JPH04126829A - Production of high-tenacity polyvinyl alcohol-based fiber excellent in hot water resistance - Google Patents

Production of high-tenacity polyvinyl alcohol-based fiber excellent in hot water resistance

Info

Publication number
JPH04126829A
JPH04126829A JP24947690A JP24947690A JPH04126829A JP H04126829 A JPH04126829 A JP H04126829A JP 24947690 A JP24947690 A JP 24947690A JP 24947690 A JP24947690 A JP 24947690A JP H04126829 A JPH04126829 A JP H04126829A
Authority
JP
Japan
Prior art keywords
pva
acid
yarn
hot water
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24947690A
Other languages
Japanese (ja)
Other versions
JP2826182B2 (en
Inventor
Akio Omori
大森 昭夫
Shunpei Naramura
楢村 俊平
Tomoyuki Sano
佐野 友之
Toshimi Yoshimochi
吉持 駛視
Hirofumi Sano
洋文 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP24947690A priority Critical patent/JP2826182B2/en
Publication of JPH04126829A publication Critical patent/JPH04126829A/en
Application granted granted Critical
Publication of JP2826182B2 publication Critical patent/JP2826182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber, excellent in productivity, high strength and hot water resistance and useful as industrial materials, etc., by applying an acid to yarn of PVA having a prescribed liquid content or above before dry hot drawing so as to provide a pickup within a specific range, drying the resultant yarn and dry hot drawing the dried yarn at a high temperature and a high draw ratio. CONSTITUTION:A spinning solution containing PVA dissolved therein is wet or dry-jet wet spun into an organic solvent-based coagulation bath such as dimethyl sulfoxide at <=20 deg.C and then dry hot drawn to produce PVA-based fiber. In the process, an acid such as phosphoric acid is brought into contact with the yarn with >=30%/PVA liquid content in a step before dry hot drawing so as to provide 5-10000ppm pickup thereof based on the PVA. The resultant yarn is then dried and dry hot drawn at >=220 deg.C so as to afford >=15 times total draw ratio.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セメントやゴムの補強材などの分野において
有用な耐熱水性に優しfニ高強力ボリヒニルアルコール
(以下P V 、Aと略記)系繊維の製法に関する。
[Detailed Description of the Invention] <Industrial Application Fields> The present invention is directed to a high-strength polyhinyl alcohol (hereinafter abbreviated as P V , A) that has good hot water resistance and is useful in fields such as reinforcing materials for cement and rubber. )-based fiber manufacturing method.

く従来の技術〉 従来、汎用ポリマー繊維の中てPVA系繊941は、ポ
リエステル、ポリアミド、ポリアクリルニトリル系繊維
などに比べて強度、弾性率が高く、産業資材用としては
もちろんセメント、ゴムなどの補強材用などに実用され
ている。近年汎用ポリマーであるポリエチレンにおいて
超高分子量の原料をゲル紡糸し超延伸することにより、
高強力高弾性率繊維が得られることが4つかった。しか
しポリエチレン自体が低融点で耐熱性か不十分であるこ
と及び補強用繊維としてはマトリックスとの接着性がわ
るいなどの点で不十分である。
Conventional technology> Conventionally, among general-purpose polymer fibers, PVA fiber 941 has higher strength and elastic modulus than polyester, polyamide, polyacrylonitrile fibers, etc., and has been used not only for industrial materials but also for cement, rubber, etc. It is used as a reinforcing material. In recent years, polyethylene, a general-purpose polymer, has been developed by gel spinning and super-stretching ultra-high molecular weight raw materials.
It was found that high strength and high elastic modulus fibers were obtained. However, polyethylene itself has a low melting point and insufficient heat resistance, and as a reinforcing fiber, it has poor adhesion to the matrix.

そこで他の汎用ポリマーにおいてもゲル紡糸超延伸の手
法を用いて高強力、高弾性率化の試みがなされている。
Therefore, attempts have been made to increase the strength and modulus of other general-purpose polymers by using the gel-spinning ultra-stretching technique.

中でらPVAはポリエチレンと同じ平面ジグザグ構造を
有し、しかも活性な水酸基を有するため、分子間水素結
合を生し易く高強ノJ1高弾性率、高耐熱性、高親和性
の繊維を得ろ可能性があり、例えば特開昭59−100
710号、特開昭59−1303111号等か提案さノ
1でしる。これらのPVA繊維は市販のPVA繊維に比
へると高強度、高弾性率となっており、耐熱性ら前記の
ポリエチレン繊維に比へろと優れている。一方PVA繊
維はポリマー自体か水に溶けるため耐熱水性に劣る問題
がある。上記高強度、高弾性率のP VΔ繊惟の耐熱水
性は従来のPVA繊維に比べると向上している乙のの充
分ではない、 そこで高強力PVA系繊維の耐熱水性を改善する提案か
なされている。例えば特開昭83−120H]7号にお
いて::!、、15箇以上延伸し几延伸糸に5〜15%
のアセタール化を施こすことか提案されている。
Among them, PVA has the same planar zigzag structure as polyethylene and has active hydroxyl groups, so it is easy to form intermolecular hydrogen bonds, making it possible to obtain fibers with high strength, high elastic modulus, high heat resistance, and high affinity. For example, JP-A-59-100
No. 710, Japanese Unexamined Patent Publication No. 1303111/1984, etc. are proposed in No. 1. These PVA fibers have higher strength and higher modulus than commercially available PVA fibers, and are superior in heat resistance to the aforementioned polyethylene fibers. On the other hand, PVA fibers have a problem of poor hot water resistance because the polymer itself is soluble in water. Although the hot water resistance of the above-mentioned high-strength, high-modulus PVA fiber is improved compared to conventional PVA fibers, it is not sufficient.Therefore, a proposal has been made to improve the hot water resistance of high-strength PVA fibers. There is. For example, in JP-A-83-120H] No. 7::! ,,5 to 15% to the drawn yarn after stretching 15 or more points
It has been proposed that the acetalization of

