JP2008202204A - Production method of ultrafine fiber fabric - Google Patents

Production method of ultrafine fiber fabric Download PDF

Info

Publication number
JP2008202204A
JP2008202204A JP2007240598A JP2007240598A JP2008202204A JP 2008202204 A JP2008202204 A JP 2008202204A JP 2007240598 A JP2007240598 A JP 2007240598A JP 2007240598 A JP2007240598 A JP 2007240598A JP 2008202204 A JP2008202204 A JP 2008202204A
Authority
JP
Japan
Prior art keywords
sea
ultrafine fiber
ultrafine
island
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007240598A
Other languages
Japanese (ja)
Inventor
Shuichi Nonaka
修一 野中
Takashi Hashimoto
貴史 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007240598A priority Critical patent/JP2008202204A/en
Publication of JP2008202204A publication Critical patent/JP2008202204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrafine fiber high density woven fabric high in cover factor and hardly causing slippage, and to provide a production method thereof. <P>SOLUTION: The ultrafine fiber fabric is a woven or knitted fabric using an ultrafine fiber having 1-500 nm number-average diameter and has 1,500-3,500 cover factor CF. The production method of the ultrafine fiber fabric comprises weaving or knitting by using an ultrafine fiber obtained by twisting a sea-island type conjugate fiber having 1-500 nm number-average island diameter and removing the sea component. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、単繊維直径がナノメーターレベルの極細繊維を用いた布帛、特に高密度の織物とその製造方法に関する。   The present invention relates to a fabric using ultrafine fibers having a single fiber diameter of nanometer level, particularly a high-density fabric and a method for producing the fabric.

単繊維直径が数μmや数百nm以下の極細繊維は、細く柔軟であるため細かい溝へ入り込んだり、また表面積増大による高い吸着性能を有しており、精密機器などのワイピングクロスとして利用されている。また、これら極細繊維を使った布帛は、繊維がきめ細かいため、布帛表面を平滑にすることができることから、高い平滑性を求められる研磨材としても多く利用されている。また、きめ細やかなタッチが好まれ、人工皮革や新触感テキスタイルとしても展開されている。   Ultrafine fibers with a single fiber diameter of several μm or several hundreds of nanometers or less are thin and flexible, so that they enter into fine grooves and have high adsorption performance due to increased surface area, and are used as wiping cloths for precision equipment. Yes. Also, fabrics using these ultrafine fibers are often used as abrasives that require high smoothness because the fabric surface is smooth and the fabric surface can be smoothed. In addition, fine touch is preferred, and it has been developed as artificial leather and new tactile textile.

これら極細繊維の布帛を得る方法としては、例えば海島型複合繊維または分割型複合繊維を布帛化し、この布帛を脱海または分割する方法があげられ、特に単繊維直径が1μm以下となる超極細繊維を得るためには海島型複合繊維が用いられている(特許文献1)。   Examples of a method for obtaining these ultrafine fiber fabrics include a method of making a sea-island type composite fiber or a split type composite fiber into a fabric and then desealing or splitting the fabric. Particularly, the ultrafine fiber having a single fiber diameter of 1 μm or less. In order to obtain this, a sea-island type composite fiber is used (Patent Document 1).

しかしながら、海島型複合繊維を布帛化後に脱海処理を施す方法では、海成分を分解または溶解した分だけ空隙ができ繊度が低減するため、脱海前が高密度の布帛であっても脱海後の密度低下は避けられなかった。特に織物では繊度低減によって目が粗くなる、いわゆるカバーファクターの低下が起こるため、目ズレが起きやすくなったり、ワイピング、研磨性能が低下したり、衣料用途展開が制限されたりする問題があった。これを解決する手段として、極細繊維織物に高圧流体を当て、極細繊維束をばらけさせて見掛け密度を上げることが提案されている(特許文献2、3及び4)。しかしながら、この方法では見掛け密度は高くなるものの、単に極細繊維がばらけているだけであってカバーファクターは変わっていないため、目ズレ改善には十分でなかった。また、隣同士の繊維糸条と絡んで拘束しあうため、布帛に柔軟性がなくなりペーパーライクなものになっていた。   However, in the method in which sea-island type composite fibers are subjected to sea removal treatment after forming a fabric, voids are formed by the amount of decomposition or dissolution of sea components and the fineness is reduced. Later density reduction was inevitable. In particular, in the woven fabric, there is a problem that the eyes become rough due to the reduction in the fineness, that is, the so-called cover factor is lowered, so that misalignment is likely to occur, wiping and polishing performance are deteriorated, and development of clothing applications is restricted. As means for solving this problem, it has been proposed to apply a high-pressure fluid to the ultrafine fiber fabric to disperse the ultrafine fiber bundle to increase the apparent density (Patent Documents 2, 3 and 4). However, although the apparent density is increased by this method, it is not sufficient for improving the misalignment because only the ultrafine fibers are scattered and the cover factor is not changed. Further, since the fabric yarns are entangled with each other and restrained, the fabric becomes inflexible and paper-like.

カバーファクター低減を目的とし、熱によって収縮したり、潜在捲縮性のある太繊度繊維と極細繊維とを混繊・混織させた布帛を熱処理させ、カバーファクターを向上させる方法も検討されている(特許文献5、6及び7)。しかし、太い繊維が研磨性能や吸着性能を低下したり太い繊維が表面に露出した場合にはワイピング時に基材を傷つける可能性があるため、精密機器のワイピング材としては適用できなかった。
また、極細繊維布帛を有機溶剤によって収縮させる方法も提案されているが(特許文献8及び9)、溶剤処理による強度低下を招いたり、生産時の安全性や製品の安全性、昨今の環境問題を考えると改善余地の多いものであった。
特開2004−244758号公報 特開昭60−39439号公報 特開昭61−39439号公報 特開昭61−58573号公報 特開平2−89144号公報 特開平9−19393号公報 特開平10−212629号公報 特開昭56−154546号公報 特開昭61−146840号公報
For the purpose of reducing the cover factor, a method of improving the cover factor by heat treating a fabric which is shrunk by heat or mixed / woven with a large fine fiber and a very fine fiber with latent crimpability is also being studied. (Patent Documents 5, 6 and 7). However, if the thick fiber deteriorates the polishing performance and the adsorption performance, or if the thick fiber is exposed on the surface, the substrate may be damaged during wiping, so that it cannot be applied as a wiping material for precision equipment.
In addition, although a method of shrinking an ultrafine fiber fabric with an organic solvent has been proposed (Patent Documents 8 and 9), it causes a decrease in strength due to solvent treatment, safety during production, product safety, and recent environmental problems. Given that, there was much room for improvement.
JP 2004-244758 A JP-A-60-39439 JP 61-39439 A JP-A-61-58573 Japanese Patent Laid-Open No. 2-89144 Japanese Patent Laid-Open No. 9-19393 Japanese Patent Laid-Open No. 10-212629 JP 56-154546 A JP 61-146840 A

本発明の目的は、高密度極細繊維布帛との製造方法、特にカバーファクターが高く、目ズレの起きにくい極細繊維高密度織物とその製造方法を提供することにある。   An object of the present invention is to provide a method for producing a high-density ultrafine fiber fabric, in particular, an ultrafine fiber high-density fabric having a high cover factor and less likely to cause misalignment, and a method for producing the same.

上記課題を解決するために、本発明は主として次の構成からなる。すなわち、本発明は「数平均直径が1nm〜500nmの極細繊維からなる極細繊維束を用いた織物であり、カバーファクターCFが1500〜3500であることを特徴とする極細繊維布帛」と「数平均島直径が1nm〜500nmである海島型複合繊維を撚糸した後に脱海処理して得た極細繊維束を用いて製編織することを特徴とする極細繊維布帛の製造方法」である。   In order to solve the above problems, the present invention mainly comprises the following configuration. That is, the present invention is “a woven fabric using ultrafine fiber bundles composed of ultrafine fibers having a number average diameter of 1 nm to 500 nm, and has a cover factor CF of 1500 to 3500” and “number average” “A method for producing an ultrafine fiber fabric, comprising knitting and weaving using an ultrafine fiber bundle obtained by twisting a sea-island type composite fiber having an island diameter of 1 nm to 500 nm and then removing the seawater”.

本発明の布帛は、コンピューター関連機器や光学機器などの精密機器のワイピング材や研磨材として利用することができる。また、カバーファクターが大きく、目ズレ、型崩れの起きにくい極細繊維からなる高密度の織編物であるため、きめの細かい新触感風合テキスタイルとして衣料用途へ展開することができる。   The fabric of the present invention can be used as a wiping material or an abrasive for precision equipment such as computer-related equipment and optical equipment. In addition, since it is a high-density woven or knitted fabric made of ultrafine fibers that have a large cover factor and are less likely to slip or lose shape, it can be developed into clothing as a fine-grained new tactile texture.

以下に、本発明に係る極細繊維布帛について、望ましい実施の形態とともに詳細に説明する。   Hereinafter, the ultrafine fiber fabric according to the present invention will be described in detail together with desirable embodiments.

本発明における極細繊維布帛とは、極細繊維を用いた布帛全般をいい、特に極細繊維を用いた織物及び編物(以下、あわせて織編物という)をいう。   The ultrafine fiber fabric in the present invention refers to all fabrics using ultrafine fibers, and particularly refers to woven fabrics and knitted fabrics (hereinafter collectively referred to as woven or knitted fabrics) using ultrafine fibers.

本発明に用いる極細繊維は、数平均による直径が1〜500nmであることが重要である。これにより、単繊維の絶対強度が得られる。また、ナノメーターレベルの繊維であるため表面積が大きく単糸同士の凝集力が高くなり、極細繊維束としても高い強度を得ることができる。例えば極細繊維束を用いた織編物をワイピング材や研磨材に用いたときに、単糸切れ、毛羽落ち、繊維束切れを抑制でき、織編物強度としても高いものを得ることができる。また、極細繊維で形成される繊維束であるため、ワイピングや研磨時に傷を付けにくく、繊維が細かい溝まで入り込んで高い拭き取り性能を発揮したり、高い平滑性を得られるという利点もある。   It is important that the ultrafine fibers used in the present invention have a number average diameter of 1 to 500 nm. Thereby, the absolute strength of a single fiber is obtained. Moreover, since it is a nanometer level fiber, the surface area is large and the cohesive force between single yarns is high, and high strength can be obtained as an ultrafine fiber bundle. For example, when a woven or knitted fabric using ultrafine fiber bundles is used as a wiping material or an abrasive, single yarn breakage, fluff fall, and fiber bundle breakage can be suppressed, and a high woven / knitted fabric strength can be obtained. In addition, since it is a fiber bundle formed of ultrafine fibers, there is an advantage that it is difficult to be damaged during wiping and polishing, and the fibers penetrate into fine grooves to exhibit high wiping performance and obtain high smoothness.

海島型複合繊維の数平均による島直径としては、好ましくは1nm〜200nm、より好ましくは30nm〜100nmである。   As an island diameter by the number average of sea-island type composite fibers, it is preferably 1 nm to 200 nm, more preferably 30 nm to 100 nm.

本発明において、極細繊維の数平均による直径は以下のようにして求めることができる。すなわち、極細繊維の横断面を透過型電子顕微鏡(TEM)倍率40000倍で観察し、同一横断面内で無作為に抽出した50個の極細繊維の円換算直径を求め、数平均を計算する。   In the present invention, the number average diameter of the ultrafine fibers can be determined as follows. That is, the cross section of the ultrafine fiber is observed at a transmission electron microscope (TEM) magnification of 40000 times, the diameter of 50 ultrafine fibers randomly extracted in the same cross section is obtained, and the number average is calculated.

また、本発明で用いる極細繊維は、直径が500nmより大きい粗大繊維の面積比率が3%以下であることが好ましい。ここで粗大繊維の面積比率とは、極細繊維全体に対する粗大繊維(直径が500nmより大きい繊維)の面積比率のことを意味し、次のようにして計算する。すなわち、極細繊維の直径をdiとし、その2乗の総和(d1+d2+・・+d50)=Σdi(i=1〜50)を算出する。また、直径500nmより大きい粗大繊維の直径をDiとし、その2乗の総和(D1+D22+・・+Dm)=ΣDi(i=1〜m)を算出する。Σdiに対するΣDiの割合を算出することで、全極細繊維に対する粗大繊維の面積比率を求めることができる。 In the ultrafine fiber used in the present invention, the area ratio of coarse fibers having a diameter larger than 500 nm is preferably 3% or less. Here, the area ratio of coarse fibers means the area ratio of coarse fibers (fibers having a diameter larger than 500 nm) to the whole ultrafine fibers, and is calculated as follows. That is, the diameter of the ultrafine fibers and di, the square of the sum (d1 2 + d2 2 + ·· + d50 2) = Σdi calculates 2 (i = 1~50). Moreover, the diameter of the coarse fiber larger than 500 nm in diameter is set to Di, and the sum of the squares (D1 2 + D22 +... + Dm 2 ) = ΣDi 2 (i = 1 to m) is calculated. By calculating the ratio of ΣDi 2 to Σdi 2 , the area ratio of coarse fibers to all ultrafine fibers can be obtained.

