JPS6385108A - Highly strong acrylic fiber and production thereof - Google Patents

Highly strong acrylic fiber and production thereof

Info

Publication number
JPS6385108A
JPS6385108A JP22647486A JP22647486A JPS6385108A JP S6385108 A JPS6385108 A JP S6385108A JP 22647486 A JP22647486 A JP 22647486A JP 22647486 A JP22647486 A JP 22647486A JP S6385108 A JPS6385108 A JP S6385108A
Authority
JP
Japan
Prior art keywords
weight
molecular weight
spinning
average molecular
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22647486A
Other languages
Japanese (ja)
Inventor
Masaaki Toramaru
寅丸 雅章
Yoshinori Furuya
古谷 禧典
Yoshihiro Nishihara
良浩 西原
Toshiyuki Yasunaga
利幸 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP22647486A priority Critical patent/JPS6385108A/en
Publication of JPS6385108A publication Critical patent/JPS6385108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled fiber having a tensile strength, a knot strength and an elastic modulus of higher than specific respective levels and suitable for tire cords, FRP composite materials, etc., by wet-spinning or wet and dry- spinning a spinning dope of a polyacrylonitrile polymer having a specific molecular weight, coagulating the spun dope and drawing the produced fiber. CONSTITUTION:A spinning dope which is produced by dissolving 5-20wt% polyacrylonitrile polymer having a weight-average molecular weight of >=500,000 and satisfying a formula: 2.0<=(weight-average molecular weight/number-average molecular weight)<=3.5 (preferably a polymer comprising >=90wt% acrylonitrile and >=1wt% (meth)acrylic acid or itaconic acid) in an organic solvent (preferably DMF, dimethylacetamide, dimethyl sulfoxide or gamma-butyrolactone) is subjected to wet-spinning or wet and dry-spinning. The spun dope is coagulated and then drawn to provide the objective fiber having a tensile strength of >=15g/d, a knot strength of >=5g/d and an elastic modulus of >=200g/d.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合材料用補強繊維、タイヤコード等の工業
資材用繊維として、あるいは炭素繊維製造用プレカーサ
ーとして有用な高強力を有するアクリル系繊維及びその
製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a highly tenacious acrylic fiber useful as a reinforcing fiber for composite materials, a fiber for industrial materials such as tire cords, or as a precursor for carbon fiber production. and its manufacturing method.

〔従来の技術〕[Conventional technology]

アクリル系繊維は、その染色鮮明性、耐候性、嵩高さ、
独特の風合等により衣料品、インテリア向等に大量に生
産・販売されている。
Acrylic fibers are known for their dyeing clarity, weather resistance, bulkiness,
Due to its unique texture, it is produced and sold in large quantities for clothing, interior decoration, etc.

一方、近年非衣料分野への展開が進められ、アクリル系
繊維を焼成して得られる炭素繊維がその高強力、高弾性
等すぐれた性能を有し、複合材料用繊維として注目され
ている。炭素繊維の物性は、出発物質の緒特性に決定づ
けられる要因が多い。
On the other hand, in recent years, carbon fibers have been expanded into non-clothing fields, and carbon fibers obtained by firing acrylic fibers have excellent properties such as high strength and high elasticity, and are attracting attention as fibers for composite materials. The physical properties of carbon fibers are largely determined by the properties of the starting materials.

更に炭素繊維は、耐炎化、焼成等様々な生産工程を経て
製造される為、途中のガイド類との接触時に、品質、生
産性低下をまねく毛羽立ち、切断を発生し易い。
Furthermore, since carbon fibers are manufactured through various production processes such as flame-proofing and firing, they tend to become fluffed and cut when they come into contact with guides during the process, which can reduce quality and productivity.

かかる見地から炭素様雑用プレカーサーとしてのアクリ
ル系繊維の改良が活発に行なわれているが、工業的生産
規模で生産されているプレカーサーは、一般に強度が5
〜8 //d 、結節強度が2〜3//d程度である。
From this point of view, efforts are being made to improve acrylic fibers as carbon-like miscellaneous precursors, but precursors produced on an industrial scale generally have a strength of 5.
~8 //d, and the nodule strength is about 2 to 3 //d.

従って、信頼性の要求される宇宙、航空機産業用高性能
炭素繊維製造用原糸としてのプレカーサーとして、ある
いはそれ自体補強繊維として使用され得る引張強度、結
節強度等の性能が総じて数段向上したポリアクリロニト
リル系繊維の出現が望まれており、数多くの試みが発表
されている。
Therefore, it is possible to use polyester fibers with improved properties such as tensile strength and knot strength, which can be used as precursors for manufacturing high-performance carbon fibers for the space and aircraft industries, which require reliability, or as reinforcing fibers themselves. The emergence of acrylonitrile-based fibers is desired, and many attempts have been announced.

例えば、特公昭56−52125号会報には錯塩(Na
Zn C1s )濃厚溶液中、紫外線の作用下ホルムア
ルデヒド及び過酸化水素の存在下アクリロニトリルを溶
液重合し、得られた重合体溶液を用いて直接紡糸し、高
強度アクリル系繊維が得られると記載されている。また
特開昭59199809号公報には、40万以上の分子
量を有するアクリロニトリル系重合体をロダン塩水溶液
に溶解した後、紡糸することによる高強力アクリル系繊
維が記載されている。しかしながら、これらの方法では
、鋸機塩含有溶液を用いて紡糸を行っており、この様な
場合には、紡糸延伸後に強度低下をまねく原因となる無
機系の不純物除去が必須となり、洗浄工程が煩雑となり
工業的観点から望ましくない。更にこれらの方法で得ら
れるアクリル系繊維を炭素繊維用プレカーサーとして用
いる場合には、アクリル系繊維そのものに対して与える
以上に無機系の不純物が炭素繊維物性に与える影響が太
きいため、はぼ完全に無機系不純物を取り除く必要があ
り、更に多くの洗浄工程が必要となりてくる。
For example, in the special bulletin No. 56-52125, complex salts (Na
It is stated that high strength acrylic fibers can be obtained by solution polymerizing acrylonitrile in a concentrated solution in the presence of formaldehyde and hydrogen peroxide under the action of ultraviolet light, and directly spinning the obtained polymer solution. There is. Further, JP-A-59199809 describes a high-strength acrylic fiber obtained by dissolving an acrylonitrile polymer having a molecular weight of 400,000 or more in an aqueous solution of Rodan salt and then spinning the resulting solution. However, in these methods, spinning is performed using a solution containing sawmill salt, and in such cases, it is essential to remove inorganic impurities that cause strength loss after spinning and drawing, and a cleaning process is required. This is complicated and undesirable from an industrial standpoint. Furthermore, when using acrylic fibers obtained by these methods as precursors for carbon fibers, inorganic impurities have a greater influence on the physical properties of carbon fibers than they do on the acrylic fibers themselves, so they cannot be used completely. It is necessary to remove inorganic impurities, which requires more cleaning steps.

また、更に特開昭61−152811号、特開昭61−
160415号公報には、ジメチルスルホキシド(DM
SO)溶液中、アゾビス系開始剤を用いてアクリロニト
リルを溶液重合し通常アクリル系繊維に使用されるより
も高分子量のポリアクリロニトリル系重合体の溶液を用
い℃乾湿式紡糸することにより高強力アクリル系繊維が
得られると記載されている。しかしながら、溶液重合系
によるラジカル重合は、懸濁重合系のそれよりも重合速
度が著しく遅い事は周知であり、その為、工業的に製造
する場合、設備が非常に巨大化し、費用がかさみ、効率
的でない。更にDMSOは連鎖移動を起こし易い溶剤(
繊維便覧原料鳩P767 (昭和43年、丸善))であ
りて、重合度の高いポリアクリロニトリル系重合体を得
るには適していない。
In addition, JP-A-61-152811, JP-A-61-
No. 160415 discloses that dimethyl sulfoxide (DM
High-strength acrylic fibers are produced by solution polymerization of acrylonitrile using an azobis-based initiator in SO) solution and dry-wet spinning at °C using a solution of a polyacrylonitrile polymer with a higher molecular weight than that normally used for acrylic fibers. It is stated that fibers can be obtained. However, it is well known that radical polymerization using a solution polymerization system has a significantly slower polymerization rate than that of a suspension polymerization system, and therefore, when producing it industrially, the equipment becomes extremely large and costs increase. Not efficient. Furthermore, DMSO is a solvent that tends to cause chain transfer (
Fiber Handbook Raw Material Hato P767 (1963, Maruzen)) and is not suitable for obtaining polyacrylonitrile polymers with a high degree of polymerization.

特開昭61−160415号公報の特許請求の範囲にお
いて、極限粘度が少なくとも2.5とあるが、実施例に
よると、高々重量平均分子量45万(極限粘度3.9)
迄しか検討されていない。又、分子量分布曲綜はGPC
法によって測定されたものである。更に特開昭61−1
52゛811号公報におい【は、特許請求の範囲で極限
粘度が2.5以上3.6未満(重量平均分子量24万以
上40万未満)に限定している事がらも、DMSOを用
いた溶液重合法は50万以上の重量平均分子蓋の重合体
が得られず高強力のアクリル系繊維の製造には適さない
In the claims of JP-A-61-160415, the intrinsic viscosity is at least 2.5, but according to the examples, the weight average molecular weight is at most 450,000 (intrinsic viscosity 3.9).
It has only been considered so far. In addition, the molecular weight distribution curve is determined by GPC.
It was measured according to the law. Furthermore, JP-A-61-1
In 52゛811 publication, although the limiting viscosity is limited to 2.5 or more and less than 3.6 (weight average molecular weight 240,000 or more and less than 400,000) in the claims, it is a solution using DMSO. The polymerization method cannot produce a polymer with a weight average molecular weight of 500,000 or more and is not suitable for producing high-strength acrylic fibers.

〔問題点の解決と本発明の構成〕[Solution of problems and structure of the present invention]

そこで、これらの問題を解決するため、本発明者らは、
有機溶剤を用いた紡糸方式及び特定の組成を有する重合
溶剤及び開始剤を用いた重合方法により合成した特定の
分子量を有するアクリロニトリル系重合体を用いる事に
よって、無機系不純物を含まない高強力を有するポリア
クリロニトリル系繊維が得られる事を見出して本発明を
完成した。
Therefore, in order to solve these problems, the present inventors
By using an acrylonitrile polymer with a specific molecular weight synthesized by a spinning method using an organic solvent and a polymerization method using a polymerization solvent and initiator with a specific composition, it has high strength and does not contain inorganic impurities. The present invention was completed by discovering that polyacrylonitrile fibers can be obtained.

本発明の要旨は、重量平均分子量が50万以ロニトリル
系重合体を湿式又は乾湿式紡糸して得られる引張強度1
51/d以上、結節強度6 、P/d以上、弾性率20
0 P/r1以上の高強力アクリル系繊維及び特定のア
クリロニトリル系重合体を有機溶剤に5〜20重量%溶
解した紡糸原液を湿式又は乾湿式紡糸した後、好ましく
は50〜100℃の温度で第1段延伸、次いで100℃
を越え、150℃以下の温度で2+s 2段延伸を行い
、更に150℃を越え、ポリアクリロニトリル系重合体
の分解温度未満で第3段延伸を行う事により引張強度1
5 t/a以上、結節強度6 J’/d以上、弾性率2
00 J’/a以上の高強力アクリル系繊維を製造する
ことにある。
The gist of the present invention is that the tensile strength of
51/d or more, knot strength 6, P/d or more, elastic modulus 20
After wet or dry-wet spinning a spinning dope in which a high-strength acrylic fiber with a P/r of 1 or more and a specific acrylonitrile polymer are dissolved in an organic solvent in an amount of 5 to 20% by weight, the spinning solution is preferably heated at a temperature of 50 to 100°C. 1 stage stretching, then 100°C
The tensile strength is increased to 1 by performing two-step stretching for 2+s at a temperature exceeding 150°C and below the decomposition temperature of the polyacrylonitrile polymer.
5 t/a or more, knot strength 6 J'/d or more, elastic modulus 2
The objective is to produce high-strength acrylic fibers with a strength of 00 J'/a or more.

本発明のポリアクリロニトリル系繊維を製造する為には
、重量平均分子量が50万以上、好ましくは60万以上
、ポリマーの単分散性をあられす重量平均分子量/数平
均分子量(Mw/Mn)が2. O〜3.5であるポリ
アクリロニトリル系重合体を用いる事が必要である。尚
、数平均分子量(Mn)は浸透圧法により測定した値で
あり、重量平均分子i(My)は極限粘度〔η〕を測定
(ジメチルホルムアミド溶液、30℃)し、次式によっ
て算出した値である。
In order to produce the polyacrylonitrile fiber of the present invention, the weight average molecular weight is 500,000 or more, preferably 600,000 or more, and the monodispersity of the polymer is required.The weight average molecular weight/number average molecular weight (Mw/Mn) is 2. .. It is necessary to use a polyacrylonitrile polymer having a molecular weight of 0 to 3.5. In addition, the number average molecular weight (Mn) is a value measured by an osmotic pressure method, and the weight average molecule i (My) is a value calculated by measuring the intrinsic viscosity [η] (dimethylformamide solution, 30 ° C.) using the following formula. be.

〔η)=3.35X10   CMv〕0°”本発明の
高分子量ポリアクリロニトリル系重合体は、通常の懸濁
重合法、乳化重合法及び溶液重合法によっても製造する
事が出来るが、My/ Mnが大きい重合体となってし
まい低分子量体が多く含まれる為、得られる繊維の強度
等が向上し難い傾向となる。従りてMw/ Mnが小さ
い重合体を得る事が肝要となる。例えば特開昭61−1
11310号公報の方法、すなわち少なくとも70 m
o1%以上のアクリロニトリルを含有する重合性不飽和
単量体10〜70重量%、有機溶剤15〜60重量%、
水15〜60重量%の混合物をラジカル開始剤で重合し
た後、水及び/又は有機溶剤を該単量体1重量部に対し
1〜10!量部添加して重合する方法が好ましいが、よ
り高い分子量を有する重合体を得るためには、不飽和単
量体10〜50重量%、有機溶剤15〜50重量%、水
25〜70重量%の範囲の組成で重合を開始することが
好ましい。
[η)=3.35×10 CMv]0°” The high molecular weight polyacrylonitrile polymer of the present invention can also be produced by ordinary suspension polymerization, emulsion polymerization, and solution polymerization, but My/Mn Since the polymer has a large molecular weight and contains many low molecular weight substances, it tends to be difficult to improve the strength etc. of the obtained fiber.Therefore, it is important to obtain a polymer with a small Mw/Mn.For example: JP-A-61-1
11310, i.e. at least 70 m
10 to 70% by weight of a polymerizable unsaturated monomer containing 1% or more of acrylonitrile, 15 to 60% by weight of an organic solvent,
After polymerizing a mixture of 15 to 60% by weight of water with a radical initiator, 1 to 10% of water and/or an organic solvent is added to 1 part by weight of the monomer. A method of polymerizing by adding a certain amount is preferable, but in order to obtain a polymer having a higher molecular weight, 10 to 50% by weight of unsaturated monomer, 15 to 50% by weight of organic solvent, and 25 to 70% by weight of water. It is preferable to initiate polymerization at a composition within the range of .

有機溶剤としては、例えばジメチルホルムアミド、ジメ
チルアセトアミド、ジメチルスルホキシド、r−ブチロ
ラクトン等が挙げられる。
Examples of the organic solvent include dimethylformamide, dimethylacetamide, dimethylsulfoxide, and r-butyrolactone.

アクリロニトリル系重合体としては、アクリロニトリル
を80重量%以上、特に90重量%以上含有し曵いるこ
とが好ましい。アクリロニトリルと共重合させるための
単量体としては、メチルアクリレート又はメタクリレー
ト、エチルアクリレート又はメタクリレート、n−、イ
ソ−もしくはt−ブチルアクリレート又はメタクリレー
ト、2−エチルへキシルアクリレート又はメタクリレー
ト、アクリル酸、メタクリル酸、イタコン酸、α−クロ
ロアクリロニトリル、2−ヒドロキシエチルアクリレー
ト、ヒドロキシアルキルアクリレート又はメタクリレー
ト、アクリルアミド、ジアセトンアクリルアミド、メタ
クリルアミド、塩化ビニル、塩化ビニリデン、臭化ビニ
ル、酢酸ビニル等の不飽和単量体が挙げられる。これら
の重合性不飽和単量体は単独であるいは併用してアクリ
ロニトリルと共重合させることができる。その共重合割
合は前記のように20重量%、さらに得られるアクリル
繊維を炭素繊維用プレカーサーとして用いる場合には1
0重量%以下であることが好ましい。
The acrylonitrile polymer preferably contains 80% by weight or more, particularly 90% by weight or more of acrylonitrile. Monomers to be copolymerized with acrylonitrile include methyl acrylate or methacrylate, ethyl acrylate or methacrylate, n-, iso- or t-butyl acrylate or methacrylate, 2-ethylhexyl acrylate or methacrylate, acrylic acid, methacrylic acid , itaconic acid, α-chloroacrylonitrile, 2-hydroxyethyl acrylate, hydroxyalkyl acrylate or methacrylate, acrylamide, diacetone acrylamide, methacrylamide, vinyl chloride, vinylidene chloride, vinyl bromide, vinyl acetate, etc. Can be mentioned. These polymerizable unsaturated monomers can be copolymerized with acrylonitrile alone or in combination. The copolymerization ratio is 20% by weight as mentioned above, and 1% when the obtained acrylic fiber is used as a carbon fiber precursor.
It is preferably 0% by weight or less.

共重合用不飽和単量体は、アクリル酸、メタクリル酸、
イタコン酸が特に好ましく、これらを使用した場合、プ
レカーサーを耐炎化処理する時の耐炎化時間を大巾に短
縮することが可能になる。
Unsaturated monomers for copolymerization include acrylic acid, methacrylic acid,
Itaconic acid is particularly preferred, and when it is used, it becomes possible to greatly shorten the flame-proofing time when flame-proofing the precursor.

本発明のポリアクリロニトリル系繊維を製造するに際し
ては、まず前記のアクリロニトリル系重合体を有機溶剤
に溶解して紡糸原液を調製する。高強力綾維を得るため
には、繊維を構成する分子鎖全体を繊維軸方向に伸びた
、いわゆる伸び切り鎖の状態に近づけることが必要であ
り、紡糸、延伸段階でポリマー分子鎖を引きそろえ易く
するために、分子鎖が十分にほぐれた重合体溶液(紡糸
原液)を調製することが重要である。有機溶剤としては
、例えばジメチルホルムアミド、ジメチルアセトアミド
、ジメチルスルホキシド、r−ブチル2クトン等の溶剤
が挙げられる。また重合体濃度は、重合体の分子量、紡
糸原液の粘度等により異なるが、通常は5〜20%、特
に5〜15%の範囲に設定することが好ましい。
In producing the polyacrylonitrile fiber of the present invention, first, the acrylonitrile polymer described above is dissolved in an organic solvent to prepare a spinning dope. In order to obtain high-strength twill fibers, it is necessary to bring the entire molecular chains that make up the fibers close to the so-called unstretched chain state, which extends in the direction of the fiber axis. In order to facilitate spinning, it is important to prepare a polymer solution (spinning stock solution) in which the molecular chains are sufficiently loosened. Examples of the organic solvent include solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, and r-butyl dichton. Further, the polymer concentration varies depending on the molecular weight of the polymer, the viscosity of the spinning dope, etc., but it is usually preferably set in the range of 5 to 20%, particularly 5 to 15%.

こうして得られた紡糸原液を用い、湿式紡糸又は乾湿式
紡糸法を用いて繊維状に賦形する。
The spinning dope thus obtained is shaped into a fiber by wet spinning or dry-wet spinning.

特に炭素繊維用プレカーサーを製造する場合には、得ら
れる繊維の断面がより真円に近い乾湿式紡糸法、すなわ
ちノズルを介して紡糸原液を−たん空気中に吐出させた
のち凝固浴中に浸漬する方法を用いることが好ましい。
In particular, when producing precursors for carbon fibers, a dry-wet spinning method is used, in which the cross-section of the obtained fibers is closer to a perfect circle.In other words, the spinning stock solution is discharged into the air through a nozzle, and then immersed in a coagulation bath. It is preferable to use the method of

次いで50〜100”Cの温度で第1段延伸を行りたの
ち、100℃を越え150”C以下の温度で第2段延伸
を行い、さらに150’Cを越えアクリロニトリル系重
合体の分解温度以下の温度で第3段延伸を行う。
Next, a first stage stretching is performed at a temperature of 50 to 100"C, a second stage stretching is performed at a temperature exceeding 100"C and 150"C or less, and then a temperature exceeding 150"C, which is the decomposition temperature of the acrylonitrile polymer. Third stage stretching is performed at the following temperature.

延伸工程は、ポリアクリロニトリル系繊維の高強力繊維
性能を顕在化させるうえで最も重要な工程である。延伸
手段とし【は後工程(後続する延伸工程)はと高温度の
条件下で3段延伸を施すことが必要である。第1段延伸
は熱水等の熱媒体を用い【行うことが好ましい。また第
2段及び第3段延伸は高沸点熱媒体中で行うことが好ま
しい。第2段及び第3段延伸はスチーム中で行りてもよ
く、また乾熱延伸を行うこともできるが、スチーム中で
延伸するとボイドが生成し易く、また乾熱延伸では延伸
性が劣る。
The stretching process is the most important process for realizing the high strength fiber performance of polyacrylonitrile fibers. As the stretching means, it is necessary to carry out three-stage stretching under high temperature conditions in the post-step (subsequent stretching step). The first stage stretching is preferably carried out using a heat medium such as hot water. Further, it is preferable that the second and third stage stretching be carried out in a high boiling point heat medium. The second and third stage stretching may be performed in steam or dry heat stretching, but voids are likely to be generated when stretched in steam, and the stretchability is poor in dry heat stretching.

高沸点媒体としては水溶性の多価アルコール、例工ばエ
チレングリコール、ジエチレングリコール、トリエチレ
ングリコール、グリセリン、3−メチルペンタン−1,
3,5−)リオール等、特にエチレングリコール、グリ
セリンが好ましい。
Examples of high boiling point media include water-soluble polyhydric alcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, glycerin, 3-methylpentane-1,
3,5-)riol, etc., especially ethylene glycol and glycerin are preferred.

次いで延伸糸を必要に応じ水洗したのち乾燥すると、目
的の繊維が得られる。なお最終繊維中に多価アルコール
が残留すると可塑剤として作用し、強力低下のり因とな
るため、多価アルコールが0.12を量%以下になる迄
洗浄する事が必要である。
Next, the drawn yarn is washed with water if necessary and then dried to obtain the desired fiber. Note that if polyhydric alcohol remains in the final fiber, it acts as a plasticizer and causes a decrease in strength, so it is necessary to wash the final fiber until the polyhydric alcohol content is 0.12% or less.

〔発明の効果〕〔Effect of the invention〕

こうして得られる本発明のポリアクリロニトリル系繊維
は、強度15 J’/d以上、特に17J/d以上、又
弾性率は200 //d以上、結節強度6J/d以上の
物性を有しており、この様なポリアクリロニトリル系繊
維は、優れた強度を有するため、タイヤコード、繊維強
化複合材料等の補強繊維、炭素繊維用プレカーサーなど
として用いることが出来る。
The polyacrylonitrile fiber of the present invention thus obtained has physical properties such as a strength of 15 J'/d or more, particularly 17 J/d or more, an elastic modulus of 200 // d or more, and a knot strength of 6 J/d or more. Since such polyacrylonitrile fibers have excellent strength, they can be used as tire cords, reinforcing fibers for fiber-reinforced composite materials, precursors for carbon fibers, and the like.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 特開昭61−111310号公報の実施例に記載の方法
に準じて、懸濁重合法で合成した組成がアクリロニトリ
ル98重量%及びメタクリル酸2重量%、重量平均分子
量79万、MW/Mf1=3.4のポリアクリロニトリ
ル系重合体をジメチルホルムアミド(DMF)に溶解し
、濃度10.5重量%の原液を調製した。この紡糸原液
を50℃に保温したスピンタンクから孔径150μm、
孔数500のノズルを用いてDMF9度79.5重量%
、温度−4℃の凝固浴条件で乾湿式紡糸を行りた。尚、
ノズルと凝固浴の距離は5 mmとした。
Example 1 Synthesized by suspension polymerization according to the method described in the examples of JP-A-61-111310, the composition was 98% by weight acrylonitrile and 2% by weight methacrylic acid, weight average molecular weight 790,000, MW/ A polyacrylonitrile polymer having Mf1=3.4 was dissolved in dimethylformamide (DMF) to prepare a stock solution having a concentration of 10.5% by weight. This spinning solution was transferred from a spin tank kept at 50°C with a pore diameter of 150 μm.
DMF 9 degrees 79.5% by weight using a nozzle with 500 holes
Wet-dry spinning was performed under coagulation bath conditions at a temperature of -4°C. still,
The distance between the nozzle and the coagulation bath was 5 mm.

こうして得た凝固糸を用いて、まず熱水中(95℃)で
2.5倍、次にエチレングリコール中、140℃で2倍
、最後にグリセリン中170℃で3倍延伸を行って計1
5倍の延伸倍率を達成した。
Using the thus obtained coagulated thread, it was first stretched 2.5 times in hot water (95°C), then 2 times in ethylene glycol at 140°C, and finally 3 times in glycerin at 170°C.
A stretching ratio of 5 times was achieved.

この延伸糸を洗浄及び乾燥し、表1に示す糸質を有すア
クリル系繊維を得た。
This drawn yarn was washed and dried to obtain acrylic fibers having the yarn quality shown in Table 1.

実施例2 重量平均分子量53万、MY/Mn== 3. ”のポ
リアクリロニトリル系重合体(アクリロニトリル/メタ
クリル酸98/2重景比)を用い、実施例1と同様の方
法で紡糸を行りた。尚、紡糸原液濃度を15.0重量%
、原液温度を80℃とした。凝固浴濃度(ジメチルホル
ムアミド)81.3重量%、温度は−0,9℃とし、実
施例1と同様にし【延伸、洗浄、乾燥後得られた繊維の
糸質は表1の通りである。
Example 2 Weight average molecular weight 530,000, MY/Mn==3. Spinning was performed in the same manner as in Example 1 using a polyacrylonitrile polymer (acrylonitrile/methacrylic acid 98/2 ratio).The concentration of the spinning dope was 15.0% by weight.
The temperature of the stock solution was 80°C. The coagulation bath concentration (dimethylformamide) was 81.3% by weight and the temperature was -0.9°C in the same manner as in Example 1. [Table 1 shows the yarn quality of the obtained fibers after stretching, washing and drying.

比較例1 重量平均分子量42万、My/Mn = 2−8 のポ
リアクリロニトリル系重合体くアクリロニトリル/メタ
クリル酸=98/211rfi比)を用い実施例1と同
様の方法で紡糸を行った。尚、紡糸原液濃度を15.0
重量%、原液温度80’C1凝固浴濃度(ジメチルホル
ムアミド)78,411i量%、温度は−4,2℃とし
た。延伸は実施例1と同様に行ったところ、第3段目の
グリセリン浴での延伸で毛羽発生が顕著となり、安定し
てサンプリングする事が出来なかった。洗浄、乾燥後の
糸質は表1の通りである。
Comparative Example 1 Spinning was performed in the same manner as in Example 1 using a polyacrylonitrile polymer having a weight average molecular weight of 420,000 and My/Mn = 2-8 (acrylonitrile/methacrylic acid = 98/211 rfi ratio). In addition, the concentration of the spinning stock solution was 15.0.
Weight %, stock solution temperature 80' C1 coagulation bath concentration (dimethylformamide) 78,411 i weight %, temperature -4.2°C. Stretching was carried out in the same manner as in Example 1, but fluffing became noticeable during the stretching in the third-stage glycerin bath, and stable sampling was not possible. The fiber quality after washing and drying is shown in Table 1.

表1Table 1

Claims (1)

【特許請求の範囲】 1、重量平均分子量50万以上、 2.0≦重量平均分子量/数平均分子量≦3.5 のポリアクリロニトリル系重合体を湿式又は乾湿式紡糸
して得られる引張強度15g/d以上、結節強度6g/
d以上、弾性率200g/d以上の高強力アクリル系繊
維 2、重量平均分子量50万以上、 2.0≦重量平均分子量/数平均分子量≦3.5 のポリアクリロニトリル系重合体を有機溶剤に5〜20
重量%溶解した紡糸原液を湿式又は乾湿式紡糸した後凝
固後延伸することを特徴とする引張強度15g/d以上
、結節強度6g/d以上、弾性率200g/d以上の高
強力アクリル系繊維の製造方法 3、ポリアクリロニトリル系重合体が90重量%以上の
アクリロニトリルとメタクリル酸、アクリル酸又はイタ
コン酸を1重量%以上含有することを特徴とする特許請
求の範囲第2項記載の製造方法 4、ポリアクリロニトリル系重合体が水と有機溶剤とか
らなる混合溶媒を重合用溶媒に、アゾ系ラジカル開始剤
を重合用触媒として、懸濁重合法により得られたもので
あることを特徴とする特許請求の範囲第2項記載の製造
方法 5、有機溶剤がジメチルホルムアミド、ジメチルアセト
アミド、ジメチルスルホキシド又はγ−ブチロラクトン
であることを特徴とする特許請求の範囲第4項記載の製
造方法 6、50〜100℃の温度で第1段延伸を行い、次いで
100℃を越え150℃以下の温度で第2段延伸を行い
、150℃を越えアクリル系繊維の分解温度未満で第3
段延伸を行うことを特徴とする特許請求の範囲第2項記
載の製造方法
[Claims] 1. Tensile strength of 15 g/dry obtained by wet or dry-wet spinning of a polyacrylonitrile polymer having a weight average molecular weight of 500,000 or more and 2.0≦weight average molecular weight/number average molecular weight≦3.5. d or more, knot strength 6g/
d or more, high strength acrylic fiber with an elastic modulus of 200 g/d or more 2, a polyacrylonitrile polymer with a weight average molecular weight of 500,000 or more, 2.0≦weight average molecular weight/number average molecular weight≦3.5 in an organic solvent 5 ~20
A high-strength acrylic fiber having a tensile strength of 15 g/d or more, a knot strength of 6 g/d or more, and an elastic modulus of 200 g/d or more, which is produced by wet or dry-wet spinning a spinning dope dissolved in weight%, coagulating, and then stretching. Production method 3, the production method 4 according to claim 2, wherein the polyacrylonitrile polymer contains 90% by weight or more of acrylonitrile and 1% by weight or more of methacrylic acid, acrylic acid or itaconic acid. A patent claim characterized in that the polyacrylonitrile polymer is obtained by a suspension polymerization method using a mixed solvent of water and an organic solvent as a polymerization solvent and an azo radical initiator as a polymerization catalyst. A manufacturing method 5 according to claim 2, a manufacturing method 6 according to claim 4, characterized in that the organic solvent is dimethylformamide, dimethylacetamide, dimethyl sulfoxide, or γ-butyrolactone. The first stage drawing is carried out at a temperature of 100°C and below 150°C, and the third stage drawing is carried out at a temperature exceeding 150°C and below the decomposition temperature of the acrylic fiber.
The manufacturing method according to claim 2, characterized in that stage stretching is performed.
JP22647486A 1986-09-25 1986-09-25 Highly strong acrylic fiber and production thereof Pending JPS6385108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22647486A JPS6385108A (en) 1986-09-25 1986-09-25 Highly strong acrylic fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22647486A JPS6385108A (en) 1986-09-25 1986-09-25 Highly strong acrylic fiber and production thereof

Publications (1)

Publication Number Publication Date
JPS6385108A true JPS6385108A (en) 1988-04-15

Family

ID=16845665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22647486A Pending JPS6385108A (en) 1986-09-25 1986-09-25 Highly strong acrylic fiber and production thereof

Country Status (1)

Country Link
JP (1) JPS6385108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005440A1 (en) * 1998-07-22 2000-02-03 Mitsubishi Rayon Co., Ltd. Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
CN111088535A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Oiling method of low-silicon polyacrylonitrile protofilament

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005440A1 (en) * 1998-07-22 2000-02-03 Mitsubishi Rayon Co., Ltd. Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
KR100570592B1 (en) * 1998-07-22 2006-04-13 미쯔비시 레이온 가부시끼가이샤 Acrylonitril-Based Precursor Fiber for Carbon Fiber and Method for Production Thereof
CN111088535A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Oiling method of low-silicon polyacrylonitrile protofilament

Similar Documents

Publication Publication Date Title
US4659529A (en) Method for the production of high strength polyacrylonitrile fiber
US4902452A (en) Process for producing an acrylic fiber having high fiber characteristics
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
US4658004A (en) Polyacrylonitrile fiber with high strength and high modulus of elasticity
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JPS6385108A (en) Highly strong acrylic fiber and production thereof
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JPS63275718A (en) Production of high-tenacity carbon fiber
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
US3399260A (en) Production of acrylonitrile polymer fibers
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JPH0280610A (en) Acrylonitrile-based coagulated yarn and production of carbon fiber therefrom
JPH01104820A (en) Production of high-strength acrylic fiber
JPS63275713A (en) Production of high-strength carbon fiber
JPH01104818A (en) Production of high-strength acrylic fiber
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JPH03234720A (en) Acrylonitrile polymer and its fiber
JPH0274607A (en) Production of precursor
JPS61167013A (en) Acrylonitrile fiber
JPS63249712A (en) Production of high-strength acrylic fiber
JPS63249714A (en) Production of high-strength acrylic fiber
JPS63275715A (en) Production of high-strength carbon fiber
JPH04245913A (en) Production of fiber for reinforcing cement
JPS63249713A (en) Production of high-strength acrylic fiber
JPS5819766B2 (en) Manufacturing method of acrylic fiber for carbon fiber