しかし軽アセタール化のみで;よ耐熱水性向上効果が充
分てはなく、かつ工程的にも複雑である。まfコ特開平
1−156517号においては、3倍以上に紡糸延伸し
、部分延伸糸の表面1こ有頭過酸化物、イソノアネート
系化合物、エボキノ系化合物なとの架橋性薬剤を付与し
、その後乾熱延伸を行なうことにより、繊維表面に架橋
を施こすことか提案されている。しかし架橋性薬剤:土
主に表面に存在させで表面架橋を主体としているため延
伸性か不十分どなり、弾性率がせいぜい310g/dと
低い。また安全面、健康面で注意を要する特別な有機化
合物を取り扱わねばならないという問題しある。さらに
特開平2−84587号にはPVA繊維コードの耐疲労
性を改善するため、15g/d以上の強度を有するPV
A繊維を、アルデヒド、イソシアネート、有機過酸化物
、カルボン酸等の有機化合物や、リン酸、塩酸、チタニ
ウム等の無機化合物などの架橋剤で処理することが提案
されている。しかし、分子の配向や結晶化か進んでいる
延伸された高強度繊維に後処理を施こすため高濃度及び
/または高温及び/または長時間の処理とならざるを得
す、m惟強度が低下するとともに製造工程上問題であり
、ひいては製造コストが高くなる。また特開平2−1.
33605号(こ;よ、PVAとアクリル酸系ポリマー
をブレンド紡糸し、両ポリマー間で架橋を形成さけたり
、さらに有機過酸化物など架橋性薬剤を付与することに
より架橋させることが提案されている。しかし強度に関
与しないP V A以外の乙のを2%程度以]二含有さ
せるr二め強度の点で充分てない。さらにPVA以外の
ポリマーを原液に添加するため種々の問題がある。
However, only light acetalization does not have a sufficient effect of improving hot water resistance, and the process is complicated. In Mafco JP-A No. 1-156517, the yarn is spun and drawn by three times or more, and a crosslinking agent such as a single-headed peroxide, an isonoanate compound, or an evoquino compound is applied to the surface of the partially drawn yarn, It has been proposed that the fiber surface be crosslinked by subsequent dry heat stretching. However, since the crosslinking agent is present on the surface and mainly performs surface crosslinking, the stretchability is insufficient and the elastic modulus is as low as 310 g/d at most. There is also the problem of having to handle special organic compounds that require careful attention in terms of safety and health. Furthermore, in JP-A-2-84587, in order to improve the fatigue resistance of PVA fiber cords, PV fiber cords with a strength of 15 g/d or more are
It has been proposed to treat A fibers with crosslinking agents such as organic compounds such as aldehydes, isocyanates, organic peroxides, and carboxylic acids, and inorganic compounds such as phosphoric acid, hydrochloric acid, and titanium. However, in order to perform post-treatment on drawn high-strength fibers in which molecular orientation and crystallization have progressed, treatment must be performed at high concentrations and/or at high temperatures and/or for long periods of time, resulting in decreased strength. This is also a problem in the manufacturing process, and as a result, the manufacturing cost increases. Also, JP-A-2-1.
No. 33605 (Hey, it has been proposed that PVA and acrylic acid polymer be blend-spun to avoid forming crosslinks between the two polymers, and further crosslinked by adding a crosslinking agent such as an organic peroxide. However, the addition of about 2% or more of PVA, which does not affect strength, is not sufficient in terms of strength.Additionally, there are various problems as polymers other than PVA are added to the stock solution.

以上の如く、高強力PVA繊維の耐熱水性や耐疲労性を
改善するための架橋方法は種々提案されているが、性能
及び製造コストの両方を満足させる方法はない。
As described above, various crosslinking methods have been proposed to improve the hot water resistance and fatigue resistance of high-strength PVA fibers, but there is no method that satisfies both performance and manufacturing cost.

〈発明が解決しようとする課題〉 従って本発明は、セメントやゴムの補強材などに有用な
耐熱水性と強度に優れfコル V A繊維をシンプルな
製造工程で得んとした乙のである。
<Problems to be Solved by the Invention> Accordingly, the present invention aims to obtain f-coll VA fibers with excellent hot water resistance and strength, which are useful as reinforcing materials for cement and rubber, through a simple manufacturing process.

〈課題を解決するための手段〉 本発明者らは上記課題を追求し、後述するような乾熱延
伸前の高含液率状態の糸篠に酸を接触させて糸篠−内に
酸を均一に浸透させ、乾燥後乾熱延伸を行なうことによ
り、繊維表面のみならす繊維内部にム均一に架橋構造を
有する繊維を公知の方法より簡単な製造工程で得ろこと
かでき、しかも該繊惟汀、強度、耐熱水性かと乙に侵〆
tでいることを認め、本発明に至っf二乙のである。
<Means for Solving the Problems> In pursuit of the above-mentioned problems, the present inventors brought acid into the yarn by bringing the acid into contact with the yarn in a high liquid content state before dry heat stretching as described below. By uniformly infiltrating the fiber and drying and then dry-heat stretching, it is possible to obtain a fiber having a crosslinked structure uniformly not only on the surface of the fiber but also inside the fiber in a manufacturing process that is simpler than that of known methods. Recognizing that the strength, resistance to hot water, etc. are intrusive, we have arrived at the present invention.

本発明は、高強力P V A繊維の耐熱水性改善のため
の架橋を導入するに際して、公知の方法では乾熱延伸し
て分子配向及び結晶化が進んでいる延伸糸に架橋性薬剤
を付与して繊維表面を主体に架橋を導入するのに対し、
架橋性薬剤を繊維内部にまで浸透させ、均一架橋を行な
わんとするもので、該架橋性薬剤を繊維内に浸透させる
際の架橋性薬剤の種類と付与量、さらに糸篠の含液率を
適正化することにより、架橋薬剤の繊維内部均一浸透を
はかり、その後乾熱延伸して配向結晶化と同時に脱水架
橋をさせ、これにより均一架橋を導入したものである。
In the present invention, when introducing crosslinking to improve the hot water resistance of high-strength PVA fibers, a crosslinking agent is applied to drawn yarns that have been subjected to dry heat drawing to undergo molecular orientation and crystallization, in a known method. In contrast, when crosslinking is mainly introduced on the fiber surface,
The purpose is to infiltrate the crosslinking agent into the fibers to achieve uniform crosslinking.The type and amount of the crosslinking agent when infiltrating the crosslinking agent into the fibers, as well as the liquid content of the thread By adjusting the fibers appropriately, the crosslinking agent is uniformly permeated into the fibers, and then dry heat stretching is performed to effect oriented crystallization and dehydration crosslinking at the same time, thereby introducing uniform crosslinking.

またこの方法は公知の方法より簡単な製造工程で得ると
ころに特徴を有する。すなわち架橋剤としてP’V A
と本質的7こは親和性のある酸を用い、しかも糸篠の含
液率が高く酸か浸遇し易い状態で接触させることがポイ
ントである。
This method is also characterized in that it can be obtained through a simpler manufacturing process than known methods. That is, P'V A as a crosslinking agent
Essentially, the key point is to use an acid that has an affinity for it, and to contact it in a state where the liquid content of the thread is high and the acid can easily soak in the acid.

以下本発明をより具体的に説明する。本発明に用いるP
VAの重合度は特に限定されるものでは゛ないか、より
高重合度のPVAを用いると強度、耐熱水性とも優れる
ので好ましい。本発明の如く酸(=1着後乾熱延伸して
均一架橋させることにより耐熱水性を向」二させろ場合
、高重合度「呈耐熱水性向」二効果か大きいことか2つ
かつfこのて、30℃水溶液の粘度より 求めた平均重
合度が3000以」二であると好ましい。さらに平均重
合度か7000以上であると均一架橋による耐熱水性向
上の相乗効果が特に大きく好ましい。用いるP V、へ
のケン化度は98モル%以上か好ましく、99モル%以
上であるとさらに好ましい。さらに999モル%以上で
あると耐熱水性の点で特に好ましい。まfこ用いるPV
Aは、他のビニル基を有するモノ′マー、例え:よエチ
レン、イクコン酸、ヒニルピロリドンなどのモノマーを
10モル%以下の比率で共重合し1こPVA系ポリマー
てあってもよい。 ・ 本発明に用いるP V Aの溶媒は、ジメチルスルホギ
ノト(以下D M S○と略記)、クリセリン、エヂレ
ノクリコール、ツメチルホルムアミド、ンメヂルイミダ
ゾリノノン、水、ロダン塩水溶液なとの溶媒及びこれら
溶媒同志の混合溶媒なとか挙げられろ。PVAを各溶媒
に適した温度て溶解し=7− 脱泡して紡糸原液とする。
The present invention will be explained in more detail below. P used in the present invention
The degree of polymerization of VA is not particularly limited, and it is preferable to use PVA with a higher degree of polymerization because it has excellent strength and hot water resistance. As in the present invention, when hot water resistance is improved by uniformly crosslinking with acid (=1) after dry heat stretching, two effects are required: a high degree of polymerization, "exhibition of hot water resistance properties", and two effects. It is preferable that the average degree of polymerization determined from the viscosity of an aqueous solution at 30° C. is 3000 or more.Furthermore, it is preferable that the average degree of polymerization is 7000 or more because the synergistic effect of improving hot water resistance due to uniform crosslinking is particularly large.PV used, The saponification degree is preferably 98 mol% or more, more preferably 99 mol% or more.Furthermore, 999 mol% or more is particularly preferable from the viewpoint of hot water resistance.
A may be a PVA-based polymer obtained by copolymerizing other vinyl group-containing monomers such as ethylene, iconic acid, and hinylpyrrolidone in a ratio of 10 mol % or less.・Solvents for PVA used in the present invention include dimethylsulfoginoto (hereinafter abbreviated as DMSO), chrycerin, edylenocricol, dimethylformamide, dimethylimidazolinonone, water, and an aqueous solution of Rodan's salt. Examples include solvents and mixed solvents of these solvents. PVA is dissolved at a temperature suitable for each solvent and defoamed to obtain a spinning stock solution.

得られた紡糸原液をノズルを通して、メタノール、エタ
ノール、アセトンなどP V Aに対して凝固作用を示
す有機溶媒を主体とする20℃以下の凝固浴に湿式ある
いは乾湿式紡糸する。もちろん凝固浴として凝固性有機
溶媒と原液溶媒との混合溶媒も用いることができる。凝
固浴の温度が20℃を越えると固化糸篠が不均一となり
高強力繊維を得ることができない。凝固浴温度を10℃
以下とすると固化糸篠がさらに均質となるのて好ましい
。なお、所謂「ゲル化紡糸j iJ冷却のみで固化する
系であり、通常−旦空気中に押し出すものであり、本発
明では、該「ゲル化紡糸」は本明細書でいう乾湿式紡糸
に包含されるものである。
The obtained spinning stock solution is passed through a nozzle and subjected to wet or dry-wet spinning into a coagulation bath at 20° C. or lower that is mainly composed of an organic solvent such as methanol, ethanol, or acetone that exhibits a coagulation effect on PVA. Of course, a mixed solvent of a coagulating organic solvent and a stock solvent can also be used as the coagulating bath. If the temperature of the coagulation bath exceeds 20°C, the solidified yarn will become non-uniform and high strength fibers cannot be obtained. Coagulation bath temperature 10℃
The following is preferable because the solidified thread becomes more homogeneous. In addition, so-called "gel spinning" is a system that solidifies only by cooling, and is usually extruded into the air, and in the present invention, "gel spinning" is included in the dry-wet spinning described herein It is something that will be done.

凝固浴にて固化した糸篠は湿延伸、溶媒抽出、乾燥し、
乾熱延伸を施こすが、本発明では乾熱延伸工程てPVA
が脱水架橋するよう、乾熱延伸前の工程におてP V 
Aに対して5〜1.0.000ppmの酸を糸篠に例与
することが最も重要なポイントの1つである。PVAの
架橋性薬剤としては、アルデヒド類、イソノアネート類
、エポキシ類、メチロール類、有機過酸化物類、有機酸
あるいは無機酸類なとか挙げられるか、糸篠への浸透性
、取扱い性の点て有機及び無機の酸でなければならない
。本発明の酸として炭素数1〜5のカルボン酸及びスル
ホン酸、硝酸、塩酸、硫酸、リン酸などが挙げられる。
Itoshino solidified in a coagulation bath is wet stretched, solvent extracted, dried,
Although dry heat stretching is performed, in the present invention, PVA is
In order to dehydrate and crosslink the PV
One of the most important points is to apply 5 to 1.0.000 ppm of acid to Itoshino based on A. Examples of crosslinking agents for PVA include aldehydes, isonanoates, epoxies, methylols, organic peroxides, organic acids, and inorganic acids. and inorganic acids. Examples of the acids of the present invention include carboxylic acids and sulfonic acids having 1 to 5 carbon atoms, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, and the like.