本発明で用いる極細繊維は直径が500nmより大きい直径範囲にある粗大繊維の面積比率が3%以下であることが好ましく、より好ましくは1%以下、さらに好ましくは0%である。すなわち、これは500nmを越える粗大な繊維の存在がゼロに近い、もしくはないことを意味するものである。   In the ultrafine fibers used in the present invention, the area ratio of coarse fibers having a diameter larger than 500 nm is preferably 3% or less, more preferably 1% or less, and further preferably 0%. That is, this means that the presence of coarse fibers exceeding 500 nm is close to zero or not.

また、極細繊維の数平均による直径が200nm以下の場合には、直径200nmより大きい繊維の面積比率は、好ましくは3%以下、より好ましくは1%以下、さらに好ましくは0%であることである。また、極細繊維の数平均による直径が100nm以下の場合には、直径100nmより大きい繊維の面積比率は、好ましくは3%以下、より好ましくは1%以下、さらに好ましくは0%である。   Further, when the diameter of the ultrafine fibers is 200 nm or less, the area ratio of the fibers having a diameter larger than 200 nm is preferably 3% or less, more preferably 1% or less, and further preferably 0%. . In addition, when the number average diameter of the ultrafine fibers is 100 nm or less, the area ratio of the fibers having a diameter larger than 100 nm is preferably 3% or less, more preferably 1% or less, and further preferably 0%.

このような粗大繊維の少ない、または粗大繊維の無い極細繊維束を用いることにより、ワイピングや研磨時に傷を付けにくく、高性能ワイピング材や研磨材を得ることができる。   By using such an ultrafine fiber bundle with few coarse fibers or no coarse fibers, it is difficult to damage during wiping and polishing, and a high-performance wiping material or abrasive can be obtained.

本発明の布帛は、カバーファクターCFを1500〜3500とすることが好ましく、より好ましくは1500〜2800、さらに好ましくは1500〜2500、もっとも好ましくは1800〜2200である。カバーファクターCFは、布帛が織物の場合、経糸密度をX(本/2.54cm)、織物の緯糸本数をY(本/2.54cm)、経糸の繊度をD1(dtex)、緯糸の繊度をD2(dtex)とすると、次の式で算出される。
CF=X×D11/2+Y×D21/2
また、布帛が編物の場合、本発明ではカバーファクターCFを次のように規程する。すなわち、2.54cmあたりのコース数(ループの緯方向のつらなり個数)の2倍をX、2.54cmあたりのウェール数(ループの経方向のつらなり個数)をY、使用糸の繊度をD(dtex)とすると、次の式で算出される。
CF=(X+Y)×D1/2
ここで、カバーファクターCFとは、織編物を構成する糸条の太さと糸密度によって定められる織編物構造の粗密を表す係数で、カバーファクターCFが大きいほど織編物が密に詰まっている。カバーファクターCFが1500未満であると、目が粗く空隙が多くなり見ズレが起きやすく、また織編物の風合いにおいて張り・腰感が乏しくなる。一方、カバーファクターCFが3500を超えると、製編織が困難になったり、織編物の滑脱抵抗が増加して引裂強力の低下を招いてしまう。
The fabric of the present invention preferably has a cover factor CF of 1500 to 3500, more preferably 1500 to 2800, still more preferably 1500 to 2500, and most preferably 1800 to 2200. When the fabric is a woven fabric, the cover factor CF has a warp density of X (lines / 2.54 cm), a weft number of the fabrics Y (lines / 2.54 cm), a warp fineness of D1 (dtex), and a weft fineness of Assuming that D2 (dtex), it is calculated by the following equation.
CF = X × D1 1/2 + Y × D2 1/2
When the fabric is a knitted fabric, the cover factor CF is regulated as follows in the present invention. That is, twice the number of courses per 2.54 cm (the number of loops in the weft direction of the loop) is X, the number of wales per 2.54 cm (the number of loops in the warp direction of the loop) is Y, and the fineness of the yarn used is D ( dtex), it is calculated by the following equation.
CF = (X + Y) × D 1/2
Here, the cover factor CF is a coefficient representing the density of the woven or knitted fabric structure determined by the thickness of the yarn constituting the woven or knitted fabric and the yarn density. The larger the cover factor CF, the denser the woven or knitted fabric is packed. When the cover factor CF is less than 1500, the eyes are rough and the voids are increased, so that misalignment is likely to occur, and the feeling of tension and waist is poor in the texture of the woven or knitted fabric. On the other hand, when the cover factor CF exceeds 3500, it becomes difficult to knit or weave or the sliding resistance of the woven or knitted fabric increases, leading to a reduction in tearing strength.

本発明で用いる極細繊維束の撚係数kは、1500〜15000であることが好ましい。極細繊維束の撚係数kが1500以上となっていることで、極細繊維束内の極細繊維間の拘束力が十分に得られ、繊維脱落が起こりにくくなる。一方、撚係数kが15000以下であれば、極細繊維束内の極細繊維間の拘束力が強くなりすぎず、あたかも1本の繊維のように硬く凝集してしまうことがないため柔らかく、また極細繊維束表面の極細繊維がばらけ易くなるため、使用する研磨材などを布帛表面に均一に把持することができる。   The twist coefficient k of the ultrafine fiber bundle used in the present invention is preferably 1500 to 15000. When the twist coefficient k of the ultrafine fiber bundle is 1500 or more, a sufficient binding force between the ultrafine fibers in the ultrafine fiber bundle is obtained, and the fiber is less likely to fall off. On the other hand, if the twist coefficient k is 15000 or less, the binding force between the ultrafine fibers in the ultrafine fiber bundle does not become too strong, and it is soft and very fine because it does not harden and aggregate like a single fiber. Since the ultrafine fibers on the surface of the fiber bundle are easily scattered, it is possible to uniformly hold the abrasive to be used on the fabric surface.

撚糸形態は、片撚や諸撚、芯糸の周りに他の糸を巻き付けたカバリングなどを採用することができる。特に下撚数と上撚数が近い諸撚は、撚糸の残留トルクが少なく、またフィラメントが撚糸内で解撚されており、極細繊維束同士や極細繊維束内の単繊維がばらけ易くなりワイピング性能が向上するため好適である。   As the twisted yarn form, single twist, various twists, covering in which another yarn is wound around the core yarn, or the like can be adopted. In particular, twists with a lower twist number and an upper twist number have less residual torque of the twisted yarn, and the filaments are untwisted within the twisted yarn, making it easy for the ultrafine fiber bundles and single fibers in the ultrafine fiber bundle to break apart. This is preferable because the wiping performance is improved.

本発明において、布帛を構成する各極細繊維束の総繊度が130〜300dtexであることが好ましい。130dtex以上とすることで極細繊維束の絶対強度が得られ、引き裂きや引っ張り強度も十分高いものが得られる。また、300dtex以下とすることで布帛の風合がソフトで、布帛の凹凸も小さくなるため、高性能ワイピング材や研磨布を得ることができる。   In the present invention, the total fineness of each ultrafine fiber bundle constituting the fabric is preferably 130 to 300 dtex. By setting it to 130 dtex or more, the absolute strength of the ultrafine fiber bundle can be obtained, and a sufficiently high tear and tensile strength can be obtained. Moreover, since the texture of a cloth is soft and the unevenness | corrugation of a cloth becomes small by setting it as 300 dtex or less, a high performance wiping material and abrasive cloth can be obtained.

次に本発明の極細繊維布帛製造方法について、詳細に説明する。   Next, the ultrafine fiber fabric manufacturing method of the present invention will be described in detail.

本発明における海島型複合繊維とは、溶剤、酸、アルカリ、水(熱水も含む)などの液体に対する溶解性(分解性も含む)の異なる2種以上のポリマーからなり、易溶解性ポリマーが海成分、難溶解性ポリマーを島成分に持つ構造の繊維のことで、繊維断面形状や島断面形状、島数などには限定がないものである。   The sea-island type composite fiber in the present invention is composed of two or more polymers having different solubility (including degradability) in liquids such as solvent, acid, alkali, and water (including hot water). A fiber having a structure having a sea component and a hardly soluble polymer as an island component, and there is no limitation on the fiber cross-sectional shape, the island cross-sectional shape, the number of islands, and the like.

本発明において海島型複合繊維の製造方法は特に限定されず、海成分となるポリマーと島成分となるポリマーを別々に溶融して海島複合紡糸によって得られたり、海成分と島成分のポリマーを予め押出混練機や加圧ニーダーなどで混ぜ合わせたり、静止混練機などで細かく分割したりして得られたポリマーアロイを溶融紡糸して得ることができる。溶融紡糸法により得るための製造方法の一例として、例えば特開2004−169261号公報に記載されている公知の方法を採用することができる。   In the present invention, the production method of the sea-island type composite fiber is not particularly limited, and the sea component polymer and the island component polymer are separately melted and obtained by sea-island composite spinning. It can be obtained by melt spinning a polymer alloy obtained by mixing with an extrusion kneader, a pressure kneader or the like, or finely dividing with a static kneader. As an example of a production method for obtaining by the melt spinning method, for example, a known method described in JP-A No. 2004-169261 can be employed.

特にポリマーアロイを溶融紡糸して得られる海島型複合繊維を用いる場合、海成分面積比率Sを50〜90%と高く設定すると、数平均島直径の小さな海島型複合繊維とすることができ、また島成分同士の距離を離すことができるため、島成分の合流を抑制することができる。海成分面積比率Sは、より好ましくは55〜85%である。
ここで海成分面積比率Sとは、次のようにして計算する。すなわち、海島型複合繊維の横断面を透過型電子顕微鏡(TEM)倍率40000倍で観察し、4μm(実像64cm)の範囲にある海成分面積sμmを求め、4μmに対するsμmの割合を算出することで海成分面積比率Sを求めることができる。
In particular, when a sea-island type composite fiber obtained by melt spinning a polymer alloy is used, a sea-island type composite fiber having a small number average island diameter can be obtained by setting the sea component area ratio S as high as 50 to 90%. Since the island components can be separated from each other, merging of the island components can be suppressed. The sea component area ratio S is more preferably 55 to 85%.
Here, the sea component area ratio S is calculated as follows. That is, the cross section of the sea-island type composite fiber was observed at a transmission electron microscope (TEM) magnification of 40000 times to obtain the sea component area sμm 2 in the range of 4 μm 2 (real image 64 cm 2 ), and the ratio of sμm 2 to 4 μm 2 The sea component area ratio S can be obtained by calculating.

本発明に用いる海島型複合繊維は、数平均による島直径は1〜500nmであることが重要である。これにより、後に行う脱海処理を経て得られる単繊維の絶対強度が得られ、また、最終的に得られる繊維もナノメーターレベルの繊維であるため表面積が大きく単糸同士の凝集力が高くなり、極細繊維束としても高い強度を得ることができる。例えば極細繊維束を用いた織編物をワイピング材や研磨材に用いたときに、単糸切れ、毛羽落ち、繊維束切れを抑制でき、織編物強度としても高いものを得ることができる。また、極細繊維で形成される繊維束であるため、ワイピングや研磨時に傷を付けにくく、繊維が細かい溝まで入り込んで高い拭き取り性能を発揮したり、高い平滑性を得られるという利点もある。   It is important that the sea-island type composite fiber used in the present invention has a number average island diameter of 1 to 500 nm. As a result, the absolute strength of the single fiber obtained through the sea removal treatment to be performed later is obtained, and since the finally obtained fiber is also a nanometer level fiber, the surface area is large and the cohesive force between the single yarns is increased. Also, high strength can be obtained as an ultrafine fiber bundle. For example, when a woven or knitted fabric using ultrafine fiber bundles is used as a wiping material or an abrasive, single yarn breakage, fluff fall, and fiber bundle breakage can be suppressed, and a high woven / knitted fabric strength can be obtained. In addition, since it is a fiber bundle formed of ultrafine fibers, there is an advantage that it is difficult to be damaged during wiping and polishing, and the fibers penetrate into fine grooves to exhibit high wiping performance and obtain high smoothness.

また、一般に極細繊維と呼ばれる単繊維直径1〜10μm程度の繊維を使用して製編織しようとすると、10μm以上の通常繊維に比べ表面積が多いため静電気が発生しやすかったり、単繊維がばらけて毛羽が発生したりして、工程通過が悪くなり製編織が難しいが、数平均による島直径が1〜500nmの海島型複合繊維を脱海して得られた極細繊維束は、単繊維の表面積が極端に大きく、単繊維同士の凝集力が高いため、単繊維がばらけにくい束となり、あたかも1本の糸のような形態になる。また、その高い凝集力のため、本発明のように糸の状態で脱海処理が可能となる。そのため、海島型複合繊維の数平均による島直径が1〜500nmであることが重要である。   In addition, when trying to knit using a single fiber with a diameter of about 1 to 10 μm, which is generally called an ultrafine fiber, the surface area is larger than that of a normal fiber of 10 μm or more, and static electricity is likely to occur or the single fiber is scattered. Fluffing occurs, making process passing worse, making it difficult to weave and weave, but ultrafine fiber bundles obtained by sea-sealing sea-island composite fibers with an island diameter of 1 to 500 nm by number average are the surface area of single fibers Is extremely large and the cohesive strength between the single fibers is high, so that the single fibers are difficult to be separated into a bundle, which is like a single thread. Further, due to the high cohesive force, sea removal treatment can be performed in the state of yarn as in the present invention. Therefore, it is important that the island diameter by the number average of sea-island type composite fibers is 1 to 500 nm.

海島型複合繊維の数平均による島直径としては、好ましくは1nm〜200nm、より好ましくは30nm〜100nmである。   As an island diameter by the number average of sea-island type composite fibers, it is preferably 1 nm to 200 nm, more preferably 30 nm to 100 nm.

本発明において、海島型複合繊維の数平均による島直径は以下のようにして求めることができる。すなわち、海島型複合繊維の横断面を透過型電子顕微鏡(TEM)倍率40000倍で観察し、同一横断面内で無作為に抽出した50個の島成分の円換算直径を求め、数平均を計算する。   In this invention, the island diameter by the number average of sea island type composite fiber can be calculated | required as follows. That is, the cross section of the sea-island type composite fiber was observed at a transmission electron microscope (TEM) magnification of 40000 times, the diameter of 50 island components randomly extracted in the same cross section was obtained, and the number average was calculated. To do.

また、本発明で用いる海島型複合繊維は、島直径が500nmより大きい粗大な島成分の面積比率が3%以下であることが好ましい。ここで粗大島成分の面積比率とは、脱海後に極細繊維となる島成分に対する粗大島成分(直径が500nmより大きい島)の面積比率のことを意味し、次のようにして計算する。すなわち、島成分の直径をdiとし、その2乗の総和(d1+d2+・・+d50)=Σdi(i=1〜50)を算出する。また、直径500nmより大きい島成分の直径をDiとし、その2乗の総和(D1+D2+・・+Dm)=ΣDi(i=1〜m)を算出する。Σdiに対するΣDiの割合を算出することで、全極細繊維に対する粗大繊維の面積比率を求めることができる。 In the sea-island type composite fiber used in the present invention, the area ratio of coarse island components having an island diameter larger than 500 nm is preferably 3% or less. Here, the area ratio of the coarse island component means the area ratio of the coarse island component (island having a diameter larger than 500 nm) to the island component that becomes the ultrafine fiber after sea removal, and is calculated as follows. That is, the diameter of the island component and di, the square of the sum (d1 2 + d2 2 + ·· + d50 2) = Σdi calculates 2 (i = 1~50). Further, the diameter of the island component having a diameter larger than 500 nm is set to Di, and the sum of the squares (D1 2 + D2 2 +... + Dm 2 ) = ΣDi 2 (i = 1 to m) is calculated. By calculating the ratio of ΣDi 2 to Σdi 2 , the area ratio of coarse fibers to all ultrafine fibers can be obtained.

本発明で用いる海島型複合繊維は島直径500nmより大きい直径範囲にある粗大島成分の面積比率が3%以下であることが好ましく、より好ましくは1%以下、さらに好ましくは0%である。すなわち、これは500nmを越える粗大な島成分の存在がゼロに近い、もしくはないことを意味するものである。   In the sea-island type composite fiber used in the present invention, the area ratio of the coarse island component in the diameter range larger than 500 nm is preferably 3% or less, more preferably 1% or less, and still more preferably 0%. That is, this means that the presence of coarse island components exceeding 500 nm is close to zero or absent.

また、海島型複合繊維の数平均による島直径が200nm以下の場合には、直径200nmより大きい島成分の面積比率は、好ましくは3%以下、より好ましくは1%以下、さらに好ましくは0%であることである。また、海島型複合繊維の数平均による島直径が100nm以下の場合には、直径100nmより大きい島成分の面積比率は、好ましくは3%以下、より好ましくは1%以下、さらに好ましくは0%である。   Moreover, when the island diameter by the number average of sea-island type composite fibers is 200 nm or less, the area ratio of the island component larger than 200 nm is preferably 3% or less, more preferably 1% or less, and still more preferably 0%. That is. Moreover, when the island diameter by the number average of sea-island type composite fibers is 100 nm or less, the area ratio of the island component larger than 100 nm is preferably 3% or less, more preferably 1% or less, and still more preferably 0%. is there.

このような海島型複合繊維を用いることにより、脱海後に得られる極細繊維束は粗大繊維の混入が極めて低くなる。そのため、脱海中や脱海後に単繊維同士の凝集力が強固となり、ばらけにくく脱海や製編織時の工程通過性が良好となる。   By using such a sea-island type composite fiber, the ultrafine fiber bundle obtained after sea removal has extremely low mixing of coarse fibers. For this reason, the cohesive force between the single fibers becomes strong during sea removal or after sea removal, and the process passability during sea removal or weaving and weaving is improved.

本発明で用いる海島型複合繊維は、熱可塑性ポリマーからなることが好ましい。これにより、海島型複合繊維を溶融紡糸法を利用して製造することができるために、生産性を非常に高くすることができる。なお、本発明における極細繊維全般に亘り、熱可塑性ポリマーからなることが好ましい。本発明でいう熱可塑性ポリマーとは、ポリエチレンレタフタレート(以下、PETと呼ぶことがある)、ポリブチレンレフタレート、ポリ乳酸(以下、PLAと呼ぶことがある)などのポリエステルやナイロン6(以下、N6と呼ぶことがある)、ナイロン66などのポリアミド、ポリスチレン、ポリプロピレン(以下、PPと呼ぶことがある)などのポリオレフィン、ポリフェニレンスルフィド(以下、PPSと呼ぶことがある)等が挙げられるが、ポリエステルやポリアミドに代表される重縮合系ポリマーは融点が高いものが多く、より好ましい。ポリマーの融点が165℃以上であると耐熱性が良好であり好ましい。例えば、該融点はPLAは170℃、N6は220℃である。後に脱海することから、海成分のポリマーと島成分のポリマーとは溶剤や水に対する溶解性の異なる組み合わせとする。また、ポリマーには粒子、難燃剤、帯電防止剤等の添加物を含有させていてもよい。またポリマーの性質を損なわない範囲で他の成分が共重合されていてもよい。さらに、溶融紡糸の容易さから、融点が300℃以下のポリマーが好ましい。   The sea-island composite fiber used in the present invention is preferably made of a thermoplastic polymer. Thereby, since the sea-island type composite fiber can be produced by using the melt spinning method, the productivity can be made extremely high. In addition, it is preferable to consist of a thermoplastic polymer over the whole ultrafine fiber in this invention. The thermoplastic polymer as used in the present invention is a polyester such as polyethylene terephthalate (hereinafter sometimes referred to as PET), polybutylene phthalate, polylactic acid (hereinafter sometimes referred to as PLA), or nylon 6 (hereinafter referred to as PLA). N6), polyamides such as nylon 66, polyolefins such as polystyrene and polypropylene (hereinafter also referred to as PP), polyphenylene sulfide (hereinafter also referred to as PPS), and the like. Many polycondensation polymers such as polyamide and those having a high melting point are more preferable. It is preferable that the melting point of the polymer is 165 ° C. or higher because the heat resistance is good. For example, the melting point is 170 ° C for PLA and 220 ° C for N6. Since sea removal will be performed later, the sea component polymer and the island component polymer have different solubility in solvents and water. Further, the polymer may contain additives such as particles, a flame retardant, and an antistatic agent. Further, other components may be copolymerized as long as the properties of the polymer are not impaired. Furthermore, a polymer having a melting point of 300 ° C. or less is preferable because of ease of melt spinning.

本発明において、海島型複合繊維は脱海前に撚糸することが重要である。脱海して得られた極細繊維は細く表面積が大きいため、他の繊維との相互作用が大きく、脱海中に極細繊維束同士で絡み易くなってしまい、脱海後の解舒が困難になるが、本発明のように脱海前に撚糸することで、このような問題を解決することができる。また、海島型複合繊維がマルチフィラメントである場合、撚糸することにより1本の丈夫な糸となることは当然であるが、海島型複合繊維のマルチフィラメント内の単繊維同士の収束性を上げて海島型複合繊維束同士の絡み合いを少なくすることもできる。   In the present invention, it is important to twist the sea-island type composite fiber before sea removal. The ultrafine fibers obtained by sea removal are thin and have a large surface area, so they have a large interaction with other fibers, tending to become entangled between ultrafine fiber bundles during sea removal, and difficult to unwind after sea removal. However, such a problem can be solved by twisting before sea removal as in the present invention. In addition, when the sea-island type composite fiber is a multifilament, it is natural that a single strong yarn is obtained by twisting, but the convergence of single fibers in the multi-filament of the sea-island type composite fiber is increased. It is also possible to reduce the entanglement between the sea-island type composite fiber bundles.

撚糸形態は、海島型複合繊維束1本や2本以上を引き揃えて単に撚を掛けた片撚糸や、2本以上の片撚糸を引き揃えて片撚糸と反対方向に撚を掛けた(つまり下撚と反対方向の上撚をもつ)諸撚糸、芯糸の周りに他の糸を巻き付けたカバリング糸などを採用することができる。特に下撚数と上撚数が近い諸撚糸は、撚糸後の残留トルクが少なく、またフィラメントが撚糸内で解撚されており、脱海後の極細繊維束同士や極細繊維束内の単繊維がばらけ易くなりワイピング性能が向上するため好適である。   As for the twisted yarn form, one or two sea-island type composite fiber bundles are aligned and simply twisted, or two or more single-twisted yarns are aligned and twisted in the opposite direction to the single-twisted yarn (that is, Various twisted yarns (with an upper twist opposite to the twist), covering yarns in which other yarns are wound around the core yarn, and the like can be employed. In particular, various twisted yarns with a lower twist number and an upper twist number have less residual torque after twisting, and the filaments are untwisted in the twisted yarn. This is preferable because the wiping performance is improved.

本発明において撚糸方法は特に限定はされず、撚数や撚糸形態、撚糸張力などを考慮し、イタリー式撚糸機やダブルツイスターなどのアップツイスター、リング撚糸機などのダウンツイスター、カバリングマシン、ベルドール撚糸機などを用いて行うことができる。また、これらを組み合わせた複合撚糸機を採用することもできる。   In the present invention, the twisting method is not particularly limited, and in consideration of the number of twists, the twisting form, the twisting tension, etc., an up twister such as an Italian twisting machine or a double twister, a down twister such as a ring twisting machine, a covering machine, and a Beldor twisting thread. It can be performed using a machine. Moreover, the composite twisting machine which combined these can also be employ | adopted.

本発明において、脱海前の海島型複合繊維の撚係数Kが2000〜20000となるように撚糸することが好ましい。諸撚糸の場合は、下撚、上撚のいずれか、または両方の撚係数Kが2000〜20000となるように撚糸することが好ましい。撚係数Kを2000以上とし海島型複合繊維のマルチフィラメントが締まった状態とすることで、脱海時にフィラメント同士やフィラメント内島成分同士の拘束力を十分に得られ、海島型複合繊維束同士での絡み合いを抑制することができる。一方、撚係数Kが20000を超えるとフィラメント間の拘束力が強くなりすぎ、脱海時に脱海溶媒がフィラメント内に浸透・置換しにくくなり、脱海浴比や処理時間が増大してしまう。脱海前の海島型複合繊維の撚係数Kはより好ましくは3000〜17000、さらに好ましくは5000〜15000である。   In this invention, it is preferable to twist so that the twist coefficient K of the sea-island type composite fiber before sea removal may be 2000-20000. In the case of various twisted yarns, it is preferable to twist the yarn so that the twist coefficient K of either the lower twist, the upper twist, or both is 2000 to 20000. When the twist coefficient K is 2000 or more and the multifilaments of the sea-island composite fibers are in a tight state, the binding force between the filaments and the islands within the filaments can be sufficiently obtained during sea removal, and between the sea-island composite fiber bundles Entanglement can be suppressed. On the other hand, when the twisting coefficient K exceeds 20000, the binding force between the filaments becomes too strong, and it becomes difficult for the seawater removal solvent to permeate and replace the filament during seawater removal, resulting in an increase in seawater removal ratio and processing time. The twist coefficient K of the sea-island type composite fiber before sea removal is more preferably 3000 to 17000, and further preferably 5000 to 15000.

なお、撚係数Kは、脱海前の撚数をT(回/m)、海島型複合繊維の総繊度をD(dtex)とすると、次の式で算出される。
K=T×D1/2
また、海島型複合繊維を脱海した後の撚係数kが1500〜15000となるように脱海前の海島型複合繊維を撚糸することが好ましい。脱海後に撚係数kが1500以上となっていることで、脱海後の解舒時にフィラメント同士やフィラメント内島成分同士の拘束力を十分に得られ、海島型複合繊維のマルチフィラメン同士での絡み合いを抑制することができ、解舒工程の工程通過性が良好となる。一方、撚係数kが15000を超えると、残留トルクが大きくなり取り扱いが困難になる。
The twist coefficient K is calculated by the following formula, where T (times / m) is the number of twists before sea removal and D (dtex) is the total fineness of the sea-island composite fibers.
K = T × D 1/2
Moreover, it is preferable to twist the sea-island type composite fiber before sea removal so that the twist coefficient k after sea-sea type composite fiber is removed from seawater is 1500-15000. Since the twisting factor k is 1500 or more after sea removal, the binding force between filaments and filament islands can be sufficiently obtained during unwinding after sea removal. The entanglement can be suppressed, and the process passability of the unwinding process is improved. On the other hand, if the twist coefficient k exceeds 15000, the residual torque increases and handling becomes difficult.

