JP4646467B2 - Spun yarn - Google Patents

Spun yarn Download PDF

Info

Publication number
JP4646467B2
JP4646467B2 JP2001267440A JP2001267440A JP4646467B2 JP 4646467 B2 JP4646467 B2 JP 4646467B2 JP 2001267440 A JP2001267440 A JP 2001267440A JP 2001267440 A JP2001267440 A JP 2001267440A JP 4646467 B2 JP4646467 B2 JP 4646467B2
Authority
JP
Japan
Prior art keywords
spun yarn
polyketone
fibers
dtex
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001267440A
Other languages
Japanese (ja)
Other versions
JP2003082542A (en
Inventor
龍 谷口
仁一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2001267440A priority Critical patent/JP4646467B2/en
Publication of JP2003082542A publication Critical patent/JP2003082542A/en
Application granted granted Critical
Publication of JP4646467B2 publication Critical patent/JP4646467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリケトン短繊維で構成された紡績糸及びそれを用いた成型品に関する。
【0002】
【従来の技術】
近年、アラミド繊維に代表される高強度繊維が次々と商業化され、その力学特性を活かしてタイヤ、ベルト、ホース等のゴム製品の補強、セメントや樹脂の補強、ブレーキ、光ファイバー等の各種材料の補強用途、係留ロープや釣り糸、漁網等の漁業用途、土木ネットや防水布、耐水布、断熱布、耐熱フェルト、防音布等の土木、建築用途、防護服や耐切創手袋等の衣料用途など幅広い用途へ展開されている。
【0003】
高強度繊維を、断熱布、防音布、防護服や耐切創手袋等の織編物に加工して用いる場合、用いる繊維材料には高強度のみならず断熱性、防音性、嵩高性、風合い等の特性を併せて具備することが要求されるため、高強度繊維を紡績糸として使用することが必要となる。
【0004】
従来、これらの用途において用いられる高強度繊維材料としては、アラミド繊維、ポリビニルアルコール繊維、ポリエチレン繊維等があるが、いずれの繊維も紡績糸として用いる場合には問題があった。
【0005】
例えば、アラミド繊維は捲縮がかかりにくく紡績糸の強度が極端に低くなるという問題や、フィブリル化が激しく紡績の工程通過性が悪いという問題があった。また、ポリビニルアルコール繊維からなる紡績糸は、水や湿度によって強度が損なわれ、湿気や水分の多い環境では使用できないという問題があった。ポリエチレン繊維からなる紡績糸は、融点が低く擦過を受ける用途や高温環境に曝される用途では使用できないという問題があった。また、ポリベンザゾール繊維からなる紡績糸は、強度、耐熱性、耐水性には優れるものの、繊維が硬く紡績糸の風合いが悪いという問題や、極めて高コストで汎用的に使用出来ないという問題があった。
【0006】
一方、近年になって、一酸化炭素とオレフィンが完全交互共重合したポリケトンが見出された。このポリケトンからなる繊維は、高融点、高強度、高弾性率の特性を有し(例えば、特開平4−228613号公報、特表平4−505344号公報、特表平7−508317号公報、特表平8−507328号公報、国際公開99/18143号パンフレット、国際公開00/09611号パンフレット等参照)、新たな高強度繊維として可能性が期待されている。
【0007】
しかしながら、これまで知られているポリケトン繊維はいずれもフィラメントに関するものであり、ポリケトン短繊維およびポリケトン短繊維で構成された紡績糸に関しては全く知られていない。
【0008】
【発明が解決しようとする課題】
本発明の課題は、捲縮加工が可能であり高強度の紡績糸を提供すること、耐熱性、耐水性に優れ幅広い用途分野に適用可能な紡績糸を提供すること、高強度でありながら品位が良く、柔軟で風合いに優れた紡績糸を提供すること、等である。
【0009】
【課題を解決するための手段】
本発明者らは上記課題について検討した結果、ポリケトン繊維で構成された紡績糸が好適であることを見出し、さらに研究を重ねて本発明に到達した。
【0010】
すなわち、本発明は下記の通りである。
【0011】
1.単糸繊度が0.5〜5dtex、平均繊維長が10〜200mmのポリケトン短繊維で構成され、引っ張り強度が5cN/dtex以上であることを特徴とする紡績糸。
【0012】
2.ポリケトン短繊維の単糸繊度が0.6〜2dtex、平均繊維長が20〜150mmであり、紡績糸の引っ張り強度が7cN/dtex以上であることを特徴とする上記1記載の紡績糸。
【0013】
3.ポリケトン短繊維の捲縮度が5〜50%であることを特徴とする上記1または2記載の紡績糸。
【0014】
4.撚り数Y(T/m)と繊度D(dtex)の関係が下記式で表され、撚り係数Kが7500〜15000であることを特徴とする上記1〜3のいずれかに記載の紡績糸。
【0015】
K=Y×D0.5
5.ポリケトン短繊維の平均繊維長L(mm)と撚り係数Kが下記式の範囲内であることを特徴とする上記1〜4のいずれかに記載の紡績糸。
【0016】
20000≦K×L1/3≦50000
6.ポリケトン短繊維が、結晶化度70%以上、密度1.30g/cm以上、かつ、単糸膠着率0〜10%であることを特徴とする上記1〜5のいずれかに記載の紡績糸。
【0017】
7.紡績糸が、ポリケトン短繊維とポリケトン繊維以外の繊維10〜30質量%との混紡糸であり、かつ、ポリケトン繊維以外の繊維の平均繊維長が10〜200mm、単糸繊度が0.5〜5dtexであることを特徴とする上記1〜6のいずれかに記載の紡績糸。
【0018】
8.上記1〜7のいずれかに記載の紡績糸を少なくとも一部に使用していることを特徴とする成型品。
【0019】
9.成型品が織物であることを特徴とする上記8記載の成型品。
【0020】
10.成型品が編物であることを特徴とする上記8記載の成型品。
【0021】
11.成型品がタイヤ、ベルト、ホースの群から選ばれるゴム製品であることを特徴とする上記8記載の成型品。
【0022】
12.ポリケトンを、ハロゲン化亜鉛を10〜80質量%含有する溶液に溶解後、紡糸口金より凝固浴へ吐出して凝固糸条とし、引き続き洗浄、乾燥を行った後に、(1)5倍以上の倍率で熱延伸する工程、(2)熱延伸したポリケトン長繊維に捲縮率5〜50%の捲縮を付与する工程、(3)捲縮したポリケトン長繊維を平均繊維長10〜200mmに切断する工程、(4)ポリケトン短繊維を撚り係数Kが3000〜30000の範囲で紡績する工程、を含むことを特徴とする紡績糸の製造方法。
【0023】
13.乾燥終了から熱延伸終了までの間に、複数のポリケトン長繊維のフィラメント束を合糸し、(熱延伸終了後のフィラメント束を構成するフィラメント数)/(乾燥終了後のフィラメント束を構成するフィラメント数)の比を2以上とすることを特徴とする上記12記載の紡績糸の製造方法。
【0024】
本発明において、ポリケトン短繊維を構成するポリケトンは、オレフィンと一酸化炭素が交互共重合したポリケトンである。得られる紡績糸の強度、耐熱性の観点から、下記の化学式(化1)で示される1−オキソトリメチレンを主たる繰り返し単位とすることが好ましい。
【0025】
【化1】