さらに220〜260℃で分解して酸を生成するものも
包含される。中てし乾熱延伸時下揮発性であり、かつ脱
水触媒としての作用か強い硫酸やリン酸類が好ましい。
Furthermore, those that decompose at 220 to 260°C to produce acids are also included. Preferred are sulfuric acids and phosphoric acids which are volatile during dry heat stretching and have a strong dehydration catalyst effect.

架橋反応を促進する触媒、例えばリン酸の使用時に尿素
などを併用すると好都合である場合かある。酸は、乾熱
延伸前の工程て含液率が30%/PVA以上の糸篠に5
〜10.000ppm/ p vΔ骨付着せる必要かあ
る。含液率か30%未満であると酸か糸篠内部まで均一
に浸透しないので好ましくない。含液率か80%/ P
 II A以上てあろと均一性の点てサロに好ましい。
It may be advantageous to use a catalyst to promote the crosslinking reaction, such as urea when using phosphoric acid. Acid is applied to itoshino with a liquid content of 30%/PVA or more in the process before dry heat stretching.
~10.000ppm/pvΔ Is it necessary to attach to the bone? If the liquid content is less than 30%, the acid will not penetrate uniformly into the inside of the thread basket, which is not preferable. Liquid content: 80%/P
II A or higher is preferable for salo in terms of uniformity.

尚本発明にいう糸篠の含液率とは、工程中の糸篠を手て
3回力強く振って液切りし、素早くその重量を測定(w
+)L、その後、凝固浴及び原液溶媒が完全に蒸発し恒
棗となるまで減圧乾燥して型土%を測定(W、)L、次
式で与えられる値(W )である。
In addition, the liquid content of the thread in the present invention refers to the liquid content of the thread in the process by hand shaking it forcefully three times to remove the liquid, and then quickly measuring its weight (w
+)L, and then drying under reduced pressure until the coagulation bath and stock solvent completely evaporate and a permanent jujube is obtained, and the percentage of molded clay is measured (W, )L, which is the value (W) given by the following formula.

酸の付着量は酸強度、乾熱延伸時の温度と滞留時間によ
って異なるが、5ppm/ p V A未満であると乾
熱延伸時の脱水架橋か不十分となるので目標とする耐熱
水性改良効果か得られない。15ppm/PVA以上で
あるとさらに好ましく、最ら好ましくは40ppm以上
である。特にリン酸や硫酸の如く強酸を使用する場合は
、酸の付着量が10,000ppmを越えろと乾熱延伸
時脱水架橋より分解反応か優先的となるのて糸強度か低
下し不都合である。酸強度、乾熱延伸時の温度と滞留時
間によって、適正な酸の付着量を選定ずへきである。
The amount of acid attached varies depending on the acid strength, the temperature during dry heat stretching, and the residence time, but if it is less than 5 ppm/pVA, the dehydration crosslinking during dry heat stretching will be insufficient, so it will not be possible to achieve the desired hot water resistance improvement effect. I can't get it. It is more preferably 15 ppm/PVA or more, and most preferably 40 ppm or more. Particularly when using a strong acid such as phosphoric acid or sulfuric acid, if the amount of acid attached exceeds 10,000 ppm, the decomposition reaction takes precedence over dehydration crosslinking during dry heat drawing, which is disadvantageous as it reduces the warp strength. It is difficult to select the appropriate amount of acid to be applied depending on the acid strength, temperature and residence time during dry heat stretching.

酸を付与する工程は乾熱延伸前てなけノtばならないか
、乾熱延伸前て糸篠の含液率か30%/P〜l八以上の
工程であれば特に限定はない。例えば乾燥直前の浦剤浴
に酸を共存させてもよいし、油剤俗曲の溶媒抽出浴に酸
を添加してもよい。さらに原液がノズルから吐出されて
固化する一浴に酸を添加してもよい。この、場合繊維内
部の均一性は優れているが、−浴以降の浴(湿延伸浴、
抽出浴、油剤浴など)にも同じ程度の濃度の酸を添加し
ないと酸が流去される可能性がめるので、全浴に酸を添
加する方が好ましい。
The step of applying an acid is not particularly limited as long as it must be done before the dry heat stretching or the liquid content of the thread is 30%/P to 18 or more before the dry heat stretching. For example, an acid may be present in the oil solution bath immediately before drying, or an acid may be added to the solvent extraction bath of the oil solution solution. Furthermore, an acid may be added to the bath in which the stock solution is discharged from the nozzle and solidified. In this case, the uniformity inside the fiber is excellent, but the following baths (wet drawing bath,
If the same concentration of acid is not added to the extraction bath, oil bath, etc., there is a possibility that the acid will be washed away, so it is preferable to add acid to all the baths.

凝固浴にて固化した糸篠はメタノールなどの凝固性有機
溶媒の抽出液により系中の原液溶媒などを抽出洗浄除去
し乾燥する。乾燥前に1段あるいはより好ましくは多段
で合計2倍以上O湿延伸を施こしておくと乾燥時の硬着
を防止することが出来好ましい。より好ましい湿延伸倍
率は25〜55倍である。湿延伸倍率が6倍を越えると
単糸切れや断面変形し易いので避けるべきである。乾燥
温度は30℃〜150℃が乾燥効率、性能の点て好まし
い。50℃−120℃であるとさらに好ましい。
The thread solidified in the coagulation bath is washed with an extract of a coagulable organic solvent such as methanol to remove the stock solvent in the system, and then dried. It is preferable to perform O wet stretching in one stage or more preferably in multiple stages for a total of twice or more before drying, since this can prevent hardening during drying. A more preferable wet stretching ratio is 25 to 55 times. A wet stretching ratio of more than 6 times should be avoided since single filament breakage and cross-sectional deformation are likely to occur. The drying temperature is preferably 30°C to 150°C in terms of drying efficiency and performance. More preferably, the temperature is between 50°C and 120°C.

次いで、全延伸倍率15倍以上となるように温度220
℃以上の乾熱延伸を行なって分子の配向結晶化を行なわ
せるとともに酸による脱水架橋をも行なわ仕ることが本
発明の重要なポイントの1っである。酸を付与した乾燥
後原糸を乾熱延伸する場合、PVAが架橋することによ
り乾熱延伸性が大幅に低下し、分子の配向結晶化か十分
に行なえないのてはないかと危惧したが、適正な架橋性
薬剤の種類、付着量及び付着状態、さらに乾熱延伸温度
を選択すれば、意外にも乾熱延伸性は殆んど低下しない
ことを見出したことが本発明のキーポイントとなった。
Next, the temperature was set at 220°C so that the total stretching ratio was 15 times or more.
One of the important points of the present invention is to conduct dry heat stretching at a temperature of .degree. When dry-heat-stretching the raw yarn after drying with an acid, we were concerned that the dry-heat stretchability would be significantly reduced due to crosslinking of PVA, and that the oriented crystallization of the molecules would not be able to be performed sufficiently. The key point of the present invention is the discovery that, surprisingly, if the type, amount, and state of crosslinking agent, as well as the dry heat stretching temperature, are selected, the dry heat stretchability hardly decreases. Ta.

この理由は不明であるが、乾熱延伸時まず分子の配向結
晶化の物理的構造変化が優先し、次いで脱水架橋の化学
構造変化が起るためと推定される。乾熱延伸前に付与す
る架橋性薬剤として本発明において選定した酸は、この
ような機能を有するため優れてい不と考えられる。繊維
の強度及び脱水架橋度は、付与する酸の種類(酸強度)
と量、乾熱延伸温度と滞留時間のバランスによって異な
るので適宜選択すべきである。−例として、酸を付与し
ない状態で最ら高強度となる延伸温度と滞留時間を見出
し、それとほぼ同じ延伸温度と延伸時間で、酸を付与し
た原糸を延伸し、架橋度が30−100%となるよう、
所定の酸の付与量を決定すればよい。ここにいう架橋度
とは酸を付与しないPVAwk維の延伸糸が完全に溶解
する熱水温度より5℃高い温度の熱水中で浴比1:10
00でフリーて1時間処理した後未溶解の繊維を300
メツシユの金網で濾過しん時に金網に残ったゲルを80
℃で恒量となるまで減圧乾燥した時の未溶解残量を測定
し、初めに用いfコ量に対しての残存率より算出する。
The reason for this is unknown, but it is presumed that during dry heat stretching, physical structural changes due to molecular orientation crystallization take precedence, followed by chemical structural changes due to dehydration crosslinking. The acid selected in the present invention as a crosslinking agent applied before dry heat stretching is considered to be excellent because it has such a function. The strength and degree of dehydration crosslinking of the fibers depends on the type of acid applied (acid strength)
It should be selected appropriately as it varies depending on the balance between the amount, dry heat stretching temperature and residence time. - As an example, find the stretching temperature and residence time that give the highest strength without adding an acid, and draw the acid-added raw yarn at almost the same stretching temperature and stretching time to reach a degree of crosslinking of 30-100. %,
What is necessary is to determine the amount of a predetermined acid to be applied. The degree of crosslinking here refers to a bath ratio of 1:10 in hot water at a temperature 5°C higher than the temperature at which the drawn yarn of PVAwk fibers to which no acid is added is completely dissolved.
After processing for 1 hour at 0.000, undissolved fibers were removed at 300.
When filtering with mesh wire mesh, remove 80% of the gel remaining on the wire mesh.
The undissolved residual amount when dried under reduced pressure at ℃ until constant weight is measured, and calculated from the residual ratio with respect to the amount of f used at the beginning.

延伸温度はPVAの重合度によって異なるが、220℃
以上でなければならない。
The stretching temperature varies depending on the degree of polymerization of PVA, but is 220°C.
Must be above.

高重合変種高温にする必要があるが、270℃以上では
分解が先行するのて好ましくない。湿延伸と乾熱延伸を
加えた全延伸倍率が15倍未満では繊維強度が低いので
15倍以上としなければならない。
High polymerization variants require high temperatures, but temperatures above 270°C are not preferred because decomposition occurs first. If the total stretching ratio including wet stretching and dry heat stretching is less than 15 times, the fiber strength will be low, so it must be 15 times or more.

全延伸倍率は高い方か好ましいが、毛羽や断糸の発生を
考慮し、最大延伸倍率の075〜0.95倍とすべきで
ある。乾熱延伸後さらに定長熱処理あるいは乾熱収縮を
施こして結晶化を促進するとと乙に、脱水架橋を促進さ
せてしよい。
It is preferable that the total draw ratio be higher, but in consideration of the occurrence of fluff and yarn breakage, it should be set at 075 to 0.95 times the maximum draw ratio. After dry heat stretching, crystallization may be promoted by further performing fixed length heat treatment or dry heat shrinkage to promote dehydration crosslinking.

以上の如く、含液率の高い糸篠に酸を所定量接触させて
酸を内部まで均一に浸透させてから乾燥し、乾熱延伸時
分子の配向結晶化と脱水架橋を行なうことにより、架橋
を繊維内部まで均一に行なうことができ、耐熱水性、耐
疲労性に優れたPVA繊維を安価に製造することを可能
にしたものである。
As described above, cross-linking is achieved by bringing a predetermined amount of acid into contact with itoshino having a high liquid content, allowing the acid to uniformly permeate into the interior, and then drying, and performing oriented crystallization of molecules and dehydration cross-linking during dry heat stretching. can be uniformly applied to the inside of the fiber, making it possible to inexpensively produce PVA fibers with excellent hot water resistance and fatigue resistance.

〈発明の効果〉 従来の高強力PVA繊維の架橋処理法は表面架橋を主体
としていたのに対し、本発明では含液率の高い糸篠に酸
を付与し、乾燥後乾熱延伸することにより、分子の配向
結晶化と同時に繊維内部まで均一に架橋を施こし、これ
により耐熱水性を改善するとともに、新しい設備、製造
工程を追加することなく高強度高耐熱水性の架橋PVA
繊維を得ることができるので安価に製造することを可能
としたものである。従って、得られた高強度、耐熱水性
PVA繊維は、従来のPVA繊維やバラ系アラミドなど
他のスーパー繊維に比べてコストパーフォーマンスに優
れており、ホース、タイヤなどのゴム資材分野や、FR
CおよびFRPなどの補強材分野などに広く用いられる
ことがてきる。
<Effect of the invention> While the conventional crosslinking treatment method for high-strength PVA fibers mainly involved surface crosslinking, in the present invention, acid is added to threads with a high liquid content, and dry heat stretching is performed after drying. At the same time as molecular orientation crystallization, cross-linking is applied uniformly to the inside of the fiber, thereby improving hot water resistance and producing high-strength, highly hot-water resistant cross-linked PVA without adding new equipment or manufacturing processes.
Since fibers can be obtained, it can be manufactured at low cost. Therefore, the obtained high-strength, hot water-resistant PVA fiber has excellent cost performance compared to other super fibers such as conventional PVA fiber and rose aramid, and is used in the rubber material field such as hoses and tires, as well as in FR fibers.
It can be widely used in the field of reinforcing materials such as C and FRP.

以下実施例により具体的に説明するが、本発明はこれら
実施例に限定されるものではない。
The present invention will be explained in detail below using Examples, but the present invention is not limited to these Examples.

実施例1 粘度平均重合度4100、ケン化度99.8モル%のP
VAを濃度9.5重量%となるようD M S O1,
:添加し、70℃にて窒素雰囲気で溶解した。得ら〆t
た紡糸原液を孔径0.12mm、孔数300のノズルか
ら3℃のメタノール/DMSO=7/3 (重量比)よ
りなる凝固浴(第1浴)中に湿式紡糸し、得られた凝固
糸を第、■浴と同じメタノール/ D MS O浴(第
2浴)にさらに浸漬し1こ。次いでリン酸50ppmを
含Cメタノール浴(第3浴)に浸漬してDMSOを抽出
するとともに、リン酸を糸篠内に浸透させた。第2浴後
の糸篠の含液率は290%てあった。次いでリン酸50
ppmを含む40℃のメタノール浴(第4浴)に浸漬し
て湿延伸を行ない、全屈延伸率を5倍とし、さらにリン
酸soppmを含むメタノール浴(第5浴)を通してD
 M S Oをさらに抽出し、100℃の熱風で乾燥し
た。このようにしてリン酸が120ppm/ P V 
A付着した乾燥後原糸を得た。次に第1炉200℃、第
2炉236℃の温度勾配を有する熱風炉中で延伸したと
ころ、全延伸倍率は21倍まで可能であった。21倍延
伸時の炉内滞留時間は合計で79秒であった。
Example 1 P with viscosity average polymerization degree of 4100 and saponification degree of 99.8 mol%
VA was mixed with DMS O1 so that the concentration was 9.5% by weight.
: was added and dissolved in a nitrogen atmosphere at 70°C. Get it
The spinning dope was wet-spun into a coagulation bath (first bath) consisting of methanol/DMSO=7/3 (weight ratio) at 3°C through a nozzle with a hole diameter of 0.12 mm and a number of holes of 300, and the obtained coagulated yarn was The sample was further immersed in the same methanol/DMSO bath (second bath) as the second bath. Next, 50 ppm of phosphoric acid was immersed in a C-containing methanol bath (third bath) to extract DMSO, and at the same time, the phosphoric acid was allowed to permeate into the thread bag. The liquid content of the itoshino after the second bath was 290%. Then phosphoric acid 50
D is immersed in a methanol bath (fourth bath) containing ppm at 40°C to perform wet stretching, with a total stretching ratio of 5 times, and then passed through a methanol bath (fifth bath) containing soppm phosphoric acid.
M SO was further extracted and dried with hot air at 100°C. In this way, phosphoric acid was reduced to 120 ppm/PV
After drying, a yarn with A attached was obtained. Next, when the film was stretched in a hot air oven having a temperature gradient of 200° C. in the first furnace and 236° C. in the second furnace, the total stretching ratio could be up to 21 times. The total residence time in the furnace during 21 times stretching was 79 seconds.

この21倍延伸糸は黒紫色に着色し、脱水架橋反応が起
っていると推定された。ヤーンの強度は18.7g/d
であった。またこの糸をオークレープ中150℃の熱水
に定長で1時間浸漬後取り出して乾燥後、強力残存率を
測定したところ92%とほとんど低下しておらず、優れ
た耐熱水性を示しノー。
This 21 times drawn yarn was colored black-purple, and it was assumed that a dehydration crosslinking reaction had occurred. Yarn strength is 18.7g/d
Met. In addition, this thread was immersed in hot water at 150°C for 1 hour in oak crepe, taken out and dried, and the strength remaining rate was measured and was 92%, which showed almost no decrease, indicating excellent hot water resistance.

比較例1 1浴〜5浴にリン酸を添加しない以外は実施例1と同様
に紡糸、延伸を行なった。全延伸倍率は21.5倍まで
可能であった。
Comparative Example 1 Spinning and drawing were performed in the same manner as in Example 1 except that phosphoric acid was not added to the 1st to 5th baths. The total stretching ratio could be up to 21.5 times.

得られた延伸糸は極く僅か黄色に着色している程度であ
った。ヤーン強度は19.6g/dであった。
The obtained drawn yarn was only slightly yellow colored. Yarn strength was 19.6 g/d.

またこの糸をオートクレーブ中いろいろの温度の熱水に
定長で1時間浸漬後取り出して溶解状態を観察した。そ
の結果135℃以上の熱水では殆んど溶解し、糸の形状
を保持していなかった。
The threads were immersed in hot water at various temperatures for one hour in an autoclave and then taken out to observe the state of dissolution. As a result, it was almost completely dissolved in hot water of 135° C. or higher, and the thread shape was not maintained.

比較例2 比較例1で得f二延伸糸をリン酸10%と尿素25%を
含む60℃の水溶液中に30分浸漬し、常温で5分水沈
漬80℃で乾燥し、次いで190℃で6分定長熱処理し
た。得られた繊維は濃紫色に着色し、実施例Iと同じ傾
向が見られた。耐熱水性は145℃と優れていたが、ヤ
ーン強度は15.3g/dと実施例1、比較例1に比べ
て低く、重合度4100の高強力PVA繊維としては不
満足のものであった。
Comparative Example 2 The drawn yarn obtained in Comparative Example 1 was immersed in an aqueous solution containing 10% phosphoric acid and 25% urea at 60°C for 30 minutes, immersed in water for 5 minutes at room temperature, dried at 80°C, and then dried at 190°C. Heat treatment was carried out for 6 minutes. The obtained fibers were colored deep purple, and the same tendency as in Example I was observed. Although the hot water resistance was excellent at 145° C., the yarn strength was 15.3 g/d, which was lower than that of Example 1 and Comparative Example 1, which was unsatisfactory for a high-strength PVA fiber with a degree of polymerization of 4100.

実施例2 粘度平均重合度8000、ケン化度99.8モル%のP
VAにDMSOを加え窒素雰囲気下70℃で加熱溶解し
て濃度7%のPVA溶液を得た。この紡糸原液を孔径0
.15mm、孔数500のノズルから、6℃のメタノー
ル/DMSO=7/3よりなる凝固浴(第1浴)中に湿
式紡糸し、得らgた凝固糸をメタノール/DMSO=9
/1の湿延伸浴(第2浴)で湿延伸を行ない、全屈延伸
倍率を4倍とし、次いでメタノール浴(第3浴)を通し
てD M S Oを抽出し、70℃の熱風で乾燥した。
Example 2 P with viscosity average polymerization degree of 8000 and saponification degree of 99.8 mol%
DMSO was added to VA and dissolved by heating at 70° C. under a nitrogen atmosphere to obtain a PVA solution with a concentration of 7%. This spinning dope is mixed with a pore size of 0
.. Wet spinning was performed from a 15 mm nozzle with 500 holes into a coagulation bath (first bath) consisting of methanol/DMSO = 7/3 at 6°C, and the coagulated thread obtained was mixed with methanol/DMSO = 9
Wet stretching was carried out in a wet stretching bath (second bath) of /1 to make the total bending stretching ratio 4 times, then the DMS O was extracted through a methanol bath (third bath), and dried with hot air at 70°C. .

第1浴〜第3浴の全ての浴にリン酸と尿素を各々60p
pmとlooppmになるよう添加した。この例では第
1浴にリン酸を添加しているので酸と接触時の糸篠の含
液率は500%以上であった。乾燥後原糸のリン酸の付
着量は150ppmであった。
Add 60p each of phosphoric acid and urea to all baths from 1st to 3rd baths.
It was added so that it became pm and loop pm. In this example, since phosphoric acid was added to the first bath, the liquid content of the thread at the time of contact with the acid was 500% or more. After drying, the amount of phosphoric acid attached to the yarn was 150 ppm.

次にこの原糸を炉温150℃、180℃、246℃を有
する乾熱延伸機で全延伸倍率が20.5倍となるよう乾
熱延伸した。この際の滞留時間は150℃で38秒、1
80℃で29秒、246℃で20秒であった。
Next, this raw yarn was dry-heat-stretched using a dry-heat stretching machine having furnace temperatures of 150°C, 180°C, and 246°C so that the total stretching ratio was 20.5 times. The residence time at this time was 38 seconds at 150℃, 1
The heating time was 29 seconds at 80°C and 20 seconds at 246°C.

得ら7′7た延伸糸は濃紫色に着色し、ヤーンの強度は
2o、tg/dであった。またこの糸をオートクレーブ
中165℃の熱水に定長で1時間浸漬後取り出して乾燥
後の強力残存率を測定したところ90%であった。
The obtained 7'7 drawn yarn was colored deep purple, and the strength of the yarn was 2O, tg/d. Further, this thread was immersed in hot water at 165° C. for 1 hour in an autoclave, taken out, and the strength remaining after drying was measured and found to be 90%.

リン酸を加えずに同様に製造した対照の未架橋糸の耐熱
水性は140℃であった。尚実施例1と比較例1から重
合度4100ての架橋による耐熱水性向上効果が15℃
であるのに対し、重合度8000ての本実施例の効果は
25℃であり、高重合度P V A程向上効果が大きい
A control uncrosslinked yarn produced in the same manner without adding phosphoric acid had a hot water resistance of 140°C. Furthermore, from Example 1 and Comparative Example 1, the effect of improving hot water resistance due to crosslinking at a polymerization degree of 4100 was 15°C.
On the other hand, the effect of this example at a polymerization degree of 8000 is 25° C., and the higher the polymerization degree PVA, the greater the improvement effect.

実施例3 粘度平均重合度6000、ケン化度992モル%のPV
AにDMSOを加えて窒素雰囲気下70℃で加熱溶解し
て濃度8%のPVA溶液を得た。この紡糸原液を孔径0
.18mm、孔数100のノズルから、エヤギャップI
cmとして一5℃のメタノール/DMSO= 80/ 
20よりなる第1浴中に乾湿式紡糸した。
Example 3 PV with viscosity average polymerization degree of 6000 and saponification degree of 992 mol%
DMSO was added to A and dissolved by heating at 70° C. under a nitrogen atmosphere to obtain a PVA solution with a concentration of 8%. This spinning dope is mixed with a pore size of 0
.. Air gap I from 18 mm, 100 hole nozzle
Methanol/DMSO at -5°C as cm = 80/
Wet-dry spinning was carried out in a first bath consisting of 20 ml.

得られた凝固糸篠を実施例2と同様に湿延伸、DMSO
抽出を行ない、乾燥直前の最終メタノール浴に硫酸を加
えて、ローラータッチ方式て糸篠に硫酸を付着させた後
乾燥し几。硫酸と接触時の糸篠の含液率は190%てめ
つf二。ま几乾燥後の糸篠の硫酸付着量は80ppmて
あった。次いで、この原糸を第1f+go℃、第2炉2
39℃の延伸機で全延伸倍率か20倍となるよう乾熱延
伸しb0得られた延伸糸のヤーン強度は19.1g、/
dてあり、耐熱水性は155℃といずれも優れてい几。
The obtained coagulated yarn was wet-stretched in the same manner as in Example 2, and DMSO
After extraction, sulfuric acid is added to the final methanol bath just before drying, and the sulfuric acid is applied to the threads using a roller touch method, followed by drying. The liquid content of Itoshino when it comes into contact with sulfuric acid is 190%. After drying, the amount of sulfuric acid attached to the thread was 80 ppm. Next, this yarn was placed in the second furnace 2 at 1f+go°C.
The yarn strength of the drawn yarn obtained by dry heat stretching with a drawing machine at 39°C to a total stretching ratio of 20 times is 19.1 g, /
d, and the hot water resistance is excellent at 155℃.

実施例4 粘度平均重合度3500、ケン化度99.9モル%のP
VAにグリセリンを加えて窒素雰囲気下180℃で加熱
溶解して濃度14%のPVA溶液を得た。この紡糸原液
を孔径0 、16mm、孔数150のノズルから、エヤ
キャップ5mmとして一10℃のメタノール/クリセリ
ン−85/ 15よりなる第1浴中に乾湿式紡糸した。
Example 4 P with viscosity average polymerization degree of 3500 and saponification degree of 99.9 mol%
Glycerin was added to VA and dissolved by heating at 180° C. in a nitrogen atmosphere to obtain a PVA solution with a concentration of 14%. This spinning dope was wet-dry spun into a first bath of methanol/chrycerin-85/15 at -10° C. through a nozzle with a hole diameter of 0.16 mm and a number of holes of 150, with an air cap of 5 mm.

得られた凝固糸篠を40℃のメタノール/グリセリン=
9515の湿延伸浴で4.5倍の湿延伸を行ない、しか
る後リン酸200ppmを含むメタノール抽出浴にてD
MS Oを洗條後乾燥した。湿延伸後の糸篠の含液率は
150%であった。またリン酸の付着量は300ppm
であった。次いでこの原糸を第1P180℃1第2炉2
32℃の延伸機で全延伸倍率が22倍となるよう乾熱延
伸した。
The obtained coagulated yarn was mixed with methanol/glycerin at 40°C.
9515 wet stretching bath, and then D in a methanol extraction bath containing 200 ppm of phosphoric acid.
After washing with MS O, it was dried. The liquid content of the thread after wet stretching was 150%. Also, the amount of phosphoric acid attached is 300 ppm.
Met. Next, this yarn was passed through the first furnace at 180°C and the second furnace.
Dry heat stretching was performed using a stretching machine at 32° C. so that the total stretching ratio was 22 times.

得られた延伸糸のヤーン強度は1.6.3g/d、耐熱
水性1・11℃であり、重合度3500のPVA使用と
しては非常に優れたものであった。
The yarn strength of the drawn yarn thus obtained was 1.6.3 g/d, and the hot water resistance was 1.11° C., which were very excellent considering the use of PVA with a degree of polymerization of 3500.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] ポリビニルアルコールを溶解した紡糸原液を20℃以下
の有機溶媒系凝固浴に湿式あるいは乾湿式紡糸後乾熱延
伸してポリビニルアルコール系繊維を製造するに際して
、乾熱延伸前の工程の含液率が30%/ポリビニルアル
コール以上の糸篠に酸を接触させ、該酸をポリビニルア
ルコールに対して5〜10,000ppm付着させて乾
燥し、次いで温度220℃以上、全延伸倍率15倍以上
となるよう乾熱延伸を施こすことを特徴ととする耐熱水
性に優れた高強力ポリビニルアルコール系繊維の製法。
When producing polyvinyl alcohol fibers by dry-heat stretching after wet or dry-wet spinning a spinning stock solution in which polyvinyl alcohol is dissolved in an organic solvent-based coagulation bath at 20°C or lower, the liquid content in the step before dry-heat stretching is 30%. %/polyvinyl alcohol or higher, bring the acid into contact with polyvinyl alcohol in an amount of 5 to 10,000 ppm, dry, and then dry heat to a temperature of 220°C or higher and a total stretching ratio of 15 times or higher. A method for producing high-strength polyvinyl alcohol fibers with excellent hot water resistance, which involves stretching.
JP24947690A 1990-09-18 1990-09-18 Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance Expired - Fee Related JP2826182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24947690A JP2826182B2 (en) 1990-09-18 1990-09-18 Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24947690A JP2826182B2 (en) 1990-09-18 1990-09-18 Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance

Publications (2)

Publication Number Publication Date
JPH04126829A true JPH04126829A (en) 1992-04-27
JP2826182B2 JP2826182B2 (en) 1998-11-18

Family

ID=17193533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24947690A Expired - Fee Related JP2826182B2 (en) 1990-09-18 1990-09-18 Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance

Country Status (1)

Country Link
JP (1) JP2826182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778580A (en) * 2020-07-08 2020-10-16 安徽皖维高新材料股份有限公司 Concrete applicable polyvinyl alcohol fiber and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778580A (en) * 2020-07-08 2020-10-16 安徽皖维高新材料股份有限公司 Concrete applicable polyvinyl alcohol fiber and preparation method thereof

Also Published As

Publication number Publication date
JP2826182B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
US4535027A (en) High strength polyacrylonitrile fiber and method of producing the same
CN101161880A (en) Method for preparing polyacrylonitrile-based carbon fiber precursor fiber
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
US4658004A (en) Polyacrylonitrile fiber with high strength and high modulus of elasticity
JPH04126829A (en) Production of high-tenacity polyvinyl alcohol-based fiber excellent in hot water resistance
JP4025742B2 (en) Polyvinyl alcohol crosslinked fiber and method for producing the same
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JP2858923B2 (en) Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance
KR100494063B1 (en) Polyvinyl alcohol fiber for the reinforcement of tire and method for the production of the same
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JPH05117911A (en) Production of highly strong polyvinyl alcohol fiber having excellent high temperature performance
JP2888502B2 (en) Method for producing high strength polyvinyl alcohol fiber with excellent hot water resistance
JPH02216211A (en) Production of improved poly-p-phenylene terephthalamide fiber
JP2927304B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JPH08284013A (en) Polyvinyl alcohol monofilament yarn having excellent hot-water resistance, high strength and high initial modulus of elasticity
JPS6385108A (en) Highly strong acrylic fiber and production thereof
KR20020048780A (en) Process for preparation of high-tenacity polyvinyl alcohol fiber with hot-water resistance
JPH03130409A (en) Production of high-tenacity polyvinyl alcohol fiber
JPH02169709A (en) Method for drawing polyvinyl alcohol-based fiber
JPH01104820A (en) Production of high-strength acrylic fiber
JPH0813236A (en) Polyvinyl alcohol-based fiber excellent in dry and wet dimensional stability and its production
JPS6156328B2 (en)
JPH06235117A (en) Production of high strength polyvinyl alcohol fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees