JP2003027333A - Polyketone fiber - Google Patents

Polyketone fiber

Info

Publication number
JP2003027333A
JP2003027333A JP2001220403A JP2001220403A JP2003027333A JP 2003027333 A JP2003027333 A JP 2003027333A JP 2001220403 A JP2001220403 A JP 2001220403A JP 2001220403 A JP2001220403 A JP 2001220403A JP 2003027333 A JP2003027333 A JP 2003027333A
Authority
JP
Japan
Prior art keywords
fiber
polyketone
spinneret
mass
polyketone fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001220403A
Other languages
Japanese (ja)
Inventor
Tatsu Taniguchi
龍 谷口
Jinichiro Kato
仁一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001220403A priority Critical patent/JP2003027333A/en
Publication of JP2003027333A publication Critical patent/JP2003027333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ropes Or Cables (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyketone fiber having excellent characteristics such as high strength, high modulus, high melting point and high heat resistance, and further to provide a method for producing the fiber with good productivity. SOLUTION: This polyketone fiber is composed of 1-oxotrimethylene represented by chemical formula (1), and has >=60% crystallinity, >=90% crystal orientation, and >=10 cN/dtex tensile strength. The modified degree represented by L<2> /4&pi;A (wherein, L is a circumference length of a cross section of the polyketone fiber; and A is a cross section area) is >=1.2, and the coefficient (&mu;) of kinetic friction between the fiber and the fiber is 0.01-0.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、産業資材用途、特
に、ゴム補強材、セメント補強材、FRP等の補強材、
エアバッグやセールクロス等の樹脂被覆織編物等の、ゴ
ムや樹脂等の他材料との複合製品分野に有用なポリケト
ン繊維、ポリケトン繊維からなるコード及びポリケトン
繊維の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to industrial material applications, particularly, rubber reinforcing materials, cement reinforcing materials, reinforcing materials such as FRP,
The present invention relates to a polyketone fiber, a cord made of the polyketone fiber, and a method for producing the polyketone fiber, which are useful in the field of composite products with other materials such as rubber and resin, such as resin-coated woven and knitted fabrics such as airbags and sail cloths.

【0002】[0002]

【従来の技術】近年、一酸化炭素とオレフィンをパラジ
ウムやニッケルを触媒として重合させることにより、一
酸化炭素とオレフィンが実質完全に交互共重合した脂肪
族ポリケトンが得られることが見いだされ、このポリケ
トンを用いた繊維は、高結晶性、高強度・高弾性率、高
融点等の優れた機械的・熱的特性を有し、次世代の汎用
高分子材料として期待されている。
2. Description of the Related Art In recent years, it has been found that by polymerizing carbon monoxide and an olefin using palladium or nickel as a catalyst, an aliphatic polyketone in which carbon monoxide and an olefin are copolymerized substantially completely can be obtained. The fiber using is excellent in mechanical and thermal properties such as high crystallinity, high strength / high elastic modulus, and high melting point, and is expected as a next-generation general-purpose polymer material.

【0003】ポリケトン繊維は、その優れた機械的・熱
的特性を活かして産業資材用途への展開が期待されてお
り、特に、タイヤ、ベルト、ホース等のゴム補強材、セ
メント補強材、テンションメンバ、FRP等の樹脂補強
材等の補強材料用途、エアバッグやセールクロス等の樹
脂被覆織編物等の、ポリケトン以外の材料との複合製品
への展開が期待されている。ゴム、樹脂、セメント等の
材料と複合して用いる際には、ポリケトン繊維と成形体
を構成する材料との接着性が高いことが要求される。従
来の繊維素材においては、繊維と材料との接着性を高め
る方法として、繊維表面を化学改質する方法、繊維と材
料との間に接着性の高いバインダー化合物を被覆する方
法、繊維の細繊度化、繊維断面形状の扁平化・異形化等
の方法が効果的である。
Polyketone fibers are expected to develop into industrial material applications by taking advantage of their excellent mechanical and thermal properties, and in particular, rubber reinforcing materials for tires, belts, hoses, cement reinforcing materials, tension members, etc. It is expected to be used as a reinforcing material such as a resin reinforcing material such as FRP, and a composite product with a material other than polyketone such as a resin-coated woven or knitted material such as an airbag and a sail cloth. When used in combination with a material such as rubber, resin, or cement, high adhesion between the polyketone fiber and the material forming the molded body is required. In the conventional fiber materials, as a method for increasing the adhesiveness between the fiber and the material, a method for chemically modifying the fiber surface, a method for coating a binder compound having high adhesiveness between the fiber and the material, and a fineness of the fiber It is effective to use a method of making the fiber cross-sectional shape flattened or modified.

【0004】繊維表面を化学的に改質する方法やバイン
ダー化合物を被覆する方法は、処理コストが高くなる問
題があり、繊維を細繊度化する方法は毛羽や断糸が起こ
りやすい問題がある。一方、繊維断面形状を扁平化・異
形化する方法は、ゴム等との接着性を高める方法として
有効な手段である。これまで、ポリケトン繊維に関する
報告は多数公開されている(例えば、特開平2−112
413号公報、特開平4−228613号公報、特表平
4−505344号公報、特開平4−228613号公
報、特表平7−508317号公報、特表平8−507
328号公報、米国特許5955019号、国際公開9
9/18143号パンフレット、国際公開00/096
11号パンフレット、特開2000−345431号公
報)。しかしながら、いずれの文献においても、異形断
面を有するポリケトン繊維及びその製造法に関する技術
は全く開示されていない。
The method of chemically modifying the surface of the fiber and the method of coating with a binder compound have a problem that the treatment cost is high, and the method of making the fiber fine has a problem that fluff or yarn breakage is likely to occur. On the other hand, the method of flattening or deforming the fiber cross-sectional shape is an effective means for increasing the adhesiveness with rubber or the like. Up to now, many reports on polyketone fibers have been published (for example, JP-A-2-112).
413, JP-A-4-228613, JP-A-4-505344, JP-A-4-228613, JP-A-7-508317, and JP-A-8-507.
No. 328, US Pat. No. 5,955,019, International Publication 9
9/18143 pamphlet, International publication 00/096
11 pamphlet, JP 2000-345431 A). However, none of the documents disclose a technique relating to a polyketone fiber having a modified cross section and a method for producing the same.

【0005】ポリケトン以外のポリマーからなる異形断
面繊維に関しては、これまで多数の報告があるが、これ
らの技術をそのままポリケトンに適用しても、下記の理
由によって高異形度のポリケトン繊維を工業的に得るこ
とはできない。高強度のポリケトン繊維を得るために
は、高度の倍率で延伸を行い、繊維を配向せしめる必要
がある。しかし、このような高配向ポリケトン繊維は、
フィブリル状の繊維束からなり(特開2001−131
825号公報)、製造時に繊維−装置間や繊維−繊維間
の摩擦によりフィブリルの剥離が起こりやすい性質があ
ることを本発明者等は見出した。特に、異形断面繊維で
は、このフィブリルの剥離や繊維−繊維間の摩擦による
撚糸性の低下の問題が顕著となること、高異形度のポリ
ケトン繊維は摩擦抵抗が大きく、撚糸時の工程通過性が
悪いため、撚糸によって強度低下や耐疲労性の低下が起
こる等の問題がある。
Although many reports have been made so far regarding modified cross-section fibers composed of polymers other than polyketones, even if these techniques are directly applied to polyketones, polyketone fibers having a high degree of modification are industrially produced for the following reasons. Can't get In order to obtain a high-strength polyketone fiber, it is necessary to orient the fiber by performing drawing at a high ratio. However, such highly oriented polyketone fibers are
Consisting of fibril-like fiber bundles (Japanese Patent Laid-Open No. 2001-131
The present inventors have found that there is a property that fibril peeling easily occurs due to friction between fibers and devices or between fibers and fibers during manufacturing. In particular, in the case of a modified cross-section fiber, the problems of the separation of the fibrils and the decrease in the twisting property due to the friction between the fibers and the fiber become remarkable, and the polyketone fiber having a high degree of deformation has a large friction resistance, and the process passability during the twisting is high. Since it is poor, there is a problem that the twisted yarn causes a reduction in strength and a reduction in fatigue resistance.

【0006】また、高強度・高弾性率、高耐熱性を有す
るポリケトン繊維を得るためには、1−オキソトリメチ
レンの割合が95質量%以上の高結晶性・高融点のポリ
ケトンを使用しなければならず、このような高結晶性・
高融点のポリケトンを繊維化するには、ポリケトンを有
機溶剤や金属塩溶液に溶解した後に凝固浴へ吐出して糸
条となし、洗浄、乾燥、延伸を行う湿式紡糸法を行う必
要がある。しかしながら、湿式紡糸法でポリケトン異形
断面繊維を得ようとした場合、異形断面形状の吐出孔か
らなる紡糸口金を用いて紡糸を行うだけでは、(1)吐
出時のバラスによる断面形状の変形、(2)凝固時の膨
潤・凝固による断面形状の変形、(3)乾燥時の単糸膠
着による断面形状の変形、(4)高倍率・高張力延伸に
よる断面形状の変化等の問題が生じ、異形度の高い繊維
を得ることが困難、(5)単糸膠着による延伸性、撚糸
性の低下、(6)フィブリル化が多発するため、生産性
よく異形度の高いポリケトン繊維を得ることは困難であ
った。
In order to obtain a polyketone fiber having a high strength, a high elastic modulus and a high heat resistance, a polyketone having a high crystallinity and a high melting point in which the proportion of 1-oxotrimethylene is 95% by mass or more must be used. Must have such high crystallinity
In order to form a high melting point polyketone into a fiber, it is necessary to perform a wet spinning method in which the polyketone is dissolved in an organic solvent or a metal salt solution and then discharged into a coagulation bath to form a yarn, followed by washing, drying and drawing. However, when a polyketone modified cross-section fiber is to be obtained by the wet spinning method, it is only necessary to carry out spinning using a spinneret consisting of modified cross-section discharge holes, (1) deformation of the cross-sectional shape due to variations during discharge, ( 2) Deformation of cross-sectional shape due to swelling / solidification during solidification, (3) Deformation of cross-sectional shape due to sticking of single yarn during drying, (4) Change in cross-sectional shape due to high-magnification / high-strength drawing, etc. It is difficult to obtain high-quality fibers, (5) drawability due to sticking of single yarn, deterioration of twistability, and (6) fibrillation occur frequently, so it is difficult to obtain polyketone fibers with high productivity and high degree of irregularity. there were.

【0007】上述の湿式紡糸法の中でも、金属塩溶液を
溶剤とする湿式紡糸法は、工業的に高強度のポリケトン
繊維を得る方法として最も優れた方法であるが、上記
(3)〜(5)の問題が顕在化し、高強度・高弾性率、
高耐熱性でありながら異形度が高いポリケトン繊維を工
業的に得ることは非常に困難である。以上のように、高
強度・高弾性率、高融点を有し、高品位であって撚糸後
も高い強度を発現し、かつ、延伸時や撚糸時の工程通過
性に優れる高異形度のポリケトン繊維及びその製造方法
については、これまで一切知られていなかった。
Among the above-mentioned wet spinning methods, the wet spinning method using a metal salt solution as a solvent is the most excellent method for industrially obtaining a high strength polyketone fiber, and the above (3) to (5) ) Problem has become apparent, high strength and high elastic modulus,
It is very difficult to industrially obtain a polyketone fiber having high heat resistance and high degree of deformation. As described above, a polyketone having a high strength, a high elastic modulus, a high melting point, a high quality, a high strength even after twisting, and a high deformability that is excellent in the process passability during drawing and twisting. Nothing has been known so far about the fiber and its manufacturing method.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、高強
度・高弾性率、高融点、高耐熱性といった優れた力学特
性及び熱特性を有するポリケトン繊維及びこの繊維を工
業的に生産性良く製造する方法を提供することである。
具体的には、上記の性能と共に、以下の(1)〜(4)
の課題を満足するポリケトン繊維及びその製造方法を提
供することである。 (1)湿式紡糸法であっても高異形度である。 (2)高異形度であっても単糸膠着がない。 (3)高倍率の延伸を行っても毛羽やフィブリル状物の
生成が少ない。 (4)高異形度であっても摩擦係数が小さく撚糸性、工
程通過性に優れる。
The object of the present invention is to provide a polyketone fiber having excellent mechanical properties and thermal properties such as high strength / high elastic modulus, high melting point, and high heat resistance, and to industrially produce this fiber. It is to provide a method of manufacturing.
Specifically, along with the above performance, the following (1) to (4)
To provide a polyketone fiber and a method for producing the same. (1) The degree of irregularity is high even with the wet spinning method. (2) There is no single yarn sticking even with a high degree of irregularity. (3) Generation of fluff and fibrils is small even when stretched at a high ratio. (4) Even with a high degree of irregularity, the coefficient of friction is small and the twistability and process passability are excellent.

【0009】[0009]

【課題を解決するための手段】本発明は、以下の通りで
ある。 (1)繰り返し単位の95〜100質量%が化学式
(1)で表される1−オキソトリメチレンからなり、結
晶化度が60%以上、結晶配向度が90%以上、かつ、
引っ張り強度が10cN/dtex以上のポリケトン繊
維であって、下記に示す繊維異形度が1.2以上であ
り、繊維―繊維間動摩擦係数(μ)が0.01〜0.5
であることを特徴とするポリケトン繊維。 繊維異形度=L2/4πA (式中、Lはポリケトン繊維の横断面の外周長、Aは断
面積)
The present invention is as follows. (1) 95 to 100% by mass of the repeating unit consists of 1-oxotrimethylene represented by the chemical formula (1), the crystallinity is 60% or more, the crystal orientation is 90% or more, and
A polyketone fiber having a tensile strength of 10 cN / dtex or more, a fiber deformity shown below of 1.2 or more, and a fiber-fiber dynamic friction coefficient (μ) of 0.01 to 0.5.
Polyketone fiber characterized by being. Fiber irregularity = L 2 / 4πA (where L is the outer peripheral length of the cross section of the polyketone fiber, A is the cross-sectional area)

【0010】[0010]

【化2】 [Chemical 2]

【0011】(2)繰り返し単位の100質量%が化学
式(1)で表される1−オキソトリメチレンからなり、
結晶化度が70%以上、結晶配向度が95%以上、引っ
張り強度が12cN/dtex以上、かつ、単糸繊度が
0.5〜2dtexであることを特徴とする(1)に記
載のポリケトン繊維。 (3)繊維異形度が3以上であり、繊維の断面形状が扁
平であることを特徴とする(1)又は(2)に記載のポ
リケトン繊維。 (4)ポリケトン繊維に対して、0.3〜10質量%の
仕上げ剤が付着していることを特徴とする(1)〜
(3)のいずれか1つに記載のポリケトン繊維。 (5)ポリケトン繊維の単糸膠着率が30%以下である
ことを特徴とする(1)〜(4)のいずれか1つに記載
のポリケトン繊維。
(2) 100 mass% of the repeating unit consists of 1-oxotrimethylene represented by the chemical formula (1),
The polyketone fiber according to (1), which has a crystallinity of 70% or more, a crystal orientation of 95% or more, a tensile strength of 12 cN / dtex or more, and a single yarn fineness of 0.5 to 2 dtex. . (3) The polyketone fiber according to (1) or (2), characterized in that the degree of fiber irregularity is 3 or more and the cross-sectional shape of the fiber is flat. (4) 0.3 to 10% by mass of the finishing agent is attached to the polyketone fiber (1) to
The polyketone fiber according to any one of (3). (5) The polyketone fiber according to any one of (1) to (4), wherein the polyketone fiber has a single yarn sticking rate of 30% or less.