Figure 0004646467
【0026】
ポリケトンとしては、好ましくは95〜100質量%、より好ましく97〜100質量%、特に好ましくは100質量%が1−オキソトリメチレンであることが望ましい。
【0027】
また、1−オキソトリメチレン以外の繰り返し単位として、プロペンやヘキセン、シクロヘキセン、スチレン等の不飽和炭化水素を有する化合物と一酸化炭素との共重合体を含んだものであってもよい。
【0028】
本発明において、ポリケトン短繊維で構成された紡績糸とは、紡績糸がポリケトン短繊維のみで構成されているものだけでなく、ポリケトン繊維以外の他の繊維を含んでいてもよい。紡績糸を構成するポリケトン短繊維の割合が高いほど、強度、生産性に優れるため、ポリケトン短繊維の割合は60〜100質量%が好ましく、より好ましくは80質量%以上、特に好ましくは100質量%である。
【0029】
本発明の紡績糸を構成するポリケトン短繊維は、単糸繊度が0.5〜5dtexであり、好ましくは0.6〜2dtex、特に好ましくは0.8〜1.5dtexである。単糸繊度がこの範囲であると、短繊維間の交絡や摩擦が適度で、紡績糸の強度が十分であり、短繊維の製造工程において断糸、毛羽が少なく、紡績、製織、製編等における工程通過性が良好であり、優れた品位の紡績糸が得られる。さらにまた、紡績糸を構成する短繊維同士の接触面積が十分で、短繊維の引き抜け等が起こることがなく、結果として高い強度を有する柔軟な紡績糸が得られるので、風合いの優れた織編物となる。
【0030】
また、本発明の紡績糸を構成するポリケトン短繊維は、平均繊維長が10〜200mmであり、好ましくは20〜150mm、より好ましくは30〜100mmである。平均繊維長がこの範囲であると、短繊維間の交絡や摩擦が十分で高強度の紡績糸を得ることができ、紡績、製織、製編等における工程通過性が良好であるうえ、風合い、品位の優れた紡績糸や織編物を得ることができる。
【0031】
紡績糸の引っ張り強度が高いほど細繊度の紡績糸の使用が可能となり、結果として軽量で、風合いの軟らかい製品が得られることから、本発明の紡績糸の引っ張り強度は、5cN/dtex以上であり、好ましくは7cN/dtex以上、特に好ましくは10cN/dtex以上であることが望ましい。
【0032】
このような高強度の紡績糸を得るためには、ポリケトン短繊維の捲縮度、平均繊維長および撚り係数を適正な範囲に設定することが特に有効である。
【0033】
本発明の紡績糸を構成する短繊維は、捲縮を有していることが好ましい。捲縮していない場合または捲縮度が小さすぎる場合は、短繊維間の交絡や摩擦が少なくなって、短繊維の引き抜けが起こりやすくなり、結果として高強度の紡績糸が得られにくい傾向がある。一方、捲縮度が大きすぎると、短繊維のたるみやもつれが起こり、紡績、製織、製編等における工程通過性が悪くなったり、得られる紡績糸や織編物の品位が低くなる傾向がある。このような観点から、短繊維の捲縮度は5〜50%であることが好ましく、10〜30%が特に好ましい。
【0034】
本発明の紡績糸は、撚り数Y(T/m)と繊度D(dtex)の関係が下記式で表され、撚り係数K(T/m・dtex0.5)は3000〜30000であることが好ましく、7500〜15000であることがさらに好ましい。
【0035】
K=Y×D0.5
Kが上記の範囲であると、引っ張り方向に対する短繊維間の摩擦抵抗が適度であり、十分な強度、伸度の紡績糸が得られ、また、ポリケトン短繊維の撚糸強力利用率が高いので十分な強度の紡績糸を得ることができる。なお、本発明においては、下撚り、上撚り等、他の段階で撚りを加えた紡績糸の場合は、最後に加えた上撚りについて計算される値を紡績糸の撚り係数として扱う。
【0036】
また、紡績時の工程通過性、得られる紡績糸の強度、品位の観点から、上述の撚り係数K(T/m・dtex0.5)とポリケトン短繊維の平均繊維長L(mm)とが下記式の範囲内であることが好ましい。
【0037】
20000≦K×L1/3≦50000
この値が上記の範囲内であると、引き抜けによる紡績糸の強度低下や、強力利用率の低下、風合いの低下等が起こらない。K×L1/3の値のより好ましい範囲は25000〜40000である。
【0038】
紡績糸においては、一般に、撚り数が大きくなるにつれて、短繊維間の交絡が増えて引き抜けが少なくなり、ある撚り数までは紡績糸の強力が高くなってくる。
【0039】
しかしながら、高度に延伸されたポリケトン繊維においては、撚りを加えることによって繊維の強力が大きく低下する、即ち、撚糸強力利用率が低いため、高強度の紡績糸を得ることが困難であるということを、本発明者らは、見出した。さらに、撚糸強力利用率が低い原因は、単糸同士が膠着していること、ポリケトン繊維間の摩擦が大きいこと、ポリケトン繊維の表面にフィブリル状物や毛羽が出来やすいことである。したがってその対策として、単糸膠着がなく、繊維−繊維間の動摩擦係数が低く、フィブリルや毛羽のない繊維を短繊維として用いると、強力利用率が高い高強度の紡績糸が得られることを、本発明者らは見出した。
【0040】
単糸膠着率が高すぎると、紡績糸の撚糸強力利用率が大きく低下するため、本発明においては、単糸膠着率は30%以下が好ましく、より好ましくは10%以下、特に好ましくは0%である。
【0041】
繊維−繊維間の動摩擦係数が高すぎると、延伸時、紡績時、製織時あるいは製編時に毛羽発生や欠陥発生の原因となり、また、繊維に無理な歪みがかかって紡績糸の強力利用率が低下する傾向がある。一方、低すぎると、紡績糸の短繊維間の引き抜けが起こりやすくなり紡績糸の強度が低くなるなどの問題があるため、繊維−繊維間の動摩擦係数は、好ましくは0.05〜0.7、より好ましくは0.2〜0.4である。
【0042】
本発明において、高強度の紡績糸を得るためには、紡績糸を構成するポリケトン短繊維が高強度であることが必要となるが、高強度の物性を達成するためには、その繊維構造としてスキン−コア構造のない緻密な断面構造と高度の結晶構造を有することが求められる。具体的には、ポリケトン短繊維の密度としては1.30g/cm以上が好ましく、より好ましくは1.33g/cm以上1.38g/cm以下である。また、ポリケトン短繊維の結晶化度は60%以上が好ましく、より好ましくは70%以上100%以下である。また、ポリケトン短繊維の融点としては240℃以上であることが好ましく、より好ましくは260℃以上である。なお、融点の上限は、現状の技術では280℃程度であるが、今後の技術開発を考慮すると300℃も可能である。
【0043】
本発明の紡績糸の繊度は、特に制限はなく、用途、目的に応じて適宜選定すればよい。例えば、風合いや柔軟性の要求される衣料用途では、50〜300dtex、絶対強力の要求される産業資材用途では300〜7000dtexが一般的に用いられる。
【0044】
本発明の紡績糸は、ポリケトン短繊維のみで構成されているものだけでなく、ポリケトン繊維以外の短繊維を含む混紡糸であってもよい。その場合、ポリケトン繊維以外の短繊維は、平均繊維長が10〜200mm、好ましくは20〜150mm、より好ましくは30〜100mmであり、単糸繊度が0.5〜5dtex、好ましくは0.6〜2dtex、より好ましくは0.8〜1.5dtexである。また、混紡して得られる紡績糸の強度は5cN/dtex以上、好ましくは7cN/dtex以上、より好ましくは10cN/dtex以上である。
【0045】
混紡可能なポリケトン繊維以外の繊維としては、特に制限はなく、ビスコースレーヨン繊維、ポリエチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ナイロン66繊維、ナイロン6繊維、アクリル繊維、アラミド繊維、ポリビニルアルコール繊維等の合成繊維、綿、羊毛、麻、絹等の天然繊維を使用することが出来る。これら繊維の混紡割合としては、紡績糸の強度、コストの観点から、40質量%以下であることが好ましく、より好ましくは1〜35質量%、さらに好ましくは10〜30質量%である。
【0046】
次に、本発明の紡績糸の製造方法について説明する。
【0047】
紡績糸を構成するポリケトン短繊維は、例えば、ポリケトンを溶剤に溶解した後に凝固浴中で繊維状とし、脱溶剤、乾燥を経て熱延伸を行うという、公知の湿式紡糸法によりポリケトン長繊維を得た後に、捲縮を付与し、短繊維に切断することにより製造することができる。
【0048】
高強度のポリケトン短繊維を生産性よく工業的に得るには、金属塩を溶剤とする湿式紡糸法が好適に用いられる。その一例を以下に説明する。
【0049】
ポリケトンとしては、繰り返し単位の1−オキソトリメチレンの割合が95〜100質量%、極限粘度が2〜20であることが好ましい。このポリケトンをハロゲン化亜鉛、ハロゲン化アルカリ金属、ハロゲン化アルカリ土類金属等を含有する溶液(例えば、塩化亜鉛/塩化カルシウム水溶液)に溶解する。溶解した溶液を、紡糸口金より水等の液体中に吐出して糸条とした後、塩酸等の酸水溶液により金属塩を洗浄除去する。
【0050】
次いで、100〜250℃で乾燥した後に、200〜280℃にて5倍以上の熱延伸を行う。この際に、乾燥中または乾燥後のフィラメントに、圧縮気体を吹き付ける等の外力を加えて、単糸膠着をなくすことが好ましい。高強度のポリケトンフィラメントを製造する場合には、総延伸倍率を好ましくは10倍以上、より好ましくは12倍以上とし、2段以上の多段延伸を行うことが好ましい。
【0051】
延伸終了後のポリケトン長繊維の総繊度としては、50〜50000dtexの範囲が好ましい。特に、延伸工程で複数本のポリケトン長繊維のフィラメント束を合糸して、1束あたりのフィラメント本数を増やしながら熱延伸を行うことが生産性の観点から好ましい。なお、本発明においては、フィラメント束とは複数本のフィラメントが平行に引きそろえられた束を意味し、フィラメントが引き揃えられて総繊度が1000dtex以上の束となったものをトウと呼ぶことがある。
【0052】
上記フィラメント束の合糸については、乾燥前に合糸すると乾燥効率の低下が大きいことから、乾燥終了から熱延伸終了までの間のいずれかの段階で行うことが好ましい。合糸するフィラメント束の本数は特に制限はないが、生産性の観点から2本以上、即ち、(熱延伸終了後のフィラメント束を構成するフィラメント数)/(乾燥終了後のフィラメント束を構成するフィラメント数)の比を2以上とすることが好ましく、より好ましくは10本以上のフィラメント束を合糸することが望ましい。
【0053】
この際に、延伸前および/または延伸後に油剤を付与して、繊維−繊維間の動摩擦係数を低減することにより、延伸工程や紡績工程等での工程通過性を上げることが好ましい。油剤の付与量が少なすぎると摩擦抵抗の低減、毛羽やフィブリルの抑制が十分に出来ず、一方多すぎると、ロール上でのタール化、カード上での油分の堆積、短繊維間の引き抜け等が起こりやすくなり、紡績糸の強度が低下する等の問題が生じるため、油剤の付着量は、ポリケトン繊維に対して0.05〜3質量%が好ましく、より好ましくは0.1〜1質量%である。
【0054】
油剤としては、例えば、ステアリン酸オクチル、オレイン酸ラウリル等のエステル化合物、パラフィン系、ナフテン系の鉱物油、ポリオレフィンオキシド等のポリエーテル、ポリオキシエチレンステアリルエーテル等のノニオン性界面活性剤、アルキルホスフェート等のアニオン性界面活性剤などの公知の化合物を用いることが出来る。特に紡績時の工程通過性の観点から、制電性の高い油剤(例えば、リン酸塩、スルホン酸塩、カルボン酸塩の構造を有する化合物)が好ましい。
【0055】
また、紡糸から紡績までのいずれかの工程で、ポリケトン繊維に捲縮を付与することが好ましい。捲縮は、延伸前や多段延伸の途中で付与してもよいが、延伸性や得られる繊維物性の点から、延伸終了後が好ましい。
【0056】
捲縮を付与する方法は特に制限はなく、スタフィンボックス等を用いて加熱下で加圧屈曲させる方法や、延伸終了後の歪みを有するフィラメントを切断後、無緊張下で熱処理する方法等の機械的、熱的、化学的な処理を適用することが出来る。安定した捲縮を付与するために、好ましくは110〜270℃、より好ましくは150〜250℃の加熱下で処理することが望ましい。
【0057】
ポリケトン長繊維を短繊維に切断し、紡績する方法としては、直紡、パーロック法、コンバータ法、ステープラ法等の公知の方法を適用することが出来る。切断の方式は、カッターで、定長に切断して短繊維長を揃える方法、また、牽切により短繊維長が分布を有するようにして切断してもよい。また、長繊維フィラメントを加熱して熱延伸を行い、引き続き連続して短繊維に牽切する方法でもよい。牽切法により切断する際には、平均繊維長が本発明の範囲内となるように、ドラフト比、牽切張力を設定することが重要である。
【0058】
次いで、得られたポリケトン短繊維のスライバーを、粗紡、精紡工程を通して紡績糸とする。紡績時の加撚の方法については、特に制限はなく、用途、目的に応じて、双糸、3子糸等の公知の撚り糸とすることが出来る。また、撚り数も特に制限はないが、撚り数が多すぎると撚りによる強力低下が起こり、撚り数が少なすぎると引き抜けによる強力低下が起こるため、撚糸は、前記の撚り係数Kが3000〜30000で行うことが好ましく、7500〜15000で行うことがさらに好ましい。
【0059】
また、得られる紡績糸の品位、工程通過性の観点から、撚糸張力は0.01〜0.1cN/dtexが好ましく、より好ましくは0.03〜0.07cN/dtexである。
【0060】
本発明の紡績糸は、織物や編物等の成型品とすることができ、また、織物や編物の状態あるいは糸状で成型品の一部に補強材等として用いることも出来る。特に、高い強度と優れた品位と柔軟性を活かして、タイヤ、ベルト、ホースの群から選ばれるゴム製品の補強材として有用であり、さらに、防水布、養生シート、土木用シート、土木用ネット等の織編物、ロープ、産業用縫い糸、漁網、セメントやプラスチックの補強材、スポーツ衣料、耐切創保護具等の衣料用途、などの幅広い分野で有用である。
【0061】
【発明の実施の形態】
以下、実施例を挙げて本発明をさらに具体的に説明するが、それらは本発明の範囲を限定するものではない。
【0062】
なお、測定方法、評価方法等は次の通りである。
【0063】
(1)極限粘度[η]
極限粘度(dl/g)は、次の定義式に基づいて求められる値である。
【0064】
【数1】
Figure 0004646467
【0065】
式中、t及びTは、純度98%以上のヘキサフルオロイソプロパノール及びヘキサフルオロイソプロパノールに溶解したポリケトンの希釈溶液の25℃での粘度管の流過時間である。Cは上記溶液100ml中のグラム単位による溶質の質量値である。
【0066】
(2)紡績糸の繊度、引っ張り強度
繊度はJIS−L−1095−7.4に基づいて測定する。
【0067】
引っ張り強度はJIS−L−1095−7.5.1に基づいて、試料長25cm、引っ張り速度30cm/分にて測定する。
【0068】
(3)ポリケトン短繊維の平均繊維長、単糸繊度、捲縮度、密度
平均繊維長はJIS−L−1015−7.4.1(A法)に基づいて測定する。
【0069】
単糸繊度はJIS−L−1015−7.5.1(A法)に基づいて測定する。
【0070】
捲縮度はJIS−L−1015−7.12.2に基づいて測定する。
【0071】
密度はJIS−L−1015−7.14.2に基づいて四塩化炭素およびn−ヘプタンにより作製した密度勾配管を用いて測定する。
【0072】
(4)ポリケトン短繊維の単糸膠着率
黒色台紙上に約200本のポリケトン短繊維を載せる。次いで、ポリケトン短繊維をチョークで軽く20回擦って解繊し、この中から100本の短繊維を抜き出す。膠着して分繊出来ないものについては1本の単糸として数える。
【0073】
次いで、この100本の短繊維を平行に引き揃え、エポキシ樹脂で包埋する。
【0074】
包埋は、下記の手順で行う。エポキシモノマー(ケトール812:日新EM社製)と硬化剤(ドデシルサクソニックアンハイドライド、メチルナディックアンハイドライド)の混合溶液に浸漬した後、開始剤(DMP−30:日新EM社製)を加え、60℃の加熱条件下で24時間処理して重合を行い、繊維を樹脂で包埋する。
【0075】
次いで、樹脂で包埋された繊維をミクロトームで切断し、繊維断面を電子顕微鏡にて撮影する。撮影したネガ画像を画像解析装置(IP1000−PC:旭化成社製)を用いて、以下の方法で処理する。スキャナーを使用して、ネガ画像を取り込み、2値化処理を行う。得られた2値化画像より、粒子解析ソフトによりポリケトン短繊維の単糸数Nを計測し、下記式により単糸膠着率を求める。
【0076】
単糸膠着率(%)={(N−100)/N}×100
(5)ポリケトン短繊維の結晶化度
パーキンエルマー社製の示差熱測定装置Pyris1を用いて、下記条件で測定を行う。試料は糸長を5mmにカットした繊維を用いる。
【0077】
試料の質量:1mg
測定温度 :30℃→300℃
昇温速度 :20℃/分
雰囲気 :窒素(流量=200ml/分)
得られる吸発熱曲線において、200〜300℃の範囲に観測される最大の吸熱ピークの面積から計算される熱量ΔH(J/g)より、下記式により結晶化度を算出する。
【0078】
結晶化度(%)=(ΔH/225)×100
(6)撚り数
JIS−L−1095−7.15.1に従って測定した。
【0079】
(7)外観
紡績糸を観察して、下記の基準で評価した。
【0080】
◎:毛羽、たるみが見られず優れている
○:毛羽、たるみがほとんど見られない
×:毛羽、たるみが多い
〔実施例1〕
エチレンと一酸化炭素が完全交互共重合した極限粘度6.0のポリケトンを常法により調製し、得られたポリケトンを、塩化カルシウム40質量%、塩化亜鉛22質量%を含有する水溶液に溶解して、ポリケトン濃度6.5質量%のドープを得た。得られたドープを80℃に加温し、紡口径0.15mmφ、L/D=1、ホール数250の紡口より10mmのエアーギャップを通した後に、2質量%の塩化カルシウム、1.1質量%の塩化亜鉛および0.1質量%の塩酸を含有する−2℃の水からなる凝固浴中に押し出して糸条とした。
【0081】
次いで、得られた糸条を、塩酸水溶液、水で順次洗浄した後に、IRGANOX(登録商標、Ciba Specialty Chemicals社製)1098、IRGANOX(登録商標、Ciba Specialty Chemicals社製)1076をそれぞれ0.05質量%ずつ(対ポリケトン)配合した後に、225℃にて定長乾燥し、続いて0.2MPaの圧気を吹き付けて解繊した。
【0082】
さらに、この糸条12本を合糸して、油剤としてドデシルホスフェートカリウム塩(1質量%水分散液)を付与し、温度225℃/240℃/250℃/257℃で、それぞれ延伸倍率6.5倍/1.5倍/1.3倍/1.2倍の、合計15.2倍の4段延伸を行い、総繊度3150dtexのトウを得た。延伸性は良好で、延伸時に毛羽やフィブリル状物の発生は観察されなかった。
【0083】
得られたトウを押し込み型捲縮機で捲縮を付与し、次いで220℃で熱固定を行い、引き続きロータリーカッターにて短繊維に切断し、単糸繊度0.9dtex、平均繊維長71mmのポリケトン短繊維を得た。
【0084】
このポリケトン短繊維をスライバ状にして、750T/mの片撚り(Z撚り)を加えて、繊度129dtexの紡績糸を得た。得られた紡績糸は、引っ張り強度が7.5cN/dtexと高強度であり、たるみやフィブリル状物も観察されず高品位の紡績糸あった。
【0085】
〔実施例2〕
実施例1において、ポリケトン短繊維の平均繊維長を38mmとする以外は同様にして紡績糸を得た。この紡績糸は、引っ張り強度が7.3cN/dtexと高強度であった。
【0086】
〔実施例3〕
実施例1において、ポリケトン短繊維の平均繊維長を103mmとする以外は同様にして紡績糸を得た。この紡績糸は、引っ張り強度が7.1cN/dtexと高強度であった。
【0087】
〔実施例4〕
実施例1において、紡口径を0.2mmφとして、吐出量を1.8倍とする以外は同様にして紡糸を行い、単糸繊度1.5dtexのポリケトン短繊維を得た。この短繊維を実施例1と同様にして紡績糸を得た。この紡績糸は、引っ張り強度が6.8cN/dtexと高強度であった。
【0088】
〔実施例5〕
実施例1において、紡口径を0.23mmφとして、吐出量を2.5倍とする以外は同様にして紡糸を行い、単糸繊度2.2dtexのポリケトン短繊維を得た。この短繊維を用いて実施例1と同様にして紡績糸を得た。この紡績糸は、引っ張り強度が6.2cN/dtexと高強度であった。
【0089】
〔実施例6〕
実施例1で得られた750T/mの片撚り糸(Z撚り)2本を引きそろえ、さらに530T/mで上撚り(S撚り)を加えて双撚糸の紡績糸を得た。この紡績糸は、引っ張り強度が8.6cN/dtexと高強度であった。
【0090】
〔実施例7〕
実施例1で得たポリケトン短繊維を総繊度が約1600dtexのスライバーとして、190T/mで下撚り(Z撚り)し、これを2本引きそろえ、さらに190T/mで上撚り(S撚り)を行い双撚糸の紡績糸を得た。この紡績糸は、引っ張り強度が9.2cN/dtexと高強度であった。
【0091】
〔比較例1〕
実施例1において、単糸繊度が6.5cN/dtexのポリケトン短繊維を用いる以外は同様にして紡績糸を得た。この紡績糸は、引っ張り強度が4.1cN/dtexと不十分であった。
【0092】
〔比較例2〕
実施例1において、平均繊維長を300mmとする以外は同様にして紡績を行った。得られた紡績糸は、引っ張り強度が4.7cN/dtexと不十分で、紡績時の工程通過性が悪く、また紡績糸表面にたるみがある品位の劣るものであった。
【0093】
〔比較例3〕
実施例1において、平均繊維長を7mmとする以外は同様にして紡績を行った。得られた紡績糸は、引っ張り強度が3.5cN/dtexと全く不十分であった。
【0094】
〔比較例4〕
実施例1において、捲縮を付与しないこと以外は同様にして紡績を行った。得られた紡績糸は、引っ張り強度が3.1cN/dtexであり、本発明の範囲外のものであった。
【0095】
〔比較例5〕