本発明のように島直径の小さな単繊維を得るための海島型複合繊維の海成分面積比率は高くする必要があり、50〜90%にすることが好ましいが、脱海前の海島型複合繊維の総繊度Dに対して、脱海後に得られる極細繊維束の総繊度dは減少するため、このことを考慮して撚数設定することが好ましい。   It is necessary to increase the sea component area ratio of the sea-island type composite fiber for obtaining a single fiber having a small island diameter as in the present invention, and it is preferably 50 to 90%. Since the total fineness d of the ultrafine fiber bundle obtained after sea removal decreases with respect to the total fineness D, it is preferable to set the number of twists in consideration of this.

なお、撚係数kは、脱海後の撚数をt(回/m)、脱海して得られた極細繊維束の総繊度をd(dtex)とすると、次の式で算出される。
k=t×d1/2
撚糸された海島型複合繊維を脱海する手段としては、海成分が溶解(分解も含む)する溶剤、酸、アルカリ、水などの液体に海島型複合繊維糸条を漬け込む方法を採用することができるが、海成分を溶解(分解も含む)する液体としては、操業性や製品の安全性の点で、水系の液体を使用することが好ましい。また、海成分を溶解(分解も含む)する液体に海島型複合繊維糸条を漬け込む脱海工程は、チーズ染色機や綛染色機、パッケージ型染色機(オーバーマイヤー染色機)などの糸染色機を用いて行うことができるが、中でもチーズ染色機を用いると、糸条が動かず、液体だけが循環して脱海を行うことができ、海島型複合繊維束同士でのもつれが起きにくいため好ましい。
The twist coefficient k is calculated by the following equation, where t (times / m) is the number of twists after sea removal, and d (dtex) is the total fineness of the ultrafine fiber bundle obtained by sea removal.
k = t × d 1/2
As a means of sea-sealing the twisted sea-island type composite fiber, a method of immersing the sea-island type composite fiber yarn in a liquid such as a solvent, acid, alkali, water, etc. in which sea components dissolve (including decomposition) is adopted. However, it is preferable to use an aqueous liquid from the viewpoint of operability and product safety as the liquid for dissolving (including decomposing) sea components. In addition, the sea removal process of immersing sea-island type composite fiber yarn in a liquid that dissolves seawater components (including decomposition) is a yarn dyeing machine such as a cheese dyeing machine, a kite dyeing machine, or a package dyeing machine (Obermeier dyeing machine). However, when a cheese dyeing machine is used, the yarn does not move, only the liquid circulates and seawater can be removed, and entanglement between sea-island type composite fiber bundles is unlikely to occur. preferable.

本発明のように数平均による島直径が1〜500nmである海島型複合繊維であれば、海成分比率が高い場合でも、脱海されて得られる極細繊維同士の凝集力が強く、極細繊維束がばらけないため糸条の状態で脱海することができる。また、通常であれば脱海された分だけ体積が減少し、脱海中にチーズなどのパッケージが崩れてしまうが、数平均による島直径は1〜500nmである海島型複合繊維の場合、極細繊維の表面積が大きいため、海成分を溶解(分解も含む)する液体を吸着し膨潤して、見掛けの体積変化がおきにくくなり、パッケージが崩れず脱海後の解舒を行うことができる。そのため、本発明の方法を採用することで糸条の状態で極細繊維束を得ることができる。   If the sea-island type composite fiber having a number average island diameter of 1 to 500 nm as in the present invention, the cohesive force between ultrafine fibers obtained by sea removal is strong even when the sea component ratio is high, and the ultrafine fiber bundle It is possible to escape from the sea in the state of yarn. In addition, the volume is usually reduced by the amount of sea removal, and the package of cheese and the like collapses during sea removal, but in the case of sea-island type composite fibers with an island diameter of 1 to 500 nm, the ultrafine fiber Because of the large surface area, it absorbs and swells the liquid that dissolves (including decomposes) the sea components, making it difficult for the apparent volume to change, so that the package does not collapse and can be unwound after sea removal. Therefore, by adopting the method of the present invention, an ultrafine fiber bundle can be obtained in a yarn state.

本発明において、脱海する前の海島型複合繊維の総繊度は50〜500dtexであることが好ましい。これにより、海島型複合繊維の絶対強度が得られ、撚糸や脱海の工程通過性が良好になる。また、500dtexを超える海島型複合繊維を脱海しようとすると、極細繊維束同士で絡みやすく、脱海後に解舒不良となってしまったり、解舒できても得られた極細繊維束の総繊度が大きく織編物として時にソフトな風合が得られないし、この太い極細繊維束を分割しようとしても、極細繊維間の凝集力が強く分割することが困難である。   In the present invention, it is preferable that the total fineness of the sea-island type composite fiber before sea removal is 50 to 500 dtex. Thereby, the absolute strength of the sea-island type composite fiber is obtained, and the processability of twisted yarn and sea removal is improved. In addition, sea island type composite fibers exceeding 500 dtex are likely to get entangled between ultra-fine fiber bundles, resulting in poor unwinding after de-sealing, or the total fineness of the ultra-fine fiber bundles obtained even if they can be unraveled However, as a woven or knitted fabric, a soft texture is sometimes not obtained, and even when trying to split this thick ultrafine fiber bundle, it is difficult to split the cohesive force between the ultrafine fibers strongly.

本発明において、海島型複合繊維を脱海した後の極細繊維束の総繊度が130〜300dtexとなるように脱海前の海島型複合繊維を設計することが好ましい。これにより、後に行う脱海処理を経て得られる極細繊維束の絶対強度が得られ、製編織時の工程通過性が良好になる。また織編物としても風合がソフトで、引き裂きや引っ張り強度も十分高いものが得られる。   In the present invention, it is preferable to design the sea-island type composite fiber before sea removal so that the total fineness of the ultrafine fiber bundle after sea-island type composite fiber is removed from the sea is 130 to 300 dtex. Thereby, the absolute strength of the ultrafine fiber bundle obtained through the sea removal treatment to be performed later is obtained, and the process passability during knitting and weaving is improved. Also, a woven or knitted fabric having a soft texture and having a sufficiently high tear and tensile strength can be obtained.

本発明において、海島型複合繊維を脱海して得られた極細繊維束を製編織する際はできるだけ高密度にすることが重要であるが、製編織するときはカバーファクターCFを1500〜3500に設計することが好ましく、1500〜2800であることがより好ましく、1500〜2500であることがさらに好ましく、1800〜2200であることがもっとも好ましい。カバーファクターCFは、布帛が織物の場合、織物の経糸密度をX(本/2.54cm)、織物の緯糸本数をY(本/2.54cm)、経糸の繊度をD1(dtex)、緯糸の繊度をD2(dtex)とすると、次の式で算出される。
CF=X×D11/2+Y×D21/2
また、布帛が編物の場合、本発明ではカバーファクターCFを次のように定義する。すなわち、2.54cmあたりのコース数(ループの緯方向のつらなり個数)の2倍をX、2.54cmあたりのウェール数(ループの経方向のつらなり個数)をY、使用糸の繊度をD(dtex)とすると、次の式で算出する。
CF=(X+Y)×D1/2
ここで、カバーファクターCFとは、織物を構成する糸条の太さと織物密度によって定められる織物構造の粗密を表す係数で、カバーファクターが大きいほど織物が密に詰まっている。カバーファクターCFが1500未満であると、目が粗く空隙が多くなり見ズレが起きやすく、また織編物の風合いにおいて張り・腰感が乏しくなる。一方、カバーファクターCFが3500を超えると、製織が困難になったり、織物の滑脱抵抗が増加して引裂強力の低下を招いてしまう。
In the present invention, when weaving and weaving the ultrafine fiber bundle obtained by sea-sealing the sea-island type composite fiber, it is important to make the density as high as possible, but when weaving and weaving, the cover factor CF is set to 1500 to 3500. It is preferable to design, more preferably 1500 to 2800, even more preferably 1500 to 2500, and most preferably 1800 to 2200. Cover factor CF, when the fabric is a woven fabric, the warp density of the fabric is X (lines / 2.54 cm), the number of wefts of the fabric is Y (lines / 2.54 cm), the fineness of the warps is D1 (dtex), When the fineness is D2 (dtex), the following formula is used.
CF = X × D1 1/2 + Y × D2 1/2
When the fabric is a knitted fabric, the cover factor CF is defined as follows in the present invention. That is, twice the number of courses per 2.54 cm (the number of loops in the weft direction of the loop) is X, the number of wales per 2.54 cm (the number of loops in the warp direction of the loop) is Y, and the fineness of the yarn used is D ( dtex), the following formula is used.
CF = (X + Y) × D 1/2
Here, the cover factor CF is a coefficient representing the density of the fabric structure determined by the thickness of the yarn constituting the fabric and the fabric density. The larger the cover factor, the denser the fabric. When the cover factor CF is less than 1500, the eyes are rough and the voids are increased, so that misalignment is likely to occur, and the feeling of tension and waist is poor in the texture of the woven or knitted fabric. On the other hand, when the cover factor CF exceeds 3500, weaving becomes difficult or the sliding resistance of the fabric increases, leading to a reduction in tear strength.

極細繊維束を製編織する際に、脱海前の海島型複合繊維に施した撚方向と同じ方向の撚を施す、すなわち該極細繊維束に追撚するが好ましい。これにより極細繊維束内の極細繊維同士の拘束力を向上させることができ、製編織時の工程通過性を向上させることができる。また、極細繊維束にポリビニルアルコールやカルボキシメチルセルロースなどを糊付けしたり、製織時の糸滑りを向上させるために油剤を付けたりするなど、製編織時の工程通過性を向上させるため必要に応じて適宜行うことができる。   When weaving and knitting the ultrafine fiber bundle, it is preferable to twist the same direction as the twisting direction applied to the sea-island type composite fiber before sea removal, that is, to twist the ultrafine fiber bundle. Thereby, the restraining force between the ultrafine fibers in the ultrafine fiber bundle can be improved, and the process passability during knitting and weaving can be improved. Also, as needed, to improve the processability during weaving, such as pasting polyvinyl alcohol or carboxymethyl cellulose to the ultrafine fiber bundle, or attaching an oil agent to improve yarn sliding during weaving. It can be carried out.

また、極細繊維束を製編織する際に、脱海前の海島型複合繊維に施した撚方向と反対方向の撚を極細繊維束に施すことが好ましい。これにより撚係数の小さな糸条の織物にすることができ、極細繊維束内の極細繊維がばらけ易く、拭き取り性能の高いワイピング材とすることができる。   Moreover, when weaving and knitting the ultrafine fiber bundle, it is preferable to twist the ultrafine fiber bundle in a direction opposite to the twist direction applied to the sea-island type composite fiber before sea removal. Thereby, it can be set as the textile fabric of a thread | yarn with a small twist coefficient, and it can be set as the wiping material with which the ultrafine fiber in an ultrafine fiber bundle is easy to disperse | distribute, and has high wiping performance.

製編織前の極細繊維束に撚糸を施した場合は、残留トルクを軽減するため、湿熱や乾熱での撚止めセットを行い、解舒時のビリを抑制することが好ましい。   When twisted yarn is applied to the ultrafine fiber bundle before weaving and weaving, in order to reduce the residual torque, it is preferable to perform twisting set with wet heat or dry heat to suppress chatter during unwinding.

本発明において製編織方法は特に限定はされず、製織ではフライシャトル織機、レピア織機、ウォータージェット織機、エアジェット織機などを用いて行うことができるが、極細繊維を製織するため、PVAなどの糊剤を付けて経糸の毛羽発生を抑制することが好ましい。織組織は特に限定されず、ワイピング材などに用いる場合は織繊維がばらけやすいように経糸の浮き数が多い斜文織や朱子織にしたり、目ズレ、型崩れを起きにくいしたい場合は平織にしたり、目的に応じて適宜設定することができる。   In the present invention, the weaving and weaving method is not particularly limited. For weaving, a fly shuttle loom, a rapier loom, a water jet loom, an air jet loom, or the like can be used. It is preferable to suppress the occurrence of warp fluff by adding an agent. The weaving structure is not particularly limited. When used for wiping materials, etc., weaving with satin weaving or satin weaving with a large number of floating warps so that weaving fibers can be easily separated, or plain weaving when we want to prevent misalignment and deformation. Or can be set appropriately according to the purpose.

製編でも、編み機、編み組織は特に限定はされず、目的に応じて適宜設定すればよいが、極細繊維を用いるため、毛羽が発生し糸切れを起こしやすいため、製織時に張力を十分管理することが好ましい。張力の好ましい範囲は0.08〜0.12cN/dtexである。   Even in knitting, the knitting machine and the knitting structure are not particularly limited and may be appropriately set according to the purpose. However, since ultrafine fibers are used, fluff is likely to occur and yarn breakage is easily caused, so that tension is sufficiently controlled during weaving. It is preferable. A preferred range of tension is 0.08 to 0.12 cN / dtex.

本発明の製造方法で得られた極細繊維高密度織編物は、極細繊維の細さからくるしなやかさや高い拭き取り性と、織編物特有のソフトさを併せ持っており、かつ高密度に製編織されており目ズレが起きにくいため、コンピューター関連機器や光学機器などの精密機器のワイピング材や精密研磨として利用することができる。また、表面積が大きく吸着性の高い極細繊維を使った高密度シートであることから、フィルターや吸着材としても好適に利用することができる。また、カバーファクターが大きく、目ズレ、型崩れの起きにくい極細繊維高密度織編物であるため、きめの細かい新触感風合テキスタイルとして衣料用途へ展開することができる。   The ultra-fine fiber high-density woven or knitted fabric obtained by the production method of the present invention has both suppleness and high wiping property due to the fineness of the ultra-fine fiber and softness unique to the woven and knitted fabric, and is knitted and woven at a high density. Since the misalignment is difficult to occur, it can be used as a wiping material or precision polishing for precision equipment such as computer-related equipment and optical equipment. Further, since it is a high-density sheet using ultrafine fibers having a large surface area and high adsorptivity, it can be suitably used as a filter or an adsorbent. In addition, it is an ultrafine fiber high-density woven or knitted fabric that has a large cover factor and is less likely to be misaligned or deformed. Therefore, it can be applied to clothing applications as a fine-grained new tactile texture.

以下、本発明を実施例を用いて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。   Hereinafter, the present invention will be described in detail with reference to examples. In addition, the measuring method in an Example used the following method.

A.ポリマーの溶融粘度
東洋精機製作所製キャピログラフ1Bによりポリマーの溶融粘度を測定した。なお、サンプル投入から測定開始までのポリマーの貯留時間は10分とした。
A. Polymer melt viscosity The polymer melt viscosity was measured with a Capillograph 1B manufactured by Toyo Seiki Seisakusho. The polymer storage time from sample introduction to measurement start was 10 minutes.

B.融点
パーキンエルマー(Perkin Elmae)社製 DSC−7を用いて2nd runでポリマーの融解を示すピークトップ温度をポリマーの融点とした。このときの昇温速度は16℃/分、サンプル量は10mgとした。
B. Melting | fusing point The peak top temperature which shows melting | dissolving of a polymer in 2nd run was made into melting | fusing point of a polymer using DSC-7 made from Perkin Elmer (Perkin Elmae). At this time, the rate of temperature increase was 16 ° C./min, and the sample amount was 10 mg.

C.ポリマーアロイ繊維のウースター斑(U%)
ツェルベガーウスター株式会社製USTER TESTER 4を用いて給糸速度200m/分でノーマルモードで測定を行った。
C. Worcester spots of polymer alloy fibers (U%)
Measurement was performed in the normal mode at a yarn feeding speed of 200 m / min using a USTER TESTER 4 manufactured by Zerbegger Worcester.

D.SEM観察
サンプルに白金を蒸着し、超高分解能電解放射型走査型電子顕微鏡で倍率1000倍および10000倍で観察した。
SEM装置:日立製作所(株)製UHR−FE−SEM
E.TEMによる極細繊維の横断面観察
繊維の横断面方向に超薄切片を切り出してTEMで極細繊維の横断面を倍率40000倍で観察した。また、必要に応じ金属染色を施した。
TEM装置:日立製作所(株)製H−7100FA型
F.海島型複合繊維の海成分面積比率S
上記E項のTEM観察による写真から画像処理ソフト(WINROOF)を用いて、4μmの範囲の海成分面積sμmを求め、4μmに対するsμmの割合を算出することで海成分面積比率Sとした。
D. SEM Observation Platinum was vapor-deposited on the sample and observed with an ultrahigh resolution electrolytic emission scanning electron microscope at magnifications of 1000 and 10,000.
SEM device: UHR-FE-SEM manufactured by Hitachi, Ltd.
E. Cross-sectional observation of ultrafine fibers by TEM Ultra-thin sections were cut in the cross-sectional direction of the fibers, and the cross-section of the ultrafine fibers was observed by a TEM at a magnification of 40000 times. Moreover, metal dyeing | staining was given as needed.
TEM apparatus: H-7100FA type manufactured by Hitachi, Ltd. Sea component area ratio S of sea-island type composite fiber
Using image processing software (WINROOF) from a photograph by TEM observation of the E section obtains the sea component area Esumyuemu 2 ranging from 4 [mu] m 2, and the sea component area ratio S by calculating the ratio of Esumyuemu 2 for 4 [mu] m 2 did.

G.海島型複合繊維の数平均による島直径
上記E項のTEM観察による写真から画像処理ソフト(WINROOF)を用いて繊維の島直径を円換算で計算し、それの単純な平均値を求めた。この際、同一横断面内で無作為に抽出した50個の島直径を解析し、計算に用いた。
G. Island diameter by number average of sea-island type composite fiber The island diameter of the fiber was calculated in terms of a circle using image processing software (WINROOF) from the photograph of TEM observation in section E above, and a simple average value was obtained. At this time, 50 island diameters randomly extracted in the same cross section were analyzed and used for calculation.

H.島成分の粗大島面積比率
上記Fの直径解析を利用し、それぞれの島直径をdiとし、その2乗の総和(d1+d2+・・+d150)=Σdi(i=1〜150)を算出する。また、直径500nmより大きい島直径をDiとし、その2乗の総和(D1+D2+・・+Dm)=ΣDi(i=1〜m)を算出する。Σdiに対するΣDiの割合を算出することで、島成分全体に占める粗大島の面積比率とした。
H. Coarse island area ratio of island component Using the diameter analysis of F above, each island diameter is di, and the sum of the squares (d1 2 + d2 2 +... + D150 2 ) = Σdi 2 (i = 1 to 150) Is calculated. Moreover, the island diameter larger than 500 nm is set to Di, and the sum of the squares (D1 2 + D2 2 +... + Dm 2 ) = ΣDi 2 (i = 1 to m) is calculated. By calculating the ratio of ΣDi 2 to Σdi 2 , the area ratio of coarse islands in the entire island component was obtained.

I.繊度
海島型複合繊維または極細繊維束を10m測り取り重量を測定した。これを5つの試料において行い(n=5)、これらの平均値を繊度(dtex)とした。
I. Fineness A sea-island type composite fiber or ultrafine fiber bundle was weighed 10 m and weighed. This was performed on five samples (n = 5), and the average value thereof was defined as the fineness (dtex).

J.力学特性
室温(25℃)で、初期試料長=200mm、引っ張り速度=200mm/分とし、JIS L1013(1999)8.5.1に示される条件で荷重−伸長曲線を求めた。次に、破断時の荷重値を初期の繊度で割り、それを強度とし、破断時の伸びを初期試料長で割り、伸度として強伸度曲線を求めた。
J. et al. Mechanical properties At room temperature (25 ° C.), an initial sample length = 200 mm, a pulling speed = 200 mm / min, and a load-elongation curve was obtained under the conditions shown in JIS L1013 (1999) 8.5.1. Next, the load value at the time of breaking was divided by the initial fineness, which was taken as the strength, the elongation at the time of breaking was divided by the initial sample length, and a strong elongation curve was obtained as the elongation.

[極細繊維束の製造例1]
溶融粘度57Pa・s(240℃、剪断速度2432sec−1)、融点220℃のナイロン6(以下、N6)20重量%と重量平均分子量12万、溶融粘度30Pa・s(240℃、剪断速度2432sec-1)、融点170℃のポリL乳酸(光学純度99.5%以上)80重量%を2軸押出混練機で220℃で溶融混練してポリマーアロイチップを得た。ここで、ポリL乳酸の重量平均分子量は以下のようにして求めた。すなわち、試料のクロロホルム溶液にTHF(テトラヒドロフラン)を混合し、測定溶液とした。これをWaters社製ゲルパーミエーションクロマトグラフィー(GPC)Waters2690を用いて25℃で測定し、ポリスチレン換算で重量平均分子量を求めた。尚、N6の262℃、剪断速度121.6sec−1での溶融粘度は53Pa・sであった。また、このポリL乳酸の215℃、剪断速度1216sec−1での溶融粘度は86Pa・sであった。また、混練時はN6と共重合ポリL乳酸を別々に計量し、別々に混練機に供給した。
[Production Example 1 of Ultrafine Fiber Bundle]
Melt viscosity 57 Pa · s (240 ° C., shear rate 2432 sec −1 ), melting point 220 ° C. nylon 6 (hereinafter, N6) 20% by weight, weight average molecular weight 120,000, melt viscosity 30 Pa · s (240 ° C., shear rate 2432 sec − 1) 80% by weight of poly L lactic acid (optical purity: 99.5% or more) having a melting point of 170 ° C. was melt-kneaded at 220 ° C. with a twin-screw extrusion kneader to obtain a polymer alloy chip. Here, the weight average molecular weight of poly L lactic acid was determined as follows. That is, THF (tetrahydrofuran) was mixed with the sample chloroform solution to obtain a measurement solution. This was measured at 25 ° C. using water permeation gel permeation chromatography (GPC) Waters 2690, and the weight average molecular weight was determined in terms of polystyrene. The melt viscosity of N6 at 262 ° C. and a shear rate of 121.6 sec −1 was 53 Pa · s. Further, the melt viscosity of this poly L lactic acid at 215 ° C. and a shear rate of 1216 sec −1 was 86 Pa · s. During kneading, N6 and copolymer poly (L-lactic acid) were weighed separately and supplied separately to the kneader.

このポリマーアロイチップを230℃の溶融部で溶融し、紡糸温度230℃のスピンブロックに導いた。そして、限界濾過径15μmの金属不織布でポリマーアロイ溶融体を濾過した後、口金面温度215℃とした口金から溶融紡糸して巻き取った。そして、これを第1ホットローラーの温度を90℃、第2ホットローラーの温度を130℃として延伸熱処理した。この時、第1ホットローラーと第2ホットローラー間の延伸倍率を1.5倍とした。得られたポリマーアロイ繊維は62dtex、36フィラメント、強度3.4cN/dtex、伸度38%、U%=0.7%の優れた特性を示した。また、得られたポリマーアロイ繊維の横断面をTEM観察したところ、ポリL乳酸が海、N6が島の海島構造を示し、島N6の数平均による直径は55nmであり、島直径が100nmより大きいものの島比率は0%で、N6が超微分散化したN6極細繊維の前駆体である海島型複合繊維であった。また、海成分面積比率Sは78%であった。   This polymer alloy chip was melted at a melting portion of 230 ° C. and led to a spin block having a spinning temperature of 230 ° C. Then, after the polymer alloy melt was filtered with a metal nonwoven fabric having a limit filtration diameter of 15 μm, it was melt-spun from a die having a die surface temperature of 215 ° C. and wound up. This was subjected to a stretching heat treatment with the temperature of the first hot roller being 90 ° C. and the temperature of the second hot roller being 130 ° C. At this time, the draw ratio between the first hot roller and the second hot roller was 1.5 times. The obtained polymer alloy fiber showed excellent properties of 62 dtex, 36 filament, strength 3.4 cN / dtex, elongation 38%, U% = 0.7%. Further, when a cross section of the obtained polymer alloy fiber was observed with a TEM, poly-L-lactic acid was sea, N6 was an island-island structure, and the number average diameter of the island N6 was 55 nm, and the island diameter was larger than 100 nm. The island ratio of the product was 0%, and it was a sea-island type composite fiber that is a precursor of N6 ultrafine fiber in which N6 was ultrafinely dispersed. The sea component area ratio S was 78%.

得られた海島型複合繊維を6本合糸して、Z方向に1000T/mの撚を施し(撚係数K=19287)、チーズ状に巻きかえした後、チーズ染色機に仕込んで98℃の5重量%水酸化ナトリウム水溶液にて1時間処理した。次いで、60℃で5分間の湯洗を3回した後、脱水乾燥を行った。これにより海島型複合繊維中のポリL乳酸成分の99重量%以上を加水分解除去し、76dtex(脱海後の撚係数k=8775)のN6極細繊維束1を得た。脱海中にチーズが崩れることなく、解舒時の工程通過性は良好であった。この極細繊維束をTEM写真から解析した結果、N6極細繊維の数平均による直径は60nmと従来にない細さであり、単繊維直径100nmより大きいものの繊維構成比率は0%であった。   Six obtained sea-island type composite fibers were combined, twisted at 1000 T / m in the Z direction (twisting coefficient K = 19287), rewound into a cheese shape, charged into a cheese dyeing machine and 98 ° C. Treated with a 5 wt% aqueous sodium hydroxide solution for 1 hour. Next, after washing with hot water at 60 ° C. for 5 minutes three times, dehydration drying was performed. As a result, 99% by weight or more of the poly-L lactic acid component in the sea-island composite fiber was hydrolyzed and removed, and an N6 ultrafine fiber bundle 1 having 76 dtex (twisting coefficient after sea removal k = 8775) was obtained. The processability at the time of unraveling was good without the cheese breaking during sea removal. As a result of analyzing this ultrafine fiber bundle from the TEM photograph, the number average diameter of the N6 ultrafine fiber was 60 nm, which is an unprecedented thinness, and the fiber composition ratio of the single fiber diameter larger than 100 nm was 0%.

[極細繊維束の製造例2]
極細繊維束の製造例1の撚糸前の合糸数を8本(撚係数K=22271)にした以外は極細繊維束の製造例1と同様にして、102dtex(脱海後の撚係数k=10149)のN6極細繊維束2を得た。
[Production Example 2 of ultrafine fiber bundle]
102 dtex (twisting factor k = 10149 after sea removal) in the same manner as in manufacturing example 1 of the ultrafine fiber bundle, except that the number of yarns before twisting in the production example 1 of the ultrafine fiber bundle was changed to 8 (twisting coefficient K = 22221). N6 extra fine fiber bundle 2 was obtained.

