WO1999039041A1 - Smooth polyester fiber - Google Patents

Smooth polyester fiber Download PDF

Info

Publication number
WO1999039041A1
WO1999039041A1 PCT/JP1999/000366 JP9900366W WO9939041A1 WO 1999039041 A1 WO1999039041 A1 WO 1999039041A1 JP 9900366 W JP9900366 W JP 9900366W WO 9939041 A1 WO9939041 A1 WO 9939041A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
weight
finishing agent
content
total amount
Prior art date
Application number
PCT/JP1999/000366
Other languages
French (fr)
Japanese (ja)
Inventor
Jinichiro Kato
Katsuhiro Fujimoto
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12302629&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999039041(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to EP99901196A priority Critical patent/EP1052325B1/en
Priority to US09/601,194 priority patent/US6468655B1/en
Priority to DE69932231T priority patent/DE69932231T2/en
Priority to JP2000529491A priority patent/JP3188687B2/en
Publication of WO1999039041A1 publication Critical patent/WO1999039041A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • D06M13/17Polyoxyalkyleneglycol ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • D06M13/256Sulfonated compounds esters thereof, e.g. sultones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/35Abrasion, pilling or fibrillation resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/50Modified hand or grip properties; Softening compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • the present invention has excellent smoothness, abrasion resistance, convergence, and antistatic properties, and has a spinning process such as a winding process, a stretching process, unwinding from bobbins or cheese, false twisting, and weaving. It has excellent passability from the process to the post-processing, and the bobbin and cheese winding form is extremely good.As a result, the woven and knitted fabric has good quality such as elastic recovery, soft texture, and homogeneity.
  • the present invention relates to a polytrimethylene terephthalate fiber suitable for use in clothing. Background art
  • Poly (methylene terephthalate) (hereinafter referred to as “polyethylene methylene terephthalate”) obtained by polycondensation of lower alcohol ester of terephthalic acid represented by terephthalic acid or dimethyl terephthalate with trimethylene glycol (1,3-propanediol).
  • PTT polyethylene methylene terephthalate
  • PET polyethylene terephthalate
  • PTT has been applied to products such as clothing, BCF carpets, brushes, tennis guts, etc., taking advantage of the above-mentioned features (Japanese Patent Application Laid-Open Nos. Hei 9-37224 and Hei 8-1-173). 244, JP-A-5-262628-2).
  • the false twist processing system for PTT fiber is more elastic than conventional synthetic fiber, for example, polyester fiber such as PET fiber. This is because it is rich in resilience and softness, making it extremely excellent as a raw material for stretch material (Japanese Patent Application Laid-Open No. 9-77837).
  • the finishing agent contains 70% by weight or more of a polyether copolymerized with polyoxyethylene and polyoxypropylene (hereinafter simply abbreviated as polyester).
  • An agent is usually attached to the fiber surface (for example, Japanese Patent Application Laid-Open No. 63-57554).
  • PTT fibers and polyester fibers other than PTT fibers typified by PET fibers are as follows: (1) Physical properties of the fibers, in particular, PTT fibers have a large coefficient of friction and abrasion.
  • ⁇ ⁇ ⁇ Fibers have the property that when they are stretched like elastic yarn, they easily shrink back to their original length because the molecules are largely bent into a ⁇ shape. Due to these elastic properties, when rolls, guides, hot plates, pins, or single yarns come into contact with each other under tension during the spinning and processing stages, the contact area increases greatly, and as a result, the friction coefficient increases. Greatly increase. If spinning and drawing are continued in such a state, fluff is likely to occur. Furthermore, it was also found that if the fibers of the ⁇ ⁇ ⁇ fibers were rubbed with each other or with a material other than ⁇ ⁇ ⁇ fibers, the yarns were likely to fluff.
  • this kind of abrasion is also due to the ⁇ -shaped bent molecular structure. If such a ⁇ -shaped structure is adopted, the intermolecular force between adjacent molecules is reduced, so that the cohesive force acting in the intermolecular direction It is estimated that the wear characteristics will decrease as a result.
  • other polyester fibers for example, ⁇ ⁇ fiber ⁇ polybutylene terephthalate fiber, have almost no elastic properties because the molecular chains are almost completely extended.
  • the intermolecular cohesion tends to increase. As a result, there are few friction and abrasion problems encountered with ⁇ ⁇ ⁇ fibers.
  • the heat set temperature in false twisting of PET fiber exceeds 200 ° C, but according to the study of the present inventors, PTT fiber is practically at a temperature of 190 ° C or more. Can not be heat set. This is because, when a temperature exceeding 190 ° C. is applied to the PTT fiber, the strength and elongation are greatly reduced, and the fiber is liable to be cut. Accordingly, the heat set temperature in false twisting of PTT fibers is usually 140 to 190 ° C. Even at such a low heat set temperature, the glass transition point of the PTT fiber is lower than that of the PET fiber, so that it is possible to receive a sufficient heat set.
  • finishing agent for false twisting of PTT fibers it is not necessary to ensure heat resistance exceeding 200 ° C, and therefore, a polyether component having a low effect of lowering the friction coefficient of the fiber surface is mainly used. It turns out that it is not necessary to use the finishing agent as a component.
  • Japanese Patent Application Laid-Open Nos. 424,284 and 199,477 propose a finish for PET containing a liquid aromatic ester.
  • this finish is applied to PTT fibers, the coefficient of kinetic friction does not decrease, and the generation of fluff cannot be suppressed.
  • the finish of PTT fiber it does not cover textiles for clothing, but fishing line using PTT has a silicon-based component or a Teflon-based component.
  • a technique for applying a surface treatment finish is disclosed (JP-A-9-226046).
  • a finishing agent mainly composed of a silicone-based component or a Teflon-based component is used for PTT fibers for clothing, the finishing agent will not easily fall off during the fiber scouring process, and in addition, the antistatic property will be low. There are downsides when it comes down. Therefore, a fiber fabric using such a finishing agent can obtain only a product with a slimy feeling and a poor texture.
  • the known technology includes spinning of PTT fiber, particularly PTT fiber for clothing. There is no suggestion for the design of finishing agents that are essential for solving the processing-specific friction and wear problems.
  • the purpose of the present invention is to achieve a high coefficient of friction unique to PTT fiber, excellent smoothness and abrasion resistance with a finishing agent attached, which eliminates problems of spinning due to the abrasion of the side of the fiber and the processability of processing.
  • An object of the present invention is to provide a PTT fiber having convergence and antistatic properties.
  • a more specific object of the present invention is to improve the process passability from spinning to post-processing, such as a winding step, a stretching step, unwinding properties from bobbins and cheese, false twisting properties, knitting and weaving properties, It is an object of the present invention to provide a PTT fiber to which an improved finishing agent is attached, which can obtain a woven or knitted fabric of good quality such as elastic recovery, soft texture, and homogeneity. Disclosure of the invention
  • An object of the present invention is to provide a polyester fiber having a birefringence of 0.025 or more composed of 90% by weight or more of poly (trimethylene terephthalate) and (1) a molecular weight of 300 to 800. And / or 30 of the aliphatic ester.
  • As a composition component at a specific ratio This is achieved by a polyester fiber having a specific amount of finish to be combined.
  • the present invention is a polyester fiber comprising 90% by weight or more of polytrimethylene terephthalate and having a birefringence of 0.025 or more, and a finishing agent is applied to the surface of the fiber. 2 to 3% by weight, containing compounds (1) to (4) as essential components of the finish, and compounds (1) to (4) in the total amount of the finish.
  • a polyester fiber characterized in that the total content thereof is 80 to 100% by weight.
  • R i and R 2 are a hydrogen atom, an organic group having 1 to 50 carbon atoms, and n 2 is 1 to 100.
  • An ionic surfactant having a content of 2 to 20% by weight based on the total amount of the finishing agent
  • the polyester fiber of the present invention has the specific finishing agent As a result, the fiber-to-fiber kinetic friction coefficient is 0.3 to 0.45 and the fiber-to-metal kinetic friction coefficient is 0.17 to 0.3, and the spinnability and processability are improved. Good polyester fiber.
  • the fiber-to-fiber kinetic friction coefficient is also a parameter that indicates the likelihood of fluffing due to rubbing between fibers.
  • the fiber-metal kinetic friction coefficient is a parameter indicating the likelihood of generation of fluff due to friction between the fiber and a metal part such as a roll or a hot plate.
  • the fiber-to-fiber kinetic friction coefficient is less than 0.3, the fibers are too slippery, and the spinning and stretching properties are rather reduced. On the other hand, if it exceeds 0.45, the friction between the fibers becomes too high, and the fibers are liable to be fluffed. On the other hand, if the fiber-metal kinetic friction coefficient is smaller than 0.17, the fiber slips too much on a surface such as a wool and the spinning / drawing property is rather deteriorated. If this coefficient exceeds 0.3, the friction becomes too high and fluff is likely to occur.
  • the fiber-fiber static friction coefficient is a parameter that indicates the quality of a roll of cheese or cheese.
  • the fibers can form burns and cheeses having excellent shape and unwinding properties.
  • the specific finish is applied to a fiber having a birefringence of 0.025 or more.
  • PTT fiber with a birefringence of 0.025 or more has a firm orientation of the fiber surface molecules, so that the finish does not excessively soak into the fiber and the finish firmly covers the fiber surface.
  • the performance of the finish can be maximized.
  • the fibers whose birefringence is thus specified exhibit excellent elastic recovery because the PTT molecules in the fibers are appropriately oriented, and the resulting fabric also has excellent elastic recovery.
  • Polyester other than PTT Fibers for example, PET fibers
  • the birefringence is less than 0.025, the molecules are easily oriented due to insufficient orientation of the molecules, so that the molecules have a low elastic recovery and are subject to slight temperature change or load during storage or transportation. Long-term storage of the fibers impairs the properties of the finish, as the fibers are easily degraded and the attached finish excessively soaks into the fibers.
  • Fibers having a birefringence of 0.05 or more, preferably 0.05 to 0.1, have a sufficient orientation of the fibers, so that false twist without a weaving or knitting process or stretching is performed.
  • the friction characteristics do not decrease in the process and dyeing process.
  • the polyester fiber of the present invention has a birefringence of 0.025 to 0.05, which is particularly suitable for a fiber for drawing false twisting, and in which the molecules are appropriately oriented. As a result, there is no change in fiber performance during normal handling such as storage and transportation.
  • the polyester fiber of the present invention may be a multifilament or a monofilament, and may be either a long fiber or a short fiber.
  • the fineness of the polyester fiber of the present invention is not particularly limited, but is usually 5 to 200 d in total fineness and 0.0001 to 10 d in single yarn fineness.
  • the cross-sectional shape is not limited, such as a round shape, a triangular shape, a flat shape, and a star shape, and may be a solid fiber or a hollow fiber.
  • the polymer constituting the polyester fiber of the present invention is PTT obtained by polycondensation of terephthalic acid and 1,3-trimethylene glycol.
  • Examples of such comonomers and polymers include oxalic acid, succinic acid, adipic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid, ethylene glycol, butanediol, Cyclohexandimethanol, 5—sodium sulfeusophthalic acid, 5—tetrabutylphosphonium phosphonium salt, polyethylene glycol, polybutylene glycol , Polyethylene terephthalate, polybutylene terephthalate, and the like.
  • additives such as anti-glazing agents, heat stabilizers, anti-foaming agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent brighteners, etc. May be copolymerized or mixed.
  • the polyester fiber of the present invention has a birefringence of 0.025 or more. In this range of birefringence, the fibers exhibit excellent elastic recovery because the PTT molecules in the fibers are appropriately oriented. The resulting fabric also exhibits excellent elastic recovery. Polyester fibers other than PTT, such as PET fibers, cannot exhibit such excellent elastic recovery even if the birefringence is 0.025 or more.
  • the finish of the present invention when the finish of the present invention is applied to PTT fiber having a birefringence of 0.025 or more, the finishing agent does not excessively soak into the fiber because the fiber surface molecules are oriented firmly. Since the fiber surface is covered firmly, the performance of the finishing agent can be maximized.
  • the birefringence is less than 0.025, molecules are easily moved due to insufficient molecular orientation. Therefore, the yarn cannot be used for the purpose of the present invention because the yarn has a low elastic recovery property and the yarn is easily deteriorated by a slight temperature change or load during storage or transportation. Also, the attached finishing agent will excessively soak into the fiber, and if stored for a long period of time, will impair the properties of the finishing agent.
  • Fibers having such a birefringence have the same fiber performance during normal handling such as storage and transportation because the P ⁇ T molecules are appropriately oriented. It shows excellent stretchability, false twisting properties, and crimping properties.
  • the fibers having a birefringence of 0.05 or more, preferably 0.05 to 0.1 have sufficient orientation of the PTT fibers, the fibers do not require a weaving process or stretching.
  • the fabric can be processed through a twisting step, a dyeing step, and the like.
  • the polyester fiber of the present invention comprises 90% by weight or more of PTT, has a birefringence of 0.025 or more, and has the following finishing agent attached to the fiber. Utilizing the excellent elastic recovery properties and soft texture of the product to the maximum, the processability from spinning to false twisting is extremely good, resulting in elastic recovery and softness as a woven fabric. Good quality such as homogeneity can be obtained.
  • the finish refers to an organic mixture adhering to the fiber surface.
  • the finish used in the present invention contains the compounds (1) to (4) as essential components as its constituent components, and the total amount of the compounds (1) to (4) in the total amount of the finish Is 80 to 100% by weight.
  • An aliphatic ester having a molecular weight of 300 to 800 and a content of 30 to 80% by weight based on the total amount of the finishing agent, or a redwood viscosity at 30 ° C of 40 to 5 0 0 second mineral oil
  • the content of the finishing agent is 2 to 60% by weight, represented by the following structural formula, wherein ethylene oxide units and propylene oxide units are randomly or block copolymerized.
  • R 2 are a hydrogen atom and an organic group having 1 to 50 carbon atoms, and n, and n 2 are 1 to 100.
  • a surfactant having a content of 2 to 20% by weight based on the total amount of the finishing agent.
  • the compound (1) which is the first essential component of the finishing agent, is an aliphatic ester having a molecular weight of 300 to 800 and / or 30. It is a mineral oil with a redwood viscosity of 40 to 500 seconds at C.
  • aliphatic esters and / or mineral oils are components necessary for improving the smoothness of the PTT fiber and reducing its friction coefficient.
  • examples of the aliphatic ester include various synthetic products and natural fats and oils.
  • Examples of the aliphatic esters of synthetic products include monoesters, diesters, triesters, tetraesters, pentaesters, and hexesters. From the viewpoint of smoothness, use of monoester, diester, and triester is preferred. If the molecular weight of the aliphatic ester is less than 300, the strength of the oil film becomes too low and the oil is easily separated from the fiber surface with a guide roll to reduce the smoothness of the fiber or to reduce steam. There is a problem that the pressure is too low and it scatters during the process and deteriorates the working environment.
  • Aliphatic polyesters having a molecular weight of from 300 to 550 are the most preferred aliphatic esters because they exhibit particularly good smoothness.
  • Specific examples of preferred synthetics include isooctyl stearate, octyl stearate, octyl palmitate, isooctyl palmitate, 2-ethylhexyl stearate, lauric acid.
  • Oleinole isotridecyl stearate, oleyl oleate, dioleyl adipate, glyceryl trilaurate and the like.
  • two or more aliphatic esters may be combined.
  • Particularly preferred are octyl stearate, olein oleate, lauryl oleate and oleyl oleate.
  • aliphatic esters composed of a monovalent carboxylic acid and a monovalent alcohol are particularly preferable in terms of molecular structure.
  • an aliphatic ester having a molecular weight of from 400 to 800 When it is desired to increase the heat resistance, it is preferable to use an aliphatic ester having a molecular weight of from 400 to 800.
  • a part of the hydrogen atoms may be substituted with a group having a hetero atom such as an oxygen atom or a sulfur atom, for example, an ether group, an ester group, a thioester group, a sulfide group, or the like.
  • the mineral oil examples include paraffinic, naphthenic, and aromatic oils. From the viewpoint of improving smoothness, it is preferable to use paraffinic or naphthenic mineral oil. Of course, two or more mineral oils may be combined. As the mineral oil, one having a redwood viscosity at 30 ° C of 40 to 500 seconds is preferably used. Mineral oils of less than 40 seconds may be easily scattered and have a small effect, and if they are more than 500 seconds, the viscosity is too high and the effect of improving smoothness is reduced. The redwood viscosity of the mineral oil is preferably between 50 and 400 seconds.
  • Content of aliphatic ester and / or mineral oil in the finish of the present invention Is required to be 30 to 80% by weight in order to enhance smoothness. If the amount is less than 30% by weight, the smoothness is insufficient, and if the amount is 80% by weight, the smoothness becomes too high, and the burned fiber or wound cheese form becomes unsatisfactory.
  • the content is preferably 30 to 60% by weight, and when used for woven or knitting, high smoothness is required, so that the content is preferably 50 to 70% by weight.
  • the second essential component of the finish is a polyether represented by the formula (2).
  • Compound (2) has the function of enhancing the strength of the oil film formed on the fiber surface by the finish, and is a necessary component to dramatically improve the abrasion, which is a problem of PTT fibers, by adding it. .
  • the fibers when the fibers are rubbed in the spinning, drawing process, false twisting process, and weaving process, the fibers exhibit a remarkable effect when they become less fluffy.
  • R 1 0-(CH 2 CH 2 0) ⁇ ,-(CH (CH 3 ) CH 2 0) n 2 — R 2
  • R,, R z are a hydrogen atom, a carbon number of 1 to And up to 40 organic groups, and n 2 is from 1 to 100.
  • the organic group is a hydrocarbon group
  • a part or all of the hydrocarbon group may be an ester group, a hydroxyl group, an amide group, a carboxyl group, a halogen atom, a sulfonate group, or the like. It may be substituted with a group or element having a hetero atom.
  • the hydrogen atom,, R 2 is an aliphatic alcohol, an aliphatic carboxylic acid, an aliphatic amine, or an aliphatic amide residue, and has 5 carbon atoms. ⁇ 18 is preferred.
  • the propylene oxide unit and the ethylene oxide unit may be a random copolymer or a block copolymer.
  • the weight ratio of propylene oxide unit / ethylenoxide unit is from 20/80 to 70/30, the effect of suppressing abrasion is high.
  • the weight ratio of oral pyrenoxide units / ethylenoxide units is 20 to 80/60/40.
  • the molecular weight of the compound (2) is preferably from 400 to 2000, more preferably from 1500 to 2000. In this case, and and and n 2 adopt values corresponding to the molecular weight. This molecular weight is particularly important.If the molecular weight is less than 400, the effect of suppressing abrasion is small, and if the molecular weight exceeds 2000, the coefficient of static friction of the fiber becomes too low and the wound form becomes poor. Tend. Even more preferably, it is from 150 to 1500.
  • the content of the compound (2) in the finish should be 2 to 60% by weight. If it is less than 2% by weight, the effect of improving abrasion resistance is small, and if it exceeds 60% by weight, the coefficient of static friction between fibers becomes too low, and the winding form becomes poor. When used for false twisting, the content is preferably 3 to 60% by weight, particularly preferably 5 to 40% by weight. When used for weaving, 5 to 30% by weight is preferred.
  • the third essential component of the finishing agent is a compound of ethylene oxide or propylene oxide added to an alcohol of 1 to 30 carbon atoms, a carboxylic acid, amide or amide of 1 to 30 carbon atoms. It is at least one compound selected from compounds to which ethylene oxide and / or propylene oxide is added, the total number of moles of the oxide is 1 to 100, and the content with respect to the total amount of the finishing agent is 5 440% by weight of a nonionic surfactant.
  • the nonionic surfactant is a component necessary for imparting emulsifying properties for appropriately emulsifying the components of the finishing agent, bunching of the fibers, adhesion of the finishing agent, and abrasion resistance.
  • This nonionic surfactant may be linear or branched in molecular structure, and may have a plurality of functional groups. Some or all of the hydrogen atoms are ester, hydroxyl, amide, carboxyl, halogen, or sulfonic acid groups. May be substituted with a group or element having a hetero atom.
  • the carbon number of the alcohol, carboxylic acid, amide, or amide is from 1 to 30, preferably from 5 to 30, and more preferably from the viewpoint of emulsifiability and convergence. Is 8 to 18.
  • the number of moles of added ethylene oxide and propylene oxide is 1 to 100, and preferably 3 to 15 from the viewpoint of high smoothness.
  • nonionic surfactants include polyoxyethylene stearyl ether, polyoxyethylene stearyl leuyl ether, polyoxyethylene oleyl ether, polyoxyethylene cetyl ether, and polyoxyethylene stearyl ether.
  • Monobutyl ether copolymerized with polyoxyethylene lauryl ether and propylenoxydethylenoxide polyquineethylene bisphenol A dilaurate, polyoxyethylene bisphenol A rauraylate Polyethylene bisphenol A distearate, Polyethylene bisphenol A stearate, Polyethylene bisphenol A georate, Polyethylene Oxyethylene bisphenol A rate, polyoxyethylene stearyla Min, polyoxyethylene laurilamin, polyoxyethylene oleamide, polyoxyethylene oleamide, polyoxyethylene laurate amide, poly Oxyethylene stearate amide, polyoxyethylene laurate ethanolate, polyoxyethylene oleate ethanolate, polyoxyethylene oleate diethanol amide, diethyle Triaminooleic acid amide, polyoxypropylene stearyl ether, polyoxypropylene bisphenol A stearate, polypropylene stearylamine, polypropylenoleate Etc.
  • the content of these nonionic surfactants in the finishing agent is 5 to 40% by weight from the viewpoint of improving emulsifying properties, fiber bunching, finishing agent adhesion, and abrasion resistance. . If it is less than 5% by weight, the above performance is insufficient. On the other hand, if it exceeds 30% by weight, the friction becomes too high, and fluff is likely to occur. It is preferably from 5 to 30% by weight.
  • the fourth essential component of the finish is an ionic surfactant.
  • This ionic surfactant is a component necessary for imparting antistatic properties, abrasion resistance, emulsifying properties, and anti-wear properties to the fibers.
  • any of an anionic surfactant, a cationic surfactant, and an amphoteric surfactant may be used, and in particular, the use of an anionic surfactant is an antistatic property. It is preferable from the viewpoint of imparting abrasion resistance, emulsifying property and heat resistance, and in particular, a sulfonate compound, a phosphate salt, a higher fatty acid salt and the like are preferable. Of course, two or more kinds of anionic surfactants may be combined. Specific examples of preferred ionic surfactants include compounds (5) to (8), which are particularly excellent in antistatic property, abrasion resistance, emulsifying property, and water resistance.
  • R to R 9 are a hydrogen atom and an organic group having 4 to 40 carbon atoms.
  • the organic group is a hydrocarbon group
  • part or all of the hydrocarbon group is an ester group, a hydroxyl group, an amide group, a carboxy group, a halogen atom, a sulfonic acid group, or the like. It may be substituted with a group or element having another hetero atom.
  • X is an alkali metal or an alkaline earth metal. It is necessary that the content of these nonionic surfactants in the finishing agent is 2 to 20% by weight from the viewpoint of improving antistatic properties.
  • the content is less than 2% by weight, the antistatic property, abrasion resistance, emulsifying property, and anti-yielding property are insufficient, and the fiber-to-fiber kinetic friction coefficient and the fiber-to-fiber static friction coefficient are too low, resulting in poor winding form.
  • the content exceeds 20% by weight, the friction becomes too high, and fluff is likely to be generated.
  • the content is preferably 2 to 15% by weight, and when used for weaving, 5 to 15% by weight is preferred.
  • the content of these essential components needs to be in the range of 80 to 100% by weight of the total amount of the finish.
  • the finishing agent used in the present invention may contain a finishing component other than the essential components of the present invention in a range that does not impair the object of the present invention, that is, less than 20% by weight.
  • a finishing component in order to improve smoothness and spreadability of the finish on the fiber, a silicone compound such as dimethylsilicon, A compound obtained by adding about 3 to 100 moles of ethylene oxide or Z and propylene oxide to a part of the methyl group of tyl silicon via an alkyl group, and an organic compound having 5 to 18 carbon atoms. And the like.
  • an imidazoline compound having a metal carbonate unit is contained in order to improve antistatic properties.
  • ester compound other than those defined in the present invention, for example, an ester having an ether group. Further, it may contain a known antiseptic, antiseptic, antioxidant and the like. The content is preferably 10% by weight or less, more preferably 7% by weight or less.
  • Finishes composed of the above constituents are not diluted as such, or 5 to 60% by weight, preferably 5 to 35% by weight in water. It can be dispersed and attached to fibers as an emulsion finish.
  • the amount of the finishing agent deposited on the fibers is 0.2 to 3% by weight. If the content is less than 0.2% by weight, the effect of the finishing agent is reduced. On the other hand, if it exceeds 3% by weight, the running resistance of the fiber becomes too large, and the finishing agent adheres to the rolls, hot plates, guides, etc., and contaminates them.
  • the content is preferably 0.3 to 1.0% by weight, particularly preferably 0.3 to 0.6% by weight, and when used for weaving and knitting, 0.4 to 1.0% by weight. It is 1.2% by weight, particularly preferably 0.5-1% by weight. Of course, some of the finishing agent may penetrate into the fiber.
  • the polyester fiber of the present invention is applied at any time when the spun yarn is solidified during melt spinning. Normally, it is preferable to apply the fibers to the fiber before winding is performed.
  • a spinning method to which the application of the finishing agent is applied a method in which an undrawn yarn is wound once and then drawn by a drawing machine, a method in which spinning and drawing are performed in one stage, and 200 to 400 m / m Any of a method of obtaining a semi-drawn yarn in min and a high-speed spinning in which spin drawing is performed at a spinning speed of 500 to 140 Om / min may be used. As above, a spinning method to which the application of the finishing agent is applied, a method in which an undrawn yarn is wound once and then drawn by a drawing machine, a method in which spinning and drawing are performed in one stage, and 200 to 400 m / m Any of a method of obtaining a semi-drawn yarn in min and a high-speed spinning in which spin drawing is performed at a spinning speed of 500
  • the obtained fiber is stretched to have an elongation of 25 to 180%, preferably 25 to 150%, and more preferably 35 to 130%.
  • the birefringence of the polyester fiber of the present invention can be made 0.025 or more.
  • the fiber obtained as described above satisfies both the fiber-to-fiber kinetic friction coefficient of 0.3 to 0.45 and the fiber-to-metal kinetic friction coefficient of 0.17 to 0.3. It becomes a fiber with good processability.
  • the fiber-to-fiber kinetic friction coefficient is a parameter that indicates the likelihood of fluffing due to rubbing between fibers. It is a tar. If it is less than 0.3, it will slip too much, and the spinning and stretching properties will be reduced. If it exceeds 0.45, the friction becomes too high, and fluff is likely to occur. Preferably, it is 0.3 to 0.42.
  • the fiber-metal kinetic friction coefficient is a parameter indicating the likelihood of generation of fluff due to rubbing between the fiber and a metal part such as a roll / hot plate. If it is smaller than 0.17, it will slip too much, and the spinning and stretching properties will decrease. If it exceeds 0.3, the friction becomes too high, and fluff is likely to be generated. Preferably, it is 0.15 to 0.23.
  • the fiber-fiber static friction coefficient is 0.27 to 0.4, more preferable fibers are obtained.
  • the fiber-to-fiber static friction coefficient corresponds to the amount of polyether added, by adjusting the amount of polyether to make the fiber-to-fiber static friction coefficient 0.27 to 0.4, good wear resistance is obtained. And winding forms can be achieved.
  • the fiber-to-fiber static friction coefficient is a parameter indicating the quality of the roll form of a burn or cheese. If it is less than 0.27, the coefficient of static friction is too small, and the wound form collapses. If it exceeds 0.4, the fiber becomes a fiber having a high friction coefficient, and the additivity decreases. Preferably, it is 0.28 to 0.35.
  • polyester fiber of the present invention usually shows the following fiber physical properties.
  • the strength of the polyester fiber of the present invention is preferably 3 g / d or more for a drawn yarn, and 1.0 g / d or more for a semi-drawn yarn.
  • a drawn yarn if it is less than 3 g / d, the tear strength and the burst strength of the obtained fabric may decrease depending on the use.
  • it is 4 gZd or more.
  • the elongation of the polyester fiber of the present invention is usually 25 to 180%. If the elongation is less than 25%, the abrasion resistance of the fiber is extremely low, and even if a finish described below is applied to such a fiber, the abrasion characteristics are poor. In some cases, it cannot be used practically. On the other hand, if the elongation exceeds 180%, the orientation of the fiber becomes insufficient, and the yarn may be easily deteriorated by a slight temperature change or load during storage or transportation.
  • 35 to 55% is preferable to suppress generation of fluff, and to use as a semi-drawn yarn for performing false twisting, 4 to 55% is used. 0 to 130% is preferred.
  • the obtained fabric has extremely high stretchability.
  • the elastic modulus of the polyester fiber of the present invention is in the range of 10 to 30 g / d. By exhibiting such a low elastic modulus, the obtained fabric has an extremely soft texture.
  • the viscosity is 20 to 25 g Zd and the intrinsic viscosity of the polyester fiber of the present invention. 7] is preferably from 0.4 to 2.0, more preferably from 0.5 to 1.5, and even more preferably from 0.6 to 1.2. Within this range, fibers having excellent strength and spinnability can be obtained.
  • the intrinsic viscosity is less than 0.4, spinning becomes unstable because the melt viscosity of the polymer is too low, and the strength of the obtained fiber is low, which is not satisfactory.
  • the intrinsic viscosity exceeds 2.0, the melt viscosity is too high, and melt fracture or poor spinning occurs during spinning.
  • the measurement was performed according to JIS-L-1013.
  • the fiber was attached to a tensile tester at a chuck distance of 20 cm, stretched to an elongation of 20% at a stretching speed of 20 cm / min, and left for 1 minute. After that, it is contracted again at the same speed, and a stress-strain curve is drawn.
  • the elongation when the stress becomes zero during shrinkage is defined as the residual elongation (A).
  • the elastic recovery was determined according to the following equation.
  • the fiber was washed with ethyl ether, the ethyl ether was distilled off, and the amount of the pure oil adhering to the fiber surface was divided by the fiber weight to determine the oiling rate.
  • the number of yarn friction cuts indicates the number of times the fibers are rubbed together before cutting occurs, and is a measure of the ease with which the fiber side surfaces are worn. In other words, the larger the number, the better the abrasion.
  • the number of yarn friction cuts is measured by a yarn friction binding tester manufactured by Toyo Seiki Seisaku-sho, Ltd.
  • the two ends of the yarn were tied together with two clasps lined up through pulleys.
  • This clasp can reciprocate with a length of 2 Omm.
  • the pulley was rotated and twisted twice, a load of 50 g was applied, and the clasp was reciprocated in 150 strokes Z minutes.
  • the number of reciprocating motions can be measured with a counter, and the number of times until the yarn is cut was determined as the number of yarn friction cuts.
  • T is the weight of the weight applied to the fiber
  • T 2 is the average tension measured at least 25 times
  • In is the natural logarithm
  • 7 ⁇ is the pi.
  • the fiber enters the friction body while applying 0.4 g Zd tension to the 25 mm diameter iron cylinder whose surface is finished in chrome satin (roughness 3 s).
  • the kinetic friction coefficient of the fiber when the fiber was rubbed at a speed of 100 mZmin in an atmosphere of 25 ° C and 65% RH with the exit direction set to 90 ° was determined according to the following equation.
  • the fiber (yarn) is passed through the knitting needle, and the angle between the yarn path entering and exiting the knitting needle is 60.
  • the cheese was wound at 2 mZmin for 5 hours under a tension of 0.6 g Zd for 5 hours, and the number of fluffs generated on the end face of the cheese was counted. ⁇ Not generated
  • DMT Dimethyl terephthalate
  • trimethylene glycol (1,3-pronondiol) were charged at a molar ratio of 1: 2, and 0.09% by weight of ZDMT (the unit is the amount of DMT) (A weight% with respect to the weight of the compound) and calcium acetate of 0.01% by weight of ZDMT were added thereto, and the temperature was gradually increased to complete the transesterification at 240 ° C.
  • trimethylphosphophosphate as a heat stabilizer 0.05% by weight ZDMT, an average particle size of 0.35 // m Then, the mixture was reacted at 270 ° C. for 2 hours.
  • the intrinsic viscosity of the obtained polymer was 0.75.
  • this polymer was further subjected to solid-state polymerization under a nitrogen atmosphere at 215 ° C. for 5 hours to increase the intrinsic viscosity to 0.92.
  • Examples 1 to 8 The polymer obtained in Reference Example 1 was dried under a nitrogen atmosphere at 160 ° C. for 3 hours using a circulating drier to a moisture content of 30 ppm.
  • the obtained dried polymer was put into an extruder, and extruded through a round spinning hole having a diameter of 0.23 mm x 36 pieces at a diameter of 2655 mm.
  • the spun filament group was blown with cold air at 20 ° C.
  • the obtained fiber was a fiber consisting of PTT at 99% by weight or more.
  • All of the fibers to which the finish having the composition within the range specified in the present invention was adhered exhibited excellent spinning and drawability.
  • the fibers obtained in any of the examples were high in elastic recovery, low in elastic modulus, and soft in touch.
  • Example 1 was repeated, changing the finish as described in Table 1.
  • Comparative Example 1 since an aromatic ester was used in place of the aliphatic ester, scum and fluff were generated due to a high fiber-to-fiber kinetic friction coefficient and a fiber-to-metal kinetic friction coefficient. Also, since it does not contain polyether, the number of yarn friction cuts is low.
  • Comparative Example 2 a finishing agent containing no aliphatic ester, which is used for false twisted yarn of PET, was used.
  • fluff was generated when the fiber passed through the hot plate or the mouth.
  • fluff was generated in the fluff test. As a result, the number of yarn friction cuts decreased.
  • Comparative Example 3 the aliphatic ester having a molecular weight lower than the range of the present invention was used. Was used. In this case, since the film strength of the finishing agent was reduced, the coefficient of kinetic friction between the fiber and the metal was increased, and fluff was generated when passing through a hot plate or a mouth. Also, fluff was generated in the fluff test.
  • Comparative Example 4 an experiment was conducted using a finish containing an amount of polyether exceeding the range of the present invention. In this case, the fiber-to-fiber static friction coefficient was reduced, and the wound foam was greatly collapsed, and it was not possible to obtain a 3 kg winding burn.
  • the finishing agent out of the range of the present invention was adopted by using the finishing agent of Example 1 and lowering the oiling rate.
  • the fiber-to-fiber kinetic friction coefficient and the fiber-to-metal kinetic friction coefficient were increased, and fluff and static electricity were generated.
  • Comparative Example 6 showed a finish in which the amount of ionic surfactant was outside the scope of the present invention. In this case, static electricity was generated. In addition, the fiber-to-metal kinetic friction coefficient was too low and slipping on the roll was observed.
  • Comparative Example 2 The finish of Comparative Example 2 was used to adhere to PET fibers.
  • the fiber-to-fiber dynamic friction coefficient was out of the range of the PTT fiber of the present invention, the fiber could be spun and drawn without any problem. There was no problem with the fluff test. This indicates that the PET fiber has a lower coefficient of friction than the PTT fiber and at the same time is resistant to rubbing of the fiber-to-fiber. Further, the obtained fiber had a low elastic recovery property, a high elastic modulus and a hard feel.
  • the birefringence of the undrawn yarn of Example 1 was 0.024, the strength was 1.6 d, and the elongation was 230%. If left at 20 ° C for 20 days, The physical properties changed over time and became very brittle. Such a phenomenon was not observed in the fibers of Examples 1 to 8.
  • the spinning speed was set to 3500 m / min, and only spinning was performed.
  • the birefringence of the obtained semi-drawn yarn is 0.062, the strength is 2.7 g / d, the elongation is 74%, the oiling rate is 0.41%, and the dynamic friction coefficient between fibers is The coefficient of kinetic friction between fiber and metal was 0.20, the coefficient of static friction between fiber and fiber was 0.29, and there was no problem in spinnability.
  • this semi-drawn yarn had no change in fiber properties over time after standing at 20 ° C. for 20 days.
  • the semi-drawn yarn is heated at 160 ° C. while performing 1.25 times drawing at a processing speed of 450 mZ min using a SW46 SSD false twisting machine manufactured by Vamagu. Meanwhile, a crimped yarn of 360,000 TZm was prepared. There was no problem with the workability at this time. Moreover, the obtained processed yarn was rich in swelling and stretch, and had a soft texture.
  • the spinning speed was set to 3500 m / min, and only spinning was performed.
  • the birefringence of the obtained semi-drawn yarn is 0.066, the strength is 2.5 d, the elongation is 82%, the coefficient of kinetic friction between fiber and fiber is 0.39, and the coefficient of kinetic friction between fiber and metal is 0.32, the coefficient of static friction between fibers was 0.30. Due to the high coefficient of kinetic friction between fiber and metal, fluffing occurred during spinning.
  • the drawn yarns obtained in Examples 5 and 8 were subjected to spindle rotation at 2750 rpm and false twists at 3650 T / m using an LS-2 false twisting machine manufactured by Mitsubishi Industrial Corporation.
  • the false twisting was performed at an over feed rate of 4.1% and a false twist temperature of 16.5. In each case, it was excellent in stretchability and softness, and showed good false twistability without thread breakage.
  • Plain fabrics were prepared using the fibers of Examples 1, 5, 10 and Comparative Example 7 by the method described in "Method of measuring scum generation".
  • the fibers of Examples 1, 5, and 10 were used, the obtained plain woven fabric was soft and showed a stretchability of about 10% in the weft direction. It has a texture that cannot be obtained with conventional synthetic fabrics.
  • W,, W 2 , W 3 and W indicate the content (% by weight) of the compounds (1), (2), (3) and (4) in the total amount of the finish.
  • Polyethers are random copolymers.
  • the polyester fiber of the present invention solves the problems of high friction coefficient and easy wear of the side surface of the fiber, which are problems peculiar to p ⁇ T fiber, and has excellent smoothness, abrasion resistance, convergence, and antistatic properties. Excellent in processability from spinning to post-processing such as winding process, stretching process, unwinding from bobbin and cheese, false twisting process, weaving, etc., bobbin and cheese winding The form is extremely good.
  • the PTT fiber to which the finish specified by the present invention has adhered can be processed into a knitted fabric having good quality such as elastic recovery, soft texture, and homogeneity.
  • the polyester fiber of the present invention is, of course, a textile material for clothing such as outerwear, innerwear, sportswear, swimwear, lining, pantyhose, tights, and raw yarn for sock artificial leather. It is also useful in applications such as carpet, flocky, artificial leather, gut, and artificial turf.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

A polyester fiber obtained by depositing a specific amount of a finishing agent comprising a combination in a specific proportion of (1) and aliphatic ester having a molecular weight of 300 to 800 and/or a mineral oil having a Redwood viscosity at 30 °C of 40 to 500 seconds, (2) a polyether having a structure comprising ethylene oxide units and propylene oxide units, (3) a nonionic surfactant, and (4) an ionic surfactant on a polyester fiber which comprises at least 90 wt.% polytrimethylene terephthalate and has a difference in refractive indices of 0.025 or higher. The polytrimethylene terephthalate fiber having the specific finishing agent adherent thereto and having a low coefficient of friction is capable of highly smoothly passing through processing steps after spinning, e.g., winding after spinning, stretching, unwinding from a bobbin or cheese, false twisting, weaving, etc. As a result, a polytrimethylene terephthalate fiber excellent in smoothness, wearing resistance, bindability, and antistatic properties is obtained.

Description

明 細 書 平滑なポリエステル繊維  Description Smooth polyester fiber
技術分野 Technical field
本発明は優れた平滑性、 耐摩耗性、 集束性、 制電性を有し、 巻き 取り工程、 延伸工程、 ボビンやチーズからの解舒性、 仮撚加工性、 製編織性等の、 紡糸から後加工に至る工程通過性、 更にはボビンや チーズの巻きフ ォームが極めて良好であり、 その結果織編物と して 弾性回復性、 ソフ 卜な風合い、 均質性等の良好な品位を有する、 衣 料用途に適したポリ ト リ メチレンテレフタ レ一 ト繊維に関する。 背景技術  The present invention has excellent smoothness, abrasion resistance, convergence, and antistatic properties, and has a spinning process such as a winding process, a stretching process, unwinding from bobbins or cheese, false twisting, and weaving. It has excellent passability from the process to the post-processing, and the bobbin and cheese winding form is extremely good.As a result, the woven and knitted fabric has good quality such as elastic recovery, soft texture, and homogeneity. The present invention relates to a polytrimethylene terephthalate fiber suitable for use in clothing. Background art
テレフタル酸またはテレフタル酸ジメチルに代表されるテレフタ ル酸の低級アルコールエステルと、 ト リ メ チ レングリ コール ( 1 , 3 一プロパンジオール) を重縮合させて得られるポリ 卜 リ メチレン テレフタ レー ト (以下、 P T Tと略記する) は、 優れた弾性回復性 、 低弾性率 (ソフ トな風合い) 、 易染性といったポリ ア ミ ドに類似 した性質と、 耐光性、 熱セッ ト性、 寸法安定性、 低吸水率といった ポリエチレンテレフタ レー ト (以下、 P E Tと略記する) に類似し た性質を併せ持つ画期的なポリマーである。 P T Tは、 前述の特徴 を活かして、 衣料、 B C Fカーぺッ ト、 ブラ シ、 テニスガッ ト等の 製品に応用されている (特開平 9 — 3 7 2 4号公報、 特開平 8 _ 1 7 3 2 4 4号公報、 特開平 5 — 2 6 2 8 6 2号公報) 。  Poly (methylene terephthalate) (hereinafter referred to as “polyethylene methylene terephthalate”) obtained by polycondensation of lower alcohol ester of terephthalic acid represented by terephthalic acid or dimethyl terephthalate with trimethylene glycol (1,3-propanediol). (Abbreviated as PTT) is a property similar to polyamide such as excellent elastic recovery, low elastic modulus (soft feel), and easy dyeing, and light resistance, heat setting, dimensional stability, and low It is an epoch-making polymer that has properties similar to polyethylene terephthalate (hereinafter abbreviated as PET) such as water absorption. PTT has been applied to products such as clothing, BCF carpets, brushes, tennis guts, etc., taking advantage of the above-mentioned features (Japanese Patent Application Laid-Open Nos. Hei 9-37224 and Hei 8-1-173). 244, JP-A-5-262628-2).
P T T繊維の上記の特性を最大限に生かせる繊維形態の一つと し て仮撚加工系がある。 P T T繊維の仮撚加工系は、 公知の既存合成 繊維、 例えば P E T繊維等のポリエステル繊維に比較して、 弾性回 復性、 ソフ ト性に富むので、 ス ト レ ッ チ素材用原糸と して極めて優 れたものとなるからである (特開平 9 - 7 8 3 7 3号公報) 。 One of the fiber forms that can make the most of the above properties of PTT fiber is a false twist processing system. The false twist processing system for PTT fiber is more elastic than conventional synthetic fiber, for example, polyester fiber such as PET fiber. This is because it is rich in resilience and softness, making it extremely excellent as a raw material for stretch material (Japanese Patent Application Laid-Open No. 9-77837).
P E T繊維に代表されるポリエステル繊維を紡糸、 仮撚加工する 時には、 繊維表面に仕上げ剤を付与することは必須である。 仮に仕 上げ剤を繊維表面に付けずに紡糸ゃ仮撚加工を行う と、 摩擦ゃ静電 気が増大して毛羽や糸切れが多発し、 工業生産ができないからであ る。 P E T繊維を仮撚加工する場合、 ポリオキシエチ レン及びポリ ォキシプロピレンが共重合されたポリエーテル (以下、 単にポリェ 一テルと略記する) を仕上げ剤中の含量と して 7 0重量%以上含む 仕上げ剤を繊維表面に付着させることが通常行われる (例えば、 特 開昭 6 3 — 5 7 5 4 8号公報) 。 この理由と しては、 P E T繊維の 仮撚加工における熱セッ ト工程では 2 0 0 °C以上の加熱が必要とな るので、 熱劣化によるヒーター汚れを抑制するために、 摩擦係数は 増大するが耐熱性に優れたポリエーテルを主体とする仕上げ剤の使 —用が必要となるからである。  When spinning and false-twisting a polyester fiber represented by PET fiber, it is essential to apply a finish to the fiber surface. If spinning and false twisting are performed without applying a finishing agent to the fiber surface, friction, static electricity will increase, and fluff and yarn breakage will occur frequently, making industrial production impossible. When false twisting PET fibers, the finishing agent contains 70% by weight or more of a polyether copolymerized with polyoxyethylene and polyoxypropylene (hereinafter simply abbreviated as polyester). An agent is usually attached to the fiber surface (for example, Japanese Patent Application Laid-Open No. 63-57554). The reason for this is that the heat setting process in the false twist processing of PET fiber requires heating at 200 ° C or more, and the coefficient of friction increases to suppress heater contamination due to thermal deterioration. However, it is necessary to use a finishing agent mainly composed of polyether having excellent heat resistance.
これに対し、 P T T繊維の仮撚用仕上げ剤に関しては、 これまで に何ら最適な組成が提案されていない。 この理由は、 ごく最近まで P T Tの原料となる 卜 リ メチレングリ コールを安価に得る方法がな かったためで、 工業的な P T T繊維の製造に関する研究がまだ十分 に進んでいないからである。  In contrast, no optimal composition has been proposed for a finish for false twisting of PTT fibers. The reason for this is that until recently, there was no inexpensive way to obtain trimethylene glycol, which is a raw material for PTT, and research on industrial production of PTT fibers has not been sufficiently advanced.
P T T繊維の仮撚用仕上げ剤を考える場合、 P T T繊維は P E T 繊維と化学的構造が類似しているので、 P E T繊維の仮燃用仕上げ 剤がそのまま P T T繊維に用いることができると想像するかも しれ ない。 しかしながら、 本発明者らの検討によれば、 P T T繊維と P E T繊維に代表される P T T繊維以外のポリエステル繊維とは、 ① 繊維の物性、 とりわけ P T T繊維は摩擦係数や摩耗性が大きいこと When considering a false-twisting finish for PTT fibers, you may imagine that a PTT fiber has a similar chemical structure to PET fibers, so that a PET-firing finish can be used directly in PTT fibers. Absent. However, according to the study of the present inventors, PTT fibers and polyester fibers other than PTT fibers typified by PET fibers are as follows: (1) Physical properties of the fibers, in particular, PTT fibers have a large coefficient of friction and abrasion.
、 ②仮撚工程における熱セッ ト工程の最適温度条件が大き く異なり 、 P T T繊維は熱セッ ト温度を低く設定しなくてはいけないこと、 の 2つの理由から Ρ Τ Τ繊維に適した仕上げ剤設計が必要となるこ とがわかった。 , ② The optimal temperature condition of the heat setting process in the false twisting process is greatly different. For PTT fiber, the heat setting temperature must be set low, and it was found that it was necessary to design a finishing agent suitable for 剤 Τ Τ fiber for two reasons.
まず、 Ρ Τ Τ繊維は、 摩擦係数や摩耗性が大きいことについて説 明する。  First, we explain that Ρ Τ Τ fibers have a high coefficient of friction and abrasion.
Ρ Τ Τ繊維は分子が Ζ型に大き く屈曲しているために、 弾性糸の ように伸ばすと容易に元の長さに縮むといつた特性を示す。 このよ うな弾性特性のために、 紡糸や加工段階の張力がかかった状態で、 ロール、 ガイ ド、 ホッ トプレー トやピン、 あるいは単糸同士が接触 すると接触面積が大き く広がり、 そのために摩擦係数が大き く増大 する。 このような状態で紡糸、 延伸を続けると、 毛羽が発生しやす く なる。 更に、 Ρ Τ Τ繊維は繊維同士で、 あるいは Ρ Τ Τ繊維以外 の他素材で繊維側面を強く こすると、 糸が毛羽立ちやすいことも判 明した。 おそら く このような摩耗のしゃすさ も Ζ型の屈曲した分子 構造によるものであり、 このような Ζ型構造を取ると隣接分子同士 の分子間力が低く なるので分子間方向に働く凝集力が低下し、 その 結果摩耗特性が低く なると推定している。 これに対して他のポリェ ステル繊維、 例えば Ρ Ε Τ繊維ゃポリ ブチレンテレフタ レー ト繊維 等は、 分子鎖がほぼ延びきり状態であるために、 弾性特性をほとん ど示さない。 また、 分子間凝集力も高く なる傾向にある。 そのため に、 Ρ Τ Τ繊維で見られたような摩擦特性と摩耗性の問題はほとん ど起こ らない。 仮に Ρ Ε Τ繊維の仮撚用仕上げ剤を Ρ Τ Τ繊維に適 用すると、 仕上げ剤の主成分であるポリエーテルは摩擦係数を下げ る効果が少ないので、 毛羽や糸切れが多発し工業的に用いるこ とは できない。  Τ Τ Τ Fibers have the property that when they are stretched like elastic yarn, they easily shrink back to their original length because the molecules are largely bent into a Ζ shape. Due to these elastic properties, when rolls, guides, hot plates, pins, or single yarns come into contact with each other under tension during the spinning and processing stages, the contact area increases greatly, and as a result, the friction coefficient increases. Greatly increase. If spinning and drawing are continued in such a state, fluff is likely to occur. Furthermore, it was also found that if the fibers of the Ρ Τ Τ fibers were rubbed with each other or with a material other than Ρ Τ Τ fibers, the yarns were likely to fluff. Probably, this kind of abrasion is also due to the Ζ-shaped bent molecular structure.If such a Ζ-shaped structure is adopted, the intermolecular force between adjacent molecules is reduced, so that the cohesive force acting in the intermolecular direction It is estimated that the wear characteristics will decrease as a result. On the other hand, other polyester fibers, for example, Ρ Ρ fiber ゃ polybutylene terephthalate fiber, have almost no elastic properties because the molecular chains are almost completely extended. In addition, the intermolecular cohesion tends to increase. As a result, there are few friction and abrasion problems encountered with Ρ Τ Τ fibers. If 仮 Ε Τ fiber false twist finish is applied to Ρ Τ Τ fiber, polyether, which is the main component of the finish, has little effect in lowering the coefficient of friction, so fluff and yarn breakage occur frequently, resulting in industrial It cannot be used for
次に、 Ρ Τ Τ繊維は、 仮撚工程における熱セッ ト工程の最適温度 を Ρ Ε Τ繊維対比低く設定しなくてはいけないことについて説明す る。 Next, it is explained that the optimum temperature of the heat setting process in the false twisting process must be set lower than that of the 撚 Τ Τ fiber. You.
すでに述べたように P E T繊維の仮撚加工における熱セッ ト温度 は 2 0 0 °Cを越えるが、 本発明者らの検討によれば P T T繊維は実 質的に 1 9 0 °C以上の温度で熱セッ 卜することができない。 これは 、 P T T繊維は 1 9 0 °Cを越えた温度を付与すると、 強度と伸度が 大き く低下し繊維の切断が起きやすく なるためである。 従って、 P T T繊維の仮撚加工における熱セッ ト温度は通常 1 4 0〜 1 9 0 °C となる。 このように低い熱セッ ト温度であっても、 P T T繊維のガ ラス転移点は、 P E T繊維に比較して低いので十分な熱セッ 卜を受 けることが可能となる。 従って、 P T T繊維の仮撚用仕上げ剤と し ては、 2 0 0 °Cを越える耐熱性を確保する必要がないので、 繊維表 面の摩擦係数を低下させる効果の低い、 ポリエーテル成分を主成分 とする仕上げ剤をわざわざ使用する必要はないことがわかる。  As described above, the heat set temperature in false twisting of PET fiber exceeds 200 ° C, but according to the study of the present inventors, PTT fiber is practically at a temperature of 190 ° C or more. Can not be heat set. This is because, when a temperature exceeding 190 ° C. is applied to the PTT fiber, the strength and elongation are greatly reduced, and the fiber is liable to be cut. Accordingly, the heat set temperature in false twisting of PTT fibers is usually 140 to 190 ° C. Even at such a low heat set temperature, the glass transition point of the PTT fiber is lower than that of the PET fiber, so that it is possible to receive a sufficient heat set. Therefore, as a finishing agent for false twisting of PTT fibers, it is not necessary to ensure heat resistance exceeding 200 ° C, and therefore, a polyether component having a low effect of lowering the friction coefficient of the fiber surface is mainly used. It turns out that it is not necessary to use the finishing agent as a component.
以上述べてきたように、 これまでに P T T繊維に適した仮 4然用、 更には織り編み用仕上げ剤の検討はほとんどなされておらず、 ま し てや P T T繊維の特有の摩擦摩耗特性ゃ仮撚温度条件を考慮した仕 上げ剤設計の必要性やその解決方法に関する一切の示唆は何らなさ れていないのが現状である。  As described above, there has been almost no study on a temporary agent suitable for PTT fiber or a finishing agent for weaving and knitting. At present, there is no suggestion about the necessity of designing the finishing agent in consideration of the twisting temperature condition or any solution.
したがって、 P T T繊維の工業的製造には、 前述した特異な繊維 の性質による問題を解消する性能をもつ仕上げ剤設計が不可欠であ る  Therefore, for the industrial production of PTT fiber, it is essential to design a finish that has the ability to solve the above-mentioned problems due to the unique fiber properties.
特開平 4 一 2 4 2 8 4号公報ゃ特開平 4 一 1 9 4 0 7 7号公報に は、 液状の芳香族エステルを含有する P E T用仕上げ剤が提案され ている。 しかしながら、 この仕上げ剤を P T T繊維に適用 しても動 摩擦係数が低く ならず、 毛羽の発生を抑制することはできない。 一方、 P T T繊維の仕上げ剤に関しては、 衣料用繊維は対象にし ていないが、 P T Tを用いた釣糸にシリ コ ン系成分やテフロン系成 分の表面処理仕上げ剤を塗布する技術が公開されている (特開平 9 - 2 6 2 0 4 6号公報) 。 しかしながら、 衣料用 P T T繊維にシ リ コン系成分やテフ口ン系成分を主体とする仕上げ剤を使用すると、 繊維の精練工程で仕上げ剤が落ちにく く なり、 加えて、 制電性が低 下するといつた欠点もある。 従って、 このよ う な仕上げ剤を用いた 繊維の布帛は、 ぬめり感のある風合いの劣った製品しか得られない 前述したように、 既知技術には、 P T T繊維、 特に衣料用の P T T繊維の紡糸、 加工に特有の摩擦、 磨耗の問題の解決に不可欠な仕 上げ剤の設計を示唆するものがない。 Japanese Patent Application Laid-Open Nos. 424,284 and 199,477 propose a finish for PET containing a liquid aromatic ester. However, even if this finish is applied to PTT fibers, the coefficient of kinetic friction does not decrease, and the generation of fluff cannot be suppressed. On the other hand, as for the finish of PTT fiber, it does not cover textiles for clothing, but fishing line using PTT has a silicon-based component or a Teflon-based component. A technique for applying a surface treatment finish is disclosed (JP-A-9-226046). However, if a finishing agent mainly composed of a silicone-based component or a Teflon-based component is used for PTT fibers for clothing, the finishing agent will not easily fall off during the fiber scouring process, and in addition, the antistatic property will be low. There are downsides when it comes down. Therefore, a fiber fabric using such a finishing agent can obtain only a product with a slimy feeling and a poor texture. As described above, the known technology includes spinning of PTT fiber, particularly PTT fiber for clothing. There is no suggestion for the design of finishing agents that are essential for solving the processing-specific friction and wear problems.
本発明の目的は、 P T T繊維に特有の高い摩擦係数、 繊維の側面 の摩耗しやすさによる紡糸、 加工の工程通過性の問題を解消する仕 上げ剤が付着した優れた平滑性、 耐摩耗性、 集束性、 制電性を有す る P T T繊維を提供することである。  The purpose of the present invention is to achieve a high coefficient of friction unique to PTT fiber, excellent smoothness and abrasion resistance with a finishing agent attached, which eliminates problems of spinning due to the abrasion of the side of the fiber and the processability of processing. An object of the present invention is to provide a PTT fiber having convergence and antistatic properties.
本発明のより具体的な目的は、 巻き取り工程、 延伸工程、 ボビン やチーズからの解舒性、 仮撚加工性、 製編織性等の、 紡糸から後加 ェにわたる工程通過性を高めて、 織編物と して弾性回復性、 ソフ ト な風合い、 均質性などの良好な品位の織編物を得ることが可能な、 改良された仕上げ剤を付着した P T T繊維の提供することにある。 発明の開示  A more specific object of the present invention is to improve the process passability from spinning to post-processing, such as a winding step, a stretching step, unwinding properties from bobbins and cheese, false twisting properties, knitting and weaving properties, It is an object of the present invention to provide a PTT fiber to which an improved finishing agent is attached, which can obtain a woven or knitted fabric of good quality such as elastic recovery, soft texture, and homogeneity. Disclosure of the invention
本発明の目的は、 9 0重量%以上がポリ ト リ メチレンテレフタ レ 一トから構成された複屈折率が 0 . 0 2 5以上のポリエステル繊維 に ( 1 ) 分子量 3 0 0〜 8 0 0 の脂肪族エステル及び 又は 3 0 。C におけるレツ ドウ ッ ド粘度が 4 0〜 5 0 0秒の鉱物油、 ( 2 ) 特定 の構造を有するポリエーテル、 ( 3 ) 非イオン性界面活性剤および 、 ( 4 ) イオン性界面活性剤とを組成成分と して、 特定の割合で組 み合わせ組成される仕上げ剤を特定量で付着されてなるポ リエステ ル繊維によつて達成される。 An object of the present invention is to provide a polyester fiber having a birefringence of 0.025 or more composed of 90% by weight or more of poly (trimethylene terephthalate) and (1) a molecular weight of 300 to 800. And / or 30 of the aliphatic ester. A mineral oil having a redwood viscosity of 40 to 500 seconds in C, (2) a polyether having a specific structure, (3) a nonionic surfactant, and (4) an ionic surfactant. As a composition component, at a specific ratio This is achieved by a polyester fiber having a specific amount of finish to be combined.
すなわち、 本発明は、 9 0重量%以上がポリ ト リ メ チレンテレフ タレ一卜から構成され、 複屈折率が 0 . 0 2 5以上のポリエステル 繊維であって、 該繊維の表面に仕上げ剤が 0 . 2 ~ 3重量%付着し ており、 該仕上げ剤の構成成分と して化合物 ( 1 ) 〜 ( 4 ) を必須 成分と して含有し、 かつ仕上げ剤全量中の化合物 ( 1 ) 〜 ( 4 ) の 含有量の総量が 8 0〜 1 0 0重量%であることを特徴とするポ リエ ステル繊維である。  That is, the present invention is a polyester fiber comprising 90% by weight or more of polytrimethylene terephthalate and having a birefringence of 0.025 or more, and a finishing agent is applied to the surface of the fiber. 2 to 3% by weight, containing compounds (1) to (4) as essential components of the finish, and compounds (1) to (4) in the total amount of the finish. Is a polyester fiber characterized in that the total content thereof is 80 to 100% by weight.
( 1 ) 仕上げ剤全量に対する含有量が 3 0〜 8 0重量%である、 分子量 3 0 0〜8 0 0の脂肪族エステル及び Z又は 3 0 °Cにおける レツ ドウ ッ ド粘度が 4 0〜 5 0 0秒の鉱物油  (1) An aliphatic ester having a molecular weight of 300 to 800 and a content of 30 to 80% by weight with respect to the total amount of the finishing agent, or a resin or a resin having a resin viscosity of 40 to 5 at 30 ° C. 0 0 second mineral oil
( 2 ) 仕上げ剤全量に対する含有量が 2〜 6 0重量%である、 以 下の構造式で示される、 エチレンォキシ ド単位とプロピレンォキシ ド単位がランダム共重合又はプロ ック共重合されたポリエーテル (2) A polystyrene having a content of 2 to 60% by weight based on the total amount of the finishing agent, represented by the following structural formula, in which an ethylene oxide unit and a propylene oxide unit are randomly or block copolymerized. ether
R , 一 0 - (CH2CH20) n i - (CH(CH3)CH20) n 2 一 R 2 R, one 0-(CH 2 CH 20 ) ni-(CH (CH 3 ) CH 20 ) n 2 one R 2
(こ こで、 R i , R 2 は、 水素原子、 炭素数 1〜 5 0 までの有機基 であり、 及び n 2 は 1〜 1 0 0 0である。 ) (Here, R i and R 2 are a hydrogen atom, an organic group having 1 to 50 carbon atoms, and n 2 is 1 to 100.)
( 3 ) 炭素数 1〜3 0 のアルコールにエチ レンォキシ ド又はプロ ピレンォキシ ドが付加した化合物、 炭素数 5〜 3 0のカルボン酸、 ア ミ ン又はア ミ ドにエチレンォキシ ド又は/及びプロ ピレンォキシ ドが付加した化合物から選ばれた少なく とも 1 種であり、 該ォキシ ド全量の付加モル数が 1〜 1 0 0であって、 仕上げ剤全量に対する 含有量が 5〜4 0重量%である非イオン性界面活性剤  (3) A compound obtained by adding ethylene oxide or propylene oxide to an alcohol having 1 to 30 carbon atoms, a carboxylic acid having 5 to 30 carbon atoms, ethylene oxide or / and propylene oxide to amine or amide. And at least one compound selected from the group consisting of a non-ionic compound and a non-ionic compound, wherein the total number of moles of the oxide is 1 to 100, and the content of the total amount of the finishing agent is 5 to 40% by weight. Surfactant
( 4 ) 仕上げ剤全量に対する含有量が 2〜 2 0重量%であるィォ ン性界面活性剤  (4) An ionic surfactant having a content of 2 to 20% by weight based on the total amount of the finishing agent
本発明のポリエステル繊維は、 前記の特定の仕上げ剤を付着して いるこ とによって、 繊維一繊維動摩擦係数が 0 . 3 〜 0 . 4 5、 繊 維一金属動摩擦係数が 0 . 1 7 〜 0 . 3の摩擦特性を有する、 紡糸 性、 加工性が優れて改良された良好なポリエステル繊維である。 繊維一繊維動摩擦係数は、 繊維同士の擦れによる毛羽の発生しや すさを示すパラメーターでもある。 一方、 繊維—金属動摩擦係数は 、 繊維とロールやホッ トプレー ト等の金属部分との擦れによる毛羽 の発生しやすさを示すパラメーターである。 The polyester fiber of the present invention has the specific finishing agent As a result, the fiber-to-fiber kinetic friction coefficient is 0.3 to 0.45 and the fiber-to-metal kinetic friction coefficient is 0.17 to 0.3, and the spinnability and processability are improved. Good polyester fiber. The fiber-to-fiber kinetic friction coefficient is also a parameter that indicates the likelihood of fluffing due to rubbing between fibers. On the other hand, the fiber-metal kinetic friction coefficient is a parameter indicating the likelihood of generation of fluff due to friction between the fiber and a metal part such as a roll or a hot plate.
繊維一繊維動摩擦係数が 0 . 3 より も小さいと繊維が滑りすぎて 、 かえって紡糸、 延伸性が低下する。 一方、 0 . 4 5 を越えると繊 維相互間の摩擦が高く なりすぎて、 繊維に毛羽が発生しやすく なる 。 一方、 繊維一金属動摩擦係数が 0 . 1 7 より も小さいと繊維が口 ールなどの面上を滑りすぎて、 かえつて紡糸 · 延伸性が低下する。 この係数が 0 . 3 を越えると摩擦が高く なりすぎて、 毛羽が発生し やすく なる。  If the fiber-to-fiber kinetic friction coefficient is less than 0.3, the fibers are too slippery, and the spinning and stretching properties are rather reduced. On the other hand, if it exceeds 0.45, the friction between the fibers becomes too high, and the fibers are liable to be fluffed. On the other hand, if the fiber-metal kinetic friction coefficient is smaller than 0.17, the fiber slips too much on a surface such as a wool and the spinning / drawing property is rather deteriorated. If this coefficient exceeds 0.3, the friction becomes too high and fluff is likely to occur.
一方、 繊維—繊維静摩擦係数は、 パ一ンやチーズの巻きフ ォーム の善し悪しを示すパラメ一ターである。 繊維一繊維静摩擦係数が 0 . 2 7 〜 0 . 4の領域で繊維が形状と解舒性が優れたバー ン、 チー ズを形成することができる。  On the other hand, the fiber-fiber static friction coefficient is a parameter that indicates the quality of a roll of cheese or cheese. In the region where the fiber-to-fiber static friction coefficient is in the range of 0.27 to 0.4, the fibers can form burns and cheeses having excellent shape and unwinding properties.
本発明のポ リ エステル繊維では、 前記特定の仕上げ剤が複屈折率 が 0 . 0 2 5以上を示す繊維に付与されている。 複屈折率が 0 . 0 2 5以上の P T T繊維は、 繊維表面分子がしっかり と配向している ために、 仕上げ剤が繊維中に過度にしみ込むことなく仕上げ剤が繊 維表面をしつかり と覆って、 仕上げ剤の持つ性能を最大限に発現さ せる こ とができる。  In the polyester fiber of the present invention, the specific finish is applied to a fiber having a birefringence of 0.025 or more. PTT fiber with a birefringence of 0.025 or more has a firm orientation of the fiber surface molecules, so that the finish does not excessively soak into the fiber and the finish firmly covers the fiber surface. Thus, the performance of the finish can be maximized.
加えて、 複屈折率がこのよ う に特定される繊維は、 繊維中の P T T分子が適度に配向しているために、 優れた弾性回復性を示し、 得 られる布帛も優れた弾性回復性を示す。 P T T以外のポ リ エステル 繊維、 例えば、 P E T繊維では仮に複屈折率を 0 . 0 2 5以上であ つてもこのような優れた弾性回復性を発現することがない。 複屈折 率が 0 . 0 2 5未満では分子の配向が不足しているために、 分子が 容易に動きやすく なるので、 弾性回復性が低い他、 保管や運搬中の わずかな温度変化や加重で繊維が容易に変質しま う し、 また、 付着 させた仕上げ剤が繊維内に過度にしみ込んでしまうので、 繊維が長 期に保存すると仕上げ剤の特性を損なう。 In addition, the fibers whose birefringence is thus specified exhibit excellent elastic recovery because the PTT molecules in the fibers are appropriately oriented, and the resulting fabric also has excellent elastic recovery. Show. Polyester other than PTT Fibers, for example, PET fibers, do not exhibit such excellent elastic recovery even if the birefringence is 0.025 or more. When the birefringence is less than 0.025, the molecules are easily oriented due to insufficient orientation of the molecules, so that the molecules have a low elastic recovery and are subject to slight temperature change or load during storage or transportation. Long-term storage of the fibers impairs the properties of the finish, as the fibers are easily degraded and the attached finish excessively soaks into the fibers.
複屈折率が 0 . 0 5以上、 好ま しく は 0 . 0 5 〜 0 . 1 の繊維は Ρ Τ Τ繊維の配向が充分に行われているので、 織編工程、 延伸を伴 わない仮撚工程、 染色工程等においてその摩擦特性が低下すること がない。  Fibers having a birefringence of 0.05 or more, preferably 0.05 to 0.1, have a sufficient orientation of the fibers, so that false twist without a weaving or knitting process or stretching is performed. The friction characteristics do not decrease in the process and dyeing process.
本発明のポリエステル繊維は、 その複屈折率が 0 . 0 2 5 〜 0 . 0 5の繊維は、 延伸仮撚加工するための繊維に特に適している外、 Ρ Τ Τ分子が適度に配向しているために、 保管や運搬等の通常の取 り扱いの段階では繊維性能は変化はない。  The polyester fiber of the present invention has a birefringence of 0.025 to 0.05, which is particularly suitable for a fiber for drawing false twisting, and in which the molecules are appropriately oriented. As a result, there is no change in fiber performance during normal handling such as storage and transportation.
本発明のポ リ エステル繊維は、 マルチフィ ラメ ン 卜であっても、 モノ フ ィ ラメ ン トでもよ く、 長繊維、 短繊維のいずれであってよい 。 本発明のポ リ エステル繊維の繊度と しては特に制限はないが、 通 常総繊度で 5 〜 2 0 0 d、 単糸繊度で 0 . 0 0 0 1 〜 1 0 dである 。 また、 断面形状は丸型、 三角型、 扁平、 星形等制限はなく、 中実 繊維であっても中空繊維であってもよい。 発明を実施するための最良の形態  The polyester fiber of the present invention may be a multifilament or a monofilament, and may be either a long fiber or a short fiber. The fineness of the polyester fiber of the present invention is not particularly limited, but is usually 5 to 200 d in total fineness and 0.0001 to 10 d in single yarn fineness. The cross-sectional shape is not limited, such as a round shape, a triangular shape, a flat shape, and a star shape, and may be a solid fiber or a hollow fiber. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のポ リ エステル繊維を構成するポリマーは、 9 0重量%以 上がテレフタル酸と 1 , 3 — ト リ メチレングリ コールを重縮合して 得られる P T Tである。 本発明の目的を損なわない範囲、 すなわち 1 0重量%以下の範囲で他のコポリ マ一やポリマーの 1種も しく は それ以上を共重合、 ブレン ドしてもよい。 このようなコモノマー、 ポリマーと しては、 シユウ酸、 コハク酸、 アジピン酸、 イ ソフタル 酸、 フタル酸、 2, 6 —ナフタ レンジカルボン酸、 シク ロへキサン ジカルボン酸、 エチ レングリ コール、 ブタ ンジオール、 シク ロへキ サンジメ タ ノ ール、 5 —ナ ト リ ウムスルホイ ソフ タル酸、 5 —スル ホイ ソフ タル酸テ ト ラブチルホスホニゥム塩、 ポ リ エチ レ ングリ コ ール、 ポ リ ブチ レングリ コール、 ポ リ エチ レンテ レタ レー ト、 ポ リ ブチレンテレフタ レー ト等が挙げられる。 90% by weight or more of the polymer constituting the polyester fiber of the present invention is PTT obtained by polycondensation of terephthalic acid and 1,3-trimethylene glycol. One or more other copolymers or polymers within a range that does not impair the object of the present invention, that is, within a range of 10% by weight or less. More than that may be copolymerized or blended. Examples of such comonomers and polymers include oxalic acid, succinic acid, adipic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid, ethylene glycol, butanediol, Cyclohexandimethanol, 5—sodium sulfeusophthalic acid, 5—tetrabutylphosphonium phosphonium salt, polyethylene glycol, polybutylene glycol , Polyethylene terephthalate, polybutylene terephthalate, and the like.
また、 必要に応じて、 各種の添加剤、 例えば、 艷消し剤、 熱安定 剤、 消泡剤、 難燃剤、 酸化防止剤、 紫外線吸収剤、 赤外線吸収剤、 結晶核剤、 蛍光増白剤などを共重合、 または混合してもよい。  Also, if necessary, various additives such as anti-glazing agents, heat stabilizers, anti-foaming agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent brighteners, etc. May be copolymerized or mixed.
本発明のポ リ エステル繊維の複屈折率は、 0 . 0 2 5以上である 。 この複屈折率の範囲では、 繊維中の P T T分子が適度に配向して いるので、 繊維は優れた弾性回復性を示す。 そして得られる布帛も 優れた弾性回復性を示す。 P T T以外のポ リ エステル繊維、 例えば 、 P E T繊維では仮に複屈折率を 0 . 0 2 5以上にしてもこのよう な優れた弾性回復性を発現することはできない。  The polyester fiber of the present invention has a birefringence of 0.025 or more. In this range of birefringence, the fibers exhibit excellent elastic recovery because the PTT molecules in the fibers are appropriately oriented. The resulting fabric also exhibits excellent elastic recovery. Polyester fibers other than PTT, such as PET fibers, cannot exhibit such excellent elastic recovery even if the birefringence is 0.025 or more.
また、 複屈折率が 0 . 0 2 5以上の P T T繊維に本発明の仕上げ 剤を付けると、 繊維表面分子がしっかり と配向しているために、 仕 上げ剤が繊維中に過度にしみ込むことなく繊維表面をしっかり と覆 うので、 仕上げ剤の持つ性能を最大限に引き出すことができる。 複 屈折率が 0 . 0 2 5未満では分子の配向が不足しているために、 分 子が容易に動きやすく なる。 そのために、 弾性回復性が低い他、 保 管や運搬中のわずかな温度変化や加重で糸が容易に変質してしま う ために、 本発明の目的に使用することができない。 また、 付着させ た仕上げ剤が繊維内に過度にしみ込んでしま うので、 長期に保存す ると仕上げ剤の特性を損なう。 複屈折率が 0 . 0 2 5〜 0 . 0 5の 繊維は、 延伸しながら仮撚加工するための繊維に特に適している。 このよ うな複屈折率を持つ繊維は、 P τ T分子が適度に配向してい るために、 保管や運搬等の通常の取り扱いの段階では繊維性能は変 化はないが、 延伸仮撚工程では、 優れた延伸性、 仮撚加工性、 捲縮 特性を示す。 また、 複屈折率が 0. 0 5以上、 好ま し く は 0. 0 5 〜 0. 1 の繊維は P T T繊維の配向が充分に行われているために、 織り編み工程、 延伸を伴わない仮撚工程、 染色工程等を経て布帛に 加工することができる。 Also, when the finish of the present invention is applied to PTT fiber having a birefringence of 0.025 or more, the finishing agent does not excessively soak into the fiber because the fiber surface molecules are oriented firmly. Since the fiber surface is covered firmly, the performance of the finishing agent can be maximized. When the birefringence is less than 0.025, molecules are easily moved due to insufficient molecular orientation. Therefore, the yarn cannot be used for the purpose of the present invention because the yarn has a low elastic recovery property and the yarn is easily deteriorated by a slight temperature change or load during storage or transportation. Also, the attached finishing agent will excessively soak into the fiber, and if stored for a long period of time, will impair the properties of the finishing agent. Birefringence of 0.025 to 0.05 The fibers are particularly suitable for fibers for false twisting while being drawn. Fibers having such a birefringence have the same fiber performance during normal handling such as storage and transportation because the P τ T molecules are appropriately oriented. It shows excellent stretchability, false twisting properties, and crimping properties. In addition, since the fibers having a birefringence of 0.05 or more, preferably 0.05 to 0.1, have sufficient orientation of the PTT fibers, the fibers do not require a weaving process or stretching. The fabric can be processed through a twisting step, a dyeing step, and the like.
本発明のポリエステル繊維は、 9 0重量%以上が P T Tから構成 され、 複屈折率が 0. 0 2 5以上であるこ と と、 以下に示す仕上げ 剤を該繊維に付着させることと相まって、 P T T繊維の持つ優れた 弾性回復性、 ソフ 卜な風合いといった性能を最大限に引き出し、 紡 糸から仮撚加工に至る工程通過性が極めて良好となり、 その結果織 編物と して弾性回復性、 ソフ 卜性、 均質性等の良好な品位を引き出 すことが可能となる。  The polyester fiber of the present invention comprises 90% by weight or more of PTT, has a birefringence of 0.025 or more, and has the following finishing agent attached to the fiber. Utilizing the excellent elastic recovery properties and soft texture of the product to the maximum, the processability from spinning to false twisting is extremely good, resulting in elastic recovery and softness as a woven fabric. Good quality such as homogeneity can be obtained.
本発明において、 仕上げ剤とは繊維表面に付着させる有機系の混 合物を指す。  In the present invention, the finish refers to an organic mixture adhering to the fiber surface.
本発明に用いる仕上げ剤は、 その構成成分と して化合物 ( 1 ) 〜 ( 4 ) を必須成分と して含有し、 かつ仕上げ剤全量中の化合物 ( 1 ) 〜 ( 4 ) の含有量の総量が 8 0〜 1 0 0重量%である。  The finish used in the present invention contains the compounds (1) to (4) as essential components as its constituent components, and the total amount of the compounds (1) to (4) in the total amount of the finish Is 80 to 100% by weight.
( 1 ) 仕上げ剤全量に対する含有量が 3 0〜 8 0重量%である、 分子量 3 0 0〜 8 0 0の脂肪族エステル及びノ又は 3 0 °Cにおける レッ ドウ ッ ド粘度が 4 0 ~ 5 0 0秒の鉱物油  (1) An aliphatic ester having a molecular weight of 300 to 800 and a content of 30 to 80% by weight based on the total amount of the finishing agent, or a redwood viscosity at 30 ° C of 40 to 5 0 0 second mineral oil
( 2 ) 仕上げ剤全量に対する含有量が 2〜 6 0重量%である、 以 下の構造式で示される、 エチレンォキシ ド単位とプロピレンォキシ ド単位がラ ンダム共重合又はプロ ッ ク共重合されたポリエーテル (2) The content of the finishing agent is 2 to 60% by weight, represented by the following structural formula, wherein ethylene oxide units and propylene oxide units are randomly or block copolymerized. Polyether
R , - 0 - (CH2CH20) η , - (CH(CH3)CH20) n 2 - R 2 R,-0-(CH 2 CH 2 0) η,-(CH (CH 3 ) CH 2 0) n 2 -R 2
1 o (ここで、 , R 2 は、 水素原子、 炭素数 1 〜 5 0 までの有機基 であり、 n , 及び n 2 は 1 〜 1 0 0 0である。 ) 1 o (Here,, R 2 are a hydrogen atom and an organic group having 1 to 50 carbon atoms, and n, and n 2 are 1 to 100.)
( 3 ) 炭素数 1 〜 3 0 のアルコールにエチ レ ンォキシ ド又はプロ ピレンォキシ ドが付加した化合物、 炭素数 1 〜 3 0 のカルボン酸、 ア ミ ン又はア ミ ドにエチ レ ンォキシ ド又は/及びプロ ピレンォキシ ドが付加した化合物から選ばれた少なく とも 1 種であり、 該ォキシ ド全量の付加モル数が 1 〜 1 0 0であって、 仕上げ剤全量に対する 含有量が 5 〜 4 0重量%である非イオン性界面活性剤  (3) a compound in which ethylenoxide or propylenoxide is added to an alcohol having 1 to 30 carbon atoms, a carboxylic acid having 1 to 30 carbon atoms, an amine or an amide or ethylenoxide or / and At least one compound selected from compounds to which propylene oxide is added, the added mole number of the total amount of the oxide is 1 to 100, and the content relative to the total amount of the finishing agent is 5 to 40% by weight. Certain nonionic surfactants
( 4 ) 仕上げ剤全量に対する含有量が 2 〜 2 0重量%であるィォ ン性界面活性剤  (4) A surfactant having a content of 2 to 20% by weight based on the total amount of the finishing agent.
〔 1〕 化合物 ( 1 )  [1] Compound (1)
仕上げ剤の第 1 の必須構成成分である化合物 ( 1 ) は、 分子量 3 0 0 〜 8 0 0の脂肪族エステル及び 又は 3 0 。Cにおけるレツ ドウ ッ ド粘度が 4 0 〜 5 0 0秒の鉱物油である。  The compound (1), which is the first essential component of the finishing agent, is an aliphatic ester having a molecular weight of 300 to 800 and / or 30. It is a mineral oil with a redwood viscosity of 40 to 500 seconds at C.
これらの脂肪族エステル及び/又は鉱物油は、 P T T繊維の平滑 性を向上させ、 その摩擦係数を低減させるために必要な成分である 。 脂肪族エステルと しては、 各種合成品及び天然油脂が挙げられる 。 特に平滑性の向上には直線構造を有する合成品の脂肪族エステル の使用が好ま しい。  These aliphatic esters and / or mineral oils are components necessary for improving the smoothness of the PTT fiber and reducing its friction coefficient. Examples of the aliphatic ester include various synthetic products and natural fats and oils. In particular, it is preferable to use a synthetic aliphatic ester having a linear structure to improve smoothness.
合成品の脂肪族エステルと しては、 モノ エステル、 ジエステル、 ト リ エステル、 テ ト ラエステル、 ペンタエステル、 へキサエステル 等があげられる。 平滑性の観点から、 モノ エステル、 ジエステル、 ト リ エステルの使用が好ま しい。 脂肪族エステルの分子量が 3 0 0 未満の場合には、 油膜の強度が低く なりすぎてガイ ドゃロールで容 易に繊維表面から離脱して、 繊維の平滑性を低下させてしまったり 、 蒸気圧が低すぎて工程中飛散し作業環境を劣化させるいつた問題 がある。 脂肪族エステルの分子量が 8 0 0を越えると仕上げ剤の粘 性が高く なりすぎるために、 平滑性とサイ ジング性が低下するので 好ま しく ない。 3 0 0 〜 5 5 0の分子量の脂肪族ポリエステルが、 特に優れた平滑性を示すので、 最も好ま しい脂肪族エステルである 。 好ま しい合成品の具体例と しては、 ステア リ ン酸イ ソォクチル、 ステア リ ン酸ォクチル、 パルミ チン酸ォクチル、 パルミ チン酸イ ソ ォクチル、 ステアリ ン酸 2 —ェチルへキシル、 ラウ リ ン酸ォレイノレ 、 ステア リ ン酸イソ ト リデシル、 ォレイ ン酸ォレイル、 アジピン酸 ジォレイル、 ト リラウ リ ン酸グリセリ ンエステル等が挙げられる。 もちろん、 2種以上の脂肪族エステルを組み合わせてもよい。 特に 好ま しく は、 ステアリ ン酸ォクチル、 ォレイ ン酸ォレイ ン、 ォレイ ン酸ラウ リル、 ォレイ ン酸ォレイルである。 これらの脂肪族エステ ルの内、 平滑性が優れているという観点から、 分子構造的には 1 価 のカルボン酸と 1 価のアルコールからなる脂肪族エステルが特に好 ま しい。 また、 耐熱性を高めたい場合には、 脂肪族エステルが分子 量 4 0 0 〜 8 0 0のものを用いることは好ま しい。 この場合、 水素 原子の一部が酸素原子や硫黄原子等のへテロ原子を有する基、 例え ば、 エーテル基、 エステル基、 チォエステル基、 スルフィ ド基等で 置換されていてもよい。 Examples of the aliphatic esters of synthetic products include monoesters, diesters, triesters, tetraesters, pentaesters, and hexesters. From the viewpoint of smoothness, use of monoester, diester, and triester is preferred. If the molecular weight of the aliphatic ester is less than 300, the strength of the oil film becomes too low and the oil is easily separated from the fiber surface with a guide roll to reduce the smoothness of the fiber or to reduce steam. There is a problem that the pressure is too low and it scatters during the process and deteriorates the working environment. If the molecular weight of the aliphatic ester exceeds 800, the viscosity of It is not preferable because the smoothness and the sizing property are reduced because the property becomes too high. Aliphatic polyesters having a molecular weight of from 300 to 550 are the most preferred aliphatic esters because they exhibit particularly good smoothness. Specific examples of preferred synthetics include isooctyl stearate, octyl stearate, octyl palmitate, isooctyl palmitate, 2-ethylhexyl stearate, lauric acid. Oleinole, isotridecyl stearate, oleyl oleate, dioleyl adipate, glyceryl trilaurate and the like. Of course, two or more aliphatic esters may be combined. Particularly preferred are octyl stearate, olein oleate, lauryl oleate and oleyl oleate. Among these aliphatic esters, from the viewpoint of excellent smoothness, aliphatic esters composed of a monovalent carboxylic acid and a monovalent alcohol are particularly preferable in terms of molecular structure. When it is desired to increase the heat resistance, it is preferable to use an aliphatic ester having a molecular weight of from 400 to 800. In this case, a part of the hydrogen atoms may be substituted with a group having a hetero atom such as an oxygen atom or a sulfur atom, for example, an ether group, an ester group, a thioester group, a sulfide group, or the like.
鉱物油と してはパラフィ ン系、 ナフテン系、 芳香族系等が挙げら れるが、 平滑性向上の観点からはパラフィ ン系又はナフテ ン系の鉱 物油の使用が好ま しい。 もちろん、 2種以上の鉱物油を組み合わせ てもよい。 鉱物油は、 好ま しく は 3 0 °Cにおけるレツ ドウ ッ ド粘度 が 4 0 〜 5 0 0秒を示すものが用いられる。 4 0秒未満の鉱物油は 、 飛散しやすく効果が小さ く なる場合があり、 5 0 0秒以上では粘 度が高すぎて平滑性向上の効果が小さ く なる。 鉱物油のレツ ドウ ッ ド粘度は、 好ま しく は、 5 0 〜 4 0 0秒である。  Examples of the mineral oil include paraffinic, naphthenic, and aromatic oils. From the viewpoint of improving smoothness, it is preferable to use paraffinic or naphthenic mineral oil. Of course, two or more mineral oils may be combined. As the mineral oil, one having a redwood viscosity at 30 ° C of 40 to 500 seconds is preferably used. Mineral oils of less than 40 seconds may be easily scattered and have a small effect, and if they are more than 500 seconds, the viscosity is too high and the effect of improving smoothness is reduced. The redwood viscosity of the mineral oil is preferably between 50 and 400 seconds.
脂肪族エステル及び/又は鉱物油の本発明の仕上げ剤中の含有量 は、 3 0〜 8 0重量%であることが平滑性を高めるうえで必要であ る。 3 0重量%未満では平滑性が不足し、 8 0重量%では平滑性が 高く なりすぎて、 繊維を卷き取ったバーンやチーズの巻きフォーム が不満足なものとなる。 仮撚用途に用いるときは、 3 0〜 6 0重量 %が好ま し く 、 織編用途に用いるときは、 高い平滑性が必要なので 5 0〜 7 0重量%であることが好ま しい。 Content of aliphatic ester and / or mineral oil in the finish of the present invention Is required to be 30 to 80% by weight in order to enhance smoothness. If the amount is less than 30% by weight, the smoothness is insufficient, and if the amount is 80% by weight, the smoothness becomes too high, and the burned fiber or wound cheese form becomes unsatisfactory. When used for false twisting, the content is preferably 30 to 60% by weight, and when used for woven or knitting, high smoothness is required, so that the content is preferably 50 to 70% by weight.
〔 2〕 化合物 ( 2 )  [2] Compound (2)
仕上げ剤の第 2 の必須構成成分は、 化合物 ( 2 ) で示されるポリ エーテルである。 化合物 ( 2 ) は仕上げ剤が繊維表面に形成する油 膜の強度を高める働きがあり、 これを添加することで P T T繊維の 問題である摩耗性を飛躍的に向上させるために必要な成分である。 特に、 紡糸、 延伸工程ゃ仮撚加工工程、 織り編み工程で繊維同士が こすられる時に繊維が毛羽立ちにく く なるといつた顕著な効果を示 す。  The second essential component of the finish is a polyether represented by the formula (2). Compound (2) has the function of enhancing the strength of the oil film formed on the fiber surface by the finish, and is a necessary component to dramatically improve the abrasion, which is a problem of PTT fibers, by adding it. . In particular, when the fibers are rubbed in the spinning, drawing process, false twisting process, and weaving process, the fibers exhibit a remarkable effect when they become less fluffy.
( 2 ) R 1 — 0 - (CH2CH20) η , - (CH(CH3 )CH20) n 2 — R 2 ここで、 R , , R z は、 水素原子、 炭素数 1〜 4 0 までの有機基 であり、 及び n 2 は 1 ~ 1 0 0 0 である。 ここで、 有機基と し ては、 炭化水素基であっても、 炭化水素基の一部または、 全部がェ ステル基、 水酸基、 アミ ド基、 カルボキシル基、 ハロゲン原子、 ス ルホン酸基等のへテロ原子を持つ基または元素で置換されていてよ い。 好ま し く は、 水素原子、 , R 2 は、 脂肪族アルコール、 脂 肪族カルボン酸、 脂肪族ァ ミ ン、 脂肪族ァミ ド残基であることが好 ま しく、 炭素数と して 5〜 1 8が好ま しい。 なお、 化合物 ( 2 ) に おいて、 プロピレンォキシ ド単位とエチレンォキシ ド単位は、 ラン ダム共重合であっても、 ブロ ック共重合であってもよい。 特にプロ ピレンォキシ ド単位/ェチレンォキシ ド単位が重量比 2 0 / 8 0〜 7 0 / 3 0である場合、 摩耗抑制効果が高く、 更に好ま しく は、 プ 口ピレンォキシ ド単位/ェチレンォキシ ド単位の重量比が 2 0ノ 8 0〜 6 0 / 4 0である。 また化合物 ( 2 ) の分子量は、 4 0 0〜 2 0 0 0 0が好ま しく、 1 5 0 0〜 2 0 0 0 0が特に好ま しい。 この 場合、 及び n 2 は分子量に合った値を採用する。 特にこの分子 量は重要であり、 分子量が 4 0 0未満では摩耗抑制効果が小さ く、 分子量が 2 0 0 0 0を越えると、 繊維の静摩擦係数が下がりすぎて 巻きフ ォームが悪く なつてしまう傾向がある。 より一層好ま しく は 、 1 5 0 0〜 1 5 0 0 0である。 化合物 ( 2 ) の仕上げ剤中の含量 は、 2〜 6 0重量%である必要がある。 2重量%未満では耐摩耗性 の向上効果が小さ く、 6 0重量%を越えると繊維一繊維静摩擦係数 が低く なりすぎて巻きフオームが悪く なる。 仮撚加工に用いる時は 3〜 6 0重量%が好ま しく、 特に好ま しく は、 5〜 4 0重量%であ る。 織り編みに用いる時は 5〜 3 0重量%が好ま しい。 (2) R 1 — 0-(CH 2 CH 2 0) η,-(CH (CH 3 ) CH 2 0) n 2 — R 2 where R,, R z are a hydrogen atom, a carbon number of 1 to And up to 40 organic groups, and n 2 is from 1 to 100. Here, even if the organic group is a hydrocarbon group, a part or all of the hydrocarbon group may be an ester group, a hydroxyl group, an amide group, a carboxyl group, a halogen atom, a sulfonate group, or the like. It may be substituted with a group or element having a hetero atom. Preferably, the hydrogen atom,, R 2 is an aliphatic alcohol, an aliphatic carboxylic acid, an aliphatic amine, or an aliphatic amide residue, and has 5 carbon atoms. ~ 18 is preferred. In the compound (2), the propylene oxide unit and the ethylene oxide unit may be a random copolymer or a block copolymer. In particular, when the weight ratio of propylene oxide unit / ethylenoxide unit is from 20/80 to 70/30, the effect of suppressing abrasion is high. The weight ratio of oral pyrenoxide units / ethylenoxide units is 20 to 80/60/40. The molecular weight of the compound (2) is preferably from 400 to 2000, more preferably from 1500 to 2000. In this case, and and n 2 adopt values corresponding to the molecular weight. This molecular weight is particularly important.If the molecular weight is less than 400, the effect of suppressing abrasion is small, and if the molecular weight exceeds 2000, the coefficient of static friction of the fiber becomes too low and the wound form becomes poor. Tend. Even more preferably, it is from 150 to 1500. The content of the compound (2) in the finish should be 2 to 60% by weight. If it is less than 2% by weight, the effect of improving abrasion resistance is small, and if it exceeds 60% by weight, the coefficient of static friction between fibers becomes too low, and the winding form becomes poor. When used for false twisting, the content is preferably 3 to 60% by weight, particularly preferably 5 to 40% by weight. When used for weaving, 5 to 30% by weight is preferred.
〔 3〕 化合物 ( 3 )  [3] Compound (3)
― 仕上げ剤の第 3の必須構成成分は、 炭素数 1 〜 3 0のアルコール にエチレンォキシ ド又はプロ ピレンォキシ ドが付加した化合物、 炭 素数 1 〜 3 0 のカルボン酸、 ァ ミ ン又はア ミ ドにエチレンォキシ ド 又は/及びプロ ピレンォキシ ドが付加した化合物から選ばれた少な く とも 1種であり、 該ォキシ ド全量の付加モル数が 1 〜 1 0 0であ つて、 仕上げ剤全量に対する含有量が 5〜 4 0重量%である非ィォ ン性界面活性剤である。 -The third essential component of the finishing agent is a compound of ethylene oxide or propylene oxide added to an alcohol of 1 to 30 carbon atoms, a carboxylic acid, amide or amide of 1 to 30 carbon atoms. It is at least one compound selected from compounds to which ethylene oxide and / or propylene oxide is added, the total number of moles of the oxide is 1 to 100, and the content with respect to the total amount of the finishing agent is 5 440% by weight of a nonionic surfactant.
この非ィォン性界面活性剤は仕上げ剤の各成分を適切に乳化する ための乳化性、 繊維の集束性、 仕上げ剤の付着性、 耐摩耗性を付与 するために必要な成分である。 この非イオン性界面活性剤は、 分子 構造的に線状であっても分岐していてもよく、 複数の官能基を有し ていてもよい。 また、 水素原子の一部または全部が、 エステル基、 水酸基、 ア ミ ド基、 カルボキシル基、 ハロゲン原子、 スルホン酸基 等のへテロ原子を持つ基または元素で置換されていてよい。 The nonionic surfactant is a component necessary for imparting emulsifying properties for appropriately emulsifying the components of the finishing agent, bunching of the fibers, adhesion of the finishing agent, and abrasion resistance. This nonionic surfactant may be linear or branched in molecular structure, and may have a plurality of functional groups. Some or all of the hydrogen atoms are ester, hydroxyl, amide, carboxyl, halogen, or sulfonic acid groups. May be substituted with a group or element having a hetero atom.
アルコール、 カルボン酸、 ァ ミ ン、 ア ミ ドの炭素数と しては 1 〜 3 0であり、 好ま しく は乳化性、 集束性の観点から 5〜 3 0が好ま し く 、 更に好ま し く は、 8〜 1 8 である。 エチ レンォキシ ド、 プロ ピレンォキシ ドの付加モル数と しては 1 〜 1 0 0であり、 好ま しく は平滑性の高さから 3〜 1 5が好ま しい。 エチレンォキシ ド単位及 びプロ ピレンォキシ ド単位が共存する場合は、 ラ ンダム共重合して も、 ブロ ッ ク共重合してもいずれでもよい。  The carbon number of the alcohol, carboxylic acid, amide, or amide is from 1 to 30, preferably from 5 to 30, and more preferably from the viewpoint of emulsifiability and convergence. Is 8 to 18. The number of moles of added ethylene oxide and propylene oxide is 1 to 100, and preferably 3 to 15 from the viewpoint of high smoothness. When an ethylene oxide unit and a propylene oxide unit coexist, either random copolymerization or block copolymerization may be used.
非ィォン性界面活性剤の具体例と しては、 ポリオキシエチレンス テア リ ルエーテル、 ポ リ オキシエチ レ ンステア リ ルォ レイルエーテ ル、 ポ リ オキシエチレンォ レイルエーテル、 ポ リ オキシエチレンセ チルェ一テル、 ポ リオキシエチレンラ ウ リルエーテル、 プロ ピレン ォキシ ド ェチレンォキシ ドが共重合したモノ ブチルエーテル、 ポ リ オキンエチレンビスフ エ ノ ール A ジラ ウ リ レー ト、 ポ リ オキシェ チレンビスフ エノ ール Aラ ウ リ レー ト、 ポ リ オキシエチレンビスフ ェノ ール Aジステア レー ト、 ポ リオキシエチレンビスフ エ ノ ール A ステア レー ト、 ポ リ オキシエチレンビスフ エ ノ ール A ジォ レー ト、 ポ リ オキシエチレンビスフ エ ノ ール Aォレー ト、 ポ リ オキシェチ レ ンステア リルァ ミ ン、 ポ リ オキシエチ レンラ ウ リルァ ミ ン、 ポ リ オ キシエチレンォレイルア ミ ン、 ポ リ オキシエチレンォ レイ ン酸ア ミ ド、 ポ リオキシエチレンラ ウ リ ン酸ア ミ ド、 ポ リ オキシエチレ ンス テア リ ン酸ア ミ ド、 ポ リ オキシエチレンラウ リ ン酸エタ ノ ールア ミ ド、 ポ リ オキシエチレンォ レイ ン酸エタノ ールア ミ ド、 ポ リ オキシ エチレンォレイ ン酸ジエタ ノ ールア ミ ド、 ジエチレ ン 卜 リ ア ミ ンォ レイ ン酸ア ミ ド、 ポ リ オキシプロ ピレンステア リ ルエーテル、 ポ リ ォキシプロ ピレンビスフ ヱ ノ ール Aステア レー ト、 ポ リ プロ ピレン ステア リルァ ミ ン、 ポ リ プロ ピレンォレイ ン酸ァ ミ ド等が挙げられ る Specific examples of nonionic surfactants include polyoxyethylene stearyl ether, polyoxyethylene stearyl leuyl ether, polyoxyethylene oleyl ether, polyoxyethylene cetyl ether, and polyoxyethylene stearyl ether. Monobutyl ether copolymerized with polyoxyethylene lauryl ether and propylenoxydethylenoxide, polyquineethylene bisphenol A dilaurate, polyoxyethylene bisphenol A rauraylate Polyethylene bisphenol A distearate, Polyethylene bisphenol A stearate, Polyethylene bisphenol A georate, Polyethylene Oxyethylene bisphenol A rate, polyoxyethylene stearyla Min, polyoxyethylene laurilamin, polyoxyethylene oleamide, polyoxyethylene oleamide, polyoxyethylene laurate amide, poly Oxyethylene stearate amide, polyoxyethylene laurate ethanolate, polyoxyethylene oleate ethanolate, polyoxyethylene oleate diethanol amide, diethyle Triaminooleic acid amide, polyoxypropylene stearyl ether, polyoxypropylene bisphenol A stearate, polypropylene stearylamine, polypropylenoleate Etc. To
これらの非ィォン性界面活性剤の仕上げ剤中の含有量は 5〜 4 0 重量%であることが乳化性、 繊維の集束性、 仕上げ剤の付着性、 耐 摩耗性を高める観点から必要である。 5重量%未満では上記性能が 不足する。 一方、 3 0重量%を越えると摩擦が高く なりすぎ、 毛羽 が発生しやすく なる。 好ま しく は 5〜 3 0重量%である。  It is necessary that the content of these nonionic surfactants in the finishing agent is 5 to 40% by weight from the viewpoint of improving emulsifying properties, fiber bunching, finishing agent adhesion, and abrasion resistance. . If it is less than 5% by weight, the above performance is insufficient. On the other hand, if it exceeds 30% by weight, the friction becomes too high, and fluff is likely to occur. It is preferably from 5 to 30% by weight.
4〕 化合物 ( 4 )  4] Compound (4)
仕上げ剤の第 4の必須構成成分は、 イオン性界面活性剤である。 このイオン性界面活性剤は、 繊維に制電性、 耐摩耗性、 乳化性、 防 靖性を付与するために必要な成分である。  The fourth essential component of the finish is an ionic surfactant. This ionic surfactant is a component necessary for imparting antistatic properties, abrasion resistance, emulsifying properties, and anti-wear properties to the fibers.
イオン性界面活性剤と しては、 ァニオン性界面活性剤、 カチオン 性界面活性剤、 両性界面活性剤のいずれを用いてもよいが、 特にァ 二オン性界面活性剤を用いることが制電性、 耐摩耗性、 乳化性、 防 銪性を付与できる観点から好ま しく、 特にスルホン酸塩化合物、 リ ン酸エステル塩、 高級脂肪酸塩等が好ま しい。 もちろん、 2種以上 の各ァニオン性界面活性剤を組み合わせてもよい。 好ま しいイオン 性界面活性剤の具体例と しては、 化合物 ( 5 ) 〜 ( 8 ) が挙げられ 、 これらは制電性、 耐摩耗性、 乳化性、 防銪性が特に優れている。  As the ionic surfactant, any of an anionic surfactant, a cationic surfactant, and an amphoteric surfactant may be used, and in particular, the use of an anionic surfactant is an antistatic property. It is preferable from the viewpoint of imparting abrasion resistance, emulsifying property and heat resistance, and in particular, a sulfonate compound, a phosphate salt, a higher fatty acid salt and the like are preferable. Of course, two or more kinds of anionic surfactants may be combined. Specific examples of preferred ionic surfactants include compounds (5) to (8), which are particularly excellent in antistatic property, abrasion resistance, emulsifying property, and water resistance.
( 5 ) R ε - S 0 a - X  (5) R ε-S 0 a-X
( 6 ) (R 0 - P (= 0)(0 X)2 (6) (R 0-P (= 0) (0 X) 2
( 7 ) (R7 一 0 - (R 8 一 0— ) P (= 0)(0 X) (7) (R 7 one 0 - (R 8 one 0-) P (= 0) ( 0 X)
( 8 ) R 9 - C 00 - X  (8) R 9-C 00-X
ここで、 R 〜R 9 は、 水素原子、 炭素数 4〜 4 0 までの有機基 である。 こ こで、 有機基と しては、 炭化水素基であっても、 炭化水 素基の一部または、 全部がエステル基、 水酸基、 アミ ド基、 カルボ キシル基、 ハロゲン原子、 スルホン酸基等のへテロ原子を持つ基ま たは元素で置換されていてよい。 好ま しく は炭素数 8〜 1 8の炭化 水素基である。 Xは、 アルカ リ金属又はアルカ リ土類金属である。 これらの非ィォン性界面活性剤の仕上げ剤中の含有量は 2 〜 2 0 重量%であることが制電性を高める観点から必要である。 2重量% 未満では制電性、 耐摩耗性、 乳化性、 防靖性が不足する他、 繊維一 繊維動摩擦係数や繊維一繊維静摩擦係数が低く なりすぎて巻きフ ォ ームが悪く なる。 また、 2 0重量%を越えると、 摩擦が高く なりす ぎ、 毛羽が発生しやすく なる。 仮撚加工に用いる時は 2 〜 1 5重量 %が好ま しく、 織り編みに用いる時は 5 〜 1 5重量%が好ま しい。 以上述べてきた 4つの必須構成成分を含む仕上げ剤においては、 これらの必須構成成分の含量が仕上げ剤全量の 8 0 〜 1 0 0重量% の範囲であることが必要である。 すなわち、 本発明に用いる仕上げ 剤には、 本発明の目的を阻害しない範囲、 すなわち 2 0重量%未満 で、 本発明の必須構成成分以外の仕上げ剤成分を存在させてもよい 。 そのような仕上げ剤成分と しては特に制限はないが、 平滑性、 仕 上げ剤の繊維上への広がり性を向上させるために、 シ リ コ ン化合物 、 例えば、 ジメ チルシ リ コ ン、 ジメ チルシ リ コ ンのメ チル基の一部 のメ チル基をアルキル基を介してエチレンォキシ ド又は Z及びプロ ピレンォキシ ドを 3 〜 1 0 0 モル程度付加させた化合物、 炭素数 5 〜 1 8の有機基を有するァ ミ ンォキシ ド等を含有してもよく、 また 制電性を向上させるために本発明で規定した化合物以外と してカル ボン酸金属塩単位を有するィ ミ ダゾリ ン化合物を含有してもよ く 、 また本発明で規定した以外のエステル化合物例えば、 エーテル基を 有するエステル等を含有していてもよい。 また、 公知の防腐剤、 防 銪剤、 酸化防止剤等を含有してもよい。 含有量と しては、 好ま し く は、 1 0重量%以下、 更に好ま しく は 7重量%以下である。 Here, R to R 9 are a hydrogen atom and an organic group having 4 to 40 carbon atoms. Here, even when the organic group is a hydrocarbon group, part or all of the hydrocarbon group is an ester group, a hydroxyl group, an amide group, a carboxy group, a halogen atom, a sulfonic acid group, or the like. It may be substituted with a group or element having another hetero atom. Preferably carbonized with 8 to 18 carbon atoms It is a hydrogen group. X is an alkali metal or an alkaline earth metal. It is necessary that the content of these nonionic surfactants in the finishing agent is 2 to 20% by weight from the viewpoint of improving antistatic properties. If the content is less than 2% by weight, the antistatic property, abrasion resistance, emulsifying property, and anti-yielding property are insufficient, and the fiber-to-fiber kinetic friction coefficient and the fiber-to-fiber static friction coefficient are too low, resulting in poor winding form. On the other hand, if the content exceeds 20% by weight, the friction becomes too high, and fluff is likely to be generated. When used for false twisting, the content is preferably 2 to 15% by weight, and when used for weaving, 5 to 15% by weight is preferred. In the finish containing the four essential components described above, the content of these essential components needs to be in the range of 80 to 100% by weight of the total amount of the finish. That is, the finishing agent used in the present invention may contain a finishing component other than the essential components of the present invention in a range that does not impair the object of the present invention, that is, less than 20% by weight. Although there is no particular limitation on such a finish component, in order to improve smoothness and spreadability of the finish on the fiber, a silicone compound such as dimethylsilicon, A compound obtained by adding about 3 to 100 moles of ethylene oxide or Z and propylene oxide to a part of the methyl group of tyl silicon via an alkyl group, and an organic compound having 5 to 18 carbon atoms. And the like. In addition to the compounds specified in the present invention, an imidazoline compound having a metal carbonate unit is contained in order to improve antistatic properties. It may contain an ester compound other than those defined in the present invention, for example, an ester having an ether group. Further, it may contain a known antiseptic, antiseptic, antioxidant and the like. The content is preferably 10% by weight or less, more preferably 7% by weight or less.
以上のような構成成分からなる仕上げ剤はそのまま希釈すること なく、 あるいは、 水に 5 〜 6 0重量%、 好ま しく は 5 〜 3 5重量% 分散させてェマルジヨ ン仕上げ剤と して繊維に付着させることがで さ Finishes composed of the above constituents are not diluted as such, or 5 to 60% by weight, preferably 5 to 35% by weight in water. It can be dispersed and attached to fibers as an emulsion finish.
仕上げ剤の繊維上への付着量と しては、 0. 2〜 3重量%である ことが必要である。 0. 2重量%未満では、 仕上げ剤の効果が小さ く なる。 また、 3重量%を越えると、 繊維の走行時の抵抗が大き く なりすぎたり、 仕上げ剤がロール、 熱板、 ガイ ド等に付着しそれら を汚すこととなる。 仮撚加工糸に用いる時は、 0. 3〜 1 . 0重量 %が好ま しく、 特に好ま しく は 0. 3〜 0. 6重量%であり、 織り 編み用途に用いる時は、 0. 4〜 1. 2重量%、 特に好ま しく は 0 . 5〜 1重量%である。 もちろん、 仕上げ剤の一部が繊維内部へ浸 透していてもよい。  It is necessary that the amount of the finishing agent deposited on the fibers is 0.2 to 3% by weight. If the content is less than 0.2% by weight, the effect of the finishing agent is reduced. On the other hand, if it exceeds 3% by weight, the running resistance of the fiber becomes too large, and the finishing agent adheres to the rolls, hot plates, guides, etc., and contaminates them. When used for false twisted yarn, the content is preferably 0.3 to 1.0% by weight, particularly preferably 0.3 to 0.6% by weight, and when used for weaving and knitting, 0.4 to 1.0% by weight. It is 1.2% by weight, particularly preferably 0.5-1% by weight. Of course, some of the finishing agent may penetrate into the fiber.
本発明に用いる仕上げ剤を繊維に付与するには、 本発明のポリェ ステル繊維を溶融紡糸時に、 紡出糸が固化した時点であればいずれ の時点でも付与される。 通常は、 巻き取りが行われる前までに繊維 に付与することが好ま しい。 仕上げ剤の付与が適用される紡糸方法 としては、 一度未延伸糸を巻き取ってから、 延伸機で延伸する方法 、 紡糸と延伸を一段で行う方法、 2 0 0 0〜 4 0 0 0 m/m i nで 半延伸糸を得る方法、 5 0 0 0〜 1 4 0 0 O m/m i nの紡糸速度 で紡糸延伸を行う高速紡糸のいずれであってもよい。 以上のように In order to apply the finishing agent used in the present invention to the fiber, the polyester fiber of the present invention is applied at any time when the spun yarn is solidified during melt spinning. Normally, it is preferable to apply the fibers to the fiber before winding is performed. As a spinning method to which the application of the finishing agent is applied, a method in which an undrawn yarn is wound once and then drawn by a drawing machine, a method in which spinning and drawing are performed in one stage, and 200 to 400 m / m Any of a method of obtaining a semi-drawn yarn in min and a high-speed spinning in which spin drawing is performed at a spinning speed of 500 to 140 Om / min may be used. As above
、 紡糸延伸を行い、 得られた繊維の伸度が 2 5〜 1 8 0 %、 好ま し く は 2 5〜 1 5 0 %、 更に好ま しく は 3 5〜 1 3 0 %になるように 延伸を行う ことにより本発明のポリエステル繊維の複屈折率を 0. 0 2 5以上にすることができる。 Then, spinning is performed, and the obtained fiber is stretched to have an elongation of 25 to 180%, preferably 25 to 150%, and more preferably 35 to 130%. By performing the above, the birefringence of the polyester fiber of the present invention can be made 0.025 or more.
以上のよう して得られた繊維は、 繊維一繊維動摩擦係数が 0. 3 〜 0. 4 5、 繊維一金属動摩擦係数が 0. 1 7〜 0. 3の両方が満 足され、 紡糸性、 加工性の良好な繊維となる。 繊維一繊維動摩擦係 数は、 繊維同士のこすれによる毛羽の発生しやすさを示すパラメ一 ターである。 0. 3より も小さいとすべりすぎて、 かえって紡糸 · 延伸性が低下する。 0. 4 5を超えると摩擦が高く なりすぎて、 毛 羽が発生しやすく なる。 好ま しく は、 0. 3〜 0. 4 2である。 繊 維一金属動摩擦係数は、 繊維とロールゃホッ トプレー ト等の金属部 分とのこすれによる毛羽の発生しやすさを示すパラメーターである 。 0. 1 7より も小さいとすべりすぎて、 かえって紡糸 · 延伸性が 低下する。 0. 3を越えると摩擦が高く なりすぎて、 毛羽が発生し やすく なる。 好ま しく は、 0. 1 5〜 0. 2 3である。 The fiber obtained as described above satisfies both the fiber-to-fiber kinetic friction coefficient of 0.3 to 0.45 and the fiber-to-metal kinetic friction coefficient of 0.17 to 0.3. It becomes a fiber with good processability. The fiber-to-fiber kinetic friction coefficient is a parameter that indicates the likelihood of fluffing due to rubbing between fibers. It is a tar. If it is less than 0.3, it will slip too much, and the spinning and stretching properties will be reduced. If it exceeds 0.45, the friction becomes too high, and fluff is likely to occur. Preferably, it is 0.3 to 0.42. The fiber-metal kinetic friction coefficient is a parameter indicating the likelihood of generation of fluff due to rubbing between the fiber and a metal part such as a roll / hot plate. If it is smaller than 0.17, it will slip too much, and the spinning and stretching properties will decrease. If it exceeds 0.3, the friction becomes too high, and fluff is likely to be generated. Preferably, it is 0.15 to 0.23.
更に、 繊維—繊維静摩擦係数が 0. 2 7〜 0. 4であると、 より 好ま しい繊維となる。 また、 繊維一繊維静摩擦係数は、 ポリエーテ ルの添加量と対応するのでポリエーテル量を調整して繊維一繊維静 摩擦係数を 0. 2 7〜 0. 4にすることで、 良好な耐摩耗性と巻き フ オームの両方を達成することができる。 繊維一繊維静摩擦係数は 、 バーンやチーズの巻きフ ォームの善し悪しを示すパラメーターで ある。 0. 2 7未満では、 静摩擦係数が小さすぎて、 巻きフ ォーム が崩れてしまう。 0. 4を越えると摩擦係数が高い繊維となり、 加 ェ性が低下する。 好ま しく は、 0. 2 8〜 0. 3 5である。  Further, when the fiber-fiber static friction coefficient is 0.27 to 0.4, more preferable fibers are obtained. In addition, since the fiber-to-fiber static friction coefficient corresponds to the amount of polyether added, by adjusting the amount of polyether to make the fiber-to-fiber static friction coefficient 0.27 to 0.4, good wear resistance is obtained. And winding forms can be achieved. The fiber-to-fiber static friction coefficient is a parameter indicating the quality of the roll form of a burn or cheese. If it is less than 0.27, the coefficient of static friction is too small, and the wound form collapses. If it exceeds 0.4, the fiber becomes a fiber having a high friction coefficient, and the additivity decreases. Preferably, it is 0.28 to 0.35.
また、 本発明のポリエステル繊維は、 通常以下のような繊維物性 を示す。  Further, the polyester fiber of the present invention usually shows the following fiber physical properties.
本発明のポリエステル繊維の強度は、 延伸糸では 3 g/d以上が 好ま しく、 半延伸糸では、 1. 0 g/d以上が好ま しい。 延伸糸の 場合、 3 g/d未満だと用途によっては得られる布帛の引き裂き強 度や破裂強度が低下してしまうからである。 好ま しく は、 4 gZd 以上である。  The strength of the polyester fiber of the present invention is preferably 3 g / d or more for a drawn yarn, and 1.0 g / d or more for a semi-drawn yarn. In the case of a drawn yarn, if it is less than 3 g / d, the tear strength and the burst strength of the obtained fabric may decrease depending on the use. Preferably, it is 4 gZd or more.
本発明のポリエステル繊維の伸度は、 通常 2 5〜 1 8 0 %である 。 伸度が 2 5 %未満であれば繊維の耐摩耗性は著しく低いものとな り、 後述する仕上げ剤をこのような繊維に付与しても摩耗特性が悪 く なつて実用上使用できない場合がある。 また、 伸度が 1 8 0 %を 越えると繊維の配向が不十分となり、 保管や運搬中のわずかな温度 変化や加重で糸が容易に変質してしま う場合がある。 好ま しく は、 延伸糸と して使用するためには、 毛羽の発生を抑制するために 3 5 〜 5 5 %が好ま しく、 延伸仮撚を行う半延伸糸と して用いるために は、 4 0〜 1 3 0 %が好ま しい。 The elongation of the polyester fiber of the present invention is usually 25 to 180%. If the elongation is less than 25%, the abrasion resistance of the fiber is extremely low, and even if a finish described below is applied to such a fiber, the abrasion characteristics are poor. In some cases, it cannot be used practically. On the other hand, if the elongation exceeds 180%, the orientation of the fiber becomes insufficient, and the yarn may be easily deteriorated by a slight temperature change or load during storage or transportation. Preferably, to use as a drawn yarn, 35 to 55% is preferable to suppress generation of fluff, and to use as a semi-drawn yarn for performing false twisting, 4 to 55% is used. 0 to 130% is preferred.
また、 本発明のポ リエステル繊維の 2 0 %伸長時の弾性回復率は In addition, the elastic recovery of the polyester fiber of the present invention at 20% elongation is
7 0 %以上が好ま しい。 このような弾性回復率を満足することで、 得られる布帛は極めてス ト レツチ性に富むものとなる。 好ま しく は70% or more is preferred. By satisfying such an elastic recovery rate, the obtained fabric has extremely high stretchability. Preferably
8 0 %以上である。 80% or more.
本発明のポ リ エステル繊維の弾性率は、 1 0〜 3 0 g / dの範囲 となる。 このよ う な低い弾性率を示すことで、 得られた布帛は極め てソフ 卜な風合いのものとなる。 好ま しく は 2 0〜 2 5 g Z dであ 本発明のポ リ エステル繊維の極限粘度 〔?7〕 は、 0 . 4〜 2 . 0 が好ま しく、 特に好ま しく は 0 . 5〜 1 . 5、 更に好ま しく は 0 . 6〜 1 . 2である。 この範囲で、 強度、 紡糸性に優れた繊維を得る ことができる。 極限粘度が 0 . 4未満の場合は、 ポリマーの溶融粘 度が低すぎるため紡糸が不安定となり、 得られる繊維の強度も低く 満足できるものではない。 逆に極限粘度が 2 . 0を越える場合は、 溶融粘度が高すぎるために紡糸時にメルト フラクチヤーや紡糸不良 が生じる。 実施例  The elastic modulus of the polyester fiber of the present invention is in the range of 10 to 30 g / d. By exhibiting such a low elastic modulus, the obtained fabric has an extremely soft texture. Preferably, the viscosity is 20 to 25 g Zd and the intrinsic viscosity of the polyester fiber of the present invention. 7] is preferably from 0.4 to 2.0, more preferably from 0.5 to 1.5, and even more preferably from 0.6 to 1.2. Within this range, fibers having excellent strength and spinnability can be obtained. When the intrinsic viscosity is less than 0.4, spinning becomes unstable because the melt viscosity of the polymer is too low, and the strength of the obtained fiber is low, which is not satisfactory. On the other hand, if the intrinsic viscosity exceeds 2.0, the melt viscosity is too high, and melt fracture or poor spinning occurs during spinning. Example
以下、 実施例を挙げて本発明をより詳細に説明する。 しかしなが ら、 本発明は実施例等の記載により限定されるものでない。 なお、 実施例中の主な測定値は以下の方法で測定したものである。 ( 1 ) 極限粘度の測定 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the description of Examples and the like. The main measured values in the examples were measured by the following methods. (1) Measurement of intrinsic viscosity
この極限粘度 [ ] は、 ォス ト ワル ド粘度管を用い、 3 5 °C、 0 —クロロフヱノールを用いて比粘度?? s pと濃度 C ( g / 1 0 0 ミ リ リ ッ トル) の比 77 s p Z Cを濃度ゼロに外揷し、 以下の式に従つ て求めた。  This intrinsic viscosity [] is measured using an Ostwald viscometer at 35 ° C and 0-chlorophenol. ? The ratio 77 sp ZC between the sp and the concentration C (g / 100 milliliters) was excluded from the concentration of zero, and the value was calculated according to the following equation.
[ n ] = 1 i m ( η s ρ / C )  [n] = 1 im (η s ρ / C)
C→ 0  C → 0
( 2 ) レッ ドゥ ッ ド粘度の測定  (2) Measurement of reddish viscosity
J I S - K 2 2 8 3 - 1 9 5 6に準じて測定した。  It measured according to JIS-K2283-19556.
( 3 ) 複屈折率の測定  (3) Measurement of birefringence
繊維便覧一原料編、 P. 9 6 9 (第 5刷、 1 9 7 8年丸善株式会 社) に準じ、 光学顕微鏡とコ ンペンセーターを用いて、 繊維表面に 観察される リ ターデーシ ョ ンから求めた。  From the retardation observed on the fiber surface using an optical microscope and a compensator in accordance with Textile Handbook, Raw Materials, p. 969 (5th printing, 1978, Maruzen Co., Ltd.) I asked.
( 4 ) 繊維の力学物性 (強度、 伸度、 弾性率) の測定  (4) Measurement of mechanical properties (strength, elongation, elastic modulus) of fiber
J I S - L - 1 0 1 3に準じて測定した。  The measurement was performed according to JIS-L-1013.
( 5 ) 弾性回復率の測定  (5) Measurement of elastic recovery
繊維をチャ ッ ク間距離 2 0 c mで引っ張り試験機に取り付け、 伸 長率 2 0 %まで引つ張り速度 2 0 c m/m i nで伸長し 1分間放置 した。 この後、 再び同じ速度で収縮させ、 応力一歪み曲線を描く。 収縮中、 応力がゼロになった時の伸度を残留伸度 (A) とする。 弾性回復率は以下の式に従って求めた。  The fiber was attached to a tensile tester at a chuck distance of 20 cm, stretched to an elongation of 20% at a stretching speed of 20 cm / min, and left for 1 minute. After that, it is contracted again at the same speed, and a stress-strain curve is drawn. The elongation when the stress becomes zero during shrinkage is defined as the residual elongation (A). The elastic recovery was determined according to the following equation.
弾性回復率 = ( 2 0 - A) / 2 0 X 1 0 0 {%) ( 6 ) 油付率  Elastic recovery rate = (2 0-A) / 2 0 X 1 0 0 (%) (6) Oiling rate
J I S - L - 1 0 1 3に基づき、 繊維をェチルエーテルで洗浄し 、 ェチルエーテルを留去して繊維表面に付着した純油剤量を繊維重 量で割って求めた比率を油付率と した。  Based on JIS-L-113, the fiber was washed with ethyl ether, the ethyl ether was distilled off, and the amount of the pure oil adhering to the fiber surface was divided by the fiber weight to determine the oiling rate.
( 7 ) 糸摩擦切断数の測定 糸摩擦切断数は、 繊維同士をこすり合わせ切断が起きるまでのこ すり合わせた回数を示したものであり、 繊維側面の摩耗しやすさの 一つ目安になるものである。 すなわち回数が大きい程、 摩耗性がよ いことを示す。 (7) Measurement of the number of yarn friction cuts The number of yarn friction cuts indicates the number of times the fibers are rubbed together before cutting occurs, and is a measure of the ease with which the fiber side surfaces are worn. In other words, the larger the number, the better the abrasion.
糸摩擦切断数は、 東洋精機製作所 (株) 製の糸摩擦抱合力試験機 The number of yarn friction cuts is measured by a yarn friction binding tester manufactured by Toyo Seiki Seisaku-sho, Ltd.
( o. 8 9 0 ) を用いて測定した。 糸の両端を滑車を通して並ん だ 2つの留め金で糸の両端を結びつけた。 この留め金は 2 O mmス ト口一ク長で往復運動することができる。 滑車を回転させ 2回撚り を掛けて、 5 0 gの荷重を掛けて、 1 5 0ス トローク Z分で留め金 を往復運動させた。 往復運動の回数はカウンターで計測することが でき、 糸の切断までの回数を糸摩擦切断数と して求めた。 (o. 890). The two ends of the yarn were tied together with two clasps lined up through pulleys. This clasp can reciprocate with a length of 2 Omm. The pulley was rotated and twisted twice, a load of 50 g was applied, and the clasp was reciprocated in 150 strokes Z minutes. The number of reciprocating motions can be measured with a counter, and the number of times until the yarn is cut was determined as the number of yarn friction cuts.
( 8 ) 繊維一繊維間静摩擦係数  (8) Fiber-to-fiber static friction coefficient
約 6 9 0 mの繊維を円筒の周りに、 綾角 1.5 ° で約 1 0 gの張力 を掛けて巻き付け、 更に上述と同じ繊維 3 0. 5 c mをこの円筒に —掛けた。 この時、 この繊維は円筒の上にあり、 円筒の巻き付け方向 と平行にする。 グラム数で表した荷重の値が円筒上に懸けた繊維の 総デニールの 0. 0 4倍になる重りを円筒に掛けた繊維の片方の端 に結び、 他方の端にはス ト レイ ンゲージを連結させた。 次に円筒を 0. 0 1 e mmZ秒の周速で回転させ、 張力をス ト レイ ンゲージで 測定する。 こう して測定した張力から繊維一繊維間静摩擦係数 f を 以下の式に従って求めた。  Approximately 690 m of fiber was wrapped around the cylinder at 1.5 ° of twill angle with a tension of about 10 g, and 30.5 cm of the same fiber as above was wrapped around the cylinder. At this time, this fiber is on the cylinder and is parallel to the winding direction of the cylinder. A weight, in which the load expressed in grams is 0.04 times the total denier of the fiber hung on the cylinder, is tied to one end of the fiber hung on the cylinder and a strain gauge is attached to the other end. Connected. Next, rotate the cylinder at a peripheral speed of 0.01 emmZ seconds and measure the tension with a strain gauge. The fiber-to-fiber static friction coefficient f was determined from the tension thus measured according to the following equation.
f = 1 / ^ X 1 n (T 2 /Ύ 1 )  f = 1 / ^ X 1 n (T 2 / Ύ 1)
ここで、 T , は繊維に掛けた重りの重さ、 T 2 は少なく とも 2 5 回測定した時の平均の張力、 I nは自然対数、 7Γは円周率を示す。Here, T, is the weight of the weight applied to the fiber, T 2 is the average tension measured at least 25 times, In is the natural logarithm, and 7Γ is the pi.
( 9 ) 繊維一繊維間動摩擦係数 (9) Dynamic friction coefficient between fibers
( 8 ) の測定法において、 周速度を 1 S mZm i nと した時の f を繊維一繊維間動摩擦係数と した。 ( 1 0 ) 繊維 -金属間動摩擦係数 In the measurement method of (8), f when the peripheral velocity was 1 SmZmin was defined as the fiber-to-fiber dynamic friction coefficient. (10) Fiber-metal dynamic friction coefficient
エイコ一測器 (株) 製の; Uメーターを用いて下記の条件で測定し た。  It was measured under the following conditions using a U-meter manufactured by Eiko Ikki.
摩擦体である、 表面をクローム梨地 (粗度 3 s ) に仕上げた直径 2 5 m mの鉄製円筒に繊維を 0. 4 g Z dの張力をかけながら、 繊 維の摩擦体への入り方向と出方向を 9 0 ° にして 2 5 °C、 6 5 % R Hの雰囲気下、 1 0 0 mZm i nの速度で摩擦させた時の繊維の動 摩擦係数 を以下の式に従って求めた。  The fiber enters the friction body while applying 0.4 g Zd tension to the 25 mm diameter iron cylinder whose surface is finished in chrome satin (roughness 3 s). The kinetic friction coefficient of the fiber when the fiber was rubbed at a speed of 100 mZmin in an atmosphere of 25 ° C and 65% RH with the exit direction set to 90 ° was determined according to the following equation.
3 6 0 x 2 . 3 0 2 6 / 丁 2 ヽ β 1 0 g 3 60 x 2 .3 0 2 6/2 丁 β 10 g
2 π θ \ Τ ,  2 π θ \ Τ,
こで、 T! 摩擦体への入側の張力 (デニール当り 0 4 g相 当の張力とする)  Here, T! Entrance tension to friction body (tension equivalent to 0.4 g per denier)
T 摩擦体より出側の張力  T Tension on the exit side from the friction body
Θ 9 0 °  Θ 90 °
π 円周率  π Pi
( 1 1 ) スカムの発生  (1 1) Scum generation
繊維を経糸、 緯糸に用いて平織物を製織した時に笾の周辺にスカ ムが発生したかどうかを観察した。 なお、 製織は、 経密度 3 8. 1 本 c m、 緯密度 3 1 . 5本ノ c mで津田駒工業 (株) 製織機 2 A - 1 0 3を用いて行つた。  When weaving a plain weave using the fibers for the warp and weft, it was observed whether or not scum was generated around (1). The weaving was carried out using a loom 2A-103 of Tsudakoma Kogyo Co., Ltd. at a density of 38.1 cm and a weft density of 31.5 cm.
〇 : 発生せず  〇: Not generated
△ : 発生したが程度は少ない。  Δ: Occurred, but to a lesser extent.
X : スカムが大量に発生  X: Large amount of scum
( 1 2 ) 毛羽の発生  (1 2) Generation of fluff
繊維 (糸) を編針に通し、 編針に入る糸道と出る糸道の角度を 6 0 。 に維持して、 0 . 6 g Z dの張力下、 2 mZm i nで 5時間チ —ズ状に巻き取り、 チーズの端面に発生した毛羽数を数えた。 〇 発生せず The fiber (yarn) is passed through the knitting needle, and the angle between the yarn path entering and exiting the knitting needle is 60. The cheese was wound at 2 mZmin for 5 hours under a tension of 0.6 g Zd for 5 hours, and the number of fluffs generated on the end face of the cheese was counted. ず Not generated
Δ 1 〜 3個発生  Δ 1 to 3 occurrences
X 3個以上発生  X 3 or more occurrences
( 1 3 ) 静電気の発生  (13) Generation of static electricity
繊維 (糸) を経糸、 緯糸に用いて平織物を製織した時に、 静電気 が発生して筏を通過したときに、 繊維同士が寄り付く ことが在った かどうかを検ベた。  When weaving plain fabrics using fibers (yarns) as warps and wefts, it was examined whether static electricity was generated and the fibers sometimes approached each other when passing through a raft.
〇 : 見られず  〇: Not seen
X : 見られた  X: seen
( 1 4 ) 巻きフオームの形状評価  (14) Shape evaluation of wound form
3 k g巻きのパ一ンを調製したときに 巻きフ オームに崩れが見 られたかどうかを観察した。  When a roll of 3 kg was prepared, it was observed whether or not the wound form collapsed.
〇 : 見られず  〇: Not seen
X : 見られた  X: seen
参考例 1 ポリ ト リ メ チ レンテレフタ レ トポリマーの合成 Reference Example 1 Synthesis of poly (methylene terephthalate) polymer
テレフタル酸ジメチル (以下、 DMTと略記する) と ト リ メチレ ングリ コール ( 1 , 3 —プロノ ンジオール) を 1 : 2のモル比で仕 込み、 0. 0 9重量%ZDMT (この単位は、 DMT量に対する重 量%を示したものである) の酢酸カルシウムと 0. 0 1 重量%ZD MTの酢酸コバル トを加え、 徐々 に昇温し 2 4 0 °Cでエステル交換 反応を完結させた。 得られたエステル交換物に、 熱安定剤と して 卜 リ メ チルホスフ ヱー ト 0. 0 5重量%ZD M T、 平均粒径 0. 3 5 // mの合繊用酸化チタン艷消し剤を 0. 5重量 を添加し 、 2 7 0 °Cで 2時間反応させた。 得られたポリマーの極限粘度は 0 . 7 5であった。 次に、 このポリマーを更に窒素雰囲気下で 2 1 5 °C、 5時間、 固相重合を行い、 極限粘度を 0 , 9 2 まで高めた。 〔実施例 1 〜 8〕 参考例 1 で得たポリマ—を窒素雰囲気下、 1 6 0 °Cで 3時間、 循 環式乾燥機を用いて、 水分率 3 0 p p mまで乾燥を行った。 得られ た乾燥ポ リマーを押出機に投入し、 2 6 5 ¾でロ径 0 . 2 3 m m x 3 6個の丸型紡孔を通して押し出した。 紡出されたフ ィ ラメ ン ト群 に 2 0 °C、 相対湿度 9 0 %の冷風を 0 . 4 m / sの速度で吹き付け 、 冷却固化させた。 固化フィ ラメ ン ト群に給油ノズルを用いて表 1 の仕上げ剤を 1 0 %の水分散ェマルジ ヨ ンと して糸に付着させ 1 6 0 0 m / m i nで巻き取った。 次に、 得られた未延伸糸をホッ トロ ール 5 5 °C、 ホッ トプレー ト 1 4 0 °Cを通しながら伸度がほぼ 4 0 %になるように延伸し、 5 0 d / 3 6 f の延伸糸を得た。 得られた 繊維は、 9 9重量%以上が P T Tからなる繊維であった。 Dimethyl terephthalate (hereinafter abbreviated as DMT) and trimethylene glycol (1,3-pronondiol) were charged at a molar ratio of 1: 2, and 0.09% by weight of ZDMT (the unit is the amount of DMT) (A weight% with respect to the weight of the compound) and calcium acetate of 0.01% by weight of ZDMT were added thereto, and the temperature was gradually increased to complete the transesterification at 240 ° C. To the obtained transesterified product, trimethylphosphophosphate as a heat stabilizer 0.05% by weight ZDMT, an average particle size of 0.35 // m Then, the mixture was reacted at 270 ° C. for 2 hours. The intrinsic viscosity of the obtained polymer was 0.75. Next, this polymer was further subjected to solid-state polymerization under a nitrogen atmosphere at 215 ° C. for 5 hours to increase the intrinsic viscosity to 0.92. (Examples 1 to 8) The polymer obtained in Reference Example 1 was dried under a nitrogen atmosphere at 160 ° C. for 3 hours using a circulating drier to a moisture content of 30 ppm. The obtained dried polymer was put into an extruder, and extruded through a round spinning hole having a diameter of 0.23 mm x 36 pieces at a diameter of 2655 mm. The spun filament group was blown with cold air at 20 ° C. and 90% relative humidity at a speed of 0.4 m / s to be cooled and solidified. Using a refueling nozzle, the solidifying filaments were applied with the finishing agent shown in Table 1 as a 10% water-dispersed emulsion and wound on the yarn at 160 m / min. Next, the obtained undrawn yarn was drawn while passing through a hot roll at 55 ° C and a hot plate at 140 ° C so that the elongation became almost 40%, and 50 d / 3 6 The drawn yarn of f was obtained. The obtained fiber was a fiber consisting of PTT at 99% by weight or more.
本発明で規定した範囲の組成の仕上げ剤を付着した繊維は、 いず れも優れた紡糸、 延伸性を示した。 また、 いずれの実施例で得られ た繊維も、 弾性回復性が高く、 また弾性率が低く ソフ 卜な感触の繊 維であった。  All of the fibers to which the finish having the composition within the range specified in the present invention was adhered exhibited excellent spinning and drawability. In addition, the fibers obtained in any of the examples were high in elastic recovery, low in elastic modulus, and soft in touch.
〔比較例 1 〜 6〕  [Comparative Examples 1 to 6]
表 1 に記載のように仕上げ剤を変えて、 実施例 1 を繰り返した。 比較例 1 では、 脂肪族エステルの代わりに、 芳香族エステルを用 いたために、 繊維一繊維間動摩擦係数や繊維一金属間動摩擦係数が 高く なつて、 スカムや毛羽の発生が見られた。 また、 ポリエーテル を含んでいないので、 糸摩擦切断数が低く なつた。  Example 1 was repeated, changing the finish as described in Table 1. In Comparative Example 1, since an aromatic ester was used in place of the aliphatic ester, scum and fluff were generated due to a high fiber-to-fiber kinetic friction coefficient and a fiber-to-metal kinetic friction coefficient. Also, since it does not contain polyether, the number of yarn friction cuts is low.
比較例 2では、 P E Tの仮撚加工糸に用いられる、 脂肪族エステ ルを含まない仕上げ剤を使用した。 この場合、 繊維—金属間動摩擦 係数が高く なつて、 ホッ トプレー トや口ールを通過した時に、 毛羽 が発生した。 また、 毛羽テス トでも毛羽が発生した。 その結果、 糸 摩擦切断数が小さ く なった。  In Comparative Example 2, a finishing agent containing no aliphatic ester, which is used for false twisted yarn of PET, was used. In this case, when the fiber-metal kinetic friction coefficient was high, fluff was generated when the fiber passed through the hot plate or the mouth. Also, fluff was generated in the fluff test. As a result, the number of yarn friction cuts decreased.
比較例 3では、 本発明の範囲より も分子量が低い脂肪族エステル を含む仕上げ剤を用いた。 この場合、 仕上げ剤の膜強度が下がるた めに、 繊維一金属間動摩擦係数が高く なつて、 ホッ トプレー トや口 ールを通過した時に、 毛羽が発生した。 また、 毛羽テス トでも毛羽 が発生した。 In Comparative Example 3, the aliphatic ester having a molecular weight lower than the range of the present invention was used. Was used. In this case, since the film strength of the finishing agent was reduced, the coefficient of kinetic friction between the fiber and the metal was increased, and fluff was generated when passing through a hot plate or a mouth. Also, fluff was generated in the fluff test.
比較例 4では、 ポリエーテルの量が本発明の範囲を越える量を含 む仕上げ剤を用いて実験を行った。 この場合、 繊維一繊維間静摩擦 係数が低下して巻きフォームが大き く崩れ、 3 k g巻きのバーンを 得ることができなかった。  In Comparative Example 4, an experiment was conducted using a finish containing an amount of polyether exceeding the range of the present invention. In this case, the fiber-to-fiber static friction coefficient was reduced, and the wound foam was greatly collapsed, and it was not possible to obtain a 3 kg winding burn.
比較例 5では、 実施例 1 の仕上げ剤を用い油付率を低く して本発 明の範囲からはずれた仕上げ剤を採用した。 この場合、 繊維一繊維 間動摩擦係数や繊維一金属間動摩擦係数が高く なって、 毛羽ゃ静電 気の発生が見られた。  In Comparative Example 5, the finishing agent out of the range of the present invention was adopted by using the finishing agent of Example 1 and lowering the oiling rate. In this case, the fiber-to-fiber kinetic friction coefficient and the fiber-to-metal kinetic friction coefficient were increased, and fluff and static electricity were generated.
比較例 6では、 イオン性界面活性剤の量が本発明の範囲をはずれ る仕上げ剤を示した。 この場合、 静電気の発生が見られた。 また繊 維一金属動摩擦係数が低下しすぎてロール上でのすべりが見られた  Comparative Example 6 showed a finish in which the amount of ionic surfactant was outside the scope of the present invention. In this case, static electricity was generated. In addition, the fiber-to-metal kinetic friction coefficient was too low and slipping on the roll was observed.
〔比較例 Ί〕 [Comparative Example Ί]
比較例 2の仕上げ剤を用いて、 P E T繊維に付着させた。 この場 合、 繊維一繊維動摩擦係数が本発明の P T T繊維の範囲からはずれ るにも関わらず、 何ら問題なく紡糸、 延伸することができた。 また 、 毛羽テス トでも問題はなかった。 これは、 P E T繊維は、 P T T 繊維に比較して摩擦係数が低く、 同時に繊維一繊維のこすれに強い ことを示すものである。 また、 得られた繊維は弾性回復性が低く、 また弾性率が高く堅い感触のものであつた。  The finish of Comparative Example 2 was used to adhere to PET fibers. In this case, although the fiber-to-fiber dynamic friction coefficient was out of the range of the PTT fiber of the present invention, the fiber could be spun and drawn without any problem. There was no problem with the fluff test. This indicates that the PET fiber has a lower coefficient of friction than the PTT fiber and at the same time is resistant to rubbing of the fiber-to-fiber. Further, the obtained fiber had a low elastic recovery property, a high elastic modulus and a hard feel.
〔比較例 8〕  (Comparative Example 8)
実施例 1 の未延伸糸の複屈折率は 0 . 0 2 4、 強度は 1 . 6 d、 伸度は 2 3 0 %であった。 2 0 °Cで 2 0 日放置していたら、 繊 維物性が経時変化して非常に脆く なつた。 このような現象は、 実施 例 1 〜 8の繊維では見られなかった。 The birefringence of the undrawn yarn of Example 1 was 0.024, the strength was 1.6 d, and the elongation was 230%. If left at 20 ° C for 20 days, The physical properties changed over time and became very brittle. Such a phenomenon was not observed in the fibers of Examples 1 to 8.
〔実施例 9〕  (Example 9)
実施例 7の仕上げ剤を用いて紡糸速度を 3 5 0 0 m / m i nにし て、 紡糸のみを行った。 得られた半延伸糸の複屈折率は 0 . 0 6 2 、 強度は 2 . 7 g / d、 伸度は 7 4 %、 油付率は 0 . 4 1 %、 繊維 一繊維間動摩擦係数は 0 . 3 5、 繊維一金属間動摩擦係数は 0 . 2 0、 繊維一繊維間静摩擦係数は 0 . 2 9であり、 紡糸性は何ら問題 なかった。 また、 この半延伸糸は、 比較例 8 の未延伸糸とは異なり 、 2 0 °Cで 2 0 日放置した後、 繊維物性は経時変化がなかった。  Using the finishing agent of Example 7, the spinning speed was set to 3500 m / min, and only spinning was performed. The birefringence of the obtained semi-drawn yarn is 0.062, the strength is 2.7 g / d, the elongation is 74%, the oiling rate is 0.41%, and the dynamic friction coefficient between fibers is The coefficient of kinetic friction between fiber and metal was 0.20, the coefficient of static friction between fiber and fiber was 0.29, and there was no problem in spinnability. Also, unlike the undrawn yarn of Comparative Example 8, this semi-drawn yarn had no change in fiber properties over time after standing at 20 ° C. for 20 days.
この半延伸糸をバ一マグ社製 S W 4 6 S S D仮撚加工機を用いて 、 4 5 0 m Z m i nの加工速度で、 1 . 2 5倍の延伸を行いながら 1 6 0 °Cで加熱しながら、 3 6 0 0 T Z mの捲縮加工糸を作成した 。 この時の加工性は何ら問題はなかった。 また、 得られた加工糸は 、 膨らみ感、 ス ト レッチ性に富み、 ソフ トな風合いのものであった  The semi-drawn yarn is heated at 160 ° C. while performing 1.25 times drawing at a processing speed of 450 mZ min using a SW46 SSD false twisting machine manufactured by Vamagu. Meanwhile, a crimped yarn of 360,000 TZm was prepared. There was no problem with the workability at this time. Moreover, the obtained processed yarn was rich in swelling and stretch, and had a soft texture.
〔比較例 9〕 (Comparative Example 9)
比較例 2 において、 紡糸速度を 3 5 0 0 m / m i nにして、 紡糸 のみを行った。 得られた半延伸糸の複屈折率は 0 . 0 6 6、 強度は 2 . 5 d、 伸度は 8 2 %、 繊維一繊維間動摩擦係数は 0 . 3 9 、 繊維一金属間動摩擦係数は 0 . 3 2、 繊維一繊維間静摩擦係数は 0 . 3 0であった。 繊維一金属間動摩擦係数が高いため、 紡糸時に 毛羽が発生した。  In Comparative Example 2, the spinning speed was set to 3500 m / min, and only spinning was performed. The birefringence of the obtained semi-drawn yarn is 0.066, the strength is 2.5 d, the elongation is 82%, the coefficient of kinetic friction between fiber and fiber is 0.39, and the coefficient of kinetic friction between fiber and metal is 0.32, the coefficient of static friction between fibers was 0.30. Due to the high coefficient of kinetic friction between fiber and metal, fluffing occurred during spinning.
この半延伸糸を実施例 9 と同様に仮撚加工を試みたが、 毛羽が大 量に発生し長時間巻き取ることができなかった。  False twisting was attempted on this semi-drawn yarn in the same manner as in Example 9, but a large amount of fluff was generated and could not be wound for a long time.
〔実施例 1 0〜 1 2〕  (Examples 10 to 12)
仕上げ剤の種類を変えて、 極限粘度 0 . 8 の P T Tを用いて実施 例 1 を繰り返した。 こう して得られた繊維は、 9 9重量%以上が P 丁丁からなる繊維であつた。 Performed using PTT with an intrinsic viscosity of 0.8 by changing the type of finish Example 1 was repeated. The fibers thus obtained consisted of more than 99% by weight of P-chome.
本発明で規定した範囲の繊維物性及び、 仕上げ剤組成のものは、 いずれも優れた紡糸 · 延伸性を示した。  All of the fiber properties and the finish composition within the ranges specified in the present invention exhibited excellent spinning and drawing properties.
〔参考例 2〕  (Reference Example 2)
実施例 5及び実施例 8で得た延伸糸を三菱工業社性 L S — 2仮撚 加工機を用いて、 スピン ドル回転数 2 7 5 0 0 0 r p m、 仮撚数 3 6 5 0 T / m、 オーバ一フ イ ー ド率 4 . 1 %、 仮撚温度 1 6 5 でで 仮撚加工を行った。 いずれの場合も伸縮性、 ソフ ト性に富み、 糸切 れもなく良好な仮撚加工性を示した。  The drawn yarns obtained in Examples 5 and 8 were subjected to spindle rotation at 2750 rpm and false twists at 3650 T / m using an LS-2 false twisting machine manufactured by Mitsubishi Industrial Corporation. The false twisting was performed at an over feed rate of 4.1% and a false twist temperature of 16.5. In each case, it was excellent in stretchability and softness, and showed good false twistability without thread breakage.
これに対し、 比較例 1〜 6の繊維は、 いずれも糸切れが多発した o  On the other hand, in all of the fibers of Comparative Examples 1 to 6, thread breakage occurred frequently.o
〔参考例 3〕  (Reference Example 3)
「スカムの発生の測定方法」 で示した方法で、 実施例 1, 5, 1 0及び比較例 7の各繊維を用いて平織物を作成した。 実施例 1, 5 , 1 0の繊維を用いた場合、 得られた平織物はソフ 卜で、 緯方向に 1 0 %程度のス ト レッチ性を示した。 従来の合繊織物で得られない 風合いを示した。  Plain fabrics were prepared using the fibers of Examples 1, 5, 10 and Comparative Example 7 by the method described in "Method of measuring scum generation". When the fibers of Examples 1, 5, and 10 were used, the obtained plain woven fabric was soft and showed a stretchability of about 10% in the weft direction. It has a texture that cannot be obtained with conventional synthetic fabrics.
これに対し、 比較例 7の繊維を用いた場合、 風合いは堅く、 ス ト レツチ性も示さなかった。 On the other hand, when the fiber of Comparative Example 7 was used, the hand was firm and did not show any stretchiness.
Figure imgf000031_0002
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0001
表 2 各種仕上げ剤を付着させた PTT繊維の特性 Table 2 Properties of PTT fiber with various finishing agents attached
Figure imgf000032_0001
Figure imgf000032_0001
表中、 W, , W2 , W3 及び W, は、 化合物 ( 1 ) . (2) (3) 及び (4) の仕上げ剤 全量中の含有量 (重量%) を示す。 In the table, W,, W 2 , W 3 and W, indicate the content (% by weight) of the compounds (1), (2), (3) and (4) in the total amount of the finish.
ボリエーテルはランダム共重合体である。 Polyethers are random copolymers.
産業上の利用可能性 Industrial applicability
本発明のポ リ エステル繊維は、 p τ T繊維特有の問題である高い 摩擦係数、 繊維の側面の摩耗しやすさの問題を解決し、 優れた平滑 性、 耐摩耗性、 集束性、 制電性を有し、 巻き取り工程、 延伸工程、 ボビンやチーズからの解舒性、 仮撚加工性、 製編織性等の、 紡糸か ら後加工に至る工程通過性に優れ、 ボビンやチーズの巻きフ ォーム が極めて良好である。 かく して、 本発明が特定する仕上げ剤が付着 した P T T繊維は、 弾性回復性、 ソフ 卜な風合い、 均質性等の良好 な品位を有する編織物に加工することができる。  The polyester fiber of the present invention solves the problems of high friction coefficient and easy wear of the side surface of the fiber, which are problems peculiar to pτT fiber, and has excellent smoothness, abrasion resistance, convergence, and antistatic properties. Excellent in processability from spinning to post-processing such as winding process, stretching process, unwinding from bobbin and cheese, false twisting process, weaving, etc., bobbin and cheese winding The form is extremely good. Thus, the PTT fiber to which the finish specified by the present invention has adhered can be processed into a knitted fabric having good quality such as elastic recovery, soft texture, and homogeneity.
本発明のポリエステル繊維は、 アウターウエア、 イ ンナ一ウェア 、 スポーツウエア、 水着、 裏地、 パンス ト、 タイツ、 靴下人工皮革 用の原糸等の衣料用の繊維素材と しては勿論のこ と、 カーぺッ ト、 フロ ッキー、 人工皮革、 ガッ 卜、 人工芝等の用途においても有用で ある。  The polyester fiber of the present invention is, of course, a textile material for clothing such as outerwear, innerwear, sportswear, swimwear, lining, pantyhose, tights, and raw yarn for sock artificial leather. It is also useful in applications such as carpet, flocky, artificial leather, gut, and artificial turf.

Claims

請 求 の 範 囲 The scope of the claims
1 . 9 0重量%以上がポリ ト リ メチ レ ンテ レフ タ レー トから構成 され、 複屈折率が 0 . 0 2 5以上のポリエステル繊維であって、 該 繊維の表面に仕上げ剤が 0 . 2 ~ 3重量%付着しており、 該仕上げ 剤の構成成分と して化合物 ( 1 ) 〜 ( 4 ) を必須成分と して含有し 、 かつ仕上げ剤全量中の化合物 ( 1 ) ~ ( 4 ) の含有量の総量が 8 0 〜 】 0 0重量%であることを特徴とするポ リエステル繊維。 Polyester fibers having a birefringence of 0.025 or more are composed of at least 1.9% by weight of polytrimethyl terephthalate, and a finishing agent is applied to the surface of the fibers at an amount of 0.2% or more. 3% by weight, containing the compounds (1) to (4) as an essential component as a component of the finishing agent, and containing the compounds (1) to (4) in the total amount of the finishing agent. Polyester fiber characterized by having a total content of 80 to 100% by weight.
( 1 ) 仕上げ剤全量に対する含有量が 3 0 〜 8 0重量%である、 分子量 3 0 0 - 8 0 0の脂肪族エステル及び Z又は 3 0 °Cにおける レツ ドウ ッ ド粘度が 4 0 〜 5 0 0秒の鉱物油  (1) Aliphatic ester having a molecular weight of 300 to 800 and a content of 30 to 80% by weight with respect to the total amount of the finishing agent, and a Z or a resin with a resin viscosity of 40 to 5 at 30 ° C. 0 0 second mineral oil
( 2 ) 仕上げ剤全量に対する含有量が 2 ~ 6 0重量%である、 以 下の構造式で示される、 エチレンォキシ ド単位とプロ ピレンォキシ ド単位がラ ンダム共重合又はブロ ッ ク共重合されたポリエーテル (2) Polyethylene oxide and propylene oxide units having a content of 2 to 60% by weight based on the total amount of the finishing agent and having a random or block copolymer of ethylene oxide units and propylene oxide units. ether
R , - 0 - (CH2CH20) η , 一 ( CH(CH3)CH20) n 2 一 R 2 R,-0-(CH 2 CH 2 0) η, one (CH (CH 3 ) CH 20 ) n 2 one R 2
(ここで、 , R 2 は、 水素原子、 炭素数 1 ~ 5 0 までの有機基 であり、 n , 及び n 2 は 1 〜 1 0 0 0である。 ) (Where, and R 2 are a hydrogen atom and an organic group having 1 to 50 carbon atoms, and n and n 2 are 1 to 100.)
( 3 ) 炭素数 1 〜 3 0 のアルコールにエチ レ ンォキシ ド又はプロ ピレンォキシ ドが付加した化合物、 炭素数】 〜 3 0の力ルボン酸、 アミ ン又はア ミ ドにエチレンォキシ ド又は 及びプロ ピレンォキシ ドが付加した化合物から選ばれた少なく とも 1 種であり、 該ォキシ ド全量の付加モル数が 1 〜 1 0 0であって、 仕上げ剤全量に対する 含有量が 5 〜 4 0重量%である非イオン性界面活性剤  (3) Compounds obtained by adding ethylene oxide or propylene oxide to an alcohol having 1 to 30 carbon atoms, carbon number] to 30 carboxylic acids, amines or amides, and ethylene oxide or propylene oxide. At least one compound selected from the compounds having an addition of 1 to 100, and the added mole number of the total amount of the oxide is 1 to 100, and the content relative to the total amount of the finishing agent is 5 to 40% by weight. Surfactant
( 4 ) 仕上げ剤全量に対する含有量が 2 ~ 2 0重量%であるィォ ン性界面活性剤  (4) An ionic surfactant having a content of 2 to 20% by weight based on the total amount of the finishing agent
2. 脂肪族エステルの分子量が 3 0 0 〜 5 5 0であることを特徴 とする請求項 1 記載のポ リ エステル繊維。 2. The polyester fiber according to claim 1, wherein the molecular weight of the aliphatic ester is from 300 to 550.
3. 化合物 ( 2 ) において、 プロ ピレ ンォキシ ド単位 Zエチレ ン ォキシ ド単位が重量比 2 0 / 8 0 - 7 0 / 3 0 であることを特徵と する請求項 1及び 2 のポリエステル繊維。 3. The polyester fiber according to claim 1, wherein in the compound (2), the weight ratio of propylene oxide units to Z ethylenoxide units is 20 / 80-70 / 30.
4. 化合物 ( 2 ) において、 プロ ピレ ンォキシ ド単位/エチ レ ン ォキシ ド単位が重量比 2 0 / 8 0 - 7 0 / 3 0 であって、 分子量が 1 5 0 0〜 2 0 0 0 0であることを特徵とする請求項 1 〜 3記載の ポリ エステル繊維。  4. In the compound (2), the weight ratio of propylene oxide units / ethylenoxide units is 20 / 80-70 / 30, and the molecular weight is from 150 to 200. The polyester fiber according to any one of claims 1 to 3, wherein
5. イオン性界面活性剤が以下の化合物 ( 5 ) 〜 ( 8 ) から選ば れた化合物の少なく とも 1種であることを特徴とする請求項 1〜 4 記載のボリエステル繊維。  5. The polyester fiber according to claim 1, wherein the ionic surfactant is at least one compound selected from the following compounds (5) to (8).
( 5 ) R 5 - S 03 一 X (5) R 5 -S 03 I X
( 6 ) (R 6 _ 0 -) P (= 0)(0 X)2 (6) (R 6 _ 0-) P (= 0) (0 X) 2
( 7 ) ( R , - 0— ) ( R 8 - 0 -) P (=〇)(O X) (7) (R, - 0- ) (R 8 - 0 -) P (= 〇) (OX)
( 8 ) R 9 一 C O O X  (8) R 9 C O O X
(こ こで、 R 5 〜R S は、 水素原子、 炭素数 4〜 4 0 までの有機基 であり、 Xは、 アルカ リ金属又はアルカ リ土類金属である。 ) (Here, R 5 to R S are a hydrogen atom, an organic group having 4 to 40 carbon atoms, and X is an alkali metal or an alkaline earth metal.)
6. 9 0重量%以上がポリ 卜 リ メチレンテレフタ レ一 トから構成 され、 複屈折率が 0. 0 2 5以上のポリエステル繊維であって、 該 繊維の表面に仕上げ剤が 0. 3〜 1. 0重量%付着しており、 該仕 上げ剤の構成成分と して化合物 ( 1 ) ~ ( 4 ) を必須成分と して含 有し、 かつ仕上げ剤全量中の化合物 ( 1 ) 〜 ( 4 ) の含有量の総量 が 8 0〜 1 0 0重量%であることを特徵とするポリエステル繊維。  6. 90% by weight or more of polyester fiber composed of polytrimethylene terephthalate and having a birefringence of 0.025 or more, and a finish of 0.3 to 1.0% by weight, containing the compounds (1) to (4) as essential components as constituents of the finishing agent, and the compounds (1) to ( 4) Polyester fiber characterized by having a total content of 80 to 100% by weight.
( 1 ) 仕上げ剤全量に対する含有量が 3 0〜 6 G重量%である、 分子量 3 0 0〜 8 0 0 の脂肪族エステル及び Z又は 3 0 °Cにおける レツ ドウ ッ ド粘度が 4 0〜 5 0 0秒の鉱物油  (1) Aliphatic ester having a molecular weight of from 300 to 800 and a content of 30 to 6 G% by weight based on the total amount of the finishing agent, and a resin or a resin having a viscosity of 40 to 5 at 30 ° C. 0 0 second mineral oil
( 2 ) 仕上げ剤全量に対する含有量が 5〜 4 0重量%である、 以 下の構造式で示される、 ェチレンォキシ ド単位とプロピレンォキシ ド単位がラ ンダム共重合又はプロ ッ ク共重合されたポ リエーテル(2) Ethylene oxide unit and propylene oxide represented by the following structural formula, wherein the content with respect to the total amount of the finishing agent is 5 to 40% by weight. Polyether with random or block copolymerized units
R , — 0— (CH2CH20) n! 一 ( CH(CH3)CH20) η , — R 2 R, — 0— (CH 2 CH 2 0) n! One (CH (CH 3 ) CH 2 0) η, — R 2
(ここで、 , R 2 は、 水素原子、 炭素数 1〜 5 0 までの有機基 であり、 η , 及び n 2 は 1〜 1 0 0 0である。 ) (Here, and R 2 are a hydrogen atom and an organic group having 1 to 50 carbon atoms, and η and n 2 are 1 to 100.)
( 3 ) 炭素数 1 ~ 3 0 のアルコール、 カルボン酸、 ァ ミ ン、 ア ミ ドから選ばれた少なく とも 1 種に、 エチレンォキシ ドまたはプロ ピ レ ンォキシ ドが付加した化合物であり、 該ォキシ ド全量の付加モル 数が 1〜 1 0 0であって、 仕上げ剤全量に対する含有量が 5〜 3 0 重量%である非イオン性界面活性剤  (3) a compound in which ethylene oxide or propylene oxide is added to at least one selected from alcohols, carboxylic acids, amides, and amides having 1 to 30 carbon atoms, and A nonionic surfactant having a total molar number of 1 to 100 and a content of 5 to 30% by weight based on the total amount of the finishing agent
( 4 ) 仕上げ剤全量に対する含有量が 2〜 1 5重量%であるィォ ン性界面活性剤  (4) An ionic surfactant having a content of 2 to 15% by weight based on the total amount of the finishing agent
7. 9 0重量%以上がポ リ ト リ メチレンテレフタ レー トから構成 され、 複屈折率が 0 . 0 2 5以上のポリエステル繊維であつて、 該 繊維の表面に仕上げ剤が 0 . 4〜 1 . 2重量%付着しており、 該仕 —上げ剤の構成成分と して化合物 ( 1 ) 〜 ( 4 ) を必須成分と して含 有し、 かつ仕上げ剤全量中の化合物 ( 1 ) 〜 ( 4 ) の含有量の総量 が 8 0〜 1 0 0重量%であることを特徴とするポリエステル繊維。  7.9% or more by weight of polyester methylene terephthalate is a polyester fiber having a birefringence of 0.025 or more, and the surface of the fiber is coated with a finishing agent of 0.4 to 1.2% by weight, containing compounds (1) to (4) as essential components of the finishing agent, and compounds (1) to (4) in the total amount of the finishing agent. (4) Polyester fiber characterized by having a total content of 80 to 100% by weight.
( 1 ) 仕上げ剤全量に対する含有量が 5 0〜 7 0重量%である、 分子量 3 0 0〜 8 0 0の脂肪族エステル及び 又は 3 0 °Cにおける レツ ドウ ッ ド粘度が 4 0〜 5 0 0秒の鉱物油  (1) An aliphatic ester having a molecular weight of 300 to 800 and a content of 50 to 70% by weight with respect to the total amount of the finishing agent, and / or a resin with a viscosity of 40 to 50 at 30 ° C. 0 second mineral oil
( 2 ) 仕上げ剤全量に対する含有量が 5〜 3 0重量%である、 以 下の構造式で示される、 エチレンォキシ ド単位とプロ ピレ ンォキシ ド単位がラ ンダム共重合又はプロ ッ ク共重合されたポ リエーテル (2) A content of 5 to 30% by weight based on the total amount of the finishing agent, represented by the following structural formula, in which an ethylene oxide unit and a propylene oxide unit are randomly or block copolymerized. Polyether
R , — 0— (CH2CH20) n ! - (CH(CH3)CH20) n 2 - R 2 R, — 0— (CH 2 CH 2 0) n! -(CH (CH 3 ) CH 2 0) n 2 -R 2
(こ こで、 , R 2 は、 水素原子、 炭素数 1〜 5 0 までの有機基 であり、 及び n 2 は 1 ~ 1 0 0 0である。 ) (Here,, R 2 are a hydrogen atom, an organic group having 1 to 50 carbon atoms, and n 2 is 1 to 100.)
( 3 ) 炭素数 1〜 3 0のアルコール、 カルボン酸、 ァ ミ ン、 ア ミ ドから選ばれた少なく とも 1種に、 エチレンォキシ ドまたはプロ ピ レンォキシ ドが付加した化合物であり、 該ォキシ ド全量の付加モル 数が 1 ~ 1 0 0であって、 仕上げ剤全量に対する含有量が 5〜 3 0 重量%である非ィォン性界面活性剤 (3) Alcohols, carboxylic acids, amines, amines having 1 to 30 carbon atoms A compound in which ethylene oxide or propylene oxide is added to at least one member selected from the group consisting of: 5 to 30% by weight of nonionic surfactant
( 4 ) 仕上げ剤全量に対する含有量が 5〜 1 5重量%であるィォ ン性界面活性剤  (4) An ionic surfactant having a content of 5 to 15% by weight based on the total amount of the finishing agent
8. 9 0重量%以上がポリ ト リメチレンテレフタ レ一 トから構成 され、 複屈折率が 0. 0 2 5以上であるポリエステル繊維において 、 繊維一繊維動摩擦係数が 0. 3〜 0. 4 5、 繊維一金属動摩擦係 数が 0. 1 7 ~ 0. 3であることを特徴とするポ リ エステル繊維。  8.9% by weight or more of polytrimethylene terephthalate is composed of polyester fibers having a birefringence of 0.025 or more, and the fiber-to-fiber dynamic friction coefficient is 0.3 to 0.4. 5. Polyester fibers having a fiber-to-metal kinetic friction coefficient of 0.17 to 0.3.
9. 9 0重量%以上がポリ ト リ メチレンテレフタ レー トから構成 され、 複屈折率が 0. 0 2 5以上であるポ リ エステル繊維において 、 繊維一繊維動摩擦係数が 0. 3〜 0. 4 5、 繊維一金属動摩擦係 数が 0. 1 7〜 0. 3、 繊維—繊維静摩擦係数が 0. 2 7〜 0. 4 であることを特徴とするポリエステル繊維。  9.9% by weight or more of polytrimethylene terephthalate is a polyester fiber having a birefringence of not less than 0.025 and a fiber-to-fiber dynamic friction coefficient of 0.3 to 0.3. 45. A polyester fiber having a fiber-to-metal kinetic friction coefficient of 0.17 to 0.3 and a fiber-fiber static friction coefficient of 0.27 to 0.4.
PCT/JP1999/000366 1998-01-29 1999-01-28 Smooth polyester fiber WO1999039041A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99901196A EP1052325B1 (en) 1998-01-29 1999-01-28 Smooth polyester fiber
US09/601,194 US6468655B1 (en) 1998-01-29 1999-01-28 Smooth polyester fiber
DE69932231T DE69932231T2 (en) 1998-01-29 1999-01-28 SMOOTH POLYESTER FIBER
JP2000529491A JP3188687B2 (en) 1998-01-29 1999-01-28 Smooth polyester fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3039198 1998-01-29
JP10/30391 1998-01-29

Publications (1)

Publication Number Publication Date
WO1999039041A1 true WO1999039041A1 (en) 1999-08-05

Family

ID=12302629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000366 WO1999039041A1 (en) 1998-01-29 1999-01-28 Smooth polyester fiber

Country Status (9)

Country Link
US (1) US6468655B1 (en)
EP (1) EP1052325B1 (en)
JP (1) JP3188687B2 (en)
KR (1) KR100378857B1 (en)
AT (1) ATE332404T1 (en)
DE (1) DE69932231T2 (en)
ES (1) ES2270576T3 (en)
TW (1) TW554098B (en)
WO (1) WO1999039041A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060158A3 (en) * 1999-04-07 2001-01-25 Allied Signal Inc Spin finish composition
JP2001081673A (en) * 1999-09-13 2001-03-27 Takemoto Oil & Fat Co Ltd Synthetic fiber finishing agent and method for finishing synthetic fiber
US6287688B1 (en) 2000-03-03 2001-09-11 E. I. Du Pont De Nemours And Company Partially oriented poly(trimethylene terephthalate) yarn
WO2001066838A1 (en) * 2000-03-03 2001-09-13 E.I. Du Pont De Nemours And Company Fine denier yarn from poly(trimethylene terephthalate)
EP1143049A1 (en) * 1998-10-15 2001-10-10 Asahi Kasei Kabushiki Kaisha Polytrimethylene terephthalate fiber
WO2001075217A1 (en) * 2000-04-04 2001-10-11 Teijin Limited Polyester fiber for false twisting
EP1209262A1 (en) 1999-07-12 2002-05-29 Asahi Kasei Kabushiki Kaisha Polytrimethylene terephthalate fiber and process for producing the same
WO2002031244A3 (en) * 2000-10-11 2002-07-25 Shell Int Research A process for making high stretch and elastic knitted fabrics from polytrimethylene terephthalate
JP2003027333A (en) * 2001-07-19 2003-01-29 Asahi Kasei Corp Polyketone fiber
US6555220B1 (en) 2001-02-02 2003-04-29 Asahi Kasei Kabushiki Kaisha Composite fiber having favorable post-treatment processibility and method for producing the same
JP2005206980A (en) * 2004-01-23 2005-08-04 Toray Ind Inc Nonaqueous treating agent for polyester fiber and high-strength polyester fiber
EP1927683A2 (en) 2006-11-28 2008-06-04 Futura Polyesters Limited Polyester staple fiber (PSF)/filament yarn (POY and PFY) for textile applications

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556379B2 (en) 1996-03-07 2004-08-18 富士通株式会社 Optical transmission system
US6685859B2 (en) 2000-03-03 2004-02-03 E. I. Du Pont De Nemours And Company Processes for making poly(trimethylene terephthalate) yarn
US20020116802A1 (en) * 2000-07-14 2002-08-29 Marc Moerman Soft and stretchable textile fabrics made from polytrimethylene terephthalate
US6872352B2 (en) 2000-09-12 2005-03-29 E. I. Du Pont De Nemours And Company Process of making web or fiberfill from polytrimethylene terephthalate staple fibers
US6458455B1 (en) 2000-09-12 2002-10-01 E. I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) tetrachannel cross-section staple fiber
US20050272336A1 (en) * 2004-06-04 2005-12-08 Chang Jing C Polymer compositions with antimicrobial properties
JP4691415B2 (en) 2004-11-02 2011-06-01 竹本油脂株式会社 Synthetic fiber treatment agent and synthetic fiber treatment method
CN100422429C (en) * 2004-11-02 2008-10-01 竹本油脂株式会社 Treating agent for synthetic fiber and method for treating synthetic fiber
US8021736B2 (en) * 2006-07-13 2011-09-20 E.I. Du Pont De Nemours And Company Substantially flame retardant-free 3GT carpet
DE102008013191A1 (en) * 2008-03-07 2009-09-10 De, Dennis, Prof. Dr. A pair of detachable, connectable socks or stockings with improved durability
EP2169110B1 (en) * 2008-09-25 2013-06-05 Trevira Gmbh Fire-resistant hollow fibres with silicon-free soft hand finish comprising a polyether and a condensation product of fatty acid
US9131790B2 (en) 2013-08-15 2015-09-15 Aavn, Inc. Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US10808337B2 (en) 2013-08-15 2020-10-20 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US11168414B2 (en) 2013-08-15 2021-11-09 Arun Agarwal Selective abrading of a surface of a woven textile fabric with proliferated thread count based on simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US10443159B2 (en) 2013-08-15 2019-10-15 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
EP3105067A1 (en) * 2014-02-13 2016-12-21 Analogic Corporation Reinforcement cord with radiation attenuation coating
US20160160406A1 (en) 2014-05-29 2016-06-09 Arun Agarwal Production of high cotton number or low denier core spun yarn for weaving of reactive fabric and enhanced bedding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104216A (en) * 1981-12-14 1983-06-21 Teijin Ltd Preparation of polytrimethylene terephthalate fiber
US4394126A (en) * 1979-11-01 1983-07-19 Wilson Robert B Diester composition and textile processing compositions therefrom
JPH02229272A (en) * 1989-03-02 1990-09-12 Nippon Ester Co Ltd Production of polyester yarn for non-sized weaving
EP0547846A1 (en) * 1991-12-13 1993-06-23 Milliken Research Corporation Finish for textile fibers
JPH07173768A (en) * 1993-12-17 1995-07-11 Toray Ind Inc Treating agent for synthetic fiber

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681188A (en) * 1971-02-19 1972-08-01 Du Pont Helically crimped fibers of poly(trimethylene terephthalate) having asymmetric birefringence
US4561987A (en) 1983-10-06 1985-12-31 Takemoto Yushi Kabushiki Kaisha Lubricating agents for processing synthetic yarns and method of processing synthetic yarns therewith
JPS61293832A (en) * 1985-06-21 1986-12-24 Diafoil Co Ltd Transparent, slippery biaxially oriented polyester film
DE3628664A1 (en) 1986-08-23 1988-03-03 Degussa METHOD FOR PRODUCING 1,12-DODECANDEIAEUR II
JP2520496B2 (en) 1990-05-17 1996-07-31 帝人株式会社 Oil agent for polyester fiber and polyester fiber to which it is attached
JP2550218B2 (en) 1990-11-27 1996-11-06 帝人株式会社 Polyester fiber
JPH09262046A (en) 1996-03-27 1997-10-07 Kuraray Co Ltd Fishing line
WO1999011709A1 (en) * 1997-09-03 1999-03-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyester resin composition
US6284370B1 (en) * 1997-11-26 2001-09-04 Asahi Kasei Kabushiki Kaisha Polyester fiber with excellent processability and process for producing the same
WO2000022210A1 (en) * 1998-10-15 2000-04-20 Asahi Kasei Kabushiki Kaisha Polytrimethylene terephthalate fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394126A (en) * 1979-11-01 1983-07-19 Wilson Robert B Diester composition and textile processing compositions therefrom
JPS58104216A (en) * 1981-12-14 1983-06-21 Teijin Ltd Preparation of polytrimethylene terephthalate fiber
JPH02229272A (en) * 1989-03-02 1990-09-12 Nippon Ester Co Ltd Production of polyester yarn for non-sized weaving
EP0547846A1 (en) * 1991-12-13 1993-06-23 Milliken Research Corporation Finish for textile fibers
JPH07173768A (en) * 1993-12-17 1995-07-11 Toray Ind Inc Treating agent for synthetic fiber

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143049A4 (en) * 1998-10-15 2003-04-23 Asahi Chemical Ind Polytrimethylene terephthalate fiber
US6423407B1 (en) 1998-10-15 2002-07-23 Asahi Kasei Kabushiki Kaisha Polytrimethylene terephthalate fiber
EP1143049A1 (en) * 1998-10-15 2001-10-10 Asahi Kasei Kabushiki Kaisha Polytrimethylene terephthalate fiber
WO2000060158A3 (en) * 1999-04-07 2001-01-25 Allied Signal Inc Spin finish composition
EP1209262A1 (en) 1999-07-12 2002-05-29 Asahi Kasei Kabushiki Kaisha Polytrimethylene terephthalate fiber and process for producing the same
JP2001081673A (en) * 1999-09-13 2001-03-27 Takemoto Oil & Fat Co Ltd Synthetic fiber finishing agent and method for finishing synthetic fiber
US6998079B2 (en) 2000-03-03 2006-02-14 E. I. Du Pont De Nemours And Company Process of making partially oriented poly(trimethylene terephthalate) yarn
JP2015007306A (en) * 2000-03-03 2015-01-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Partially oriented polytrimethylene terephthalate yarn
US6383632B2 (en) 2000-03-03 2002-05-07 E. I. Du Pont De Nemours And Company Fine denier yarn from poly (trimethylene terephthalate)
JP2011153400A (en) * 2000-03-03 2011-08-11 E I Du Pont De Nemours & Co Partially oriented poly(trimethylene terephthalate) yarn
WO2001066838A1 (en) * 2000-03-03 2001-09-13 E.I. Du Pont De Nemours And Company Fine denier yarn from poly(trimethylene terephthalate)
JP2013057162A (en) * 2000-03-03 2013-03-28 E I Du Pont De Nemours & Co Partially oriented poly(trimethylene terephthalate) yarn
US6333106B2 (en) 2000-03-03 2001-12-25 E. I. Du Pont De Nemours And Company Draw textured poly(trimethylene terephthalate) yarn
WO2001066836A1 (en) * 2000-03-03 2001-09-13 E.I. Du Pont De Nemours And Company Partially oriented poly(trimethylene terephthalate) yarn
JP2014156685A (en) * 2000-03-03 2014-08-28 E.I.Du Pont De Nemours And Company Poly (trimethylene terephthalate) fine denier yarns
JP2003526023A (en) * 2000-03-03 2003-09-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fine denier yarn of poly (trimethylene terephthalate)
JP2003526021A (en) * 2000-03-03 2003-09-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Partially oriented poly (trimethylene terephthalate) yarn
US6663806B2 (en) 2000-03-03 2003-12-16 E. I. Du Pont De Nemours And Company Processes for making poly (trimethylene terephthalate) yarns
US6672047B2 (en) 2000-03-03 2004-01-06 E. I. Du Pont De Nemours And Company Processes of preparing partially oriented and draw textured poly(trimethylene terephthalate) yarns
JP5010085B2 (en) * 2000-03-03 2012-08-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Partially oriented poly (trimethylene terephthalate) yarn
US6287688B1 (en) 2000-03-03 2001-09-11 E. I. Du Pont De Nemours And Company Partially oriented poly(trimethylene terephthalate) yarn
WO2001075217A1 (en) * 2000-04-04 2001-10-11 Teijin Limited Polyester fiber for false twisting
WO2002031244A3 (en) * 2000-10-11 2002-07-25 Shell Int Research A process for making high stretch and elastic knitted fabrics from polytrimethylene terephthalate
US6949210B2 (en) 2001-02-02 2005-09-27 Asahi Kasei Kabushiki Kaisha Composite fiber having favorable post-treatment processibility and method for producing the same
US6555220B1 (en) 2001-02-02 2003-04-29 Asahi Kasei Kabushiki Kaisha Composite fiber having favorable post-treatment processibility and method for producing the same
JP2003027333A (en) * 2001-07-19 2003-01-29 Asahi Kasei Corp Polyketone fiber
JP4509584B2 (en) * 2004-01-23 2010-07-21 東レ株式会社 Non-moisture treatment agent for polyester fiber and high-strength polyester fiber
JP2005206980A (en) * 2004-01-23 2005-08-04 Toray Ind Inc Nonaqueous treating agent for polyester fiber and high-strength polyester fiber
EP1927683A2 (en) 2006-11-28 2008-06-04 Futura Polyesters Limited Polyester staple fiber (PSF)/filament yarn (POY and PFY) for textile applications

Also Published As

Publication number Publication date
KR20010034446A (en) 2001-04-25
ATE332404T1 (en) 2006-07-15
DE69932231D1 (en) 2006-08-17
KR100378857B1 (en) 2003-04-07
JP3188687B2 (en) 2001-07-16
TW554098B (en) 2003-09-21
EP1052325A4 (en) 2005-04-20
EP1052325B1 (en) 2006-07-05
ES2270576T3 (en) 2007-04-01
EP1052325A1 (en) 2000-11-15
DE69932231T2 (en) 2007-06-28
US6468655B1 (en) 2002-10-22

Similar Documents

Publication Publication Date Title
JP3188687B2 (en) Smooth polyester fiber
KR100437310B1 (en) Polytrimethylene terephthalate fiber and process for producing the same
KR100532552B1 (en) Complex fiber excellent in post-processability and method of producing the same
JPWO2003040011A1 (en) Polyester composite fiber package
KR20090033471A (en) Antistatic polyester false twist yarn, process for producing the same, and antistatic special composite false twist yarn including the antistatic polyester false twist yarn
JP3187007B2 (en) Polyester fiber with excellent processability
JP4818004B2 (en) Antistatic polyester false twisted yarn and method for producing the same
JP2010053491A (en) Blended yarn having modified shape and modified fineness
JP3856617B2 (en) False twisting polyester fiber
JP3830322B2 (en) Polytrimethylene terephthalate partially oriented fiber suitable for false twisting
JP2004346461A (en) False twist yarn having specific cross-sectional shape and method for producing the same
JP2007239146A (en) Composite false-twisted yarn excellent in transparency preventing property and method for producing the same
JP4306245B2 (en) High density fabric
JP4265718B2 (en) Polyketone fiber with improved wear
JP2004036035A (en) Conjugate fiber and textile structure
JP4337344B2 (en) Method for manufacturing cheese-like package and method for manufacturing fiber product
JP4145205B2 (en) Special composite false twisted yarn and method for producing the same
JP2005029936A (en) Polyester-based conjugate fiber
JP3909265B2 (en) Method for drawing false twist of synthetic fiber
JP2004204365A (en) Woven or knitted fabric for bedding material
JP2003239176A (en) Polyester yarn for false-twisting
JP2002180377A (en) Polyester fiber
JP2007262588A (en) Multifilament yarn for microfiber
JP4133424B2 (en) Stretch false twisting method for polyester fiber
JP2005320665A (en) Conjugated false-twisted yarn and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999901196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007008229

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999901196

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007008229

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007008229

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999901196

Country of ref document: EP