実施例4において、ポリケトンの溶剤を、塩化亜鉛65質量%、塩化ナトリウム10質量%、水25質量%の水溶液として、ポリケトン濃度を8質量%とし、乾燥終了後の圧気処理を行わないこと以外は、実施例4と同様にして紡糸を行い、単糸繊度1.8dtexのポリケトン短繊維を得た。
【0096】
この短繊維を用いて、実施例1と同様にして紡績を行った。得られた紡績糸は、引っ張り強度が4.5cN/dtexと不十分で、表面に毛羽やほつれが観察され品位の劣るものであった。
【0097】
以上の実施例1〜7および比較例1〜5における短繊維および紡績糸の特性等を表1にまとめて示す。
【0098】
【表1】
Figure 0004646467
【0099】
〔実施例8〕
常法により調製した86dtex/36f(引っ張り強度5.3cN/dtex)のポリエチレンテレフタレート繊維50本を引きそろえ、押し込み型捲縮機で捲縮を付与し、次いで160℃で熱固定を行い、引き続きロータリーカッターにて平均繊維長69mmに切断した。
【0100】
実施例1で得たポリケトン短繊維とこのポリエチレンテレフタレート短繊維を8/2の割合で混合して紡績を行い、混紡糸を得た。得られた紡績糸は、引っ張り強度が6.2cN/dtexと高いものであった。また、この紡績糸は、毛羽やほつれのない品位のよいものであった。
【0101】
〔実施例9〕
1690dtex/1000fのアラミド繊維(KEVLAR(登録商標)K29、DuPont社製)を押し込み型捲縮機で捲縮を付与し、引き続きロータリーカッターにて平均繊維長72mmに切断した。
【0102】
実施例1で得たポリケトン短繊維とこのアラミド短繊維を8/2の割合で混合して紡績を行い、混紡糸の紡績糸を得た。得られた紡績糸は、引っ張り強度が5.9cN/dtexと高強度であった。
【0103】
〔実施例10〕
実施例1で得たポリケトン短繊維と、平均繊維長35mm、単糸繊度1.5dtexのエジプト綿を8/2の割合で混合して紡績を行い、混紡糸の紡績糸を得た。得られた紡績糸は、引っ張り強度が6.3cN/dtexと高強度であった。
【0104】
〔比較例6〕
実施例8において、ポリケトン短繊維とポリエチレンテレフタレート短繊維の混合割合を2/8とする以外は、実施例8と同様にして混紡糸の紡績糸を得た。
この紡績糸は、引っ張り強度が3.4cN/dtexと不十分であった。
【0105】
〔比較例7〕
実施例10において、ポリケトン短繊維とエジプト綿との混合割合を2/8とする以外は、実施例10と同様にして混紡糸の紡績糸を得た。この紡績糸は、引っ張り強度が2.8cN/dtexと不十分であった。
【0106】
以上の実施例8〜10および比較例6、7の紡績糸の特性を表2にまとめて示す。
【0107】
【表2】
Figure 0004646467
【0108】
〔実施例11〕
実施例1で作製した紡績糸を用いて、経糸密度90本/2.54cm、緯糸密度90本/2.54cmの平織物を作製した。製織性は良好で、織物は外観に優れ、また、柔軟で風合いのよいものであった。
【0109】
〔実施例12〕
実施例1で作製した紡績糸を用いて、直径88.9mm、ゲージ数21.8の一口丸編み地を作製した。製編性は良好で、得られた編物は、外観に優れ、柔軟で風合いのよいものであった。
【0110】
〔実施例13〕
実施例7で作製した紡績糸をレゾルシン−ホルマリン−ラテックス液で処理し、RFL処理コードとした。このコードを、天然ゴム70%、SBR15%、カーボンブラック15%配合の未加硫ゴム中に25本/2.54cmで上下2層に配列し、135℃、35kg/cm、40分の加硫を行い、厚さ8mmのベルトを得た。
【0111】
得られたベルトに10kgの荷重をかけて100rpmでフレックス試験を行った。24時間の試験でもベルトは破断を起こさず、高荷重に耐えうるものであった。
【0112】
【発明の効果】
本発明により、ポリケトン短繊維で構成された高強度で品位のよい紡績糸を得ることが出来る。本発明の紡績糸は、高い強度と優れた品位と柔軟性を活かして、防水布、養生シート、土木用シート、土木用ネット等の織編物、ロープ、産業用縫い糸、漁網、ゴムやセメント、プラスチックの補強材、さらにはスポーツ衣料、耐切創保護具等の衣料用途、などの幅広い分野で有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spun yarn composed of short polyketone fibers and a molded product using the spun yarn.
[0002]
[Prior art]
In recent years, high-strength fibers represented by aramid fibers have been commercialized one after another, making use of their mechanical properties to reinforce rubber products such as tires, belts and hoses, cement and resin reinforcement, brakes, optical fibers and other various materials. A wide range of applications such as reinforcement, fishing industry such as mooring ropes, fishing lines, fishing nets, civil engineering nets, waterproof cloths, water resistant cloths, heat insulating cloths, heat resistant felts, soundproof cloths, etc. It has been developed for use.
[0003]
When processing high-strength fibers into woven or knitted fabrics such as heat-insulating cloth, sound-insulating cloth, protective clothing or cut-resistant gloves, the fiber material used is not only high-strength but also heat-insulating, sound-insulating, bulky, texture, etc. Since it is required to have both properties, it is necessary to use high-strength fibers as spun yarn.
[0004]
Conventionally, high-strength fiber materials used in these applications include aramid fibers, polyvinyl alcohol fibers, polyethylene fibers, and the like, but there is a problem when any of these fibers is used as a spun yarn.
[0005]
For example, aramid fibers are not easily crimped, and have a problem that the strength of the spun yarn is extremely low, and a problem that the fibrillation is severe and the spinning process is poor. In addition, the spun yarn made of polyvinyl alcohol fiber has a problem that the strength is impaired by water and humidity, and it cannot be used in an environment with high humidity and moisture. A spun yarn made of polyethylene fibers has a problem that it cannot be used in applications that have a low melting point and are subject to scratching or that are exposed to high temperature environments. In addition, spun yarns made of polybenzazole fibers have excellent strength, heat resistance, and water resistance, but there are problems that the fibers are hard and the texture of the spun yarn is poor, and that the spun yarn cannot be used universally at a very high cost. there were.
[0006]
On the other hand, recently, polyketones in which carbon monoxide and olefins are completely and alternately copolymerized have been found. The fiber made of this polyketone has properties of high melting point, high strength, and high elastic modulus (for example, JP-A-4-228613, JP-A-4-505344, JP-A-7-508317, (See JP-T 8-507328, WO 99/18143 pamphlet, WO 00/09611 pamphlet, etc.), and the potential as a new high-strength fiber is expected.
[0007]
However, all of the polyketone fibers known so far relate to filaments, and nothing is known about polyketone short fibers and spun yarns composed of polyketone short fibers.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-strength spun yarn that can be crimped, to provide a spun yarn that is excellent in heat resistance and water resistance, and that can be applied to a wide range of applications. Providing a spun yarn that is good, flexible and textured.
[0009]
[Means for Solving the Problems]
As a result of examining the above problems, the present inventors have found that a spun yarn composed of polyketone fibers is suitable, and have further studied to arrive at the present invention.
[0010]
That is, the present invention is as follows.
[0011]
1. A spun yarn comprising a polyketone short fiber having a single yarn fineness of 0.5 to 5 dtex, an average fiber length of 10 to 200 mm, and a tensile strength of 5 cN / dtex or more.
[0012]
2. 2. The spun yarn according to 1 above, wherein the polyketone short fiber has a single yarn fineness of 0.6 to 2 dtex, an average fiber length of 20 to 150 mm, and a tensile strength of the spun yarn of 7 cN / dtex or more.
[0013]
3. 3. The spun yarn according to 1 or 2, wherein the polyketone short fiber has a crimp degree of 5 to 50%.
[0014]
4). 4. The spun yarn according to any one of 1 to 3 above, wherein the relationship between the twist number Y (T / m) and the fineness D (dtex) is represented by the following formula, and the twist coefficient K is 7500 to 15000.
[0015]
K = Y × D0.5
5. The spun yarn according to any one of 1 to 4 above, wherein an average fiber length L (mm) and a twist coefficient K of the polyketone short fibers are within the range of the following formula.
[0016]
20000 ≦ K × L1/3≦ 50000
6). Polyketone short fiber has a crystallinity of 70% or more and a density of 1.30 g / cm3The spun yarn according to any one of 1 to 5 above, wherein the single yarn sticking rate is 0 to 10%.
[0017]
7. The spun yarn is a mixed yarn of polyketone short fibers and fibers other than polyketone fibers 10 to 30% by mass, the average fiber length of fibers other than polyketone fibers is 10 to 200 mm, and the single yarn fineness is 0.5 to 5 dtex. The spun yarn according to any one of 1 to 6 above, wherein
[0018]
8). 8. A molded product comprising the spun yarn according to any one of 1 to 7 as at least a part thereof.
[0019]
9. 9. The molded product according to 8 above, wherein the molded product is a woven fabric.
[0020]
10. 9. The molded product according to 8 above, wherein the molded product is a knitted fabric.
[0021]
11. 9. The molded product according to 8 above, wherein the molded product is a rubber product selected from the group of tires, belts and hoses.
[0022]
12 After the polyketone is dissolved in a solution containing 10 to 80% by mass of zinc halide, it is discharged from a spinneret into a coagulation bath to form a coagulated yarn, followed by washing and drying, and (1) a magnification of 5 times or more. (2) a step of imparting a crimp of 5 to 50% crimp to the heat-stretched polyketone long fiber, and (3) cutting the crimped polyketone long fiber into an average fiber length of 10 to 200 mm. A process for producing a spun yarn, comprising: (4) spinning a polyketone short fiber in a twist coefficient K of 3000 to 30000.
[0023]
13. Between the end of drying and the end of thermal drawing, a filament bundle of a plurality of polyketone long fibers is combined, and (the number of filaments constituting the filament bundle after completion of hot drawing) / (filaments constituting the filament bundle after completion of drying) 13. The method for producing a spun yarn according to the above 12, wherein the ratio of the number is 2 or more.
[0024]
In the present invention, the polyketone constituting the polyketone short fiber is a polyketone in which olefin and carbon monoxide are alternately copolymerized. From the viewpoint of strength and heat resistance of the obtained spun yarn, it is preferable to use 1-oxotrimethylene represented by the following chemical formula (Chemical Formula 1) as a main repeating unit.
[0025]
[Chemical 1]
Figure 0004646467
[0026]
The polyketone is preferably 95 to 100% by mass, more preferably 97 to 100% by mass, and particularly preferably 100% by mass is 1-oxotrimethylene.
[0027]
Further, as a repeating unit other than 1-oxotrimethylene, a copolymer of a compound having an unsaturated hydrocarbon such as propene, hexene, cyclohexene, and styrene and carbon monoxide may be included.
[0028]
In the present invention, the spun yarn composed of the short polyketone fiber is not limited to the spun yarn composed only of the short polyketone fiber, and may include other fibers than the polyketone fiber. The higher the proportion of the polyketone short fibers constituting the spun yarn, the better the strength and productivity. Therefore, the proportion of the polyketone short fibers is preferably 60 to 100% by mass, more preferably 80% by mass or more, and particularly preferably 100% by mass. It is.
[0029]
The polyketone short fiber constituting the spun yarn of the present invention has a single yarn fineness of 0.5 to 5 dtex, preferably 0.6 to 2 dtex, particularly preferably 0.8 to 1.5 dtex. When the single yarn fineness is within this range, the entanglement and friction between the short fibers are appropriate, the strength of the spun yarn is sufficient, and there are few yarn breaks and fluffs in the short fiber manufacturing process, and spinning, weaving, knitting, etc. The process passability in is good, and a spun yarn of excellent quality can be obtained. Furthermore, the contact area between the short fibers constituting the spun yarn is sufficient, the short fibers are not pulled out, and as a result, a flexible spun yarn having high strength can be obtained. Become a knitted.
[0030]
Moreover, the polyketone short fiber which comprises the spun yarn of this invention is 10-200 mm in average fiber length, Preferably it is 20-150 mm, More preferably, it is 30-100 mm. When the average fiber length is within this range, a high-strength spun yarn with sufficient entanglement and friction between the short fibers can be obtained, and the processability in spinning, weaving, knitting and the like is good, the texture, A spun yarn or woven or knitted fabric with excellent quality can be obtained.
[0031]
The higher the tensile strength of the spun yarn, the finer the spun yarn can be used. As a result, a lighter and softer product can be obtained. Therefore, the tensile strength of the spun yarn of the present invention is 5 cN / dtex or more. , Preferably 7 cN / dtex or more, particularly preferably 10 cN / dtex or more.
[0032]
In order to obtain such a high-strength spun yarn, it is particularly effective to set the crimping degree, average fiber length, and twisting coefficient of the polyketone short fibers within appropriate ranges.
[0033]
The staple fibers constituting the spun yarn of the present invention preferably have crimps. When not crimped or when the degree of crimp is too small, entanglement and friction between short fibers are reduced, and the pulling of the short fibers is likely to occur, and as a result, a high-strength spun yarn tends not to be obtained. There is. On the other hand, if the degree of crimp is too large, sagging and entanglement of short fibers occur, and the processability in spinning, weaving, knitting, etc. tends to deteriorate, and the quality of the spun yarn and knitted fabric obtained tends to be low. . From such a viewpoint, the crimp degree of the short fibers is preferably 5 to 50%, and particularly preferably 10 to 30%.
[0034]
In the spun yarn of the present invention, the relationship between the twist number Y (T / m) and the fineness D (dtex) is expressed by the following formula, and the twist coefficient K (T / m · dtex).0.5) Is preferably 3000 to 30000, and more preferably 7500 to 15000.
[0035]
K = Y × D0.5
If K is in the above range, the friction resistance between the short fibers in the pulling direction is moderate, a spun yarn having sufficient strength and elongation can be obtained, and the polyketone short fiber has a high twist strength utilization factor. A spun yarn with a sufficient strength can be obtained. In the present invention, in the case of a spun yarn that has been twisted at another stage, such as under-twisting or top-twisting, the value calculated for the last twist added is treated as the twisting factor of the spun yarn.
[0036]
Further, from the viewpoint of process passability during spinning, strength of spun yarn obtained, and quality, the above-described twist coefficient K (T / m · dtex) is used.0.5) And the average fiber length L (mm) of the polyketone short fiber are preferably within the range of the following formula.
[0037]
20000 ≦ K × L1/3≦ 50000
If this value is within the above range, the spun yarn will not drop in strength due to pulling out, the strength utilization rate will not drop, or the texture will not drop. K × L1/3A more preferable range of the value of 25000 to 40000.
[0038]
In spun yarn, generally, as the number of twists increases, entanglement between short fibers increases and pull-out decreases, and the strength of the spun yarn increases until a certain number of twists.
[0039]
However, in a highly stretched polyketone fiber, the strength of the fiber is greatly reduced by twisting, that is, it is difficult to obtain a high-strength spun yarn because the utilization rate of twisted yarn strength is low. The present inventors have found out. Furthermore, the cause of the low utilization rate of twisted yarn is that the single yarns are stuck together, the friction between the polyketone fibers is large, and fibrils and fluff are easily formed on the surface of the polyketone fibers. Therefore, as a countermeasure, there is no single yarn sticking, the coefficient of dynamic friction between fibers is low, and when fibers without fibrils or fluff are used as short fibers, a high strength spun yarn with a high strength utilization rate can be obtained. The inventors have found.
[0040]
If the single yarn agglutination rate is too high, the twisted yarn strength utilization rate of the spun yarn is greatly reduced. Therefore, in the present invention, the single yarn agglutination rate is preferably 30% or less, more preferably 10% or less, and particularly preferably 0%. It is.
[0041]
If the coefficient of dynamic friction between the fibers is too high, fluffing and defects may occur during drawing, spinning, weaving or knitting, and the fiber is subjected to excessive distortion, resulting in a strong utilization rate of the spun yarn. There is a tendency to decrease. On the other hand, if it is too low, there is a problem that pulling between the short fibers of the spun yarn is likely to occur and the strength of the spun yarn is lowered, so that the dynamic friction coefficient between the fibers is preferably 0.05 to 0.00. 7, more preferably 0.2 to 0.4.
[0042]
In the present invention, in order to obtain a high-strength spun yarn, it is necessary that the short polyketone fibers constituting the spun yarn have high strength, but in order to achieve high-strength physical properties, the fiber structure is as follows. It is required to have a dense cross-sectional structure without a skin-core structure and a highly crystalline structure. Specifically, the density of the polyketone short fiber is 1.30 g / cm.3Or more, more preferably 1.33 g / cm31.38 g / cm3It is as follows. The crystallinity of the polyketone short fibers is preferably 60% or more, more preferably 70% or more and 100% or less. The melting point of the polyketone short fibers is preferably 240 ° C. or higher, more preferably 260 ° C. or higher. The upper limit of the melting point is about 280 ° C. in the current technology, but 300 ° C. is possible in consideration of future technical development.
[0043]
There is no restriction | limiting in particular in the fineness of the spun yarn of this invention, What is necessary is just to select suitably according to a use and the objective. For example, 50 to 300 dtex is generally used for clothing applications that require texture and flexibility, and 300 to 7000 dtex is used for industrial material applications that require absolute strength.
[0044]
The spun yarn of the present invention is not limited to those composed only of polyketone short fibers, but may be blended yarns including short fibers other than polyketone fibers. In this case, the short fibers other than the polyketone fiber have an average fiber length of 10 to 200 mm, preferably 20 to 150 mm, more preferably 30 to 100 mm, and a single yarn fineness of 0.5 to 5 dtex, preferably 0.6 to 2 dtex, more preferably 0.8 to 1.5 dtex. The strength of the spun yarn obtained by blending is 5 cN / dtex or more, preferably 7 cN / dtex or more, more preferably 10 cN / dtex or more.
[0045]
Fibers other than polyketone fibers that can be blended are not particularly limited, and include viscose rayon fibers, polyethylene terephthalate fibers, polytrimethylene terephthalate fibers, nylon 66 fibers, nylon 6 fibers, acrylic fibers, aramid fibers, and polyvinyl alcohol fibers. Natural fibers such as synthetic fibers, cotton, wool, hemp and silk can be used. The blend ratio of these fibers is preferably 40% by mass or less, more preferably 1 to 35% by mass, and further preferably 10 to 30% by mass from the viewpoint of the strength and cost of the spun yarn.
[0046]
Next, a method for producing a spun yarn of the present invention will be described.
[0047]
Polyketone short fibers constituting the spun yarn are obtained by, for example, a known wet spinning method in which polyketone is dissolved in a solvent and then fiberized in a coagulation bath, followed by solvent removal and drying, followed by hot drawing. And then crimped and cut into short fibers.
[0048]
In order to obtain high-strength polyketone short fibers industrially with high productivity, a wet spinning method using a metal salt as a solvent is preferably used. One example will be described below.
[0049]
As a polyketone, it is preferable that the ratio of 1-oxotrimethylene of a repeating unit is 95-100 mass%, and intrinsic viscosity is 2-20. This polyketone is dissolved in a solution (for example, zinc chloride / calcium chloride aqueous solution) containing zinc halide, alkali metal halide, alkaline earth metal halide or the like. The dissolved solution is discharged from a spinneret into a liquid such as water to form a thread, and then the metal salt is washed away with an acid aqueous solution such as hydrochloric acid.
[0050]