[極細繊維束の製造例3]
極細繊維束の製造例1のN6を溶融粘度212Pa・s(262℃、剪断速度121.6sec−1)、融点220℃のN6(45重量%)とした以外は極細繊維束の製造例1と同様に溶融混練し、ポリマーアロイチップを得た。次いで、これを極細繊維束の製造例1と同様に溶融紡糸、延伸熱処理しポリマーアロイ繊維を得た。得られたポリマーアロイ繊維は67dtex、36フィラメント、強度3.6cN/dtex、伸度40%、U%=0.7%の優れた特性を示した。また、得られたポリマーアロイ繊維の横断面をTEM観察したところ、極細繊維束の製造例1と同様にポリL乳酸が海、N6が島の海島構造を示し、島N6の数平均による直径は110nmであり、島直径が200nmより大きいものの島比率は2%で、N6が超微分散化した海島型複合繊維であった。また、海成分面積比率Sは52%であった。
[Production Example 3 of extra fine fiber bundle]
Production example 1 of an ultrafine fiber bundle except that N6 in Production Example 1 of the ultrafine fiber bundle was changed to N6 (45 wt%) having a melt viscosity of 212 Pa · s (262 ° C., shear rate 121.6 sec −1 ) and a melting point of 220 ° C. Similarly, melt kneading was performed to obtain a polymer alloy chip. Subsequently, this was melt-spun and stretched and heat treated in the same manner as in Production Example 1 for ultrafine fiber bundles to obtain polymer alloy fibers. The obtained polymer alloy fiber exhibited excellent properties of 67 dtex, 36 filaments, strength 3.6 cN / dtex, elongation 40%, U% = 0.7%. Further, when the cross section of the obtained polymer alloy fiber was observed with a TEM, as in Production Example 1 of the ultrafine fiber bundle, poly L-lactic acid was the sea, N6 was the island-island structure, and the number average diameter of the island N6 was An island ratio of 110 nm and an island diameter larger than 200 nm was 2%, and it was a sea-island type composite fiber in which N6 was ultrafinely dispersed. The sea component area ratio S was 52%.

得られた海島型複合繊維を3本合糸して、Z方向に1000T/mの撚を施し(撚係数K=14177)、極細繊維束の製造例1と同様にして海島複合繊維中のポリL乳酸成分の99重量%以上を加水分解除去し、93dtex(脱海後の撚係数k=9695)のN6極細繊維束3を得た。脱海中にチーズが崩れることなく、解舒時の工程通過性は良好であった。この極細繊維束をTEM写真から解析した結果、N6極細繊維の数平均による直径は120nmであり、単繊維直径で500nmより大きいものの繊維構成比率は0%、単繊維直径で200nmより大きいものの繊維構成比率は2%であった。   Three obtained sea-island type composite fibers were combined and twisted at 1000 T / m in the Z direction (twisting coefficient K = 14177). 99% by weight or more of the L lactic acid component was removed by hydrolysis to obtain an N6 ultrafine fiber bundle 3 having 93 dtex (twisting coefficient after sea removal k = 9695). The processability at the time of unraveling was good without the cheese breaking during sea removal. As a result of analyzing this ultrafine fiber bundle from a TEM photograph, the number average diameter of N6 ultrafine fibers is 120 nm, the fiber composition ratio of the single fiber diameter larger than 500 nm is 0%, and the single fiber diameter is greater than 200 nm. The ratio was 2%.

[極細繊維束の製造例4]
極細繊維束の製造例3の撚糸前の合糸数を4本(撚係数K=16371)にした以外は極細繊維束の製造例3と同様にして、124dtex(脱海後の撚係数k=11180)のN6極細繊維束4を得た。
[Production Example 4 of Ultrafine Fiber Bundle]
124 dtex (twisting factor k = 11180 after sea removal) was performed in the same manner as in manufacturing example 3 of the ultrafine fiber bundle, except that the number of yarns before twisting in production example 3 of the ultrafine fiber bundle was changed to four (twisting coefficient K = 16371). N6 extra fine fiber bundle 4 was obtained.

[極細繊維束の製造例5]
極細繊維束の製造例3の撚糸前の合糸数を5本(撚係数K=18303)にした以外は極細繊維束の製造例3と同様にして、155dtex(脱海後の撚係数k=12490)のN6極細繊維束5を得た。
[Production Example 5 of extra fine fiber bundle]
155 dtex (twisting coefficient k after sea removal k = 1290) in the same manner as in manufacturing example 3 of the ultrafine fiber bundle, except that the number of combined yarns before twisting in production example 3 of the ultrafine fiber bundle was changed to 5 (twisting coefficient K = 18303). N6 extra fine fiber bundle 5 was obtained.

[極細繊維束の製造例6]
極細繊維束の製造例3の撚数を500T/m(撚係数K=7089)にしたこと以外は極細繊維束の製造例3と同様にしてN6極細繊維束6(脱海後の撚係数k=4848)を得た。脱海中にチーズが崩れることなく、解舒時の工程通過性は良好であった。
[Production Example 6 of Ultrafine Fiber Bundle]
N6 extra fine fiber bundle 6 (twist factor k after sea removal) in the same manner as extra fine fiber bundle production example 3, except that the number of twists in extra fine fiber bundle production example 3 was 500 T / m (twist coefficient K = 7089). = 4848). The processability at the time of unraveling was good without the cheese breaking during sea removal.

[極細繊維束の製造例7]
極細繊維束の製造例4の撚数を500T/m(撚係数K=8185)にしたこと以外は極細繊維束の製造例4と同様にしてN6極細繊維束7(脱海後の撚係数k=5590)を得た。脱海中にチーズが崩れることなく、解舒時の工程通過性は良好であった。
[Production Example 7 of extra fine fiber bundle]
N6 extra fine fiber bundle 7 (twist factor k after sea removal) in the same manner as extra fine fiber bundle production example 4 except that the number of twists in extra fine fiber bundle production example 4 was 500 T / m (twist coefficient K = 8185). = 5590). The processability at the time of unraveling was good without the cheese breaking during sea removal.

[極細繊維束の製造例8]
極細繊維束の製造例3の海島型複合繊維を2本合糸して、S方向に1200T/mの撚を施した。これを2本合糸して、Z方向に800T/m(撚係数K=13097)の撚を施して諸撚糸を得た。これを極細繊維束の製造例3と同様にしてN6極細繊維束8(脱海後の撚係数k=8944)を得た。脱海中にチーズが崩れることなく、解舒時の工程通過性は良好であった。
[Production Example 8 of Ultrafine Fiber Bundle]
Two sea-island type composite fibers of Production Example 3 for producing ultrafine fiber bundles were combined and twisted in the S direction at 1200 T / m. Two of these yarns were combined and twisted in the Z direction at 800 T / m (twisting coefficient K = 13097) to obtain various twisted yarns. In the same manner as in Production Example 3 of the ultrafine fiber bundle, an N6 ultrafine fiber bundle 8 (twist coefficient after sea removal k = 8944) was obtained. The processability at the time of unraveling was good without the cheese breaking during sea removal.

[極細繊維束の製造例9]
極細繊維束の製造例1のN6を溶融粘度350Pa・s(220℃、121.6sec−1)、融点162℃のポリプロピレン(以下、PP)(23重量%)とした以外は分散液の製造例1と同様に溶融混練し、ポリマーアロイチップを得た。なお、ポリL乳酸の220℃、121.6sec-1における溶融粘度は107Pa・sであった。このポリマーアロイチップを溶融温度230℃、紡糸温度230℃(口金面温度215℃)、単孔吐出量1.5g/分で極細繊維束の製造例1と同様に溶融紡糸を行った。得られた未延伸糸を延伸温度90℃、延伸倍率を2.7倍、熱セット温度130℃として極細繊維束の製造例1と同様に延伸熱処理して110dtex、18フィラメントポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、ポリL乳酸が海、PPが島の海島構造を示し、島PPの数平均による直径は240nmであり、島直径が500nmより大きいものの島比率は0%で、PPが超微分散化した海島型複合繊維であった。また、海成分面積比率Sは64%であった。
[Production Example 9 of Ultrafine Fiber Bundle]
Production Example of Dispersion Except that N6 of Production Example 1 of ultrafine fiber bundle was changed to polypropylene (hereinafter, PP) (23 wt%) having a melt viscosity of 350 Pa · s (220 ° C., 121.6 sec −1 ) and a melting point of 162 ° C. 1 was melt-kneaded in the same manner as in 1 to obtain a polymer alloy chip. The melt viscosity of poly L lactic acid at 220 ° C. and 121.6 sec −1 was 107 Pa · s. This polymer alloy chip was melt-spun in the same manner as in Production Example 1 for an ultrafine fiber bundle at a melting temperature of 230 ° C., a spinning temperature of 230 ° C. (die surface temperature of 215 ° C.), and a single-hole discharge rate of 1.5 g / min. The obtained undrawn yarn was drawn at a drawing temperature of 90 ° C., a draw ratio of 2.7 times, and a heat setting temperature of 130 ° C., and subjected to drawing heat treatment in the same manner as in Production Example 1 of an ultrafine fiber bundle to obtain 110 dtex, 18 filament polymer alloy fiber. . When the cross section of the obtained polymer alloy fiber was observed with a TEM, poly-L-lactic acid showed a sea-island structure with PP as an island, and the number average diameter of the island PP was 240 nm, and the island diameter was larger than 500 nm. The island ratio was 0%, and it was a sea-island type composite fiber in which PP was finely dispersed. The sea component area ratio S was 64%.

得られた海島型複合繊維を3本合糸して、Z方向に1000T/mの撚を施し(撚係数K=18166)、極細繊維束の製造例1と同様にして海島複合繊維中のポリL乳酸成分の99重量%以上を加水分解除去し、78dtex(脱海後の撚係数k=8888)のPP極細繊維束9を得た。脱海中にチーズが崩れることなく、解舒時の工程通過性は良好であった。この繊維束をTEM写真から解析した結果、PP極細繊維の数平均による直径は240nmであり、単繊維直径で500nmより大きいものの繊維比率は0%であった。   Three obtained sea-island type composite fibers were combined, twisted at 1000 T / m in the Z direction (twisting coefficient K = 18166), and the same as in Production Example 1 of the ultrafine fiber bundle, 99% by weight or more of the L lactic acid component was removed by hydrolysis to obtain a PP ultrafine fiber bundle 9 having 78 dtex (twisting coefficient after sea removal k = 8888). The processability at the time of unraveling was good without the cheese breaking during sea removal. As a result of analyzing this fiber bundle from a TEM photograph, the number average diameter of PP ultrafine fibers was 240 nm, and the fiber ratio of single fiber diameters larger than 500 nm was 0%.

[極細繊維束の製造例10]
極細繊維束の製造例9の撚糸前の合糸数を4本(撚係数K=20976)にした以外は極細繊維束の製造例9と同様にして、78dtex(脱海後の撚係数k=10247)のPP極細繊維束10を得た。
[Manufacturing Example 10 of Ultrafine Fiber Bundle]
78 dtex (twisting coefficient k after sea removal = 10247) in the same manner as in manufacturing example 9 of the ultrafine fiber bundle, except that the number of combined yarns before twisting in production example 9 of the ultrafine fiber bundle was changed to 4 (twisting coefficient K = 20976). ) PP ultrafine fiber bundle 10 was obtained.

[極細繊維束の製造例11]
溶融粘度280Pa・s(300℃、1216sec−1)のポリエチレンテレフタレート(以下、PET)を80重量%、溶融粘度160Pa・s(300℃、1216sec−1)のポリフェニレンサルファイド(以下、PPS)を20重量%として、2軸押出混練機を用いて溶融混練を行い、ポリマーアロイチップを得た。ここで、PPSは直鎖型で分子鎖末端がカルシウムイオンで置換された物を用いた。
[Production Example 11 of Ultrafine Fiber Bundle]
Melt viscosity 280Pa · s (300 ℃, 1216sec -1) polyethylene terephthalate (hereinafter, PET) of 80 wt%, polyphenylene sulfide (hereinafter, PPS) and 20 weight melt viscosity 160Pa · s (300 ℃, 1216sec -1) %, Melt kneading was performed using a biaxial extrusion kneader to obtain a polymer alloy chip. Here, the PPS used was a linear type and the molecular chain terminal was replaced with calcium ions.

ここで得られたポリマーアロイチップを極細繊維束の製造例1と同様に紡糸機に導き、紡糸を行った。この時、紡糸温度は315℃、限界濾過径15μmの金属不織布でポリマーアロイ溶融体を濾過した後、口金面温度292℃とした口金から溶融紡糸した。吐出された糸条は工程油剤が給油された後、非加熱の第1引き取りローラーおよび第2引き取りローラーを介して1000m/分で巻き取られた。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。そして、これを第1ホットローラーの温度を100℃、第2ホットローラーの温度を130℃として延伸熱処理した。この時、第1ホットローラーと第2ホットローラー間の延伸倍率を3.3倍とした。得られたポリマーアロイ繊維は60dtex、36フィラメント、強度4.4cN/dtex、伸度27%、U%=1.3%の優れた特性を示した。また、得られたポリマーアロイ繊維の横断面をTEM観察したところ、PETが海、PPSが島の海島構造を示し、島PPSの数平均による直径は65nmであり、島直径が100nmより大きいものの島比率は0%で、PPSが超微分散化した海島型複合繊維であった。また、海成分面積比率Sは83%であった。   The polymer alloy chip obtained here was guided to a spinning machine in the same manner as in Production Example 1 for ultrafine fiber bundles, and spinning was performed. At this time, the polymer alloy melt was filtered with a metal nonwoven fabric having a spinning temperature of 315 ° C. and a limit filtration diameter of 15 μm, and then melt-spun from a die having a die surface temperature of 292 ° C. The discharged yarn was wound up at 1000 m / min via a non-heated first take-up roller and a second take-up roller after the process oil was supplied. The spinnability at this time was good, and there was no yarn breakage during continuous spinning for 24 hours. This was subjected to a stretching heat treatment with the temperature of the first hot roller being 100 ° C. and the temperature of the second hot roller being 130 ° C. At this time, the draw ratio between the first hot roller and the second hot roller was 3.3 times. The obtained polymer alloy fiber exhibited excellent properties of 60 dtex, 36 filaments, strength 4.4 cN / dtex, elongation 27%, U% = 1.3%. Moreover, when the cross section of the obtained polymer alloy fiber was observed with a TEM, the islands with PET as the sea and PPS as the islands, and the number average diameter of the islands PPS was 65 nm, and the island diameter was larger than 100 nm. The ratio was 0%, and it was a sea-island type composite fiber in which PPS was finely dispersed. The sea component area ratio S was 83%.

得られた海島型複合繊維を6本合糸して、Z方向に1000T/mの撚を施し(撚係数K=18974)、極細繊維束の製造例1と同様にして海島複合繊維中のPET成分の99重量%以上を加水分解除去し、74dtex(脱海後の撚係数k=8660)のPPS極細繊維束11を得た。脱海中にチーズが崩れることなく、解舒時の工程通過性は良好であった。   Six obtained sea-island type composite fibers were combined, twisted at 1000 T / m in the Z direction (twisting coefficient K = 18974), and PET in the sea-island composite fiber was produced in the same manner as in Production Example 1 of the ultrafine fiber bundle. 99% by weight or more of the components were removed by hydrolysis to obtain a PPS ultrafine fiber bundle 11 having 74 dtex (twisting coefficient after sea removal k = 8660). The processability at the time of unraveling was good without the cheese breaking during sea removal.

[極細繊維束の製造例12]
極細繊維束の製造例11の撚糸前の合糸数を8本(撚係数K=21909)にした以外は極細繊維束の製造例11と同様にして、98dtex(脱海後の撚係数k=9950)のPPS極細繊維束12を得た。
[Production Example 12 of Ultrafine Fiber Bundle]
98 dtex (twisting coefficient k after seawater removal = 9950) in the same manner as in manufacturing example 11 of the ultrafine fiber bundle, except that the number of combined yarns before twisting in the production example 11 of the ultrafine fiber bundle was set to 8 (twisting coefficient K = 2909). ) PPS ultrafine fiber bundle 12 was obtained.

[極細繊維束の製造例13]
海成分にアルカリ可溶型共重合ポリエステル樹脂60重量%、島成分にN6樹脂40重量%を用い、溶融紡糸で島成分を100島とし、5.3dtexの高分子配列体の海島型複合繊維を作成後、2.5倍延伸して単糸繊度2.1dtex、総繊度38dtex、18フィラメントの海島型複合繊維を得た。この海島型複合繊維の強度は2.6cN/dtex、伸度は35%であった。
[Manufacturing Example 13 of Ultrafine Fiber Bundle]
Using seawater-type copolyester resin 60% by weight for the sea component and 40% by weight N6 resin for the island component, the island component is 100 islands by melt spinning. After the preparation, it was stretched 2.5 times to obtain a sea-island composite fiber having a single yarn fineness of 2.1 dtex, a total fineness of 38 dtex, and 18 filaments. The strength of this sea-island type composite fiber was 2.6 cN / dtex, and the elongation was 35%.

得られた海島型複合繊維を5本合糸して、Z方向に1000T/mの撚を施し(撚係数K=13784)、極細繊維束の製造例1と同様にして海島複合繊維中のPET成分の99重量%以上を加水分解除去し、78dtex(脱海後の撚係数k=8888)の極細繊維束13を得た。脱海中にチーズの端面に崩れた箇所が認められ、解舒時に糸切れが多発した。また、繊維束から単糸がばらけ毛羽が認められた。得られた極細繊維の平均単繊維繊度をTEM写真から解析したところ、0.02dtex(平均繊維径2μm)相当であった。   Five obtained sea-island composite fibers were combined and twisted at 1000 T / m in the Z direction (twisting coefficient K = 13784), and the PET in the sea-island composite fibers was made in the same manner as in Production Example 1 of the ultrafine fiber bundle. 99% by weight or more of the components were hydrolyzed and removed, and an ultrafine fiber bundle 13 having 78 dtex (twisting coefficient after sea removal k = 8888) was obtained. Locations that collapsed on the edge of the cheese during sea removal were observed, and many yarn breaks occurred during unwinding. Moreover, the single yarn was scattered from the fiber bundle, and fluff was recognized. When the average single fiber fineness of the obtained ultrafine fibers was analyzed from the TEM photograph, it was 0.02 dtex (average fiber diameter 2 μm).

[極細繊維束の製造例14]
繊維束の製造例13の撚糸前の合糸数を7本(撚係数K=16310)にした以外は極細繊維束の製造例13と同様にして、109dtex(脱海後の撚係数k=10488)の極細繊維束14を得た。
[Production Example 14 of Ultrafine Fiber Bundle]
109 dtex (twisting factor k = 10488 after sea removal) in the same manner as in manufacturing example 13 of the ultrafine fiber bundle, except that the number of yarns before twisting in the fiber bundle production example 13 was 7 (twisting coefficient K = 16310). The ultrafine fiber bundle 14 was obtained.

Figure 2008202204
Figure 2008202204

<実施例1>
極細繊維束の製造例1で得られた極細繊維束1に60℃の水にポリビニルアルコールを6重量%溶かした糊剤を5〜8重量%付着させ、それを乾燥させたものを経糸に、極細繊維束の製造例2で得られた極細繊維束2を緯糸としてフライシャトル織機に仕掛け、経糸密度115本/2.54cm、緯糸密度95本/2.54cmの平織(カバーファクターCF1962)に仕立て、極細繊維高密度織物を得た。これを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、優れたワイピング性能であり、ガラス板に傷は認められなかった。
<Example 1>
To the ultrafine fiber bundle 1 obtained in Production Example 1 of the ultrafine fiber bundle, 5% to 8% by weight of a paste obtained by dissolving 6% by weight of polyvinyl alcohol in 60 ° C. water was adhered, and the dried one was used as a warp. The ultra-fine fiber bundle 2 obtained in Production Example 2 of the ultra-fine fiber bundle is applied to a fly shuttle loom as a weft and is made into a plain weave (cover factor CF1962) with a warp density of 115 / 2.54 cm and a weft density of 95 / 2.54 cm. An ultrafine fiber high-density fabric was obtained. When this was used to wipe a glass plate coated with petrolatum thinly, it showed excellent wiping performance and no scratches were observed on the glass plate.

<実施例2>
極細繊維束の製造例3で得られた極細繊維束3を経糸に、極細繊維束の製造例4で得られた極細繊維束4を緯糸に用い、経糸密度105本/2.54cm、緯糸密度90本/2.54cmの平織(カバーファクターCF2015)にした以外は実施例1と同様にして極細繊維高密度織物を得た。これを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、優れたワイピング性能であり、ガラス板に傷は認められなかった。
<Example 2>
Using the ultrafine fiber bundle 3 obtained in Production Example 3 of the ultrafine fiber bundle as a warp and using the ultrafine fiber bundle 4 obtained in Production Example 4 of the ultrafine fiber bundle as a weft, a warp density of 105 / 2.54 cm, a weft density An ultrafine fiber high-density woven fabric was obtained in the same manner as in Example 1 except that 90 pieces / 2.54 cm plain weave (cover factor CF2015) was used. When this was used to wipe a glass plate coated with petrolatum thinly, it showed excellent wiping performance and no scratches were observed on the glass plate.

<実施例3>
極細繊維束の製造例6で得られた極細繊維束6を経糸に、極細繊維束の製造例7で得られた極細繊維束7を緯糸に用いた以外は実施例2と同様にして、極細繊維高密度織物を得た。これを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、優れたワイピング性能であり、ガラス板に傷は認められなかった。
<Example 3>
In the same manner as in Example 2, except that the ultrafine fiber bundle 6 obtained in Production Example 6 of the ultrafine fiber bundle was used as a warp and the ultrafine fiber bundle 7 obtained in Production Example 7 of the ultrafine fiber bundle was used as a weft. A fiber high density fabric was obtained. When this was used to wipe a glass plate coated with petrolatum thinly, it showed excellent wiping performance and no scratches were observed on the glass plate.

<実施例4>
極細繊維束の製造例8で得られた極細繊維束8を経糸および緯糸に用い、経糸密度95本/2.54cm、緯糸密度90本/2.54cmの平織(カバーファクターCF2060)にした以外は実施例1と同様にして極細繊維高密度織物を得た。これらを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、極細繊維がばらけ易く、非常に優れたワイピング性能を示した。また、ガラス板に傷は認められなかった。
<Example 4>
Except for using the ultrafine fiber bundle 8 obtained in Production Example 8 of the ultrafine fiber bundle for warp and weft, a plain weave (cover factor CF2060) having a warp density of 95 / 2.54 cm and a weft density of 90 / 2.54 cm was used. In the same manner as in Example 1, a fine fiber high-density fabric was obtained. When these were used to wipe a glass plate coated with petrolatum thinly, the ultrafine fibers were easily dispersed and showed excellent wiping performance. Further, no scratch was observed on the glass plate.

<実施例5>
極細繊維束の製造例9で得られた極細繊維束9を経糸に、極細繊維束の製造例10で得られた極細繊維束10を緯糸に用いた以外は実施例1と同様にして、極細繊維高密度織物(カバーファクターCF1985)を得た。これを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、優れたワイピング性能であり、ガラス板に傷は認められなかった。
<Example 5>
In the same manner as in Example 1, except that the ultrafine fiber bundle 9 obtained in Production Example 9 of the ultrafine fiber bundle was used as a warp, and the ultrafine fiber bundle 10 obtained in Production Example 10 of the ultrafine fiber bundle was used as a weft. A high-density fiber fabric (cover factor CF1985) was obtained. When this was used to wipe a glass plate coated with petrolatum thinly, it showed excellent wiping performance and no scratches were observed on the glass plate.

<実施例6>
極細繊維束の製造例11で得られた極細繊維束11を経糸に、極細繊維束の製造例12で得られた極細繊維束12を緯糸に用いた以外は実施例2と同様にして、極細繊維高密度織物(カバーファクターCF1929)を得た。これを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、優れたワイピング性能であり、ガラス板に傷は認められなかった。
<Example 6>
In the same manner as in Example 2, except that the ultrafine fiber bundle 11 obtained in Production Example 11 of the ultrafine fiber bundle was used as a warp and the ultrafine fiber bundle 12 obtained in Production Example 12 of the ultrafine fiber bundle was used as a weft. A high-density fiber fabric (cover factor CF1929) was obtained. When this was used to wipe a glass plate coated with petrolatum thinly, it showed excellent wiping performance and no scratches were observed on the glass plate.

<比較例1> 極細繊維束の製造例13で得られた極細繊維束13を経糸に、極細繊維束の製造例14で得られた極細繊維束14を緯糸に用いた以外は実施例1と同様にして、極細繊維高密度織物(カバーファクターCF1985)を得た。これを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、拭き取りに時間が掛かった。   <Comparative Example 1> Example 1 except that the ultrafine fiber bundle 13 obtained in Production Example 13 of the ultrafine fiber bundle was used as the warp and the ultrafine fiber bundle 14 obtained in Production Example 14 of the ultrafine fiber bundle was used as the weft. Similarly, an ultrafine fiber high-density fabric (cover factor CF1985) was obtained. Wiping a thin glass plate with petrolatum using this, it took time to wipe.

<比較例2>
極細繊維束の製造例2で得られる海島型複合繊維を2本合糸して、Z方向に1000T/mの撚を施し(撚係数11576)、脱海せずに、これを経糸および緯糸に用いて、経糸密度90本/2.54cm、緯糸密度90本/2.54cmの平織(カバーファクターCF2084)にした以外は実施例1と同様にして海島型複合繊維の高密度織物を得た。これをドラム染色機に仕込んで98℃の5重量%水酸化ナトリウム水溶液にて1時間処理した。次いで、60℃で5分間の湯洗を3回した後、脱水乾燥を行った。これにより海島型複合繊維中のポリL乳酸成分の99重量%以上を加水分解除去し、極細繊維の織物(カバーファクターCF1418)を得た。得られた織物は脱海中に海成分が分解された分だけ糸条が細くなり、カバーファクターCFが小さく、目ズレの起きやすいものであった。
<Comparative example 2>
Two sea-island type composite fibers obtained in Production Example 2 of ultrafine fiber bundle are combined and twisted at 1000 T / m in the Z direction (twisting coefficient 11576), and this is used as warp and weft without sea removal. A high density woven fabric of sea-island type composite fibers was obtained in the same manner as in Example 1 except that a plain weave (cover factor CF2084) having a warp density of 90 / 2.54 cm and a weft density of 90 / 2.54 cm was used. This was charged into a drum dyeing machine and treated with a 5 wt% aqueous sodium hydroxide solution at 98 ° C. for 1 hour. Next, after washing with hot water at 60 ° C. for 5 minutes three times, dehydration drying was performed. As a result, 99% by weight or more of the poly-L lactic acid component in the sea-island composite fiber was hydrolyzed and removed to obtain a woven fabric (cover factor CF1418) of ultrafine fibers. The resulting woven fabric was thinned by the amount of sea components decomposed during sea removal, the cover factor CF was small, and misalignment was likely to occur.

<実施例7>
実施例2の極細繊維束3および極細繊維束4をS方向に1000T/m追撚(つまり、脱海前に撚糸したZ方向への1000T/mを解撚)して、70℃の乾熱で1時間撚止めセットを行ったものを用いた以外は、実施例2と同様にして高密度編物を得た。製織の際、工程通過性が良好であった。これらを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、極細繊維がばらけ易く、非常に優れたワイピング性能を示した。また、ガラス板に傷は認められなかった。
<Example 7>
The ultrafine fiber bundle 3 and the ultrafine fiber bundle 4 of Example 2 were additionally twisted in the S direction by 1000 T / m (that is, 1000 T / m in the Z direction twisted before sea removal was untwisted) and dried at 70 ° C. A high-density knitted fabric was obtained in the same manner as in Example 2 except that the one set for 1 hour was used. The process passability was good during weaving. When these were used to wipe a glass plate coated with petrolatum thinly, the ultrafine fibers were easily dispersed and showed excellent wiping performance. Further, no scratch was observed on the glass plate.

<実施例8>
実施例2の製織時の組織を2/2ツイル組織の織物に仕立て、極細繊維高密度織物を得た。これらを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、優れたワイピング性能を示し、ガラス板に傷も認められなかった。
<実施例9>
実施例2の経糸密度を135本/2.54cm、緯糸密度を125本/2.54cmの平織(カバーファクターCF1694)にした以外は、実施例2と同様にして高密度編物を得た。製織の際、工程通過性が良好であった。これらを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、優れたワイピング性能であり、ガラス板に傷は認められなかった。
<Example 8>
The fabric at the time of weaving in Example 2 was tailored into a woven fabric having a 2/2 twill structure to obtain an ultrafine fiber high-density fabric. When these were used to wipe a glass plate coated with petrolatum thinly, excellent wiping performance was exhibited and no scratches were observed on the glass plate.
<Example 9>
A high-density knitted fabric was obtained in the same manner as in Example 2 except that plain weave (cover factor CF1694) having a warp density of 135 / 2.54 cm and a weft density of 125 / 2.54 cm was used. The process passability was good during weaving. When these were used to wipe a glass plate coated with petrolatum thinly, it showed excellent wiping performance and no scratches were observed on the glass plate.

Figure 2008202204
Figure 2008202204

<実施例10>
極細繊維束の製造例5で得られた極細繊維束5を用いて、28Gの丸編み機に仕掛けて編組織を天竺、ウェール43、コース40(カバーファクターCF1531)の高密度編物を得た。これを使ってワセリンを薄く塗ったガラス板をワイピングしたところ、優れたワイピング性能であり、ガラス板に傷も認められなかった。
<Example 10>
Using the ultrafine fiber bundle 5 obtained in Production Example 5 of the ultrafine fiber bundle, a high-density knitted fabric having a knitting structure of tengu, wales 43, and course 40 (cover factor CF1531) was obtained using a 28G circular knitting machine. When this was used to wipe a glass plate coated with petrolatum thinly, it showed excellent wiping performance and no scratches were observed on the glass plate.

Figure 2008202204
Figure 2008202204

本発明の製造方法で得られた極細繊維布帛は、極細繊維の細さからくるしなやかさや高い拭き取り性と、織編物特有のソフトさを併せ持っており、かつ高密度に製編織されており目ズレが起きにくいため、コンピューター関連機器や光学機器などの精密機器のワイピング材や精密研磨として利用することができる。また、表面積が大きく吸着性の高い極細繊維を使った高密度シートであることから、フィルターや吸着材としても好適に利用することができる。また、カバーファクターが大きく、目ズレ、型崩れの起きにくい極細繊維高密度織物であるため、きめの細かい新触感風合テキスタイルとして衣料用途へ展開することができる。   The ultrafine fiber fabric obtained by the production method of the present invention has both suppleness and high wiping property due to the fineness of the ultrafine fibers and softness unique to the woven and knitted fabric, and is knitted and woven at high density. Therefore, it can be used as a wiping material or precision polishing for precision equipment such as computer-related equipment and optical equipment. Further, since it is a high-density sheet using ultrafine fibers having a large surface area and high adsorptivity, it can be suitably used as a filter or an adsorbent. In addition, it is an ultrafine fiber high-density fabric that has a large cover factor and is resistant to misalignment and loss of shape. Therefore, it can be used for clothing as a fine, new tactile texture.

Claims (12)

数平均直径が1nm〜500nmの極細繊維からなる極細繊維束を用いた織編物であり、カバーファクターCFが1500〜3500であることを特徴とする極細繊維布帛。 An ultrafine fiber fabric, which is a woven or knitted fabric using an ultrafine fiber bundle made of ultrafine fibers having a number average diameter of 1 nm to 500 nm, and has a cover factor CF of 1500 to 3500. 極細繊維束の撚係数kが1500〜15000であることを特徴とする請求項1に記載の極細繊維布帛。 The ultrafine fiber fabric according to claim 1, wherein the twist coefficient k of the ultrafine fiber bundle is 1500 to 15000. 極細繊維全体に占める、繊維直径が500nmより大きい極細繊維の面積比率が3%以下であることを特徴とする請求項1または2に記載の極細繊維布帛。 The ultrafine fiber fabric according to claim 1 or 2, wherein the area ratio of the ultrafine fibers having a fiber diameter larger than 500 nm in the entire ultrafine fibers is 3% or less. 撚糸形態が諸撚であることを特徴とする請求項1〜3のいずれかに記載の極細繊維布帛。 The ultrafine fiber fabric according to any one of claims 1 to 3, wherein the twisted yarn is of various twists. 極細繊維束の総繊度が130〜300dtexであることを特徴とする請求項1〜4のいずれかに記載の極細繊維布帛。 The ultrafine fiber fabric according to any one of claims 1 to 4, wherein the total fineness of the ultrafine fiber bundle is 130 to 300 dtex. 数平均島直径が1nm〜500nmである海島型複合繊維を撚糸した後に脱海処理して得た極細繊維束を用いて製編織することを特徴とする極細繊維布帛の製造方法。 A method for producing an ultrafine fiber fabric, comprising knitting and weaving an ultrafine fiber bundle obtained by twisting a sea-island type composite fiber having a number average island diameter of 1 nm to 500 nm and then desealing. 脱海前の海島型複合繊維の撚係数Kが2000〜20000であることを特徴とする請求項6に記載の極細繊維布帛の製造方法。 The method for producing an ultrafine fiber fabric according to claim 6, wherein the twisting coefficient K of the sea-island composite fiber before sea removal is 2000 to 20000. 海島型複合繊維の海成分面積比率Sが50〜90%であることを特徴とする請求項6または7に記載の極細繊維布帛の製造方法。 The method for producing an ultrafine fiber fabric according to claim 6 or 7, wherein the sea component area ratio S of the sea-island type composite fiber is 50 to 90%. 島成分全体に占める、島直径500nmより大きい島成分の面積比率が3%以下であることを特徴とする請求項6〜8のいずれかに記載の極細繊維布帛の製造方法。 The method for producing an ultrafine fiber fabric according to any one of claims 6 to 8, wherein an area ratio of an island component larger than an island diameter of 500 nm occupying in the entire island component is 3% or less. 撚糸形態が諸撚であることを特徴とする請求項6〜9のいずれかに記載の極細繊維布帛の製造方法。 The method for producing an ultrafine fiber fabric according to any one of claims 6 to 9, wherein the twisted yarn is a plied yarn. 海島型複合繊維の総繊度が50〜500dtexであることを特徴とする請求項6〜10のいずれかに記載の極細繊維布帛の製造方法。 The method for producing an ultrafine fiber fabric according to any one of claims 6 to 10, wherein the total fineness of the sea-island type composite fiber is 50 to 500 dtex. 極細繊維布帛から製編織される織編物のカバーファクターCFが1500〜3500となるように製編織することを特徴とする請求項6〜11のいずれかに記載の極細繊維布帛の製造方法。 The method for producing an ultrafine fiber fabric according to any one of claims 6 to 11, wherein the fabric is knitted and woven so that the cover factor CF of the woven or knitted fabric knitted and woven from the ultrafine fiber fabric is 1500 to 3500.
JP2007240598A 2007-01-24 2007-09-18 Production method of ultrafine fiber fabric Pending JP2008202204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240598A JP2008202204A (en) 2007-01-24 2007-09-18 Production method of ultrafine fiber fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007013501 2007-01-24
JP2007240598A JP2008202204A (en) 2007-01-24 2007-09-18 Production method of ultrafine fiber fabric

Publications (1)

Publication Number Publication Date
JP2008202204A true JP2008202204A (en) 2008-09-04

Family

ID=39779990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240598A Pending JP2008202204A (en) 2007-01-24 2007-09-18 Production method of ultrafine fiber fabric

Country Status (1)

Country Link
JP (1) JP2008202204A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104533A (en) * 2008-10-30 2010-05-13 Mitsubishi Rayon Textile Co Ltd Wiping textile
JP2010116632A (en) * 2008-11-11 2010-05-27 Osaka Prefecture Apparatus and method for producing fine carbon fiber twisted yarn
CN103437069A (en) * 2013-09-06 2013-12-11 天津工业大学 Production method of sea-island type superfine fiber artificial leather base cloth
JP2014210986A (en) * 2013-04-17 2014-11-13 帝人株式会社 Yarn, fabric and textile product
JP2019123986A (en) * 2014-09-29 2019-07-25 ユニチカトレーディング株式会社 Crimped yarn, extra-fine deeply dyeable finished yarn, chamois-like woven fabric including extra-fine deeply dyeable finished yarn, and method for producing crimped yarn
JP2020033680A (en) * 2018-08-31 2020-03-05 帝人フロンティア株式会社 Sea-island type composite fiber bundles, medical supplies containing its ultrafine fibers, and filters for food manufacturing processes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104533A (en) * 2008-10-30 2010-05-13 Mitsubishi Rayon Textile Co Ltd Wiping textile
JP2010116632A (en) * 2008-11-11 2010-05-27 Osaka Prefecture Apparatus and method for producing fine carbon fiber twisted yarn
JP2014210986A (en) * 2013-04-17 2014-11-13 帝人株式会社 Yarn, fabric and textile product
CN103437069A (en) * 2013-09-06 2013-12-11 天津工业大学 Production method of sea-island type superfine fiber artificial leather base cloth
JP2019123986A (en) * 2014-09-29 2019-07-25 ユニチカトレーディング株式会社 Crimped yarn, extra-fine deeply dyeable finished yarn, chamois-like woven fabric including extra-fine deeply dyeable finished yarn, and method for producing crimped yarn
JP2020033680A (en) * 2018-08-31 2020-03-05 帝人フロンティア株式会社 Sea-island type composite fiber bundles, medical supplies containing its ultrafine fibers, and filters for food manufacturing processes

Similar Documents

Publication Publication Date Title
JP5620761B2 (en) High density fabric
JP2007262610A (en) Combined filament yarn
EP3447176B1 (en) Yarn, fabric, and fiber product
JP2008202204A (en) Production method of ultrafine fiber fabric
JP2003013326A (en) Polyketone fiber, method of producing the same and polyketone twisted yarn
JPH07258940A (en) Ultrafine fiber structure having high strength, its production and conjugate fiber having high strength
JP6271856B2 (en) Fabric manufacturing method and textile manufacturing method
JP2009256865A (en) Ultrafine fiber fabric and method for producing the same
JP5356771B2 (en) Glove fabrics and textile products
JP3925176B2 (en) Polyester resin composition
JP2009167565A (en) Stretchable knitted fabric, method for producing the same, and textile product
JP2005226171A (en) Blended yarn and fiber product comprising the same
JP4487973B2 (en) Polyester resin composition
JP5336615B2 (en) Screen filament monofilament
JP5155124B2 (en) Method for producing yanagi chofu and yanagi chofu
JP4922668B2 (en) Permeability woven and knitted fabric, production method thereof and textile
JP2002105796A (en) Light-shielding woven fabric
JP2011157647A (en) Wiping cloth
JP2010255143A (en) Stain-resistant polyester fabric and manufacturing method of the same and fiber product
JP6065440B2 (en) Artificial leather
JP5616022B2 (en) string
JP4830480B2 (en) Polyester woven and knitted fabric for fused net reinforcement
JP2012207361A (en) Ultra fine fiber and wiping cloth containing ultra fine fiber
US20240110314A1 (en) Conjugate fiber and multifilament
JPH1136172A (en) Improvement in processability in producing spun yarn, production of fibrous structural product and spun yarn