 2009-03-26 Bridgestone Corp Pneumatic safety tire
JP2009242810A (en) * 2009-07-28 2009-10-22 Asahi Kasei Fibers Corp Fiber-reinforced composite material and manufacturing method therefor
JP2016533935A (en) * 2013-09-18 2016-11-04 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Tire including a reinforcing body for reinforcing a sidewall
JP2019157285A (en) * 2018-03-07 2019-09-19 東レ・デュポン株式会社 Textile high strength fiber
JP7058455B2 (en) 2018-03-07 2022-04-22 東レ・デュポン株式会社 High-strength thread for weaving

Also Published As

Publication number Publication date
JP3708030B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
JP3708030B2 (en) Polyketone fiber, polyketone fiber twisted product and molded article thereof
JP3595846B2 (en) Polyketone fiber and method for producing the same
JP3966867B2 (en) Polyketone treatment cord and method for producing the same
JP4584503B2 (en) Weave fabric
JP6428421B2 (en) Liquid crystalline polyester multifilament
JP3704015B2 (en) Polyketone fiber and method for producing the same
WO2019167923A1 (en) Twisted cord of liquid-crystal polyester multifilaments, production method therefor, and product comprising said twisted cord
JP4570273B2 (en) Polyketone fiber, cord and method for producing the same
JP3734077B2 (en) High strength polyethylene fiber
JP2008202204A (en) Production method of ultrafine fiber fabric
JP4172888B2 (en) Monofilament and method for producing the same
JP2003027333A (en) Polyketone fiber
JP6458873B2 (en) Polyolefin fiber and method for producing the same
JP2009256865A (en) Ultrafine fiber fabric and method for producing the same
JP7239410B2 (en) Method for producing liquid crystal polyester fiber
JP2005171453A (en) Method for manufacturing stretch spun yarn
JP4646467B2 (en) Spun yarn
JP3804771B2 (en) Polyketone fiber
JPS61119708A (en) High-tenacity acrylic fiber and production thereof
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JP4660014B2 (en) rope
JP2007023452A (en) Highly functional fiber having excellent opening property or paralleling property
JPS6385105A (en) Organic high-strength yarn with excellent abrasion resistance
JP2003055834A (en) High-strength polyethylene fiber for mesh woven or knitted fabric and mesh woven or knitted fabric
JP2010168710A (en) Polyketone fiber and manufacturing method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Ref document number: 3708030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term