Next, after drying at 100 to 250 ° C., thermal stretching at 5 times or more is performed at 200 to 280 ° C. At this time, it is preferable to apply an external force such as blowing compressed gas to the filament during or after drying to eliminate single yarn sticking. When producing a high-strength polyketone filament, the total draw ratio is preferably 10 times or more, more preferably 12 times or more, and it is preferred to perform two or more steps of multistage drawing.
[0051]
The total fineness of the polyketone long fibers after the drawing is preferably in the range of 50 to 50000 dtex. In particular, it is preferable from the viewpoint of productivity that the filament bundle of a plurality of polyketone long fibers is combined in the stretching step and the heat stretching is performed while increasing the number of filaments per bundle. In the present invention, the filament bundle means a bundle in which a plurality of filaments are arranged in parallel, and a bundle in which the filaments are arranged to a total fineness of 1000 dtex or more is called tow. is there.
[0052]
The filament bundles are preferably joined at any stage from the end of drying to the end of thermal stretching because the drying efficiency is greatly reduced when the filament bundles are joined before drying. The number of filament bundles to be combined is not particularly limited, but is 2 or more from the viewpoint of productivity, that is, (number of filaments constituting the filament bundle after completion of hot drawing) / (configuration of filament bundle after completion of drying). The ratio of the number of filaments) is preferably 2 or more, more preferably 10 or more filament bundles are combined.
[0053]
At this time, it is preferable to increase the process passability in the stretching process, the spinning process, and the like by applying an oil agent before stretching and / or after stretching to reduce the coefficient of dynamic friction between fibers. If the amount of oil applied is too small, the frictional resistance will not be reduced and fluff and fibrils will not be sufficiently suppressed. On the other hand, if the amount is too large, tarring on the roll, oil accumulation on the curd, pulling out between short fibers will occur. Etc. are likely to occur, and problems such as a decrease in the strength of the spun yarn occur. Therefore, the adhesion amount of the oil agent is preferably 0.05 to 3% by mass, more preferably 0.1 to 1% by mass with respect to the polyketone fiber. %.
[0054]
Examples of the oil agent include ester compounds such as octyl stearate and lauryl oleate, paraffinic and naphthenic mineral oils, polyethers such as polyolefin oxide, nonionic surfactants such as polyoxyethylene stearyl ether, and alkyl phosphates. Known compounds such as anionic surfactants can be used. In particular, from the viewpoint of process passability during spinning, an oil agent with high antistatic properties (for example, a compound having a phosphate, sulfonate, or carboxylate structure) is preferable.
[0055]
Further, it is preferable to impart crimp to the polyketone fiber in any step from spinning to spinning. The crimp may be imparted before stretching or in the course of multistage stretching, but is preferably after the end of stretching from the viewpoint of stretchability and obtained fiber properties.
[0056]
The method for imparting crimp is not particularly limited, such as a method of pressurizing and bending under heating using a staffin box or the like, a method of heat-treating under no tension after cutting a filament having strain after completion of stretching, etc. Mechanical, thermal and chemical treatments can be applied. In order to give a stable crimp, it is desirable to perform the treatment under heating at 110 to 270 ° C, more preferably 150 to 250 ° C.
[0057]
As a method for cutting and spinning polyketone long fibers into short fibers, known methods such as direct spinning, perlock method, converter method, and stapler method can be applied. The cutting method may be a method in which the length of short fibers is made uniform by cutting to a fixed length with a cutter, or the length of short fibers may be distributed by checking. Alternatively, a method may be used in which the long fiber filament is heated and subjected to hot drawing, and then continuously cut into short fibers. When cutting by the check method, it is important to set the draft ratio and the check tension so that the average fiber length is within the range of the present invention.
[0058]
Next, the obtained polyketone short fiber sliver is made into a spun yarn through a roving and fine spinning process. The method of twisting at the time of spinning is not particularly limited, and a known twisted yarn such as a twin yarn or a triple yarn can be used according to the application and purpose. Also, the number of twists is not particularly limited, but if the number of twists is too large, the strength decreases due to twisting, and if the number of twists is too small, the strength decreases due to pulling out. It is preferable to carry out at 30000, and it is more preferable to carry out at 7500-15000.
[0059]
Further, from the viewpoint of the quality of the spun yarn obtained and the process passability, the twist tension is preferably 0.01 to 0.1 cN / dtex, more preferably 0.03 to 0.07 cN / dtex.
[0060]
The spun yarn of the present invention can be formed into a molded product such as a woven fabric or a knitted fabric, and can also be used as a reinforcing material or the like in a part of the molded product in a woven or knitted fabric state or in a yarn form. In particular, it is useful as a reinforcing material for rubber products selected from the group of tires, belts, and hoses, taking advantage of its high strength, excellent quality, and flexibility. In addition, waterproof cloth, curing sheets, civil engineering sheets, and civil engineering nets. It is useful in a wide range of fields, such as woven and knitted fabrics such as ropes, industrial sewing threads, fishing nets, cement and plastic reinforcements, sports clothing, and clothing protection such as cut protection.
[0061]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, they do not limit the scope of the present invention.
[0062]
The measurement method, evaluation method, etc. are as follows.
[0063]
(1) Intrinsic viscosity [η]
The intrinsic viscosity (dl / g) is a value obtained based on the following definition formula.
[0064]
[Expression 1]
Figure 0004646467
[0065]
In the formula, t and T are the flow time of a viscosity tube at 25 ° C. of hexafluoroisopropanol having a purity of 98% or more and a polyketone diluted solution dissolved in hexafluoroisopropanol. C is the mass value of the solute in gram units in 100 ml of the solution.
[0066]
(2) Fineness and tensile strength of spun yarn
The fineness is measured based on JIS-L-1095-7.4.
[0067]
The tensile strength is measured based on JIS-L-1095-7.5.1 at a sample length of 25 cm and a tensile speed of 30 cm / min.
[0068]
(3) Average fiber length, single yarn fineness, crimp degree, density of polyketone short fibers
The average fiber length is measured based on JIS-L-1015-7.4.1 (Method A).
[0069]
The single yarn fineness is measured based on JIS-L-1015-7.5.1 (A method).
[0070]
The degree of crimp is measured based on JIS-L-1015-7.12.2.
[0071]
The density is measured using a density gradient tube made of carbon tetrachloride and n-heptane based on JIS-L-1015-7.14.2.
[0072]
(4) Single yarn sticking rate of polyketone short fibers
About 200 polyketone short fibers are placed on a black mount. Next, the polyketone short fibers are lightly rubbed with chalk 20 times to be defibrated, and 100 short fibers are extracted therefrom. Those that cannot be separated due to agglutination are counted as a single yarn.
[0073]
Next, these 100 short fibers are aligned in parallel and embedded with an epoxy resin.
[0074]
Embedding is performed according to the following procedure. After immersing in a mixed solution of an epoxy monomer (ketol 812: manufactured by Nissin EM) and a curing agent (dodecyl saxonic anhydride, methyl nadic anhydride), an initiator (DMP-30: manufactured by Nissin EM) was added. In addition, polymerization is carried out by treatment for 24 hours under a heating condition of 60 ° C., and the fibers are embedded with a resin.
[0075]
Next, the fiber embedded with the resin is cut with a microtome, and the fiber cross section is photographed with an electron microscope. The photographed negative image is processed by the following method using an image analyzer (IP1000-PC: manufactured by Asahi Kasei Corporation). Using a scanner, a negative image is captured and binarized. From the obtained binarized image, the number N of single yarns of polyketone short fibers is measured by particle analysis software, and the single yarn sticking rate is obtained by the following formula.
[0076]
Single yarn sticking rate (%) = {(N−100) / N} × 100
(5) Crystallinity of polyketone short fiber
Measurement is performed under the following conditions using a differential heat measuring device Pyris 1 manufactured by PerkinElmer. The sample uses a fiber whose yarn length is cut to 5 mm.
[0077]
Sample weight: 1mg
Measurement temperature: 30 ° C → 300 ° C
Temperature increase rate: 20 ° C / min
Atmosphere: Nitrogen (flow rate = 200 ml / min)
In the obtained endothermic curve, the crystallinity is calculated by the following equation from the amount of heat ΔH (J / g) calculated from the area of the maximum endothermic peak observed in the range of 200 to 300 ° C.
[0078]
Crystallinity (%) = (ΔH / 225) × 100
(6) Number of twists
It measured according to JIS-L-1095-7.15.1.
[0079]
(7) Appearance
The spun yarn was observed and evaluated according to the following criteria.
[0080]
A: Excellent with no fluff or sagging