【0012】(6)(1)〜(5)のいずれか1つに記
載のポリケトン繊維からなり、下記に示す撚り係数Kが
100〜30000の範囲で撚糸されていることを特徴
とするコード。 K=Y×D0.5(T/m・dtex0.5) (式中、Yは1mあたりの撚り数(T/m)、Dは撚糸
に用いるポリケトンの総繊度(dtex))
(6) A cord comprising the polyketone fiber according to any one of (1) to (5), which is twisted in a twist coefficient K of 100 to 30,000 shown below. K = Y × D 0.5 (T / m · dtex 0.5 ) (In the formula, Y is the number of twists per meter (T / m), and D is the total fineness (dtex) of the polyketone used for the twisted yarn)

【0013】(7)ハロゲン化亜鉛を含有する金属塩溶
液にポリケトンを溶解し、その溶液を紡糸口金からエア
ギャップを経て凝固浴に押出し、得られた糸条から金属
塩を洗浄除去した後、乾燥させ、次いで、熱延伸するポ
リケトン繊維の製造法において、紡口は、下記に示す紡
糸口金異形度が1.2以上の異形紡口であり、乾燥開始
から熱延伸終了の間のいずれかの段階で水分率が0〜4
0質量%にある繊維に単糸間のずれを生ずる外力を加
え、乾燥終了から熱延伸終了の間のいずれかの段階でポ
リケトン繊維に対して0.1〜20質量%の仕上げ剤を
付与することを特徴とするポリケトン繊維の製造方法。
(7) Polyketone is dissolved in a metal salt solution containing zinc halide, the solution is extruded from a spinneret through an air gap into a coagulation bath, and the metal salt is washed and removed from the obtained yarn. In the method for producing a polyketone fiber which is dried and then hot-stretched, the spinneret is a modified spinneret having a spinneret irregularity of 1.2 or more as shown below, and any one of the spinneret from the start of drying to the end of hot stretching is used. Moisture rate is 0-4 at the stage
An external force that causes a deviation between single yarns is applied to 0% by mass of fibers, and 0.1 to 20% by mass of a finishing agent is applied to polyketone fibers at any stage between the end of drying and the end of hot drawing. A method for producing a polyketone fiber, comprising:

【0014】(8)ハロゲン化亜鉛を含有する金属塩溶
液にポリケトンを溶解し、その溶液を紡糸口金からエア
ギャップを経て凝固浴へ押出し、得られた糸条から金属
塩を洗浄除去した後、乾燥させ、次いで、熱延伸するポ
リケトン繊維の製造法において、紡口は、下記に示す紡
糸口金異形度が1.2以上の異形紡口であり、洗浄開始
から乾燥終了の間の水分率が40質量%以上であるポリ
ケトン繊維に、繊維に対して0.1〜20質量%の離形
剤を付与することを特徴とするポリケトン繊維の製造方
法。 紡糸口金異形度=L0 2/4πA0 (式中、L0は紡糸口金吐出孔の外周長、A0は紡糸口金
吐出孔の断面積)
(8) Polyketone is dissolved in a metal salt solution containing zinc halide, the solution is extruded from a spinneret through an air gap into a coagulation bath, and the metal salt is washed and removed from the obtained yarn. In the method for producing a polyketone fiber which is dried and then hot-stretched, the spinneret is a modified spinneret having a spinneret irregularity of 1.2 or more as shown below, and the water content between the start of washing and the end of drying is 40%. A method for producing a polyketone fiber, which comprises adding 0.1 to 20% by mass of a mold release agent to the polyketone fiber in an amount of not less than mass%. Deformation degree of spinneret = L 0 2 / 4πA 0 (where L 0 is the outer peripheral length of the spinneret discharge hole, and A 0 is the cross-sectional area of the spinneret discharge hole)

【0015】以下、本発明を詳細に説明する。本発明の
ポリケトン繊維は、繰り返し単位の95〜100質量%
が化学式(1)で表される1−オキソトリメチレンから
構成されるポリケトンである。
The present invention will be described in detail below. The polyketone fiber of the present invention contains 95 to 100% by mass of the repeating unit.
Is a polyketone composed of 1-oxotrimethylene represented by the chemical formula (1).

【0016】[0016]

【化3】 [Chemical 3]

【0017】繰り返し単位中の1−オキソトリメチレン
の割合が高いほど分子鎖の規則性が上がり、高結晶性及
び高配向度の繊維が得られるようになり、結果として、
高強度・高弾性率、高耐熱性を有する繊維が得られる。
このため、ポリケトン中の1−オキソトリメチレンの割
合は、より好ましくは97〜100質量%、最も好まし
くは100質量%である。必要に応じてプロペン、ヘキ
セン等のエチレン以外のオレフィンやメチルメタクリレ
ート、アリルスルホン酸ナトリウム等の不飽和炭化水素
を有する化合物を共重合してもよい。
The higher the proportion of 1-oxotrimethylene in the repeating unit, the higher the regularity of the molecular chain, and the more highly crystalline and highly oriented the fiber can be obtained.
A fiber having high strength, high elastic modulus and high heat resistance can be obtained.
Therefore, the proportion of 1-oxotrimethylene in the polyketone is more preferably 97 to 100% by mass, and most preferably 100% by mass. If desired, olefins other than ethylene such as propene and hexene, and compounds having unsaturated hydrocarbons such as methyl methacrylate and sodium allyl sulfonate may be copolymerized.

【0018】ポリケトンの重合度は、極限粘度で2〜1
0であることが好ましく、3〜6がより好ましい。極限
粘度が小さくなり過ぎると、ポリケトン繊維の強度や紡
糸性が低下しやすくなり、極限粘度が大きくなり過ぎる
と、重合コストや繊維コストが上昇する。本発明のポリ
ケトン繊維が優れた力学特性・熱特性を発現するために
は、結晶化度及び結晶配向度が特定の範囲にあることが
必要である。
The degree of polymerization of polyketone is 2-1 in terms of intrinsic viscosity.
It is preferably 0 and more preferably 3 to 6. If the intrinsic viscosity becomes too small, the strength and spinnability of the polyketone fiber will tend to decrease, and if the intrinsic viscosity becomes too large, the polymerization cost and fiber cost will increase. In order for the polyketone fiber of the present invention to exhibit excellent mechanical properties and thermal properties, it is necessary that the crystallinity and the crystal orientation are within a specific range.

【0019】結晶化度は結晶構造の量比を表す構造パラ
メーターであり、この値が高いほどポリケトン繊維は、
高強度、高寸法安定性、高耐熱性及び高耐薬品性を発現
するため、結晶化度は60%以上であることが必要であ
り、好ましくは70%以上、より好ましくは80%以上
である。結晶配向度は、繊維中の分子鎖が繊維軸方向に
配列する規則性の度合いを表す構造パラメーターであ
り、結晶配向度は90%以上であることが必要であり、
好ましくは95%以上、より好ましくは97%以上であ
る。結晶配向度が90%未満であると、高弾性率で寸法
安定性に優れる繊維が得られない。
The degree of crystallinity is a structural parameter representing the quantity ratio of crystal structures. The higher this value, the more
In order to exhibit high strength, high dimensional stability, high heat resistance and high chemical resistance, the crystallinity must be 60% or more, preferably 70% or more, more preferably 80% or more. . The crystal orientation degree is a structural parameter indicating the degree of regularity in which the molecular chains in the fiber are arranged in the fiber axis direction, and the crystal orientation degree needs to be 90% or more,
It is preferably at least 95%, more preferably at least 97%. When the crystal orientation degree is less than 90%, a fiber having a high elastic modulus and excellent dimensional stability cannot be obtained.

【0020】本発明のポリケトン繊維は、繊維異形度が
1.2以上であることが極めて重要である。繊維異形度
は、ポリケトン繊維の横断面の外周長をL、断面積をA
とすると、L2/4πAで表される。この値は断面形状
が真円の場合に1.0となる。繊維異形度が1.2未満
であると、単位繊度あたりの繊維の表面積が小さくなり
すぎて、十分な接着力を発揮することができない。繊維
異形度が大きいほど繊維の表面積が大きくなり、ゴム等
との接着性に優れることから、異形度は1.2以上であ
ることが必要であり、好ましくは1.5以上、より好ま
しくは2以上である。
It is extremely important that the polyketone fiber of the present invention has a fiber irregularity of 1.2 or more. The degree of fiber irregularity is L, the outer peripheral length of the cross section of the polyketone fiber, and A the cross-sectional area.
Then, it is represented by L 2 / 4πA. This value is 1.0 when the cross-sectional shape is a perfect circle. If the degree of fiber irregularity is less than 1.2, the surface area of the fiber per unit fineness becomes too small, and sufficient adhesive force cannot be exhibited. The larger the degree of fiber irregularity, the larger the surface area of the fiber and the better the adhesion to rubber and the like. Therefore, the degree of irregularity must be 1.2 or more, preferably 1.5 or more, more preferably 2 or more. That is all.

【0021】本発明のポリケトン繊維はこのように異形
断面を有するものであり、断面形状は、楕円、正方形、
長方形、菱形、三角、星形、アルファベット形(C形、
X形、Y形、V形、W形等)、ダンベル形等、従来公知
の形状が挙げられる。繊維断面の概観が円形であって
も、繊維表層部に多数の溝や空隙を有することにより繊
維異形度が本発明の範囲に入るものでもよい。断面形状
が横方向に長い扁平糸においては、繊維異形度が3以上
であることが好ましく、より好ましくは5以上である。
The polyketone fiber of the present invention thus has a modified cross section, and the cross-sectional shape is elliptical, square,
Rectangle, diamond, triangle, star, alphabet (C,
Conventionally known shapes such as X-type, Y-type, V-type, W-type, etc., dumbbell-type, etc. may be mentioned. Even if the fiber cross section is circular, the fiber irregularity may be within the scope of the present invention by having a large number of grooves and voids in the fiber surface layer portion. In a flat yarn whose cross-sectional shape is long in the transverse direction, the fiber irregularity is preferably 3 or more, more preferably 5 or more.

【0022】ポリケトン繊維の引っ張り強度は、10c
N/dtex以上であることが必要である。引っ張り強
度が10cN/dtex未満であると、強度が不十分で
あるため、材料の軽量化ができない。その結果、繊維の
タフネスも不足し、耐疲労性が不十分となる。産業資材
用途での展開の観点から、引っ張り強度は高いほど好ま
しく、具体的には12cN/dtex以上、より好まし
くは15cN/dtex以上である。ポリケトン繊維の
弾性率も高いほど力学的寸法安定性に優れるため、好ま
しくは200cN/dtex以上、より好ましくは30
0cN/dtex以上、最も好ましくは350cN/d
tex以上である。
The tensile strength of the polyketone fiber is 10c
It needs to be N / dtex or more. If the tensile strength is less than 10 cN / dtex, the strength is insufficient and the weight of the material cannot be reduced. As a result, the toughness of the fiber is insufficient and the fatigue resistance is insufficient. From the viewpoint of development in industrial material applications, the higher the tensile strength, the more preferable, and specifically 12 cN / dtex or more, and more preferably 15 cN / dtex or more. Since the higher the elastic modulus of the polyketone fiber, the more excellent the mechanical dimensional stability, it is preferably 200 cN / dtex or more, more preferably 30
0 cN / dtex or more, most preferably 350 cN / d
tex or more.

【0023】繊維断面が異形の場合、円形断面のポリケ
トン繊維に比べて比表面積が大きいため、繊維−繊維間
や繊維−金属間の摩擦抵抗が起こりやすく、製造工程や
加工工程、使用時に単糸切れや毛羽、フィブリル化が起
こりやすくなり、工程通過性の低下、得られる繊維の品
位や力学物性の低下を起こしやすい。特に、産業資材用
途ではフィラメント数の多いポリケトン繊維が用いられ
るため、繊維−繊維間の動摩擦係数(μ)が0.01〜
0.5であることが必要である。繊維−繊維間の動摩擦
係数(μ)が0.01未満では、延伸工程での集束性の
低下や撚り工程でのすべりが起こる。繊維−繊維間の動
摩擦係数(μ)が0.5を越えると、延伸や撚糸工程に
おいて毛羽や単糸切れ、フィブリルの剥離が発生する。
好ましくは、繊維−繊維間の動摩擦係数(μ)は0.0
3〜0.4であり、より好ましくは0.05〜0.3
5、最も好ましくは0.1〜0.25である。
When the fiber cross section is irregular, since the specific surface area is larger than that of the polyketone fiber having a circular cross section, the friction resistance between the fibers and between the fibers and the metal is likely to occur, and the single yarn is used during the manufacturing process, the processing process, and the use. Breakage, fluffing, and fibrillation are likely to occur, and the process passability is reduced, and the quality and mechanical properties of the obtained fiber are likely to be reduced. In particular, since polyketone fibers having a large number of filaments are used for industrial material applications, the dynamic friction coefficient (μ) between fibers is 0.01 to
It needs to be 0.5. When the coefficient of dynamic friction (μ) between fibers is less than 0.01, the focusing property in the drawing process is reduced and slippage in the twisting process occurs. If the dynamic friction coefficient (μ) between fibers exceeds 0.5, fluff, single yarn breakage, and fibril separation occur during the drawing and twisting processes.
Preferably, the coefficient of dynamic friction (μ) between fibers is 0.0
3 to 0.4, more preferably 0.05 to 0.3
5, most preferably 0.1 to 0.25.

【0024】摩擦抵抗を低減のためには、ポリケトン繊
維に仕上げ剤を付着せしめて、繊維の集束・制電による
接触抵抗の低減、油膜の形成による繊維表面の摩擦係数
を低減させることが極めて有効である。本発明における
仕上げ剤とは、乾燥工程〜巻き取りまでのいずれかの工
程でポリケトン繊維に付与され、繊維表面や繊維間に付
着した化合物であって、水や有機溶剤洗浄により洗浄・
除去可能な化合物である。
In order to reduce the frictional resistance, it is extremely effective to attach a finishing agent to the polyketone fiber to reduce the contact resistance by focusing and antistatic of the fiber and reduce the friction coefficient of the fiber surface by forming an oil film. Is. The finishing agent in the present invention is a compound that is applied to the polyketone fiber in any step from the drying step to the winding, and is a compound adhered to the fiber surface or between the fibers, and is washed by washing with water or an organic solvent.
It is a removable compound.

【0025】仕上げ剤の成分については制限はなく、例
えば、特願2000−19995号に記載の仕上げ剤を
使用することができる。平滑性、耐摩耗性を繊維に与え
るには、仕上げ剤の中にエステル化合物、鉱物油、ポリ
エーテル化合物等が含有されていることが好ましい。エ
ステル化合物は、ポリケトン繊維表面の平滑性を向上さ
せ、そのすべりにより摩耗性を向上させる成分であり、
好ましいエステル化合物の具体例としては、ステアリン
酸オクチル、オレイン酸ラウリル等が挙げられ、その分
子量は平滑性、工程通過性の観点から500〜3000
が好ましい。
The components of the finishing agent are not limited, and for example, the finishing agent described in Japanese Patent Application No. 2000-19995 can be used. In order to impart smoothness and abrasion resistance to the fiber, it is preferable that the finishing agent contains an ester compound, a mineral oil, a polyether compound or the like. The ester compound is a component that improves the smoothness of the surface of the polyketone fiber and improves the wearability due to the slip,
Specific examples of preferable ester compounds include octyl stearate and lauryl oleate, and the molecular weight thereof is 500 to 3000 from the viewpoints of smoothness and process passability.
Is preferred.

【0026】鉱物油もまた、ポリケトン繊維表面の平滑
性・耐摩耗性を向上させる成分であり、パラフィン系又
はナフテン系のものが好ましく、その粘度は30℃にお
けるレッドウッド粘度が40〜800秒が好ましい。ポ
リエーテルは、仕上げ剤が繊維表面に形成する油膜の強
度を高める働きがあり、耐摩耗性を飛躍的に向上でき
る。具体的には、プロピレンオキシドとエチレンオキシ
ドが共重合してなるポリオレフィンオキシドを主成分と
するポリエーテルが好ましく、その分子量としては15
00〜20000が好ましい。
Mineral oil is also a component for improving the smoothness and abrasion resistance of the surface of the polyketone fiber, preferably a paraffin type or naphthene type, and its viscosity is such that the Redwood viscosity at 30 ° C. is 40 to 800 seconds. preferable. Polyether has the function of increasing the strength of the oil film formed on the fiber surface by the finishing agent, and can dramatically improve the wear resistance. Specifically, a polyether whose main component is a polyolefin oxide obtained by copolymerizing propylene oxide and ethylene oxide is preferable, and its molecular weight is 15
00 to 20000 is preferable.

【0027】本発明で用いる仕上げ剤には、乳化剤(例
えば、ポリオキシエチレンステアリルエーテル等)や、
繊維に制電性、耐摩耗性、乳化性、防錆性を付与するた
めに制電剤(例えば、アニオン性界面活性剤等)を用い
ることが好ましい。仕上げ剤の付着率は、繊維に対して
0.1〜20質量%が好ましく、より好ましくは0.3
〜10質量%、最も好ましくは1〜5質量%である。付
着率が0.1質量%未満になると、摩擦抵抗の低減効果
が少なくなり、20質量%を越えると油膜同士の接触抵
抗が増大し、繊維−繊維間の摩擦が増大しやすくなる。
仕上げ剤は、そのままストレートで付与、あるいは水に
分散させてエマルジョンの形態で繊維に付着させること
ができる。特に、単糸数の多いポリケトン繊維では繊維
間に均一に油剤を浸透させることが重要であり、浸透剤
としてエステル基やケトン基、エーテル基を有する活性
剤を併用するとポリケトン繊維間に仕上げ剤を均等に分
散せしめて付与することができて効果的である。
The finishing agent used in the present invention includes an emulsifier (for example, polyoxyethylene stearyl ether),
It is preferable to use an antistatic agent (for example, an anionic surfactant or the like) in order to impart antistatic property, abrasion resistance, emulsifying property, and rust preventive property to the fiber. The adhesion rate of the finishing agent is preferably 0.1 to 20 mass% with respect to the fiber, and more preferably 0.3.
-10 mass%, most preferably 1-5 mass%. If the adhesion rate is less than 0.1% by mass, the effect of reducing the frictional resistance will be reduced, and if it exceeds 20% by mass, the contact resistance between the oil films will increase, and the friction between fibers will easily increase.
The finishing agent can be applied as it is in a straight form, or it can be dispersed in water and attached to the fibers in the form of an emulsion. In particular, for polyketone fibers with a large number of single yarns, it is important to uniformly permeate the oil agent between the fibers, and if an activator having an ester group, a ketone group, or an ether group is used as a penetrant, a finishing agent will be evenly distributed between the polyketone fibers. It is effective that it can be dispersed and applied to.

【0028】湿式紡糸法によりポリケトン異形断面繊維
を製造する場合、円形断面の繊維に比べて紡糸時、乾燥
時及び延伸時に単糸同士の膠着が起こり易い。したがっ
て、撚糸時の工程通過性、撚糸後の強力低下を抑制する
ために単糸膠着を抑制することが非常に重要となる。そ
れゆえ、本発明のポリケトン繊維は、下式で定義される
単糸膠着率が30%以下であることが好ましい。 単糸膠着率 =[1−(見かけの単糸数/単糸数)]×
100(%) 単糸膠着率とは、マルチフィラメント中の膠着した単糸
の数的割合を表す値である。具体的な例で説明すると、
10個のホール数を持った紡糸口金を用いて製造された
繊維において、2本の単糸が膠着しているものが2組あ
るとすれば、単糸数は10で、見かけの単糸本数は8と
なり、単糸膠着率は20%となる。単糸膠着率が30%
を越えると、繊維が硬くなるほか、単糸に無理な力がか
かりやすくなって撚糸時に毛羽・断糸が発生しやすくな
り、撚糸後の強度が低下しやすくなる。単糸膠着率とし
ては、より好ましくは20%以下、最も好ましくは10
%以下、さらに好ましくは0%である。
When the polyketone modified cross-section fiber is produced by the wet spinning method, the single yarns are more likely to stick together during spinning, drying and drawing, as compared with a fiber having a circular cross section. Therefore, it is very important to suppress single yarn sticking in order to suppress the process passability during twisting and the reduction in strength after twisting. Therefore, the polyketone fiber of the present invention preferably has a single yarn sticking rate defined by the following formula of 30% or less. Single thread sticking rate = [1- (apparent number of single threads / number of single threads)] x
100 (%) Single thread sticking rate is a value showing the numerical ratio of sticking single thread in a multifilament. To explain with a concrete example,
If there are two sets of fibers produced by using a spinneret having 10 holes and two single yarns are stuck together, the number of single yarns is 10, and the apparent number of single yarns is 8 and the single yarn sticking rate is 20%. Single thread sticking rate is 30%
If the value exceeds the above range, the fiber becomes hard, and excessive force is apt to be applied to the single yarn, so that fluff and yarn breakage are likely to occur during twisting, and the strength after twisting is likely to decrease. The single thread sticking rate is more preferably 20% or less, and most preferably 10%.
% Or less, more preferably 0%.

【0029】本発明のポリケトン繊維は短繊維であって
も長繊維であってもよく、用途に応じて選択できる。一
般的には、FRPやセメント補強材用としては短繊維、
ゴム補強材や樹脂被覆織編物用としては長繊維が用いら
れる。ポリケトン繊維の繊度には制限はないが、強度、
他材料との接着性等の観点からは単糸繊度は小さいこと
が好ましいが、単糸繊度が小さすぎると高異形度の繊維
の製造が困難になったり、紡口詰まりや毛羽、単糸切れ
が起こりやすくなるため、単糸繊度0.1〜5dtex
の範囲が好ましく、繊維物性、紡糸性、延伸性、接着性
の観点からは0.5〜2dtexがより好ましい。
The polyketone fiber of the present invention may be a short fiber or a long fiber and can be selected according to the application. Generally, short fibers for FRP and cement reinforcement,
Long fibers are used for rubber reinforcements and resin-coated woven and knitted fabrics. The fineness of polyketone fiber is not limited, but strength,
From the viewpoint of adhesiveness to other materials, it is preferable that the single yarn fineness is small, but if the single yarn fineness is too small, it becomes difficult to produce fibers with a high degree of irregularity, and there is clogging of the spine, fluff, and single yarn breakage. Single yarn fineness of 0.1 to 5 dtex
Is preferable, and 0.5 to 2 dtex is more preferable from the viewpoint of fiber physical properties, spinnability, stretchability, and adhesiveness.

【0030】マルチフィラメントの場合、フィラメント
数は特に制限はないが、通常は10〜100000本、
好ましくは100〜10000本であり、総繊度は通常
10〜100000dtex、好ましくは100〜10
000dtexである。扁平断面のモノフィラメントを
用いる場合は、繊維異形度に応じて、単糸繊度10〜1
00000dtexのものが好適に用いられる。本発明
のポリケトン繊維に、耐候性向上、熱安定性向上、機能
性付与、形態保持等を付与する目的で、顔料、隠蔽剤、
艶消し剤、熱安定剤、難燃剤、可塑剤、防炎剤、防腐
剤、抗菌剤、防汚剤、樹脂等が含有されていてもよい。
In the case of multifilament, the number of filaments is not particularly limited, but usually 10 to 100,000 filaments,
It is preferably 100 to 10,000, and the total fineness is usually 10 to 100,000 dtex, preferably 100 to 10
It is 000 dtex. When a monofilament with a flat cross section is used, the single yarn fineness is 10 to 1 depending on the fiber irregularity.
Those of 00000dtex are preferably used. The polyketone fiber of the present invention, for the purpose of imparting improved weather resistance, improved thermal stability, imparting functionality, shape retention, etc., a pigment, a masking agent,
A matting agent, a heat stabilizer, a flame retardant, a plasticizer, a flameproofing agent, an antiseptic agent, an antibacterial agent, an antifouling agent, a resin and the like may be contained.

【0031】本発明のポリケトン繊維をタイヤやベル
ト、ホース等のゴム補強材料等の用途に用いる場合、通
常は撚糸を行い、コードとして材料内に埋設される。コ
ードの撚糸形態については特に制限はないが、下式で表
される撚り係数Kが100〜30000の範囲とするこ
とが好ましい。 K=Y×D0.5(T/m・dtex0.5) 式中、Yは1mあたりの撚り数(T/m)、Dは撚糸に
用いるポリケトンの総表示繊度(dtex)である。総
表示繊度とは、撚糸に用いた全ポリケトン繊維の繊度の
和である。例えば、1670dtexのポリケトン繊維
を3本撚り合わせた場合、撚糸物の総表示繊度は501
0dtex(1670/3)となる。複数のポリケトン
繊維を撚り合わせ、下撚り、上撚り等の多段の撚りを加
えた場合、最後に加えた撚りの回数を撚り数Yとして撚
り係数を算出する。
When the polyketone fiber of the present invention is used for a rubber reinforcing material for tires, belts, hoses, etc., it is usually twisted and embedded in the material as a cord. The twisted form of the cord is not particularly limited, but the twist coefficient K represented by the following formula is preferably in the range of 100 to 30,000. K = Y × D 0.5 (T / m · dtex 0.5 ) In the formula, Y is the number of twists per meter (T / m), and D is the total indicated fineness (dtex) of the polyketone used for the twisted yarn. The total indicated fineness is the sum of the fineness of all polyketone fibers used for the twisted yarn. For example, when three 1670 dtex polyketone fibers are twisted together, the total fineness of the twisted product is 501.
It becomes 0 dtex (1670/3). When a plurality of polyketone fibers are twisted together and a multi-stage twist such as a lower twist and an upper twist is added, the twisting coefficient is calculated by setting the number of twists added last as the twist number Y.

【0032】撚糸コードの表層部はレゾルシン−ホルマ
リン−ラテックス樹脂(RFL樹脂)等の接着剤で被覆
されていてもよく、この場合、RFL樹脂の付着率は、
ポリケトン繊維に対して2〜7質量%とすることが好ま
しい。本発明のポリケトン繊維を用いたコードは、同一
繊度の場合には従来の円形断面のポリケトン繊維からな
るコードと比べて表面積が大きいため、ゴムや樹脂等の
マトリックス化合物との接着力に優れる。接着力の値
は、用いるポリケトン繊維の繊度及びコード形態によっ
て変化するため一概に規定することはできないが、10
00〜2000dtexのポリケトン繊維の2本撚りコ
ードの場合、ゴムとの接着力が好ましくは120N/c
m/cord以上、より好ましくは140N/cm/c
ord以上、最も好ましくは160N/cm/cord
以上である。
The surface layer of the twisted yarn cord may be coated with an adhesive such as resorcin-formalin-latex resin (RFL resin). In this case, the adhesion rate of the RFL resin is
It is preferably 2 to 7 mass% with respect to the polyketone fiber. The cord using the polyketone fiber of the present invention has a large surface area as compared with the cord made of the conventional polyketone fiber having a circular cross section in the case of the same fineness, and therefore has excellent adhesive force with a matrix compound such as rubber or resin. The value of the adhesive strength cannot be unconditionally specified because it varies depending on the fineness of the polyketone fiber used and the form of the cord.
In the case of a double twisted cord of polyketone fiber of 00 to 2000 dtex, the adhesive force with rubber is preferably 120 N / c.
m / cord or more, more preferably 140 N / cm / c
ord or more, most preferably 160 N / cm / cord
That is all.

【0033】本発明のポリケトン繊維の製造方法を、金
属塩溶液を溶剤とする湿式紡糸法を例に挙げて説明す
る。金属塩を用いる湿式紡糸法による異形断面繊維の製
造法としては、(a)異形紡口を使用する方法、(b)
ポリケトンと異成分化合物との複合紡糸を行った後に、
異成分化合物を除去する方法、(c)円形紡口から吐出
した糸条を吐出後の任意の工程で膠着・融着せしめる方
法、(d)円形紡口から吐出した糸条を吐出後の工程で
断面形状を変形せしめる方法等が挙げられる。工業的に
は、取り扱い性、断面形状の均一性の観点から(a)の
方法が好適に用いられる。
The method for producing the polyketone fiber of the present invention will be described by taking a wet spinning method using a metal salt solution as a solvent as an example. As a method for producing a modified cross-section fiber by a wet spinning method using a metal salt, (a) a method using a modified spinneret, (b)
After performing the composite spinning of polyketone and heterogeneous compound,
A method for removing heterogeneous compounds, (c) a method of sticking and fusing the yarn discharged from the circular spinneret at an arbitrary step after discharging, (d) a process after discharging the yarn discharged from the circular spinneret And a method of deforming the cross-sectional shape with. Industrially, the method (a) is preferably used from the viewpoints of handleability and uniformity of cross-sectional shape.

【0034】ポリケトンの溶解に用いる金属塩溶液は、
ポリケトンを溶解する能力を有するものであれば制限は
なく、例えば、ハロゲン化亜鉛、ハロゲン化アルカリ金
属塩、ハロゲン化アルカリ土類金属塩等が用いられる。
中でも、10〜80質量%のハロゲン化亜鉛(塩化亜
鉛、ヨウ化亜鉛等)を含有する水溶液が好適に用いられ
る。上記の金属塩以外の化合物を本発明の目的を阻害し
ない範囲で混合してもよい。
The metal salt solution used for dissolving the polyketone is
There is no limitation as long as it has the ability to dissolve polyketone, and for example, zinc halide, alkali metal halide salt, alkaline earth metal halide salt and the like are used.
Above all, an aqueous solution containing 10 to 80% by mass of zinc halide (zinc chloride, zinc iodide, etc.) is preferably used. Compounds other than the above metal salts may be mixed within the range not impairing the object of the present invention.

【0035】金属塩溶液の塩濃度は、50〜80質量%
であることが好ましい。50質量%未満の場合及び80
質量%を越える場合、紡糸が不安定になりやすくなる。
塩濃度は下式で定義される。 塩濃度(質量%)=[塩の質量/(塩の質量+溶媒の質
量)]×100 金属塩溶液に溶解するポリケトンの濃度は、溶解性、紡
糸性及び製造コストの観点から1〜30質量%が好まし
く、高強度、かつ、高異形度の繊維を得るには5〜25
質量%が好ましい。ポリマー濃度は、下式で定義され
る。 ポリマー濃度(質量%)=[ポリマー質量/(ポリマー
質量+金属塩溶液の質量)]×100
The salt concentration of the metal salt solution is 50 to 80% by mass.
Is preferred. When less than 50 mass% and 80
When it exceeds the mass%, spinning tends to be unstable.
The salt concentration is defined by the following formula. Salt concentration (mass%) = [mass of salt / (mass of salt + mass of solvent)] × 100 The concentration of the polyketone dissolved in the metal salt solution is 1 to 30 mass from the viewpoint of solubility, spinnability and manufacturing cost. % Is preferred, and in order to obtain fibers with high strength and high degree of irregularity, 5 to 25
Mass% is preferred. The polymer concentration is defined by the following formula. Polymer concentration (mass%) = [polymer mass / (polymer mass + metal salt solution mass)] × 100

【0036】ポリケトンを溶解した溶液を、必要に応じ
てフィルターで濾過した後、紡糸口金から凝固浴へ押し
出す。紡糸口金の形状は最終繊維の断面形態に応じた異
形紡口を用いる。異形紡口を用いる場合には、下式で計
算される紡糸口金異形度を1.2以上とすることが必要
である。 紡糸口金異形度=L0 2/4πA0 (L0は紡糸口金吐出孔の外周長、A0は紡糸口金吐出孔
の断面積)
The solution in which the polyketone is dissolved is filtered through a filter if necessary, and then extruded from the spinneret into a coagulation bath. As the shape of the spinneret, a modified spinneret according to the cross-sectional shape of the final fiber is used. When using the modified spinneret, it is necessary that the spinneret deformity calculated by the following formula is 1.2 or more. Deformation degree of spinneret = L 0 2 / 4πA 0 (L 0 is the outer peripheral length of the spinneret discharge hole, A 0 is the cross-sectional area of the spinneret discharge hole)

【0037】金属塩溶液の場合、吐出された溶液がバラ
スによって膨らみ、異形度が大きく低下するため、紡口
のL/Dを1以上としてバラスを抑制とすること、溶液
を一旦気体中を通過させて凝固浴へ吐出するエアギャッ
プ紡糸法とすること、エアギャップ部に紡糸張力がおよ
ぶ高張力紡糸とすること、吐出温度を80℃以上、より
好ましくは90℃以上とすること、及び紡糸口金表面を
保温することが好ましい。異形紡口のL/Dとは、Lを
紡糸口金吐出孔の長さ、Dを吐出孔の円相当径として、
LをDで除した値である。円相当径Dは、吐出孔断面積
をSとして下式より算出される。 D=2×(S/π)0.5
In the case of a metal salt solution, the discharged solution swells due to variability and greatly reduces the degree of irregularity. Therefore, the L / D of the spinneret is set to 1 or more to suppress variability, and the solution once passes through gas. Air gap spinning method in which the air gap is discharged to the coagulation bath, high tension spinning in which the spinning tension reaches the air gap portion, discharge temperature is 80 ° C. or higher, more preferably 90 ° C. or higher, and spinneret It is preferable to keep the surface warm. The L / D of the modified spinneret means L is the length of the spinneret discharge hole, D is the equivalent circle diameter of the discharge hole,
It is a value obtained by dividing L by D. The equivalent circle diameter D is calculated by the following equation with the discharge hole cross-sectional area being S. D = 2 × (S / π) 0.5

【0038】エアギャップを通過した紡糸溶液は凝固浴
に導かれて、そこで凝固して糸条となる。凝固開始直後
にポリマーが膨潤して異形度が低下するため、凝固浴温
度を好ましくは20℃以下、より好ましくは0℃以下と
し、凝固浴液として、好ましくはポリケトンの溶剤と用
いた塩と同種の金属塩を5質量%以上含む水溶液を用
い、紡糸ドラフト(紡糸口金からの吐出速度/曳き取り
速度)を好ましくは1以上、より好ましくは1.2以上
とする。凝固直後に糸条がガイドやロールと接触すると
繊維の断面端部が変形するため、ガイドやロール等の固
体との接触は、凝固開始後3秒以上とすることが好まし
く、より好ましくは5秒以上凝固浴中を走行させた後と
する。
The spinning solution that has passed through the air gap is introduced into the coagulation bath, where it is coagulated into yarn. Since the polymer swells immediately after the start of coagulation to reduce the degree of irregularity, the coagulation bath temperature is preferably 20 ° C. or lower, more preferably 0 ° C. or lower, and the coagulation bath liquid is preferably the same as the salt used with the polyketone solvent. Using an aqueous solution containing 5% by mass or more of the metal salt of (1), the spinning draft (discharge speed from the spinneret / pulling speed) is preferably 1 or more, more preferably 1.2 or more. When the yarn comes into contact with the guide or roll immediately after solidification, the cross-section end of the fiber is deformed. Therefore, the contact with the solid such as guide or roll is preferably 3 seconds or more after the start of solidification, more preferably 5 seconds. After the traveling in the coagulation bath.

【0039】凝固浴外へ引き上げられた繊維状物を水洗
し、必要に応じて塩酸、硫酸、リン酸等を含んだpHが
4以下の水溶液を用いて金属塩を実質的に除去する。次
に、繊維を乾燥する。乾燥方法には限定はなく、トンネ
ル型乾燥機、ロール加熱機やネットプロセス型乾燥機等
を用い、延伸しながら、定長で、あるいは収縮させなが
ら乾燥を行うことができる。異形度を維持する観点か
ら、乾燥時の張力を好ましくは0.03cN/dtex
以上、より好ましくは0.06cN/dtex以上とす
る。乾燥温度は制限はないが、強度発現の観点からは2
00℃〜240℃が好ましく、異形度発現及び単糸膠着
防止の観点からは120〜200℃が好ましい。一旦、
120〜200℃で乾燥後、引き続き200〜240℃
で熱処理を行うことによって高異形度で高物性のポリケ
トン繊維が得られる。
The fibrous material pulled out of the coagulation bath is washed with water and, if necessary, the metal salt is substantially removed using an aqueous solution containing hydrochloric acid, sulfuric acid, phosphoric acid and the like and having a pH of 4 or less. Next, the fiber is dried. There is no limitation on the drying method, and a tunnel type dryer, a roll heater, a net process type dryer or the like can be used to perform drying while stretching or at a constant length or while shrinking. From the viewpoint of maintaining the degree of deformation, the tension during drying is preferably 0.03 cN / dtex.
Or more, more preferably 0.06 cN / dtex or more. The drying temperature is not limited, but it is 2 from the viewpoint of strength development.
The temperature is preferably 00 ° C to 240 ° C, and is preferably 120 ° C to 200 ° C from the viewpoint of developing the degree of irregularity and preventing single yarn sticking. Once
After drying at 120-200 ℃, 200-240 ℃ continuously
By carrying out the heat treatment at 1, a polyketone fiber having a high degree of irregularity and high physical properties can be obtained.

【0040】次いで、乾燥された繊維を1段又は2段以
上の多段で熱延伸を行う。多段延伸を行う場合には、延
伸温度を徐々に高くしていく方法が好ましい。延伸温度
は(150℃〜ポリケトン繊維の融点)が好ましい。1
50℃未満になると高強度・高弾性率のポリケトン繊維
を得にくくなり、ポリケトン繊維の融点を越えると、延
伸時に繊維が溶融して切断しやすくなったり、異形度が
低下しやすくなる。延伸性、繊維物性及び異形度の観点
から、延伸温度は[(150℃〜(ポリケトン繊維の融
点−5℃)]が好ましく、より好ましくは[200℃〜
(ポリケトン繊維の融点−10℃)]である。ポリケト
ン繊維の力学特性の観点から、全延伸倍率は好ましくは
10倍以上、より好ましくは15倍以上とする。熱延伸
装置としては、加熱ロール又は加熱プレート上あるいは
加熱気体中を走行させる方法、走行中の繊維にレーザー
やマイクロ波、赤外線を照射する方法等の従来公知の装
置をそのままあるいは改良して採用することができる。
Next, the dried fiber is subjected to hot drawing in a single stage or in multiple stages of two or more stages. When performing multi-stage stretching, a method of gradually increasing the stretching temperature is preferable. The stretching temperature is preferably (150 ° C. to melting point of polyketone fiber). 1
If the temperature is lower than 50 ° C., it becomes difficult to obtain a polyketone fiber having high strength and high elastic modulus, and if the temperature exceeds the melting point of the polyketone fiber, the fiber is melted and easily cut during stretching, or the degree of irregularity is easily lowered. From the viewpoints of stretchability, physical properties of fibers and degree of irregularity, the stretching temperature is preferably [(150 ° C to (melting point of polyketone fiber-5 ° C)], more preferably [200 ° C to
(Melting point of polyketone fiber −10 ° C.)]. From the viewpoint of the mechanical properties of the polyketone fiber, the total draw ratio is preferably 10 times or more, more preferably 15 times or more. As the hot stretching apparatus, a conventionally known apparatus such as a method of traveling on a heating roll or a heating plate or in a heated gas, a method of irradiating a running fiber with a laser, a microwave, or infrared rays is adopted as it is or after improvement. be able to.

【0041】比表面積の大きい異形断面繊維は、乾燥工
程で単糸膠着が発生しやすいため、単糸膠着を防止する
方策を施すことが重要である。単糸膠着を防ぐ方法とし
ては、繊維に外力を加え単糸間をずらす方法、膠着が起
こる前の繊維表面に離形剤を付与する方法、単糸同士の
静電反発力により単糸間をずらす方法、高異形断面の繊
維が得られやすい繊維表面に離形剤を付与する方法が好
ましい。単糸間のずれを生ずる外力を加える場合、乾燥
開始から熱延伸終了の間のいずれかの段階で水分率が0
〜40質量%、好ましくは0〜30質量%にある繊維に
ずれを生ずる外力を加える。繊維の水分率が40質量%
を越えると、単糸間のずれを生ずる外力を加えたとき
に、単糸断面が変形したり、繊維に傷が付いたり、たる
みが起こる等の問題が生じやすくなる。
It is important to take measures to prevent single yarn sticking, because irregularly shaped cross-section fibers having a large specific surface area tend to cause single yarn sticking in the drying process. As a method of preventing single thread sticking, a method of applying an external force to the fibers to shift the single threads, a method of applying a release agent to the fiber surface before sticking occurs, and an electrostatic repulsive force between the single threads are used to separate the single threads. A method of shifting and a method of applying a releasing agent to the fiber surface where a fiber having a highly irregular cross section is easily obtained are preferable. When an external force that causes deviation between single yarns is applied, the water content is 0 at any stage from the start of drying to the end of hot drawing.
An external force is applied to the fibers at -40% by mass, preferably 0-30% by mass, which causes the fibers to shift. Moisture content of fiber is 40% by mass
If it exceeds the range, problems such as deformation of the cross section of the single yarn, damage to the fiber, and slackening are likely to occur when an external force that causes displacement between the single yarns is applied.

【0042】単糸間のずれを生ずる外力を与える方法と
しては、繊維をしごく方法や繊維に振動を与える方法が
有効であり、具体的には、ピンガイドやロールに通して
繊維をしごく方法、超音波発生機で繊維を振動させる方
法、繊維に圧縮気体を吹き付ける方法等が挙げられ、操
作性及び単糸膠着率の低い繊維が得られやすいという点
で繊維に圧縮気体を吹き付ける方法が好ましい。繊維を
傷つけることなく高異形度で単糸膠着率の低いポリケト
ン繊維を得るためには、繊維にかかる張力を0〜1cN
/dtexの範囲とし、圧縮気体吹き付ける速度を0.
1〜100m/秒の範囲とすることが好ましい。圧縮気
体を吹き付ける装置、方法や吹き付け孔の形状について
は制限はなく、インターレース用ノズル等、従来公知の
装置が使用できる。
As a method for applying an external force that causes a deviation between single yarns, a method of squeezing fibers or a method of applying vibration to fibers is effective. Specifically, a method of squeezing fibers by passing them through a pin guide or a roll, A method of vibrating the fiber with an ultrasonic generator, a method of blowing a compressed gas to the fiber, and the like are mentioned, and a method of blowing a compressed gas to the fiber is preferable from the viewpoint that a fiber having low operability and a single yarn sticking rate is easily obtained. In order to obtain a polyketone fiber having a high degree of irregularity and a low single yarn sticking ratio without damaging the fiber, the tension applied to the fiber is 0 to 1 cN.
/ Dtex in the range, and the compressed gas blowing speed is 0.
The range is preferably 1 to 100 m / sec. There is no limitation on the device and method for spraying the compressed gas and the shape of the spray hole, and a conventionally known device such as an interlacing nozzle can be used.

【0043】単糸膠着が発生する前に繊維表面に離形剤
を塗布する場合、離形剤はその後の乾燥、熱延伸で膠着
を防止する作用のあるものであれば制限はない。離形剤
とは、2本の平行に位置するポリケトン繊維表面に化合
物を塗布した後に、2本のポリケトン繊維が繊維軸方向
にわたって接合するように配列し、225℃で1分間の
定長熱処理を行った場合に、ポリケトン繊維同士が容易
に解繊する作用のある化合物である。
When the release agent is applied to the surface of the fiber before the single yarn sticking occurs, the release agent is not limited as long as it has a function of preventing sticking by subsequent drying and hot drawing. The release agent is a two-positioned polyketone fiber coated with a compound and then arranged so that the two polyketone fibers are bonded along the fiber axis direction, and a fixed length heat treatment at 225 ° C. for 1 minute is performed. This is a compound having an action of easily defibrating the polyketone fibers with each other when carried out.

【0044】このような離形剤の例としては、粒子状
物、例えば、金属酸化物微粒子、金属微粒子、シリコン
系化合物微粒子、フッ素系化合物微粒子、液状物、例え
ば、鉱物油、高分子量エステル化合物、高分子量エーテ
ル化合物、及びそれら分散液等が挙げられる。ポリケト
ン繊維間への均一分散や取り扱い性の観点から金属酸化
物微粒子及びシリコン系微粒子を主成分とする微粒子分
散液が好ましい。微粒子分散液の平均粒径としては、
0.1〜100μmが好ましく、より好ましくは0.2
〜10μmであり、水分散液で付与することが操作性の
観点から好ましい。
Examples of such a releasing agent include particulate materials such as metal oxide fine particles, metal fine particles, silicon compound fine particles, fluorine compound fine particles, and liquid substances such as mineral oil and high molecular weight ester compounds. , High molecular weight ether compounds, and dispersions thereof. A fine particle dispersion containing metal oxide fine particles and silicon fine particles as main components is preferable from the viewpoint of uniform dispersion between polyketone fibers and handling properties. As the average particle size of the fine particle dispersion,
0.1 to 100 μm is preferable, and 0.2 is more preferable.
It is from 10 μm, and application from an aqueous dispersion is preferable from the viewpoint of operability.

【0045】離形剤の付着率は、ポリケトン繊維に対し
て0.1〜20質量%とすることが好ましい。付着量が
0.1質量%未満の場合、十分な単糸膠着防止効果が得
られず、20質量%を越える場合には得られるポリケト
ン繊維の物性が低下するほか、延伸性等の工程通過性に
も悪影響を及ぼす可能性がある。このため、離形剤の付
着率としては、好ましくは0.3〜10質量%、より好
ましくは0.5〜5質量%である。
The release agent is preferably attached to the polyketone fiber in an amount of 0.1 to 20% by mass. When the adhesion amount is less than 0.1% by mass, a sufficient effect of preventing single yarn sticking is not obtained, and when it exceeds 20% by mass, the physical properties of the obtained polyketone fiber are deteriorated and the processability such as drawability is improved. May be adversely affected. Therefore, the release agent deposition rate is preferably 0.3 to 10% by mass, and more preferably 0.5 to 5% by mass.

【0046】離形剤を付与する場合、洗浄開始から乾燥
終了の間のポリケトン繊維の水分率が40質量%以上あ
る段階で付与することが必要である。水分率が40質量
%未満になると、単糸膠着が発生し始め、離形剤を付与
しても十分な単糸膠着防止効果が得られない。このた
め、離形剤の付与はポリケトン繊維の水分率が40%以
上ある段階で行うことが必要であり、好ましくは水分率
60質量%以上、より好ましくは水分率100質量%以
上である。
When the release agent is applied, it is necessary to apply it at a stage where the water content of the polyketone fiber is 40% by mass or more from the start of washing to the end of drying. If the water content is less than 40% by mass, single yarn sticking will start to occur, and even if a release agent is added, a sufficient single yarn sticking preventing effect cannot be obtained. For this reason, it is necessary to apply the release agent at a stage where the water content of the polyketone fiber is 40% or more, preferably 60% by weight or more, and more preferably 100% by weight or more.

【0047】離形剤が繊維内部にはいりこみ、繊維物性
の低下をきたすのを防止するために、酸洗浄の開始以降
で行うことが好ましく、より好ましくは水洗開始以降、
最も好ましくは水洗終了後に付与する。単糸膠着防止手
段とは別に、乾燥工程終了後の任意の段階で仕上げ剤を
付与し、繊維−繊維間動摩擦を低減することが重要であ
る。特にポリケトン異形断面繊維は、延伸時の繊維−繊
維間摩擦や繊維−金属間摩擦によって単糸端面のフィブ
リル化や変形が起こりやすいため、延伸前に平滑剤を塗
布することが好ましい。延伸前に付与する仕上げ剤とし
ては、平滑性及び得られる繊維強度の観点から鉱物油を
主成分とすることが特に好ましい。仕上げ剤の付与は、
1回もしくは複数回行ってもよく、延伸時の仕上げ剤の
変性やロール等の汚れ防止の観点からは、多段延伸終了
後に最終の仕上げ剤を付与し、延伸前の仕上げ剤付与率
を極力少なくすることが好ましい。
In order to prevent the release agent from being incorporated inside the fiber and deteriorating the physical properties of the fiber, it is preferable to carry out after the start of acid washing, more preferably after the start of washing with water.
Most preferably, it is applied after completion of washing with water. It is important to apply a finishing agent at an arbitrary stage after the completion of the drying step, in addition to the single yarn sticking preventing means, to reduce the dynamic friction between fibers. In particular, the polyketone modified cross-section fiber is likely to be fibrillated or deformed at the end face of the single yarn due to the fiber-fiber friction or the fiber-metal friction during drawing, and therefore it is preferable to apply a smoothing agent before drawing. As the finishing agent applied before stretching, it is particularly preferable to use a mineral oil as a main component from the viewpoint of smoothness and fiber strength to be obtained. Applying the finishing agent
It may be carried out once or a plurality of times. From the viewpoint of modification of the finishing agent at the time of stretching and prevention of stains on rolls, etc., the final finishing agent is applied after the completion of the multi-stage stretching, and the finishing agent application rate before stretching is minimized. Preferably.

【0048】熱延伸終了後に水性溶液や水性エマルジョ
ンや水性サスペンジョンとして仕上げ剤を付与する場合
には、繊維間に残存する水分により繊維−繊維間の動摩
擦係数(μ)が増大し、撚糸強力利用率が低下すること
があるため、仕上げ剤付与後に水分を乾燥する工程を設
けることが好ましい。仕上げ剤の付与装置は、ノズル給
油、ロール給油等、従来公知の装置をそのまま、あるい
は目的に応じて改良して用いることができる。
When a finishing agent is applied as an aqueous solution, an aqueous emulsion or an aqueous suspension after the completion of hot drawing, the dynamic friction coefficient (μ) between fibers is increased by the water remaining between the fibers, and the twisting strength utilization factor is increased. Therefore, it is preferable to provide a step of drying water after applying the finishing agent. As the finishing agent applying device, a conventionally known device such as nozzle oiling or roll oiling can be used as it is or after being improved according to the purpose.

【0049】このようにして得られたポリケトン繊維は
そのまま、あるいは加工を行って各種用途へ供される。
ポリケトン繊維をコードに加工して用いる場合、撚糸数
は用途に応じて選定される。一般的には、下記で示す撚
り係数Kが1000〜30000の範囲で撚糸される。 K=Y×D0.5(T/m・dtex0.5) (式中、Yは1mあたりの撚り数(T/m)、Dは撚糸
に用いるポリケトンの総繊度(dtex)) コードの力学物性及び品位の観点から、撚糸張力として
は、下撚り張力及び上撚り張力を共に、0.01〜0.
2cN/dtexとすることが好ましい。
The polyketone fiber thus obtained is used as it is or after being processed for various purposes.
When the polyketone fiber is processed into a cord and used, the number of twisted yarns is selected according to the application. Generally, the twisting factor K shown below is twisted in the range of 1000 to 30,000. K = Y × D 0.5 (T / m · dtex 0.5 ) (In the formula, Y is the number of twists per 1 m (T / m), D is the total fineness of the polyketone used for the twisted yarn (dtex)) Mechanical properties and quality of the cord From the viewpoint of the above, as the twisted yarn tension, both the lower twist tension and the upper twist tension are 0.01 to 0.
It is preferably 2 cN / dtex.

【0050】ゴム補強に用いる場合には、撚り合わされ
たポリケトン繊維のコードに、レゾルシン/ホルマリン
ラテックス(RFL)液を付着させ、樹脂を固着させる
工程(いわゆるDip処理工程)を通す。RFL液の好
ましい組成としては、レゾルシン0.1〜10質量%、
ホルマリン0.1〜10質量%及びラテックス1〜28
質量%であり、より好ましい組成としては、レゾルシン
0.5〜3質量%、ホルマリン0.5〜3質量%及びラ
テックス10〜25質量%である。コードに付着したR
FL液を乾燥させる温度としては、好ましくは100〜
250℃、より好ましくは140〜200℃であり、少
なくとも10秒、好ましくは20〜120秒間乾燥す
る。
When used for rubber reinforcement, a resorcin / formalin latex (RFL) liquid is adhered to the cord of twisted polyketone fibers, and the resin is passed through the process (so-called Dip treatment process). The preferred composition of the RFL solution is resorcin 0.1 to 10% by mass,
Formalin 0.1-10% by mass and latex 1-28
%, And more preferable compositions are resorcin 0.5 to 3% by mass, formalin 0.5 to 3% by mass, and latex 10 to 25% by mass. R attached to the cord
The temperature for drying the FL liquid is preferably 100 to
The temperature is 250 ° C., more preferably 140 to 200 ° C., and dried for at least 10 seconds, preferably 20 to 120 seconds.

【0051】乾燥後のコードは、引き続きヒートセット
ゾーン及びノルマライジングゾーンにて熱処理を行う。
ヒートセットゾーンでの温度、張力及び時間は、それぞ
れ150〜250℃、0.1〜0.7cN/dtex及
び10〜300秒とすることが好ましい。ノルマライジ
ングゾーンでの温度、張力及び時間は、それぞれ、15
0〜250℃、0.01〜0.3cN/dtex及び1
0〜300秒とすることが好ましい。
The dried cord is subsequently heat treated in the heat setting zone and the normalizing zone.
The temperature, tension and time in the heat setting zone are preferably 150 to 250 ° C., 0.1 to 0.7 cN / dtex and 10 to 300 seconds, respectively. The temperature, tension and time in the normalizing zone are 15
0 to 250 ° C., 0.01 to 0.3 cN / dtex and 1
It is preferably 0 to 300 seconds.

【0052】以上の方法で得られたポリケトン繊維は、
高強度・高弾性率という優れた力学物性を有し、コード
としても実用上十分な強度及び撚糸時の工程通過性を有
するとともに、特に、繊維比表面積が大きいために、樹
脂、ゴム及びセメントとの接着性に優れる。本発明のポ
リケトン繊維は、特に、タイヤ、ホース、ベルト等のゴ
ム製品の補強材、FRPやセメント補強材等の産業資材
用分野において極めて有用である。
The polyketone fiber obtained by the above method is
It has excellent mechanical properties such as high strength and high elastic modulus, practically sufficient strength as a cord and processability during twisting. In particular, since it has a large fiber specific surface area, it can be used as a resin, rubber and cement. It has excellent adhesiveness. The polyketone fiber of the present invention is extremely useful particularly in the field of industrial materials such as reinforcing materials for rubber products such as tires, hoses and belts, and FRP and cement reinforcing materials.

【0053】[0053]

【発明の実施の形態】本発明を、実施例等により具体的
に説明するが、それらは本発明の範囲を限定するもので
はない。本発明に用いられる測定値の測定方法は次の通
りである。 (1)極限粘度 極限粘度[η]は次の定義式に基づいて求められる値で
ある。 [η]=lim(T−t)/(t・C)[dl/g] C→0 式中のt及びTは、純度98%以上のヘキサフルオロイ
ソプロパノール及びヘキサフルオロイソプロパノールに
溶解したポリケトンの希釈溶液の25℃での粘度管の流
過時間、Cは上記100ml中のグラム単位による溶質
質量である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described with reference to Examples and the like, but these do not limit the scope of the present invention. The measuring method of the measured value used in the present invention is as follows. (1) Intrinsic viscosity Intrinsic viscosity [η] is a value obtained based on the following defining equation. [Η] = lim (T−t) / (t · C) [dl / g] C → 0 In the formula, t and T are hexafluoroisopropanol having a purity of 98% or more and a dilution of polyketone dissolved in hexafluoroisopropanol. Flow-through time of the solution at 25 ° C. in a viscous tube, C is the solute mass in grams above 100 ml.

【0054】(2)繊維の強度及び弾性率 JIS−L−1013にしたがって測定する。 (3)結晶化度 示差熱測定装置Pyris1(商標)(パーキンエルマ
ー社製)を用いて下記条件で測定を行う。サンプルは糸
長を5mmにカットした短繊維を用いる。 サンプル質量: 1mg 測定温度 : 30℃→300℃ 昇温速度 : 20℃/分 雰囲気 : 窒素、流量=200mL/分 得られる吸発熱曲線において、200〜300℃の範囲
に観測される最大の吸熱ピークの面積から計算される熱
量ΔH(J/g)より下記式により算出する。 結晶化度 = ΔH/225 × 100 (%)
(2) Fiber strength and elastic modulus Measured according to JIS-L-1013. (3) The crystallinity differential thermal analyzer Pyris1 (trademark) (manufactured by Perkin Elmer) is used for measurement under the following conditions. As the sample, short fibers whose thread length is cut to 5 mm are used. Sample mass: 1 mg Measuring temperature: 30 ° C. → 300 ° C. Temperature rising rate: 20 ° C./min Atmosphere: Nitrogen, flow rate = 200 mL / min In the endothermic curve obtained, the maximum endothermic peak observed in the range of 200 to 300 ° C. It is calculated by the following formula from the heat quantity ΔH (J / g) calculated from the area. Crystallinity = ΔH / 225 × 100 (%)

【0055】(4)結晶配向度 (株)リガク社製イメージングプレートX線回折装置、
RINT(登録商標)2000を用いて下記の条件で繊
維の回折像を取り込む、 X線源 : CuKα線 出力 : 40KV 152mA カメラ長 : 94.5mm 測定時間 : 3分 得られた画像の2θ=21°付近に観察される(11
0)面を円周方向にスキャンして得られる強度分布の半
値幅Hから下記式により算出する。 結晶配向度=[(180−H)/180]×100
(%) 総繊度を繊維の作製に用いた紡口のホール数で除した値
を単糸繊度とする。
(4) Crystal orientation degree Imaging plate X-ray diffractometer manufactured by Rigaku Corporation,
RINT (registered trademark) 2000 is used to capture the diffraction image of the fiber under the following conditions: X-ray source: CuKα ray output: 40 KV 152 mA Camera length: 94.5 mm Measurement time: 3 minutes 2θ = 21 ° of the obtained image Observed nearby (11
0) Calculated by the following formula from the half value width H of the intensity distribution obtained by scanning the surface in the circumferential direction. Crystal orientation degree = [(180−H) / 180] × 100
(%) The value obtained by dividing the total fineness by the number of holes in the spinner used for producing the fiber is defined as the single yarn fineness.

【0056】(5)単糸膠着率 A)単糸数 ポリケトン繊維の製造に用いる紡口の数、又は銘柄表示
のフィラメント数を単糸数とする。 B)見かけの単糸数 黒色台紙上でポリケトン繊維をチョークで軽く20回擦
り、繊維を解繊して、100倍の拡大鏡にてフィラメン
ト数を数える。膠着して分繊できないものについては1
本の単糸として数え、3回の測定の平均値を見かけの単
糸数とする。ポリケトン繊維の単糸数が多い場合は、1
度に解繊処理を行わず、解繊前に以下の式に基づいてポ
リケトン繊維をn個に分割し、分割された単位ごとに解
繊処理を行ってフィラメント数を計測し、その和を見か
けの単糸数とする。 N/200 ≧ n ≧ N/300 N=単糸数(Aにおける計測値) 単糸数及び見かけの単糸数から下式により単糸膠着率を
求める。 単糸膠着率 =[1−(見かけの単糸数/単糸数)]×
100(%)
(5) Sticking rate of single yarn A) Number of single yarns The number of spinners used for producing polyketone fibers or the number of filaments indicated by the brand is the number of single yarns. B) Number of apparent single yarns Polyketone fibers are lightly rubbed with chalk on a black mount 20 times to defibrate the fibers, and the number of filaments is counted with a 100 × magnifying glass. 1 for those that are stuck and cannot be separated
The number of single yarns is counted, and the average value of three measurements is used as the apparent number of single yarns. 1 if the number of polyketone fibers is large
Prior to defibration, the polyketone fiber is divided into n pieces based on the following formula without defibration treatment every time, and fibrillation treatment is performed for each divided unit to measure the number of filaments, and the sum is apparent. The number of single yarns. N / 200 ≧ n ≧ N / 300 N = number of single yarns (measured value in A) From the number of single yarns and the apparent number of single yarns, the single yarn sticking rate is calculated by the following formula. Single thread sticking rate = [1- (apparent number of single threads / number of single threads)] x
100 (%)

【0057】(6)仕上げ剤付着率 繊維を50℃の温水で洗浄後、引き続き50℃のメチル
エチルケトンにて洗浄し、洗浄前の質量をW2(g)、
洗浄後の質量をW3(g)とし、下式により仕上げ剤付
着率を求める。繊維の質量(W2及びW3)は、計量前に
105℃で5時間加熱し絶乾状態として測定する。 仕上げ剤付着率=[(W2−W3)/W3]×100
(%)
(6) Finishing Agent Adhesion Rate The fibers were washed with warm water at 50 ° C. and subsequently washed with methyl ethyl ketone at 50 ° C., and the mass before washing was W 2 (g),
The mass after cleaning is set to W 3 (g), and the finishing agent adhesion rate is calculated by the following formula. The weight of the fibers (W 2 and W 3 ) is measured by heating at 105 ° C. for 5 hours before being weighed, and is measured as an absolutely dry state. Finishing agent adhesion rate = [(W 2 −W 3 ) / W 3 ] × 100
(%)

【0058】(7)繊維−繊維間動摩擦係数(μ) 約690mの繊維を円筒の周りに、綾角15°で約10
gの張力を掛けて巻き付け、更に上記と同じ繊維30.
5cmをこの円筒に掛ける。この時、この繊維は円筒の
上にあり、円筒の巻き付け方向と平行にする。グラム数
で表した荷重の値が円筒上に掛けた繊維の総繊度の0.
1倍になる重りを円筒に掛けた繊維の片方の端に結び、
他方の端にはストレインゲージを連結させる。次に、円
筒を18m/分の周速で回転させ、張力をストレインゲ
ージで測定する。こうして測定した張力から繊維−繊維
間静摩擦係数(μ)を以下の式にしたがって求める。 μ=1/π×ln(T2/T1) 式中、T1は繊維に掛けた重りの重さ、T2は測定した時
の張力、lnは自然対数、πは円周率を示す。
(7) Fiber-fiber dynamic friction coefficient (μ) About 690 m of fiber is wound around a cylinder at a traverse angle of 15 ° to be about 10.
g of tension and wrapping, and the same fiber as above.
Hang 5 cm on this cylinder. At this time, the fibers are on the cylinder and are parallel to the winding direction of the cylinder. The value of the load, expressed in grams, is 0.
Tie one weight to one end of the fiber on the cylinder,
A strain gauge is connected to the other end. Next, the cylinder is rotated at a peripheral speed of 18 m / min, and the tension is measured with a strain gauge. From the tension thus measured, the coefficient of static friction between fibers (μ) is determined according to the following formula. μ = 1 / π × ln (T 2 / T 1 ) where T 1 is the weight of the weight applied to the fiber, T 2 is the tension when measured, ln is the natural logarithm, and π is the circular constant. .

【0059】(8)繊維異形度 ポリケトン繊維をエポキシモノマー(ケトール812
(商標)、日新EM社製))と硬化剤(ドデシルサクソ
ニックアンハイドライド、メチルナディックアンハイド
ライド)の混合溶液に浸漬した後、開始剤(DMP−3
0(商標)、日新EM社製))を加え、60℃の加熱条
件下で24時間処理して重合を行い、繊維を樹脂によっ
て包埋する。樹脂包埋した繊維をミクロトームで切断
し、繊維断面を電子顕微鏡にて撮影する。繊維断面写真
画像を、異形度測定装置FMS−2000(商標)(ユ
ニオンシステム社製)により、ポリケトン単糸の断面の
外周長L、断面積Aを測定し、L2/4πAを求める。
断面写真内の任意の50本の単糸についてL2/4πA
を求め、その平均値を繊維異形度とする。
(8) Fiber Degree of Deformation Polyketone fiber is mixed with epoxy monomer (Ketol 812).
(Trademark, manufactured by Nisshin EM)) and a curing agent (dodecyl saxonic unhydride, methyl nadic unhydride), and then the initiator (DMP-3).
0 (trademark), manufactured by Nisshin EM Co., Ltd.) is added, and the mixture is treated under heating at 60 ° C. for 24 hours for polymerization, and the fibers are embedded in the resin. The resin-embedded fiber is cut with a microtome, and the cross section of the fiber is photographed with an electron microscope. A fiber cross-section photographic image is measured for the outer peripheral length L and the cross-sectional area A of the cross section of the polyketone single yarn with a deformity measuring device FMS-2000 (trademark) (manufactured by Union System Co., Ltd.) to obtain L 2 / 4πA.
L 2 / 4πA for any 50 single yarns in the cross-section photograph
Is obtained, and the average value is defined as the fiber irregularity.

【0060】(9)樹脂付着率 RFL処理コード10mを105℃で5時間加熱した後
に絶乾重量W4(g)を計量する。次いで、コードを1
mm長に細断して、200mlのヘキサフルオロイソプ
ロパノールにて攪拌下で60℃、2時間溶解する。溶解
後ろ過し、得られた残さを105℃で5時間加熱処理し
た後に重量W5(g)を精秤し、下式から樹脂付着率を
求める。 樹脂付着率 = [W5/W4]×100(%)
(9) Resin Adhesion Rate RFL treatment cord 10m is heated at 105 ° C. for 5 hours, and then the absolute dry weight W 4 (g) is measured. Then the code 1
It is shredded to a length of mm and dissolved in 200 ml of hexafluoroisopropanol under stirring at 60 ° C. for 2 hours. After dissolution, filtration is performed, the obtained residue is heat treated at 105 ° C. for 5 hours, then the weight W 5 (g) is precisely weighed, and the resin adhesion rate is calculated from the following formula. Resin adhesion rate = [W 5 / W 4] × 100 (%)

【0061】(10)ゴム接着力 天然ゴム70%、SBR15%及びカーボンブラック1
5%配合の未加硫ゴムを用い、これにポリケトンコード
を1cm埋め込み、155℃、3.5MPa、30分の
条件で加硫後、T引き抜き強力(N)を、クロスヘッド
速度300mm/分で測定する。
(10) Rubber adhesion 70% natural rubber, 15% SBR and carbon black 1
Using an unvulcanized rubber of 5% blending, a polyketone cord was embedded in this for 1 cm, vulcanized under the conditions of 155 ° C., 3.5 MPa and 30 minutes, and then T pull-out strength (N) was obtained at a crosshead speed of 300 mm / min. taking measurement.

【0062】[0062]

【実施例1】常法により調製したエチレンと一酸化炭素
が完全交互共重合した極限粘度5.9のポリケトンを、
塩化カルシウム40質量%/塩化亜鉛22質量%を含有
する水溶液に添加した。80℃で2時間攪拌後、さらに
90℃で1時間溶解し、ポリマー濃度6.8質量%のド
ープを得た。得られたドープを80℃に加温し、20μ
mのフィルターでろ過した後に、吐出孔形状が、1辺の
長さが0.25mmの三角紡口で、L/D=2、ホール
数50の紡糸口金より吐出量4.5cc/分で吐出し
た。吐出後、10mmのエアーギャップを通し、2質量
%の塩化カルシウム、1.1質量%の塩化亜鉛及び0.
1質量%の塩酸を含有する−2℃の水からなる凝固浴に
導入して糸条とした。
Example 1 A polyketone having an intrinsic viscosity of 5.9, which was prepared by a conventional method and in which ethylene and carbon monoxide were completely alternating-polymerized,
It was added to an aqueous solution containing 40% by weight calcium chloride / 22% by weight zinc chloride. After stirring at 80 ° C for 2 hours, the mixture was further dissolved at 90 ° C for 1 hour to obtain a dope having a polymer concentration of 6.8% by mass. The obtained dope is heated to 80 ° C., and 20 μm
After filtering with a m filter, the discharge hole shape is a triangular spinner whose side length is 0.25 mm, L / D = 2, and a discharge rate of 4.5 cc / min from a spinneret with 50 holes. did. After the discharge, the mixture was passed through an air gap of 10 mm, 2 mass% calcium chloride, 1.1 mass% zinc chloride and 0.
The yarn was introduced into a coagulation bath consisting of water at −2 ° C. containing 1% by mass of hydrochloric acid.

【0063】糸条の曳き取り速度は5m/分(紡糸ドラ
フトは1.50)とした。紡糸口金直下でのバラスはほ
とんど起こっていなかった。糸条が凝固浴に浸漬してか
ら最初に固体(セラミックガイド)に接触するまでの時
間は6秒とした。曳きとったポリケトン糸条を、温度3
0℃、濃度2質量%の塩酸水溶液で洗浄し、さらに40
℃の水で洗浄を行った後、速度5m/分で巻き取った。
得られた糸条を簡易脱水した後、ポリケトン繊維、IR
GANOX(登録商標)(チバスペシャリティケミカル
ス社製)1098及びIRGANOX(登録商標)(チ
バスペシャリティケミカルス社製)1076をそれぞれ
0.05質量%づつ含浸せしめ、温度225℃で1分間
の定長乾燥を行った。この繊維に0.02cN/dte
xの張力をかけた状態で、圧気処理装置(HemaJe
t(登録商標)T−341、日本ヘバライン社製))を
用いて、0.2MPaの圧縮空気を吹き付けて解繊し
た。このときのポリケトン繊維の水分率は0.2%であ
った。
The yarn drawing speed was 5 m / min (spinning draft was 1.50). Almost no ballast occurred just below the spinneret. The time from the immersion of the yarn in the coagulation bath to the first contact with the solid (ceramic guide) was 6 seconds. Pull the drawn polyketone yarn at a temperature of 3
Wash with an aqueous hydrochloric acid solution having a concentration of 2% by mass at 0 ° C.
After washing with water at ℃, it was wound at a speed of 5 m / min.
After simple dehydration of the obtained yarn, polyketone fiber, IR
GANOX (registered trademark) (manufactured by Ciba Specialty Chemicals Co., Ltd.) 1098 and IRGANOX (registered trademark) (manufactured by Ciba Specialty Chemicals Co., Ltd.) 1076 were impregnated in amounts of 0.05% by mass, respectively, and constant length drying was performed at a temperature of 225 ° C. for 1 minute. It was 0.02 cN / dte to this fiber
With the tension of x applied, the pressure treatment device (HemaJe
t (registered trademark) T-341, manufactured by Japan Hebaline Co., Ltd.) was used to blow compressed air of 0.2 MPa to defibrate the fibers. The water content of the polyketone fiber at this time was 0.2%.

【0064】この繊維を、225℃の加熱炉で1段目
(6.0倍)の延伸を行った後に、さらに0.05cN
/dtexの張力をかけた状態で圧気処理装置(Hem
aJet(登録商標)T−321、日本ヘバライン社
製)を用いて、0.1MPaの圧縮空気を吹き付けて解
繊した。このときのポリケトン繊維の水分率は0%であ
った。解繊後、エマルジョン濃度1質量%の下記の仕上
げ剤を付与し、引き続き240℃の加熱炉で2段目
(1.5倍)、さらに258℃の加熱炉で3段目(1.
35倍)の延伸を行った。得られた繊維にエマルジョン
濃度5質量%の上記と同じ仕上げ剤を付与し、0.1c
N/dtexの張力をかけながら160℃で3秒間の熱
処理を行い、84.3dtex/50fのポリケトン繊
維を得た。
This fiber was drawn in the heating furnace at 225 ° C. for the first step (6.0 times), and then further drawn with 0.05 cN.
/ Dtex tension is applied to the compressed air treatment device (Hem
Using aJet (registered trademark) T-321, manufactured by Nippon Hebaline Co., Ltd., compressed air of 0.1 MPa was blown to defibrate. At this time, the water content of the polyketone fiber was 0%. After defibration, the following finishing agent having an emulsion concentration of 1% by mass was applied, followed by a second stage (1.5 times) in a heating furnace at 240 ° C. and a third stage (1.
(35 times). Apply the same finishing agent as above with an emulsion concentration of 5% by mass to the obtained fiber,
Heat treatment was performed at 160 ° C. for 3 seconds while applying a tension of N / dtex to obtain 84.3 dtex / 50f polyketone fiber.

【0065】仕上げ剤は、以下の組成のものを用いた。
オレイン酸ラウリルエステル/ビスオキシエチルビスフ
ェノールA/ポリエーテル(プロピレンオキシド/エチ
レンオキシド=35/65:分子量20000)/ポリ
エチレンオキシド10モル付加オレイルエーテル/ポリ
エチレンオキシド10モル付加ひまし油エーテル/ステ
アリルスルホン酸ナトリウム/ジオクチルリン酸ナトリ
ウム=30/30/10/5/23/1/1(質量%
比)。
The finishing agent used had the following composition.
Oleic acid lauryl ester / bisoxyethyl bisphenol A / polyether (propylene oxide / ethylene oxide = 35/65: molecular weight 20000) / polyethylene oxide 10 mol addition oleyl ether / polyethylene oxide 10 mol addition castor oil ether / sodium stearyl sulfonate / dioctyl phosphorus Sodium acidate = 30/30/10/5/23/1/1 (mass%
ratio).

【0066】紡糸、乾燥及び延伸における工程通過性は
極めて良好で、毛羽や断糸等のトラブルは全く発生しな
かった。このポリケトン繊維は、繊維異形度が1.21
であり、単糸膠着やいびつな断面形状の繊維は観察され
なかった。紡糸に用いた異形紡口の形状を下記の実施例
2〜7で用いた異形紡口の形状と併せて表1に示す。得
られたポリケトン繊維の断面形状の概要を、下記の実施
例2〜7で得られたポリケトン繊維の断面図と併せて表
2に示す。このポリケトン繊維は、強度が16.1cN
/dtex、弾性率が342cN/dtexであり、優
れた力学物性を有していた。得られたポリケトン繊維の
構造及び特性を下記の実施例2〜10、比較例1〜5の
結果と併せて表3に示す。
The process passability in spinning, drying and drawing was extremely good, and no trouble such as fluff or yarn breakage occurred. This polyketone fiber has a fiber irregularity of 1.21.
No single yarn sticking or distorted cross-sectional shape fibers were observed. The shapes of the modified spinnerets used for spinning are shown in Table 1 together with the shapes of the modified spinnerets used in Examples 2 to 7 below. The outline of the cross-sectional shape of the obtained polyketone fiber is shown in Table 2 together with the cross-sectional views of the polyketone fiber obtained in Examples 2 to 7 below. This polyketone fiber has a strength of 16.1 cN
/ Dtex, the elastic modulus was 342 cN / dtex, and had excellent mechanical properties. The structure and properties of the obtained polyketone fiber are shown in Table 3 together with the results of Examples 2 to 10 and Comparative Examples 1 to 5 below.

【0067】[0067]

【実施例2】実施例1において、紡口をC型紡口とし、
紡糸ドラフトを1.5とする以外は同様にして紡糸、乾
燥、延伸を行った。得られたポリケトン繊維は、繊維異
形度2.40の異形断面繊維であった。
[Example 2] In Example 1, the spinneret was a C-type spinneret,
Spinning, drying and stretching were performed in the same manner except that the spinning draft was set to 1.5. The obtained polyketone fiber was a modified cross-section fiber having a fiber modification degree of 2.40.

【0068】[0068]

【実施例3】実施例1において、紡口をY型紡口とし、
紡糸ドラフトを1.3とする以外は同様にして紡糸、乾
燥、延伸を行った。得られたポリケトン繊維は、繊維異
形度2.07の異形断面繊維であった。
[Example 3] In Example 1, the spinneret was a Y-type spinneret,
Spinning, drying and stretching were performed in the same manner except that the spinning draft was 1.3. The obtained polyketone fiber was a modified cross-section fiber having a fiber modification degree of 2.07.

【0069】[0069]

【実施例4】実施例1において、紡口をW型紡口とし、
紡糸ドラフトを1.4とする以外は同様にして紡糸、乾
燥、延伸を行った。得られたポリケトン繊維は、繊維異
形度3.15の異形断面繊維であった。
[Example 4] In Example 1, the spinneret was a W-type spinneret,
Spinning, drying and stretching were performed in the same manner except that the spinning draft was set to 1.4. The obtained polyketone fiber was a modified cross-section fiber having a fiber modification degree of 3.15.

【0070】[0070]

【実施例5】実施例1において、紡口をI型紡口とし、
紡糸ドラフトを1.5とする以外は同様にして紡糸、乾
燥、延伸を行った。得られたポリケトン繊維は、繊維異
形度1.69の異形断面繊維であった。
[Example 5] In Example 1, the spinneret was an I-type spinneret,
Spinning, drying and stretching were performed in the same manner except that the spinning draft was set to 1.5. The polyketone fiber obtained was a modified cross-section fiber having a fiber modification degree of 1.69.

【0071】[0071]

【実施例6】実施例1において、紡口を長径0.3m
m、短径0.1mmの長方形とし、紡糸ドラフトを1.
7とする以外は同様にして紡糸、乾燥、延伸を行った。
得られたポリケトン繊維は、繊維異形度1.66の異形
断面繊維であった。
[Embodiment 6] In Embodiment 1, the spinneret has a major axis of 0.3 m.
m, a short diameter of 0.1 mm, and a spinning draft of 1.
Spinning, drying, and stretching were performed in the same manner except that the number was 7.
The obtained polyketone fiber was a modified cross-section fiber having a fiber modification degree of 1.66.

【0072】[0072]

【実施例7】実施例1において、紡口を長径1.5m
m、短径0.1mmの長方形とし、吐出量を25.0c
c/分、紡糸ドラフトを1.5とする以外は同様にして
紡糸、乾燥、延伸を行った。得られたポリケトン繊維
は、繊維異形度4.46の異形断面繊維であった。
[Embodiment 7] In Embodiment 1, the spinneret has a major axis of 1.5 m.
m, rectangular shape with minor axis of 0.1 mm, discharge amount is 25.0 c
Spinning, drying and stretching were performed in the same manner except that the spinning draft was c / min and the spinning draft was 1.5. The obtained polyketone fiber was a modified cross-section fiber having a fiber modification degree of 4.46.

【0073】[0073]

【実施例8】実施例1において、乾燥工程入り口にてポ
リケトン繊維(水分率=1200%)に平均粒径5μm
のシリカ微粒子エマルジョンを付与し、乾燥工程及び延
伸工程にて圧気処理を行わない以外は同様にして、紡
糸、洗浄、乾燥、延伸、仕上げ剤付与を行った。得られ
たポリケトン繊維の繊維異形度は1.22であった。
Example 8 In Example 1, polyketone fibers (water content = 1200%) had an average particle size of 5 μm at the entrance of the drying process.
Spinning, washing, drying, drawing, and applying a finishing agent were performed in the same manner except that the silica fine particle emulsion was added and the pressure treatment was not performed in the drying step and the drawing step. The degree of fiber irregularity of the obtained polyketone fiber was 1.22.

【0074】[0074]

【実施例9】実施例1において、エアギャップ長を30
mmとし、紡糸速度を8m/分(紡糸ドラフト=2.
4)とする以外は同様にして、紡糸、洗浄、乾燥、延伸
を行った。得られたポリケトン繊維の繊維異形度は1.
25であった。
[Embodiment 9] In Embodiment 1, the air gap length is set to 30.
mm, and the spinning speed is 8 m / min (spinning draft = 2.
Spinning, washing, drying, and stretching were performed in the same manner except that the above 4) was performed. The fiber irregularity of the obtained polyketone fiber is 1.
It was 25.

【0075】[0075]

【実施例10】常法により、1−オキソ−3−メチルト
リメチレンユニット3重量%、1−オキソトリメチレン
ユニットを97重量%からなるエチレン/プロピレン/
一酸化炭素ターポリマー(極限粘度3.9)を調製し
た。このポリケトンを用い、ポリマー濃度12質量%の
ドープとして紡糸する以外は実施例1と同様にして、紡
糸、洗浄、乾燥、延伸を行った。得られたポリケトン繊
維の繊維異形度は1.27であった。
Example 10 Ethylene / propylene / comprising 3% by weight of 1-oxo-3-methyltrimethylene unit and 97% by weight of 1-oxotrimethylene unit by a conventional method.
A carbon monoxide terpolymer (intrinsic viscosity 3.9) was prepared. Using this polyketone, spinning, washing, drying and stretching were performed in the same manner as in Example 1 except that spinning was performed as a dope having a polymer concentration of 12% by mass. The degree of fiber irregularity of the obtained polyketone fiber was 1.27.

【0076】[0076]

【比較例1】実施例1において、紡口形状を0.15m
mφの円形紡口とする以外は同様にして紡糸、乾燥、延
伸を行った。得られたポリケトン繊維は繊維異形度1.
02であり本発明の範囲外のものであった。
Comparative Example 1 In Example 1, the spinneret shape was 0.15 m.
Spinning, drying and stretching were carried out in the same manner except that the circular spinneret with mφ was used. The polyketone fiber obtained had a fiber irregularity of 1.
02, which was outside the scope of the present invention.

【0077】[0077]

【比較例2】実施例1において、紡糸ドラフトを0.8
とし、乾燥工程及び延伸工程にて圧気処理を行わない以
外は同様にして、紡糸、洗浄、乾燥、延伸を行った。得
られたポリケトン繊維は単糸膠着率が80%と激しい膠
着をしており、また、単糸がばらけている部分の繊維異
形度は1.16であり、本発明の範囲外のものであっ
た。
Comparative Example 2 In Example 1, the spinning draft was 0.8.
Then, spinning, washing, drying, and stretching were performed in the same manner except that pressure treatment was not performed in the drying step and the stretching step. The polyketone fiber thus obtained had a single yarn gluing ratio of 80%, which was severely gluing, and the fiber irregularity of the portion where the single yarn was loose was 1.16, which was outside the range of the present invention. there were.

【0078】[0078]

【比較例3】比較例1において、紡糸法をエアギャップ
を経ない浸漬紡糸法(紡糸口金が凝固浴中に浸漬してあ
り、紡糸口金より直接ドープが凝固浴中へ吐出される)
とする以外は同様にして紡糸を行ったが、紡口出口付近
でのバラスが激しく安定して紡糸を行うことができなか
った。
[Comparative Example 3] In Comparative Example 1, the spinning method was an immersion spinning method without passing through an air gap (the spinneret was immersed in a coagulation bath, and the dope was directly discharged from the spinneret into the coagulation bath).
Spinning was carried out in the same manner except that the above was performed, but the dispersion around the outlet of the spinneret was severe and stable, and spinning could not be carried out.

【0079】[0079]

【比較例4】常法により、1−オキソ−3−メチルトリ
メチレンユニット5重量%、1−オキソトリメチレンユ
ニットを95重量%からなるエチレン/プロピレン/一
酸化炭素ターポリマー(極限粘度1.3、融点233
℃)を調製した。このポリマーにカルシウムヒドロキシ
アパタイトを1質量%、IRGANOX(登録商標)
(チバスペシャリティケミカルス社製)1010を0.
5質量%配合し、250℃にて溶融し三角断面の異形紡
口を用いて溶融紡糸を行ったが、溶融中にポリマー変性
による押出圧力の上昇があり紡糸を行うことができなか
った。
Comparative Example 4 An ethylene / propylene / carbon monoxide terpolymer comprising 5% by weight of 1-oxo-3-methyltrimethylene unit and 95% by weight of 1-oxotrimethylene unit (intrinsic viscosity 1.3 , Melting point 233
C) was prepared. 1% by mass of calcium hydroxyapatite in this polymer, IRGANOX (registered trademark)
(Ciba Specialty Chemicals) 1010
5% by mass was blended, melted at 250 ° C., and melt-spun using a modified cross-section spinneret with a triangular cross section, but the extrusion pressure increased due to polymer modification during melting, and spinning could not be performed.

【0080】[0080]

【比較例5】実施例1において、延伸中及び延伸終了後
に仕上げ剤を付与しない以外は同様にして紡糸、乾燥、
延伸を行った。得られた繊維は異形度は1.22と高い
ものの、単糸表面に多数のフィブリル状物が観察され
た。繊維−繊維間の動摩擦係数(μ)は0.55と高く
本発明の範囲外であり、摩擦係数測定時にも多数の毛羽
やフィブリル状物が発生した。
[Comparative Example 5] The same procedure as in Example 1 was carried out except that no finishing agent was applied during and after the stretching, followed by spinning, drying,
Stretching was performed. The obtained fiber had a high degree of irregularity of 1.22, but many fibril-like substances were observed on the surface of the single yarn. The dynamic friction coefficient (μ) between the fibers was as high as 0.55, which is outside the range of the present invention, and a large number of fluffs and fibril-like substances were generated during the measurement of the friction coefficient.

【0081】[0081]

【実施例11】実施例1で製造したポリケトン繊維20
本を合糸し、1686dtex/1000fの繊維とし
て、Z方向に下撚り後、これを2本双糸しS方向に上撚
りして生コードとした。撚り数は下撚り/上撚りともに
390T/m(撚り係数=22647)で、撚糸時に断
糸等の不具合はなく、得られたコードも毛羽のない優れ
た品位を有していた。
Example 11 Polyketone fiber 20 produced in Example 1
The book was twisted into fibers of 1686 dtex / 1000 f, which was twisted in the Z direction, and then twined into two and twisted in the S direction to obtain a raw cord. The number of twists was 390 T / m (twisting coefficient = 22647) for both the lower twist and the upper twist, and there were no problems such as yarn breakage during twisting, and the obtained cords were of excellent quality with no fluff.

【0082】この生コードを、下記の液組成のRFL液
に浸漬した後に、乾燥ゾーン(張力2.8Nで160℃
で120秒の熱処理)、ヒートセットゾーン(張力4.
0Nで220℃で60秒の熱処理)、ノルマライジング
ゾーン(張力1.8Nで220℃、60秒の熱処理)を
通してコードを得た。 (RFL液組成) レゾルシン 22.0部 ホルマリン(30質量%) 30.0部 水酸化ナトリウム(10質量%) 14.0部 水 570.0部 ビニルピリジンラテックス(41質量%) 364.0部
This raw cord was dipped in an RFL solution having the following liquid composition, and then dried in a drying zone (tension: 2.8 N, 160 ° C.).
Heat treatment for 120 seconds), heat set zone (tension 4.
The cord was obtained through a normalizing zone (heat treatment at 220 ° C. for 60 seconds at 0 N) and a normalizing zone (heat treatment at 220 ° C. for 60 seconds at a tension of 1.8 N). (RFL liquid composition) Resorcin 22.0 parts Formalin (30% by mass) 30.0 parts Sodium hydroxide (10% by mass) 14.0 parts Water 570.0 parts Vinyl pyridine latex (41% by mass) 364.0 parts

【0083】このポリケトンコードは、引っ張り強力が
392N/cordと高く、ゴム接着力も172N/c
m/cordであり、優れた接着性を示した。このコー
ドの撚糸条件、Dip処理条件及び性能を実施例12、
13及び比較例6の結果と併せて表4に示す。
This polyketone cord has a high tensile strength of 392 N / cord and a rubber adhesive strength of 172 N / c.
It was m / cord and showed excellent adhesiveness. The twisting condition, Dip processing condition and performance of this cord are shown in Example 12,
The results are shown in Table 4 together with the results of No. 13 and Comparative Example 6.

【0084】[0084]

【実施例12】実施例11において、撚糸数を下撚り/
上撚りともに290回/m(撚り係数=16840)と
する以外は同様にして撚糸、Dip処理を行った。得ら
れたコードは品位もよく、強力が464N/cord、
ゴム接着力が166N/cm/cordと優れた性能を
有していた。
Example 12 In Example 11, the number of twisted yarns was
Twisted yarn and Dip treatment were performed in the same manner except that the upper twist was 290 times / m (twist coefficient = 16840). The obtained cord has good quality and strength of 464 N / cord,
The rubber had excellent adhesive strength of 166 N / cm / cord.

【0085】[0085]

【実施例13】実施例11において、撚糸数を下撚り/
上撚りともに190回/m(撚り係数=11033)と
する以外は同様にして撚糸、Dip処理を行った。得ら
れたコードは品位もよく、強力が506N/cord、
ゴム接着力が161N/cm/cordと優れた性能を
有していた。
[Example 13] In Example 11, the number of twisted yarns was
Twisted yarn and Dip treatment were carried out in the same manner except that the upper twist was 190 times / m (twist coefficient = 11033). The obtained cord is of good quality and strong, 506 N / cord,
The rubber adhesion was 161 N / cm / cord, which was an excellent performance.

【0086】[0086]

【比較例6】比較例1で製造したポリケトン繊維20本
を合糸し、1650dtex/1000fの繊維とし
て、実施例11と同様にして撚糸(下撚り/上撚りとも
に390T/m(撚り係数=22404))後、RFL
処理を行いコードとした。同一繊度・撚糸条件の異形断
面繊維(実施例11)と比較すると、コードの強力はや
や優れていたが、ゴムとの接着力は160N/cm/c
ordであり、本発明の異形断面繊維のコードに比べて
接着力は劣るものであった。
Comparative Example 6 Twenty polyketone fibers produced in Comparative Example 1 were combined into a fiber having 1650 dtex / 1000f and twisted in the same manner as in Example 11 (both lower twist / upper twist 390 T / m (twist coefficient = 22404). )) After that, RFL
The code was processed. The strength of the cord was slightly superior to that of the modified cross-section fiber of the same fineness and twisting condition (Example 11), but the adhesive strength with the rubber was 160 N / cm / c.
and the adhesive force was inferior to the cord of the modified cross-section fiber of the present invention.

【0087】[0087]

【比較例7】比較例2で製造したポリケトン繊維18本
を合糸し、1647dtex/900fの繊維として、
実施例11と同様にして撚糸(下撚り/上撚りともに3
90T/m(撚り係数=22383))後、RFL処理
を行いコードとした。このポリケトン繊維は撚糸強力利
用率が低く、生コード及びDipコードともに強力が大
幅に低下しており、同一繊度・撚糸条件の異形断面繊維
(実施例11)と比較すると、コードの強力は20%も
低く、また、ゴム接着力も155N/cm/cordで
あり、劣るものであった。
Comparative Example 7 Eighteen polyketone fibers produced in Comparative Example 2 were combined to obtain 1647 dtex / 900 f fibers,
In the same manner as in Example 11, twisted yarn (both twisted / twisted yarn 3
After 90 T / m (twisting coefficient = 22383), RFL treatment was performed to obtain a cord. This polyketone fiber has a low utilization factor of the twisting yarn strength, and the strengths of both the raw cord and the Dip cord are significantly reduced. The strength of the cord is 20% as compared with the modified cross-section fiber of the same fineness and the twisting condition (Example 11). Was low, and the rubber adhesive strength was 155 N / cm / cord, which was inferior.

【0088】[0088]

【表1】 [Table 1]

【0089】[0089]

【表2】 [Table 2]

【0090】[0090]

【表3】 [Table 3]

【0091】[0091]

【表4】 [Table 4]

【0092】[0092]

【発明の効果】本発明のポリケトン繊維は、高異形度の
断面形状を有すると共に、高強度・高弾性率、高融点、
高耐熱性という優れた力学物性を具備するものである。
また生産性にも優れ、単糸膠着や毛羽、断糸等の品質上
・工程上の不具合がなく、延伸工程や撚糸工程での工程
通過性および品位の優れるものである。この繊維を撚糸
することにより、高異形度の断面形状を有しながら、高
品位で高い強度を発現するコードを得ることができる。
特に、このポリケトン繊維及びコードは、比表面積が大
きく、樹脂やゴム、セメントとの接着性に優れ、タイ
ヤ、ホース、ベルト等のゴム製品の補強材、FRPやセ
メント補強材等の産業資材用分野において極めて有用で
ある。
EFFECT OF THE INVENTION The polyketone fiber of the present invention has a cross-sectional shape with a high degree of irregularity, high strength / high elastic modulus, high melting point,
It has excellent mechanical properties such as high heat resistance.
Further, it is excellent in productivity, has no defects in quality and process such as sticking of single yarn, fluff, yarn breakage, etc., and is excellent in process passability and quality in a drawing process and a twisting process. By twisting this fiber, it is possible to obtain a cord having a high-grade and high strength while having a cross-sectional shape with a high degree of irregularity.
In particular, these polyketone fibers and cords have a large specific surface area and are excellent in adhesiveness with resins, rubbers, and cements, and are used in industrial materials such as reinforcing materials for rubber products such as tires, hoses and belts, and FRP and cement reinforcing materials. Is extremely useful in

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // D02G 3/48 D02G 3/48 Fターム(参考) 3B153 AA02 BB01 BB05 BB07 CC12 CC31 FF02 FF12 FF16 FF50 GG01 GG13 GG40 4L035 AA04 AA09 BB03 BB10 BB15 BB17 BB22 BB66 BB69 BB81 BB89 BB91 CC02 CC08 DD02 EE08 EE09 EE20 FF01 4L036 MA04 MA20 MA33 MA37 PA01 PA03 PA21 PA26 PA46 RA24 UA07 4L038 AA08 AB02 BA14 BA16 BA33 BB03 BB08 CA11 DA04 DA20 4L045 AA02 BA03 BA10 BA12 CB02 CB08 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // D02G 3/48 D02G 3/48 F term (reference) 3B153 AA02 BB01 BB05 BB07 CC12 CC31 FF02 FF12 FF16 FF50 GG01 GG13 GG40 4L035 AA04 AA09 BB03 BB10 BB15 BB17 BB22 BB66 BB69 BB81 BB89 BB91 CC02 CC08 DD02 EE08 EE09 EE20 FF01 4L036 MA04 MA20 MA33 MA37 PA37 PA01 PA03 PA01 PA03 PA02 PA16 PA03 PA21 PA02 PA04 PA02 PA04 PA02 PA04 PA02 CB02 CB08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 繰り返し単位の95〜100質量%が化
学式(1)で表される1−オキソトリメチレンからな
り、結晶化度が60%以上、結晶配向度が90%以上、
かつ、引っ張り強度が10cN/dtex以上のポリケ
トン繊維であって、下記に示す繊維異形度が1.2以上
であり、繊維―繊維間動摩擦係数(μ)が0.01〜
0.5であることを特徴とするポリケトン繊維。 繊維異形度=L2/4πA (式中、Lはポリケトン繊維の横断面の外周長、Aは断
面積) 【化1】
1. 95 to 100% by mass of the repeating unit is composed of 1-oxotrimethylene represented by the chemical formula (1), and has a crystallinity of 60% or more and a crystal orientation of 90% or more,
In addition, the polyketone fiber has a tensile strength of 10 cN / dtex or more, the fiber irregularity degree shown below is 1.2 or more, and the fiber-fiber dynamic friction coefficient (μ) is 0.01 to
Polyketone fiber characterized by being 0.5. Deformation degree of fiber = L 2 / 4πA (where L is the outer peripheral length of the cross section of the polyketone fiber, and A is the cross-sectional area)
【請求項2】 繰り返し単位の100質量%が化学式
(1)で表される1−オキソトリメチレンからなり、結
晶化度が70%以上、結晶配向度が95%以上、引っ張
り強度が12cN/dtex以上、かつ、単糸繊度が
0.5〜2dtexであることを特徴とする請求項1記
載のポリケトン繊維。
2. 100% by mass of the repeating unit consists of 1-oxotrimethylene represented by the chemical formula (1), the crystallinity is 70% or more, the crystal orientation is 95% or more, and the tensile strength is 12 cN / dtex. The polyketone fiber according to claim 1, wherein the single yarn fineness is 0.5 to 2 dtex.
【請求項3】 繊維異形度が3以上であり、繊維の断面
形状が扁平であることを特徴とする請求項1又は2記載
のポリケトン繊維。
3. The polyketone fiber according to claim 1 or 2, wherein the degree of fiber irregularity is 3 or more and the cross-sectional shape of the fiber is flat.
【請求項4】 ポリケトン繊維に対して、0.3〜10
質量%の仕上げ剤が付着していることを特徴とする請求
項1〜3のいずれか1項に記載のポリケトン繊維。
4. 0.3 to 10 relative to the polyketone fiber
The polyketone fiber according to any one of claims 1 to 3, wherein a mass% of a finishing agent is attached.
【請求項5】 ポリケトン繊維の単糸膠着率が30%以
下であることを特徴とする請求項1〜4のいずれか1項
に記載のポリケトン繊維。
5. The polyketone fiber according to any one of claims 1 to 4, wherein the single yarn sticking rate of the polyketone fiber is 30% or less.
【請求項6】 請求項1〜5のいずれか1項に記載のポ
リケトン繊維からなり、下記に示す撚り係数Kが100
〜30000の範囲で撚糸されていることを特徴とする
コード。 K=Y×D0.5(T/m・dtex0.5) (式中、Yは1mあたりの撚り数(T/m)、Dは撚糸
に用いるポリケトンの総繊度(dtex))
6. The polyketone fiber according to claim 1, which has a twist coefficient K of 100 shown below.
A cord characterized by being twisted in the range of up to 30,000. K = Y × D 0.5 (T / m · dtex 0.5 ) (In the formula, Y is the number of twists per meter (T / m), and D is the total fineness (dtex) of the polyketone used for the twisted yarn)
【請求項7】 ハロゲン化亜鉛を含有する金属塩溶液に
ポリケトンを溶解し、その溶液を紡糸口金からエアギャ
ップを経て凝固浴に押出し、得られた糸条から金属塩を
洗浄除去した後、乾燥させ、次いで、熱延伸するポリケ
トン繊維の製造法において、紡口は、下記に示す紡糸口
金異形度が1.2以上の異形紡口であり、乾燥開始から
熱延伸終了の間のいずれかの段階で水分率が0〜40質
量%にある繊維に単糸間のずれを生ずる外力を加え、乾
燥終了から熱延伸終了の間のいずれかの段階でポリケト
ン繊維に対して0.1〜20質量%の仕上げ剤を付与す
ることを特徴とするポリケトン繊維の製造方法。 紡糸口金異形度=L0 2/4πA0 (式中、L0は紡糸口金吐出孔の外周長、A0は紡糸口金
吐出孔の断面積)
7. A polyketone is dissolved in a metal salt solution containing zinc halide, the solution is extruded from a spinneret through an air gap into a coagulation bath, and the metal salt is washed off from the obtained yarn and then dried. In the method for producing a polyketone fiber that is then heat-stretched, the spinneret is a modified spinneret having a spinneret irregularity of 1.2 or more as shown below, and any stage from the start of drying to the end of hot stretching is performed. An external force that causes a deviation between single yarns is applied to a fiber having a water content of 0 to 40% by mass, and 0.1 to 20% by mass based on the polyketone fiber at any stage from the end of drying to the end of thermal drawing. A method for producing a polyketone fiber, which comprises applying the above finishing agent. Deformation degree of spinneret = L 0 2 / 4πA 0 (where L 0 is the outer peripheral length of the spinneret discharge hole, and A 0 is the cross-sectional area of the spinneret discharge hole)
【請求項8】 ハロゲン化亜鉛を含有する金属塩溶液に
ポリケトンを溶解し、その溶液を紡糸口金からエアギャ
ップを経て凝固浴へ押出し、得られた糸条から金属塩を
洗浄除去した後、乾燥させ、次いで、熱延伸するポリケ
トン繊維の製造法において、紡口は、下記に示す紡糸口
金異形度が1.2以上の異形紡口であり、洗浄開始から
乾燥終了の間の水分率が40質量%以上であるポリケト
ン繊維に、繊維に対して0.1〜20質量%の離形剤を
付与することを特徴とするポリケトン繊維の製造方法。 紡糸口金異形度=L0 2/4πA0 (式中、L0は紡糸口金吐出孔の外周長、A0は紡糸口金
吐出孔の断面積)
8. A polyketone is dissolved in a metal salt solution containing zinc halide, the solution is extruded from a spinneret through an air gap into a coagulation bath, and the metal salt is washed off from the obtained yarn and then dried. In the method for producing a polyketone fiber that is then heat-stretched, the spinneret is a modified spinneret having a spinneret irregularity of 1.2 or more as shown below, and the water content between the washing start and the drying end is 40 mass. % Of the polyketone fiber is added to the fiber in an amount of 0.1 to 20% by mass of the release agent. Deformation degree of spinneret = L 0 2 / 4πA 0 (where L 0 is the outer peripheral length of the spinneret discharge hole, and A 0 is the cross-sectional area of the spinneret discharge hole)
JP2001220403A 2001-07-19 2001-07-19 Polyketone fiber Pending JP2003027333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220403A JP2003027333A (en) 2001-07-19 2001-07-19 Polyketone fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220403A JP2003027333A (en) 2001-07-19 2001-07-19 Polyketone fiber

Publications (1)

Publication Number Publication Date
JP2003027333A true JP2003027333A (en) 2003-01-29

Family

ID=19054224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220403A Pending JP2003027333A (en) 2001-07-19 2001-07-19 Polyketone fiber

Country Status (1)

Country Link
JP (1) JP2003027333A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082542A (en) * 2001-09-04 2003-03-19 Asahi Kasei Corp Spun yarn
JP2006199190A (en) * 2005-01-21 2006-08-03 Bridgestone Corp Pneumatic safety tire
JP2007217552A (en) * 2006-02-16 2007-08-30 Asahi Kasei Fibers Corp Joint sheet
JP2008073134A (en) * 2006-09-20 2008-04-03 Toyobo Co Ltd Hollow fiber membrane for blood purification, and method for producing the same
JP2008144297A (en) * 2006-12-08 2008-06-26 Asahi Kasei Fibers Corp Sewn glove
JP2008190078A (en) * 2007-02-05 2008-08-21 Asahi Kasei Fibers Corp Reinforcing fiber
JP2021515118A (en) * 2018-02-27 2021-06-17 イーストマン ケミカル カンパニー Sliver containing cellulose acetate for spun yarn

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173111A (en) * 1992-07-29 1994-06-21 Asahi Chem Ind Co Ltd Production of acrylic fiber for high performance carbon fiber
JPH0782627A (en) * 1993-09-10 1995-03-28 Kuraray Co Ltd Polyvinyl alcohol cord and its production
JPH1025621A (en) * 1996-07-08 1998-01-27 Teijin Ltd Polyester elastic fiber and extensible wet-type nonwoven fabric
WO1999039041A1 (en) * 1998-01-29 1999-08-05 Asahi Kasei Kogyo Kabushiki Kaisha Smooth polyester fiber
JP2000212828A (en) * 1999-01-18 2000-08-02 Kuraray Co Ltd Polyvinyl alcohol-based fiber and its production
JP2001073225A (en) * 1999-08-27 2001-03-21 Asahi Kasei Corp Polyketone fiber good in color developing property and its production
JP2001123326A (en) * 1999-10-19 2001-05-08 Asahi Kasei Corp Polyketone fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173111A (en) * 1992-07-29 1994-06-21 Asahi Chem Ind Co Ltd Production of acrylic fiber for high performance carbon fiber
JPH0782627A (en) * 1993-09-10 1995-03-28 Kuraray Co Ltd Polyvinyl alcohol cord and its production
JPH1025621A (en) * 1996-07-08 1998-01-27 Teijin Ltd Polyester elastic fiber and extensible wet-type nonwoven fabric
WO1999039041A1 (en) * 1998-01-29 1999-08-05 Asahi Kasei Kogyo Kabushiki Kaisha Smooth polyester fiber
JP2000212828A (en) * 1999-01-18 2000-08-02 Kuraray Co Ltd Polyvinyl alcohol-based fiber and its production
JP2001073225A (en) * 1999-08-27 2001-03-21 Asahi Kasei Corp Polyketone fiber good in color developing property and its production
JP2001123326A (en) * 1999-10-19 2001-05-08 Asahi Kasei Corp Polyketone fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082542A (en) * 2001-09-04 2003-03-19 Asahi Kasei Corp Spun yarn
JP4646467B2 (en) * 2001-09-04 2011-03-09 旭化成せんい株式会社 Spun yarn
JP2006199190A (en) * 2005-01-21 2006-08-03 Bridgestone Corp Pneumatic safety tire
JP4683934B2 (en) * 2005-01-21 2011-05-18 株式会社ブリヂストン Pneumatic safety tire
JP2007217552A (en) * 2006-02-16 2007-08-30 Asahi Kasei Fibers Corp Joint sheet
JP2008073134A (en) * 2006-09-20 2008-04-03 Toyobo Co Ltd Hollow fiber membrane for blood purification, and method for producing the same
JP2008144297A (en) * 2006-12-08 2008-06-26 Asahi Kasei Fibers Corp Sewn glove
JP2008190078A (en) * 2007-02-05 2008-08-21 Asahi Kasei Fibers Corp Reinforcing fiber
JP2021515118A (en) * 2018-02-27 2021-06-17 イーストマン ケミカル カンパニー Sliver containing cellulose acetate for spun yarn

Similar Documents

Publication Publication Date Title
JP3708030B2 (en) Polyketone fiber, polyketone fiber twisted product and molded article thereof
JP4584503B2 (en) Weave fabric
US4483727A (en) High modulus polyethylene fiber bundles as reinforcement for brittle matrices
JP3595846B2 (en) Polyketone fiber and method for producing the same
US4524101A (en) High modulus polyethylene fiber bundles as reinforcement for brittle matrices
WO2002068738A1 (en) Polyketone fiber and process for producing the same
JP2015518530A (en) Fabric reinforcement including continuous aramid yarn
EP0835953A2 (en) A precursor fibre bundle for production of a carbon fibre bundle, a carbon fibre bundle, and a process for producing thereof
JP3704015B2 (en) Polyketone fiber and method for producing the same
JP2003027333A (en) Polyketone fiber
JP4570273B2 (en) Polyketone fiber, cord and method for producing the same
JP3734077B2 (en) High strength polyethylene fiber
JP3666635B2 (en) High-strength polyethylene fiber with excellent uniformity
TWI693313B (en) Multifilaments and braided ropes using them, methods for making these, and fishing lines, nets, ropes
JP2922327B2 (en) Extra fine aramid fiber
JP4636693B2 (en) Synthetic fiber and cementitious structure containing the same
US5045257A (en) Process for producing aromatic polyester fiber
JP2004091969A (en) Method for producing polyketone cord
JP2007046195A (en) Precursor fiber for carbon fiber, method for producing the same and method for producing ultrafine carbon fiber
JP4646467B2 (en) Spun yarn
JP3804771B2 (en) Polyketone fiber
JPS60239523A (en) Manufacture of aromatic polyamide fiber
US6228966B1 (en) High-strength high-modulus polyacrylonitrile fibers, method for their production and use
JPS61119708A (en) High-tenacity acrylic fiber and production thereof
JP2007023452A (en) Highly functional fiber having excellent opening property or paralleling property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Effective date: 20100629

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A02