○: Fuzz and sagging are hardly seen
×: Lots of fluff and sagging
[Example 1]
A polyketone having an intrinsic viscosity of 6.0 obtained by completely alternating copolymerization of ethylene and carbon monoxide was prepared by a conventional method, and the obtained polyketone was dissolved in an aqueous solution containing 40% by mass of calcium chloride and 22% by mass of zinc chloride. A dope having a polyketone concentration of 6.5% by mass was obtained. The obtained dope was heated to 80 ° C., passed through a 10 mm air gap from a nozzle with a spinneret diameter of 0.15 mmφ, L / D = 1, 250 holes, 2% by mass of calcium chloride, 1.1 The yarn was extruded into a coagulation bath consisting of water at −2 ° C. containing 2% by mass of zinc chloride and 0.1% by mass of hydrochloric acid.
[0081]
Next, the obtained yarn was washed successively with an aqueous hydrochloric acid solution and water, and then IRGANOX (registered trademark, manufactured by Ciba Specialty Chemicals) 1098 and IRGANOX (registered trademark, manufactured by Ciba Specialty Chemicals) 1076 were each 0.05 mass. After blending by% (with respect to polyketone), it was dried at a constant length at 225 ° C., and then defibrated by blowing with 0.2 MPa of pressurized air.
[0082]
Further, twelve yarns were combined to give dodecyl phosphate potassium salt (1% by mass aqueous dispersion) as an oil agent, and at a temperature of 225 ° C./240° C./250° C./257° C., respectively. Four-stage stretching was performed in a total of 15.2 times of 5 times / 1.5 times / 1.3 times / 1.2 times to obtain a tow having a total fineness of 3150 dtex. The stretchability was good, and no fluff or fibrils were observed during stretching.
[0083]
The resulting tow is crimped with an indentation type crimper, then heat-set at 220 ° C., then cut into short fibers with a rotary cutter, and a polyketone having a single yarn fineness of 0.9 dtex and an average fiber length of 71 mm Short fibers were obtained.
[0084]
This polyketone short fiber was formed into a sliver shape, and 750 T / m single twist (Z twist) was added to obtain a spun yarn having a fineness of 129 dtex. The obtained spun yarn had a high tensile strength of 7.5 cN / dtex, and was a high-quality spun yarn with no sagging or fibrils observed.
[0085]
[Example 2]
A spun yarn was obtained in the same manner as in Example 1, except that the average fiber length of the polyketone short fibers was 38 mm. This spun yarn had a high tensile strength of 7.3 cN / dtex.
[0086]
Example 3
A spun yarn was obtained in the same manner as in Example 1, except that the average fiber length of the polyketone short fibers was 103 mm. This spun yarn had a high tensile strength of 7.1 cN / dtex.
[0087]
Example 4
Spinning was carried out in the same manner as in Example 1 except that the nozzle diameter was 0.2 mmφ and the discharge amount was 1.8 times to obtain polyketone short fibers having a single yarn fineness of 1.5 dtex. A spun yarn was obtained from this short fiber in the same manner as in Example 1. This spun yarn had a high tensile strength of 6.8 cN / dtex.
[0088]
Example 5
In Example 1, spinning was performed in the same manner except that the nozzle diameter was 0.23 mmφ and the discharge amount was 2.5 times to obtain a polyketone short fiber having a single yarn fineness of 2.2 dtex. Using these short fibers, a spun yarn was obtained in the same manner as in Example 1. The spun yarn had a high tensile strength of 6.2 cN / dtex.
[0089]
Example 6
Two 750 T / m single twisted yarns (Z twisted) obtained in Example 1 were gathered and further twisted at 530 T / m (S twisted) to obtain a double twisted spun yarn. This spun yarn had a high tensile strength of 8.6 cN / dtex.
[0090]
Example 7
Using the polyketone short fiber obtained in Example 1 as a sliver having a total fineness of about 1600 dtex, twisting at 190 T / m (Z-twisting), pulling two of them, and further twisting at 190 T / m (S twisting) A double-twisted spun yarn was obtained. This spun yarn had a high tensile strength of 9.2 cN / dtex.
[0091]
[Comparative Example 1]
A spun yarn was obtained in the same manner as in Example 1 except that polyketone short fibers having a single yarn fineness of 6.5 cN / dtex were used. This spun yarn had an insufficient tensile strength of 4.1 cN / dtex.
[0092]
[Comparative Example 2]
In Example 1, spinning was performed in the same manner except that the average fiber length was 300 mm. The obtained spun yarn had inadequate tensile strength of 4.7 cN / dtex, poor processability during spinning, and inferior quality with slack on the spun yarn surface.
[0093]
[Comparative Example 3]
In Example 1, spinning was performed in the same manner except that the average fiber length was 7 mm. The obtained spun yarn had a tensile strength of 3.5 cN / dtex, which was quite insufficient.
[0094]
[Comparative Example 4]
In Example 1, spinning was performed in the same manner except that no crimp was applied. The obtained spun yarn had a tensile strength of 3.1 cN / dtex and was outside the scope of the present invention.
[0095]
[Comparative Example 5]
In Example 4, except that the polyketone solvent is an aqueous solution of 65% by mass of zinc chloride, 10% by mass of sodium chloride, and 25% by mass of water, the polyketone concentration is 8% by mass, and the pressure treatment after the drying is not performed. Spinning was carried out in the same manner as in Example 4 to obtain polyketone short fibers having a single yarn fineness of 1.8 dtex.
[0096]
Using this short fiber, spinning was carried out in the same manner as in Example 1. The obtained spun yarn had an insufficient tensile strength of 4.5 cN / dtex and was inferior in quality due to fluff and fraying observed on the surface.
[0097]
The properties of the short fibers and spun yarns in Examples 1 to 7 and Comparative Examples 1 to 5 are summarized in Table 1.
[0098]
[Table 1]
Figure 0004646467
[0099]
Example 8
50 polyethylene terephthalate fibers of 86 dtex / 36 f (tensile strength 5.3 cN / dtex) prepared by a conventional method are aligned, crimped with an indentation type crimper, then heat-set at 160 ° C., and then rotary An average fiber length of 69 mm was cut with a cutter.
[0100]
The polyketone short fiber obtained in Example 1 and this polyethylene terephthalate short fiber were mixed at a ratio of 8/2 and spun to obtain a blended yarn. The obtained spun yarn had a high tensile strength of 6.2 cN / dtex. Further, this spun yarn had good quality without fuzz and fraying.
[0101]
Example 9
An aramid fiber (KEVLAR (registered trademark) K29, manufactured by DuPont) of 1690 dtex / 1000 f was crimped with an indentation type crimping machine, and subsequently cut into an average fiber length of 72 mm with a rotary cutter.
[0102]
The polyketone short fiber obtained in Example 1 and this aramid short fiber were mixed at a ratio of 8/2 and spun to obtain a spun yarn of blended yarn. The obtained spun yarn had a tensile strength as high as 5.9 cN / dtex.
[0103]
Example 10
The polyketone short fiber obtained in Example 1 and Egyptian cotton having an average fiber length of 35 mm and a single yarn fineness of 1.5 dtex were mixed at a ratio of 8/2 and spun to obtain a blended spun yarn. The spun yarn obtained had a high tensile strength of 6.3 cN / dtex.
[0104]
[Comparative Example 6]
In Example 8, a mixed spun yarn was obtained in the same manner as in Example 8 except that the mixing ratio of the polyketone short fiber and the polyethylene terephthalate short fiber was 2/8.
This spun yarn had an insufficient tensile strength of 3.4 cN / dtex.
[0105]
[Comparative Example 7]
In Example 10, a mixed spun yarn was obtained in the same manner as in Example 10 except that the mixing ratio of the polyketone short fiber and Egyptian cotton was set to 2/8. This spun yarn had an insufficient tensile strength of 2.8 cN / dtex.
[0106]
The characteristics of the spun yarns of Examples 8 to 10 and Comparative Examples 6 and 7 are summarized in Table 2.
[0107]
[Table 2]
Figure 0004646467
[0108]
Example 11
Using the spun yarn produced in Example 1, a plain fabric having a warp density of 90 / 2.54 cm and a weft density of 90 / 2.54 cm was produced. The weaving property was good, the fabric was excellent in appearance, and it was soft and textured.
[0109]
Example 12
Using the spun yarn produced in Example 1, a one-neck round knitted fabric with a diameter of 88.9 mm and a gauge number of 21.8 was produced. The knitting property was good, and the obtained knitted fabric was excellent in appearance, soft and soft.
[0110]
Example 13
The spun yarn produced in Example 7 was treated with a resorcin-formalin-latex solution to obtain an RFL treated cord. This cord is arranged in two layers at the top and bottom at 25 / 2.54cm in unvulcanized rubber compounded with 70% natural rubber, 15% SBR, and 15% carbon black.2, 40 minutes of vulcanization was carried out to obtain a belt having a thickness of 8 mm.
[0111]
The obtained belt was subjected to a flex test at 100 rpm with a load of 10 kg. Even in a 24-hour test, the belt did not break and could withstand high loads.
[0112]
【The invention's effect】
According to the present invention, a high-strength and high-quality spun yarn composed of short polyketone fibers can be obtained. The spun yarn of the present invention utilizes a high strength, excellent quality and flexibility, waterproof fabric, curing sheet, civil engineering sheet, woven and knitted fabric such as civil engineering net, rope, industrial sewing thread, fishing net, rubber and cement, It is useful in a wide range of fields such as plastic reinforcement, and clothing for sports clothing and anti-cut protection equipment.

Claims (13)

単糸繊度が0.5〜5dtex、平均繊維長が10〜200mmのポリケトン短繊維で構成され、引っ張り強度が5cN/dtex以上であることを特徴とする紡績糸。A spun yarn comprising a polyketone short fiber having a single yarn fineness of 0.5 to 5 dtex, an average fiber length of 10 to 200 mm, and a tensile strength of 5 cN / dtex or more. ポリケトン短繊維の単糸繊度が0.6〜2dtex、平均繊維長が20〜150mmであり、紡績糸の引っ張り強度が7cN/dtex以上であることを特徴とする請求項1記載の紡績糸。2. The spun yarn according to claim 1, wherein the single yarn fineness of the polyketone short fiber is 0.6 to 2 dtex, the average fiber length is 20 to 150 mm, and the tensile strength of the spun yarn is 7 cN / dtex or more. ポリケトン短繊維の捲縮度が5〜50%であることを特徴とする請求項1または2記載の紡績糸。The spun yarn according to claim 1 or 2, wherein the degree of crimp of the polyketone short fibers is 5 to 50%. 撚り数Y(T/m)と繊度D(dtex)の関係が下記式で表され、撚り係数Kが7500〜15000であることを特徴とする請求項1〜3のいずれか1項に記載の紡績糸。
K=Y×D0.5
The relationship between the number of twists Y (T / m) and the fineness D (dtex) is represented by the following formula, and the twist coefficient K is 7500 to 15000, 4. Spun yarn.
K = Y × D 0.5
ポリケトン短繊維の平均繊維長L(mm)と撚り係数Kが下記式の範囲内であることを特徴とする請求項1〜4のいずれか1項に記載の紡績糸。
20000≦K×L1/3≦50000
The spun yarn according to any one of claims 1 to 4, wherein the average fiber length L (mm) of the polyketone short fibers and the twist coefficient K are within the range of the following formula.
20000 ≦ K × L 1/3 ≦ 50000
ポリケトン短繊維が、結晶化度70%以上、密度1.30g/cm以上、かつ、単糸膠着率0〜10%であることを特徴とする請求項1〜5のいずれか1項に記載の紡績糸。The polyketone short fiber has a crystallinity of 70% or more, a density of 1.30 g / cm 3 or more, and a single yarn sticking rate of 0 to 10%. Spun yarn. 紡績糸が、ポリケトン短繊維とポリケトン繊維以外の繊維10〜30質量%との混紡糸であり、かつ、ポリケトン繊維以外の繊維の平均繊維長が10〜200mm、単糸繊度が0.5〜5dtexであることを特徴とする請求項1〜6のいずれか1項に記載の紡績糸。The spun yarn is a blended yarn of polyketone short fibers and fibers other than polyketone fibers 10 to 30% by mass, the average fiber length of fibers other than polyketone fibers is 10 to 200 mm, and the single yarn fineness is 0.5 to 5 dtex. The spun yarn according to any one of claims 1 to 6, wherein: 請求項1〜7のいずれか1項に記載の紡績糸を少なくとも一部に使用していることを特徴とする成型品。A molded product comprising the spun yarn according to any one of claims 1 to 7 at least partially. 成型品が織物であることを特徴とする請求項8記載の成型品。The molded product according to claim 8, wherein the molded product is a woven fabric. 成型品が編物であることを特徴とする請求項8記載の成型品。The molded article according to claim 8, wherein the molded article is a knitted fabric. 成型品がタイヤ、ベルト、ホースの群から選ばれるゴム製品であることを特徴とする請求項8記載の成型品。The molded article according to claim 8, wherein the molded article is a rubber product selected from the group of tires, belts, and hoses. ポリケトンを、ハロゲン化亜鉛を10〜80質量%含有する溶液に溶解後、紡糸口金より凝固浴へ吐出して凝固糸条とし、引き続き洗浄、乾燥を行った後に、(1)5倍以上の倍率で熱延伸する工程、(2)熱延伸したポリケトン長繊維に捲縮率5〜50%の捲縮を付与する工程、(3)捲縮したポリケトン長繊維を平均繊維長10〜200mmに切断する工程、(4)ポリケトン短繊維を撚り係数Kが3000〜30000の範囲で紡績する工程、を含むことを特徴とする紡績糸の製造方法。After the polyketone is dissolved in a solution containing 10 to 80% by mass of zinc halide, it is discharged from a spinneret into a coagulation bath to form a coagulated yarn, followed by washing and drying, and (1) a magnification of 5 times or more. (2) a step of imparting a crimp of 5 to 50% crimp to the heat-stretched polyketone long fiber, and (3) cutting the crimped polyketone long fiber into an average fiber length of 10 to 200 mm. A process for producing a spun yarn, comprising: (4) spinning a polyketone short fiber in a twist coefficient K of 3000 to 30000. 乾燥終了から熱延伸終了までの間に、複数のポリケトン長繊維のフィラメント束を合糸し、(熱延伸終了後のフィラメント束を構成するフィラメント数)/(乾燥終了後のフィラメント束を構成するフィラメント数)の比を2以上とすることを特徴とする請求項12記載の紡績糸の製造方法。Between the end of drying and the end of thermal drawing, a filament bundle of a plurality of polyketone long fibers is combined, and (the number of filaments constituting the filament bundle after completion of hot drawing) / (filaments constituting the filament bundle after completion of drying) The method for producing spun yarn according to claim 12, wherein the ratio of the number) is 2 or more.
JP2001267440A 2001-09-04 2001-09-04 Spun yarn Expired - Fee Related JP4646467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001267440A JP4646467B2 (en) 2001-09-04 2001-09-04 Spun yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267440A JP4646467B2 (en) 2001-09-04 2001-09-04 Spun yarn

Publications (2)

Publication Number Publication Date
JP2003082542A JP2003082542A (en) 2003-03-19
JP4646467B2 true JP4646467B2 (en) 2011-03-09

Family

ID=19093572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267440A Expired - Fee Related JP4646467B2 (en) 2001-09-04 2001-09-04 Spun yarn

Country Status (1)

Country Link
JP (1) JP4646467B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069476A (en) * 2006-09-14 2008-03-27 Asahi Kasei Fibers Corp Glove
JP2008101298A (en) * 2006-10-19 2008-05-01 Asahi Kasei Fibers Corp Spun yarn
JP2008101297A (en) * 2006-10-19 2008-05-01 Asahi Kasei Fibers Corp Stretch-broken spun yarn
JP2008144297A (en) * 2006-12-08 2008-06-26 Asahi Kasei Fibers Corp Sewn glove
JP6256178B2 (en) * 2014-04-28 2018-01-10 三星ダイヤモンド工業株式会社 Breaking device for brittle material substrate

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327111A (en) * 1989-06-23 1991-02-05 Toray Ind Inc Crimped high-tenacity polyvinyl alcohol fiber and production thereof
JPH10329507A (en) * 1997-06-04 1998-12-15 Toyobo Co Ltd Dip cord for rubber reinforcement
JPH1181118A (en) * 1997-06-24 1999-03-26 Toray Ind Inc Formed fiber material and its production
JP2000144526A (en) * 1998-11-12 2000-05-26 Toray Ind Inc Spun yarn from poly(para-phenylene terephthalamide) staple, fiber structure and protecting material
JP2000345431A (en) * 1999-06-07 2000-12-12 Asahi Chem Ind Co Ltd Polyketone fiber and its production
JP2001123326A (en) * 1999-10-19 2001-05-08 Asahi Kasei Corp Polyketone fiber
JP2001164425A (en) * 1999-12-02 2001-06-19 Asahi Kasei Corp Manufacturing method of polyketone fiber and polyketone fiber
JP2001207330A (en) * 2000-01-28 2001-08-03 Asahi Kasei Corp Method for producing polyketone fiber
JP2001262437A (en) * 2000-03-14 2001-09-26 Asahi Kasei Corp Polyketone fiber and method for producing the same
JP2001295134A (en) * 2000-04-12 2001-10-26 Asahi Kasei Corp Polyketone fiber and cord
JP2003013326A (en) * 2001-06-26 2003-01-15 Asahi Kasei Corp Polyketone fiber, method of producing the same and polyketone twisted yarn
JP2003027333A (en) * 2001-07-19 2003-01-29 Asahi Kasei Corp Polyketone fiber

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327111A (en) * 1989-06-23 1991-02-05 Toray Ind Inc Crimped high-tenacity polyvinyl alcohol fiber and production thereof
JPH10329507A (en) * 1997-06-04 1998-12-15 Toyobo Co Ltd Dip cord for rubber reinforcement
JPH1181118A (en) * 1997-06-24 1999-03-26 Toray Ind Inc Formed fiber material and its production
JP2000144526A (en) * 1998-11-12 2000-05-26 Toray Ind Inc Spun yarn from poly(para-phenylene terephthalamide) staple, fiber structure and protecting material
JP2000345431A (en) * 1999-06-07 2000-12-12 Asahi Chem Ind Co Ltd Polyketone fiber and its production
JP2001123326A (en) * 1999-10-19 2001-05-08 Asahi Kasei Corp Polyketone fiber
JP2001164425A (en) * 1999-12-02 2001-06-19 Asahi Kasei Corp Manufacturing method of polyketone fiber and polyketone fiber
JP2001207330A (en) * 2000-01-28 2001-08-03 Asahi Kasei Corp Method for producing polyketone fiber
JP2001262437A (en) * 2000-03-14 2001-09-26 Asahi Kasei Corp Polyketone fiber and method for producing the same
JP2001295134A (en) * 2000-04-12 2001-10-26 Asahi Kasei Corp Polyketone fiber and cord
JP2003013326A (en) * 2001-06-26 2003-01-15 Asahi Kasei Corp Polyketone fiber, method of producing the same and polyketone twisted yarn
JP2003027333A (en) * 2001-07-19 2003-01-29 Asahi Kasei Corp Polyketone fiber

Also Published As

Publication number Publication date
JP2003082542A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP4584503B2 (en) Weave fabric
JP3708030B2 (en) Polyketone fiber, polyketone fiber twisted product and molded article thereof
JP2008530384A (en) High performance fiber blends and products made from them
WO2001012885A1 (en) High strength polyethylene fiber and its use
JP2012057265A (en) High-density woven fabric
KR101801121B1 (en) Polyester conjugated yarn with texturing and method for producing fabric thereby
JP6699403B2 (en) Composite polyamide fiber for false twist
JP4646467B2 (en) Spun yarn
JP2002309442A (en) Polyketone fiber, cord, and method for producing the same
JP7508817B2 (en) Aramid spun yarn for reinforcing rubber products and its manufacturing method
JP3804771B2 (en) Polyketone fiber
JP2015098665A (en) Ultra fine aramid fiber
JP6685071B2 (en) Crimped aramid staple fiber, high-strength spun yarn made of the same, fiber structure and protective material
JP6744063B2 (en) Spun yarn and woven and knitted fabrics
KR20210086467A (en) Para-aramid staple fiber and manufacturing method of aramid spun yarns application for the high speed carding process
JP2018053405A (en) Flat cross section polyhexamethylene adipamide fiber and fiber product
JP2003027333A (en) Polyketone fiber
EP3956502A1 (en) A composite yarn comprising at least two bundles of coalesced elastic filaments and a plurality of inelastic elements
JPH1136172A (en) Improvement in processability in producing spun yarn, production of fibrous structural product and spun yarn
KR20140099538A (en) Yarns of polyoxadiazole and modacrylic fibers and fabrics and garments made therefrom and methods for making same
JP4163084B2 (en) Non-slip recycled high-performance spun yarn and high-performance fiber products
US12065765B2 (en) Composite yarn comprising at least two single elastic filaments and a plurality of inelastic elements
KR101664492B1 (en) Leather like composite sheet and method for manufacturing the same
JP2024521064A (en) Para-aramid staple fiber, aramid spun yarn and its manufacturing method
JP2022037462A (en) Reinforcement yarn for heat-resistant hose and rubber hose reinforced thereby

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees