JPH04257313A - Production of precursor fiber for carbon fiber - Google Patents

Production of precursor fiber for carbon fiber

Info

Publication number
JPH04257313A
JPH04257313A JP3785891A JP3785891A JPH04257313A JP H04257313 A JPH04257313 A JP H04257313A JP 3785891 A JP3785891 A JP 3785891A JP 3785891 A JP3785891 A JP 3785891A JP H04257313 A JPH04257313 A JP H04257313A
Authority
JP
Japan
Prior art keywords
fiber
porosity
carbon fiber
average pore
pore radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3785891A
Other languages
Japanese (ja)
Other versions
JP3223452B2 (en
Inventor
Akira Hajikano
初 鹿 野  彰
Takashi Yamamoto
山 本  隆
Yukio Kasabo
笠 坊 行 生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP03785891A priority Critical patent/JP3223452B2/en
Publication of JPH04257313A publication Critical patent/JPH04257313A/en
Application granted granted Critical
Publication of JP3223452B2 publication Critical patent/JP3223452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce the subject precursor fiber for carbon fiber, having a high density and suitable for production of a carbon fiber having a high strength and a high elasticity. CONSTITUTION:A method for producing a precursor fiber for carbon fiber by wet spinning a solvent solution of an acrylic polymer composed of acrylonitrile and acrylamide, washing the resultant coagulated yarn having <=140Angstrom average pore radius and <=55% porosity while stretching it in boiling water, and then applying silicone-based oil treatment and drying-densification treatment to the resultant water-swallen yarn having <=110Angstrom average pore radius and <=40% porosity. The object can be achieved by setting the average pore radius and the porosity to the above-mentioned values.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、炭素繊維前駆体(プレ
カ−サ−)の製造方法に関し、特に高強度及び高弾性を
有する炭素繊維の製造に好適な、緻密性の高い、炭素繊
維前駆体繊維を製造する方法に関する。
[Field of Industrial Application] The present invention relates to a method for producing a carbon fiber precursor (precursor), and in particular a highly dense carbon fiber precursor suitable for producing carbon fibers having high strength and high elasticity. The present invention relates to a method for producing body fibers.

【0002】0002

【従来の技術】炭素繊維の高強度、高弾性化については
、焼成技術や後処理技術に関する技術が多数提案されて
いるが、一方炭素繊維前駆体としてのアクリル系繊維の
改良に関する技術についても多数提案されている。そし
て、高強度、高弾性化の1つの手段として、炭素繊維前
駆体としてのアクリル系繊維の緻密性を高くすることが
提案されている。
[Prior Art] Many techniques related to firing and post-treatment techniques have been proposed to increase the strength and elasticity of carbon fibers.On the other hand, there are also many techniques related to improving acrylic fibers as carbon fiber precursors. Proposed. As one means of achieving high strength and high elasticity, it has been proposed to increase the density of acrylic fibers as carbon fiber precursors.

【0003】ところで、従来、炭素繊維前駆体としての
アクリル系繊維の緻密性を表す尺度として、前駆体繊維
のヨウ素の吸着量及びヨウ素を吸着するスキン層の厚さ
、或は膨潤状態にある工程糸の膨潤度等が採用されてい
る。(特開昭58−214518号公報、特公昭63−
21916号公報)。
[0003] Conventionally, as a measure of the density of acrylic fibers as carbon fiber precursors, the amount of iodine adsorbed by the precursor fibers, the thickness of the skin layer that adsorbs iodine, or the process in which the fibers are in a swollen state. The degree of swelling of the thread is used. (Japanese Unexamined Patent Publication No. 58-214518, Japanese Patent Publication No. 63-
21916).

【0004】しかし、これらの技術では、例えばヨウ素
を利用する方法は、繊維の表層の緻密性しか測れないた
め繊維全体の緻密性がわからなく、またヨウ素の吸着量
が油剤の付着量や種類で異なり、繊維基質構造の緻密性
以外の要素による影響を受け易い点で問題がある。また
、凝固糸の膨潤度及び凝固糸の膨潤度と浴延伸糸の膨潤
度との比である膨潤度比で規定する方法は、あくまで膨
潤糸条の固体部分と液体部分の構成比を表しているにす
ぎなく、ミクロな構造の微細性を加味した緻密性の尺度
としてはなはだ不十分である。このように、従来採用し
ている評価方法は、繊維の緻密性を正確に把握するには
十分なものではなかった。そのため、従来の評価方法を
採用する前駆体繊維の製造方法によっては、十分に緻密
性の高い繊維を得ることができなかった。
However, with these techniques, for example, the method using iodine can only measure the density of the surface layer of the fiber, so the density of the entire fiber cannot be determined, and the amount of iodine adsorbed depends on the amount and type of oil agent. However, there is a problem in that it is easily influenced by factors other than the denseness of the fiber matrix structure. In addition, the method of specifying the degree of swelling of coagulated yarn and the swelling degree ratio, which is the ratio of the degree of swelling of coagulated yarn to the degree of swelling of bath-drawn yarn, only represents the composition ratio of the solid part and liquid part of the swollen yarn. However, it is extremely insufficient as a measure of compactness that takes into account the fineness of the microstructure. As described above, the evaluation methods that have been used in the past have not been sufficient to accurately grasp the denseness of fibers. Therefore, it has not been possible to obtain fibers with sufficiently high density depending on the method for producing precursor fibers that employs conventional evaluation methods.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、高強
度、高弾性の炭素繊維を得るための、緻密性の高い炭素
繊維前駆体としてのアクリル繊維の製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing acrylic fibers as a highly dense carbon fiber precursor for obtaining high-strength, high-elasticity carbon fibers.

【0006】[0006]

【課題を解決するための手段】本発明者らは、高強度、
高弾性の炭素繊維を得るために、緻密性の高いアクリル
系繊維の製造方法を鋭意検討した結果、前駆体繊維の構
造の緻密性を評価する尺度として平均細孔半径、空孔率
を採用すると、該緻密性を正確に評価し得ることを知見
し、緻密性の高い前駆体繊維を製造する本発明を完成し
た。
[Means for Solving the Problems] The present inventors have developed high strength,
In order to obtain highly elastic carbon fibers, as a result of intensive studies on the manufacturing method of highly dense acrylic fibers, we found that the average pore radius and porosity were used as measures to evaluate the denseness of the structure of the precursor fibers. They discovered that the density can be accurately evaluated, and completed the present invention for producing precursor fibers with high density.

【0007】すなわち本発明は、アクリロニトリル単位
95重量%以上、アクリルアミド単位0.5重量%以上
を構成成分とするアクリル系重合体の溶剤溶液を湿式紡
糸して、平均細孔半径が140Å以下、空孔率が55%
以下の凝固糸とした後、これを沸水中にて延伸しながら
洗浄して平均細孔半径が110Å以下、空孔率が40%
以下の水膨潤糸条となし、次いで該水膨潤糸条にシリコ
ン系油剤処理、乾燥緻密化処理を施すことを特徴とする
炭素繊維用前駆体繊維の製造方法である。
That is, the present invention involves wet-spinning a solvent solution of an acrylic polymer containing 95% by weight or more of acrylonitrile units and 0.5% by weight or more of acrylamide units to form voids with an average pore radius of 140 Å or less. Porosity is 55%
After forming the following coagulated thread, it is washed while being stretched in boiling water to have an average pore radius of 110 Å or less and a porosity of 40%.
This is a method for producing a precursor fiber for carbon fibers, which is characterized in that the following water-swellable yarns are prepared, and then the water-swellable yarns are subjected to a silicone oil treatment and a dry densification treatment.

【0008】本発明においてアクリル系繊維形成用重合
体は、アクリロニトリル単位95重量%以上、アクリル
アミド単位0.5重量%以上を構成成分とする必要があ
る。アクリロニトリル、アクリルアミド以外の共重合成
分としては、たとえばアクリル酸、メタクリル酸、イタ
コン酸等の酸類、アクリル酸メチル、メタクリル酸メチ
ル等のアクリル酸誘導体、メタクリルアミド、N−メチ
ロ−ルアクリルアミド、N,N−ジメチルアクリルアミ
ド等のアクリルアミド誘導体、メチルビニルケトン、エ
チルビニルケトン等のアルキルビニルケトン、アクロレ
イン、メタクロレイン等のアクロレイン誘導体、2−ビ
ニルピリジン、2−メチル−5−ビニルピリジン等のビ
ニルピリジン誘導体、メタクリルスルホン酸ソ−ダ等の
スルホン酸誘導体、酢酸ビニル、メタクリロニトリル等
があげられ、これらは単独でも組み合わせでも用いられ
る。
In the present invention, the acrylic fiber-forming polymer must contain at least 95% by weight of acrylonitrile units and at least 0.5% by weight of acrylamide units. Examples of copolymerization components other than acrylonitrile and acrylamide include acids such as acrylic acid, methacrylic acid, and itaconic acid, acrylic acid derivatives such as methyl acrylate and methyl methacrylate, methacrylamide, N-methylol-acrylamide, N,N - Acrylamide derivatives such as dimethyl acrylamide, alkyl vinyl ketones such as methyl vinyl ketone and ethyl vinyl ketone, acrolein derivatives such as acrolein and methacrolein, vinyl pyridine derivatives such as 2-vinylpyridine and 2-methyl-5-vinylpyridine, methacryl Examples include sulfonic acid derivatives such as sodium sulfonate, vinyl acetate, methacrylonitrile, and the like, and these may be used alone or in combination.

【0009】紡糸原液を調製するに当ってのアクリル系
重合体の溶媒は、特に限定されないがジメチルホルムア
ミド、ジメチルスルホキシド、ジメチルアセトアミド、
硝酸、ロダンソ−ダ水溶液、及び塩化亜鉛水溶液等が使
用できる。本発明では紡糸原液の重合体の濃度は18重
量%以上である。また紡糸原液の温度は60℃以上であ
ることが好ましい。重合体の極限粘度と濃度及び温度に
より紡糸原液の溶液粘度が決まるが、製造条件として許
容される溶液粘度の範囲内において、重合体の濃度をで
きるだけ大きく設定することが好ましい。
The solvent for the acrylic polymer used in preparing the spinning dope is not particularly limited, but may include dimethylformamide, dimethylsulfoxide, dimethylacetamide,
Nitric acid, rhodan soda aqueous solution, zinc chloride aqueous solution, etc. can be used. In the present invention, the concentration of the polymer in the spinning dope is 18% by weight or more. Further, the temperature of the spinning dope is preferably 60°C or higher. Although the solution viscosity of the spinning dope is determined by the intrinsic viscosity, concentration, and temperature of the polymer, it is preferable to set the concentration of the polymer to be as large as possible within the range of solution viscosity allowable as manufacturing conditions.

【0010】上記の紡糸原液を湿式紡糸して、平均細孔
半径は140Å以下、空孔率は55%以下の凝固糸とな
す。このような平均細孔半径及び空孔率の小さい凝固糸
を得るには、紡糸原液のポリマ−濃度を前述したように
18%以上にすると共に、紡糸原液の温度を60℃以上
にすること及び凝固浴の温度を50℃以下、好ましくは
40℃以下にすることにより達成できる。
[0010] The above spinning dope is wet-spun to form a coagulated thread having an average pore radius of 140 Å or less and a porosity of 55% or less. In order to obtain a coagulated yarn with such a small average pore radius and porosity, the polymer concentration of the spinning stock solution should be set to 18% or more as described above, and the temperature of the spinning stock solution should be set to 60°C or higher. This can be achieved by controlling the temperature of the coagulation bath to 50°C or lower, preferably 40°C or lower.

【0011】本発明においては、上記の凝固糸を、先ず
1.0〜2.0倍に空中延伸するのが好ましい。次いで
、沸水中で凝固糸に含まれている溶媒を洗浄しながら延
伸する。この時1〜10倍延伸するのが好ましい。また
、この延伸の方法として、2段以上の多段延伸法を用い
ることも可能である。この方法は糸の急激な変形による
ボイドの発生を少なくするため有利である。
[0011] In the present invention, it is preferable that the above-mentioned coagulated thread is first drawn in the air to a ratio of 1.0 to 2.0 times. Next, the coagulated thread is drawn in boiling water while washing the solvent contained in the coagulated thread. At this time, it is preferable to stretch the film by 1 to 10 times. Moreover, as a method for this stretching, it is also possible to use a multi-stage stretching method of two or more stages. This method is advantageous because it reduces the occurrence of voids due to rapid deformation of the yarn.

【0012】さらに延伸浴温度は、単糸同志が融着しな
い範囲でできるだけ高く設定し、凝固浴温度よりもでき
るだけ高温にすることが効果的である。この観点から延
伸浴の温度は70℃以上の高温とすることが好ましい。 多段延伸法の場合には、最終浴を90℃以上の高温とす
ることが好ましい。
Furthermore, it is effective to set the drawing bath temperature as high as possible within a range where the single filaments do not fuse together, and to make it as high as possible above the coagulation bath temperature. From this point of view, it is preferable that the temperature of the drawing bath be a high temperature of 70° C. or higher. In the case of a multistage stretching method, it is preferable that the final bath be heated to a high temperature of 90° C. or higher.

【0013】このような延伸条件を適正化することによ
り水膨潤糸の平均細孔半径が110Å以下、空孔率が4
0%以下にすることができる。
By optimizing the stretching conditions as described above, the average pore radius of the water-swollen yarn is 110 Å or less, and the porosity is 4.
It can be reduced to 0% or less.

【0014】本発明において、平均細孔半径、空孔率は
、次に示す水銀圧入法により測定した値である。凝固浴
及び延伸浴から出た糸条を採取し、水洗後、液体窒素に
よる凍結乾燥法を用いて構造の固定化を行なう。この乾
燥試料を約0.2g精秤しディラトメ−タ−に入れる。 次に水銀注入装置を用いて容器内を真空(0.05トル
以下)にし、その後水銀を充填する。そして、ポロシメ
−タ−を用いて測定を行なう。外圧により細孔半径を求
め、水銀圧入量より細孔体積を求める。圧力は最大30
00バ−ルまでかける。空孔率は以下の式を用いて求め
た。 空孔率=ρVp/(ρVp+1) [ここで、  ρ=比重、  Vp=測定値(g当りの
空孔体積)] また平均細孔半径は、以下のようにして求めた。
In the present invention, the average pore radius and porosity are values measured by the following mercury intrusion method. The threads coming out of the coagulation bath and drawing bath are collected, washed with water, and the structure is fixed using a freeze-drying method using liquid nitrogen. Approximately 0.2 g of this dry sample is accurately weighed and placed in a dilatometer. The inside of the container is then evacuated (0.05 Torr or less) using a mercury injection device, and then filled with mercury. Then, measurement is performed using a porosimeter. The pore radius is determined by external pressure, and the pore volume is determined by the amount of mercury intrusion. Pressure is up to 30
Apply up to 00 bar. The porosity was determined using the following formula. Porosity=ρVp/(ρVp+1) [where, ρ=specific gravity, Vp=measured value (pore volume per g)] Further, the average pore radius was determined as follows.

【0015】[0015]

【数1】[Math 1]

【0016】[ここで、  ni=細孔数、  N=全
細孔数、  ri=細孔半径(Å)] rを求める式は,次のとおりである。 πr2p=−2πrσcosθ [ここで、  σ:水銀の表面張力、  θ:接触角]
[Here, ni=number of pores, N=total number of pores, ri=pore radius (Å)] The formula for determining r is as follows. πr2p=-2πrσcosθ [where, σ: surface tension of mercury, θ: contact angle]

【0017】前記の水膨潤糸条は、その後にシリコン系
あるいは変性シリコン系油剤処理を施す。この際の油剤
の付着量は繊維当り0.01〜5重量%で、単糸同志が
融着しなく、また集束性が良い状態になるように制御す
る。シリコン系油剤処理を施した後に、乾燥緻密化処理
を施し緻密性の高い繊維とする。また、乾燥後さらに加
熱ロ−ラ−にて乾熱延伸を行なうと更に緻密性を高める
ことができる。
The water-swollen yarn is then treated with a silicone-based or modified silicone-based oil. At this time, the amount of oil applied is 0.01 to 5% by weight per fiber, and controlled so that the single yarns do not fuse together and have good cohesiveness. After the silicone oil treatment, the fibers are dried and densified to produce highly densified fibers. Moreover, if dry heat stretching is further performed using a heating roller after drying, the denseness can be further improved.

【0018】本発明の炭素繊維前駆体繊維束の製造方法
により得られるアクリル繊維は繊維全体としての緻密性
が高いため、これを焼成して得られる炭素繊維は高強度
、高弾性のものとなる。
[0018] Since the acrylic fiber obtained by the method for producing a carbon fiber precursor fiber bundle of the present invention has high density as a whole fiber, the carbon fiber obtained by firing the acrylic fiber has high strength and high elasticity. .

【0019】[0019]

【実施例】以下実施例により本発明をさらに具体的に説
明する。なお、本文中及び実施例中に用いた物性値は、
以下の方法により測定したものである。 (1)炭素繊維の性能(強度、弾性率)は、JIS  
R−7601に準じて測定した。エポキシ樹脂を含浸し
たストランドの物性値から求めた。 (2)平均細孔半径、空孔率は、前述の水銀圧入法に依
った。
EXAMPLES The present invention will be explained in more detail with reference to Examples below. The physical property values used in the text and examples are as follows:
It was measured by the following method. (1) Performance (strength, elastic modulus) of carbon fiber is JIS
Measured according to R-7601. It was determined from the physical properties of strands impregnated with epoxy resin. (2) The average pore radius and porosity were determined by the mercury intrusion method described above.

【0020】実施例1 アクリロニトリル(AN)とアクリルアミド(AAm)
と第3成分としてのメタクリル酸(MAA)とを表1の
重量割合で共重合したアクリル系共重合体を、ジメチル
アセトアミドに溶解して紡糸原液(重合体濃度21重量
%、原液温度70℃)を調製した。この紡糸原液を、直
径0.075mm、孔数3000の口金を用いて、濃度
72%、浴温35℃のジメチルアセトアミド水浴液中に
吐出し凝固糸となし、これに1.5倍の空中延伸を施し
、引き続いて70℃の延伸浴で4.3倍に延伸し、更に
沸水の延伸浴で1.3倍に延伸し、洗浄した。
Example 1 Acrylonitrile (AN) and acrylamide (AAm)
An acrylic copolymer prepared by copolymerizing and methacrylic acid (MAA) as a third component in the weight ratio shown in Table 1 was dissolved in dimethylacetamide to make a spinning stock solution (polymer concentration 21% by weight, stock solution temperature 70°C). was prepared. Using a spinneret with a diameter of 0.075 mm and 3000 holes, this spinning stock solution was discharged into a dimethylacetamide water bath solution with a concentration of 72% and a bath temperature of 35°C to form a coagulated thread, which was then stretched 1.5 times in the air. The film was then stretched 4.3 times in a 70° C. stretching bath, further stretched 1.3 times in a boiling water stretching bath, and washed.

【0021】次にこの水膨潤糸に、単糸同志の融着が起
こらず集束性が良い状態になるように濃度を制御したシ
リコン系油剤を賦与した。その後130℃の加熱ロ−ラ
−で乾燥緻密化処理を行ない、本発明の炭素繊維前駆体
繊維を得た。凝固糸及び水膨潤糸の平均細孔半径及び空
孔率、並びに前駆体繊維から製造した炭素繊維の物性を
表1に示す。
[0021] Next, this water-swollen thread was given a silicone oil agent whose concentration was controlled so that the single threads would not fuse together and would have good cohesiveness. Thereafter, a drying and densification treatment was performed using a heated roller at 130°C to obtain a carbon fiber precursor fiber of the present invention. Table 1 shows the average pore radius and porosity of the coagulated yarn and water-swollen yarn, as well as the physical properties of the carbon fiber produced from the precursor fiber.

【0022】[0022]

【表1】[Table 1]

【0023】表1より凝固糸及び水膨潤糸の平均細孔半
径が小さく、また空孔率が低い前駆体繊維ほど、強度及
び弾性率が高い炭素繊維を製造できることが判る。
From Table 1, it can be seen that the smaller the average pore radius of the coagulated yarn and the water-swellable yarn and the lower the porosity of the precursor fiber, the higher the strength and modulus of elasticity of the carbon fiber can be produced.

【0024】比較例1 実施例1でアクリルアミドの代わりにアクリル酸メチル
(MA)を共重合成分として用いた。このときの共重合
重量比はアクリロニトリル/アクリル酸メチル/メタク
リル酸=95/4/1にした。このアクリル系共重合体
を用いて実施例1と同様にして炭素繊維前駆体繊維を製
造した。このときの結果を表2に示す。
Comparative Example 1 In Example 1, methyl acrylate (MA) was used as a copolymerization component instead of acrylamide. The copolymerization weight ratio at this time was acrylonitrile/methyl acrylate/methacrylic acid=95/4/1. A carbon fiber precursor fiber was produced in the same manner as in Example 1 using this acrylic copolymer. The results at this time are shown in Table 2.

【0025】[0025]

【表2】[Table 2]

【0026】実施例2 アクリロニトリルとアクリルアミドとメタクリル酸との
共重合重量比がアクリロニトリル/アクリルアミド/メ
タクリル酸=98/1/1であるアクリル系共重合体の
ジメチルアセトアミド溶液(重合体濃度21重量%、原
液温度70℃)を紡糸原液に用いた。
Example 2 Copolymerization of acrylonitrile, acrylamide, and methacrylic acid A dimethylacetamide solution of an acrylic copolymer having a weight ratio of acrylonitrile/acrylamide/methacrylic acid = 98/1/1 (polymer concentration 21% by weight, A stock solution temperature of 70° C.) was used for the spinning stock solution.

【0027】紡糸条件、延伸条件、油剤処理、乾燥緻密
化の各条件は実施例1と同じである。乾燥緻密化処理の
後に180℃の加熱ロ−ラ−で1.2倍の乾熱延伸を行
った炭素繊維前駆体繊維と、該乾熱延伸を行なわない炭
素繊維前駆体繊維とをつくり、それぞれから製造した炭
素繊維についてその物性を調べた。その結果を表3に示
す。
The spinning conditions, stretching conditions, oil treatment, and drying and densification conditions are the same as in Example 1. After dry densification treatment, carbon fiber precursor fibers were subjected to dry heat stretching of 1.2 times with a heating roller at 180°C, and carbon fiber precursor fibers that were not subjected to the dry heat stretching were prepared. The physical properties of carbon fibers manufactured from The results are shown in Table 3.

【0028】[0028]

【表3】[Table 3]

【0029】乾燥緻密化処理後に、乾熱延伸を行なうこ
とにより更に高強度、高弾性の炭素繊維を製造できる。
[0029] After the dry densification treatment, a carbon fiber with even higher strength and higher elasticity can be produced by performing dry heat stretching.

【0030】実施例3 実施例2と同様の重合体組成の重合体及び溶媒を用いて
紡糸原液を調整した。凝固浴の濃度は72%と一定にし
、温度を25〜55℃の範囲で変化させ実施例1と同様
の湿式紡糸を行った。そのときの結果を表4に示す。
Example 3 A spinning stock solution was prepared using a polymer having the same polymer composition as in Example 2 and a solvent. Wet spinning was carried out in the same manner as in Example 1, with the concentration of the coagulation bath kept constant at 72% and the temperature varied within the range of 25 to 55°C. The results are shown in Table 4.

【0031】[0031]

【表4】[Table 4]

【0032】凝固浴の温度を低くするに従い凝固糸及び
延伸後の水膨潤糸の平均細孔半径及び空孔率が小さくな
り、各前駆体繊維より製造した炭素繊維の性能(強度、
弾性率)も著しく向上していることが判った。
As the temperature of the coagulation bath is lowered, the average pore radius and porosity of the coagulated fiber and the water-swollen fiber after drawing become smaller, and the performance (strength,
It was found that the elastic modulus) was also significantly improved.

【0033】[0033]

【発明の効果】本願発明によれば、高い緻密性を有する
炭素繊維前駆体アクリル系繊維を製造することができる
。したがって、この前駆体繊維から、高強度、高弾性の
炭素繊維を製造することができる。
According to the present invention, carbon fiber precursor acrylic fibers having high density can be produced. Therefore, high-strength, high-elasticity carbon fibers can be produced from this precursor fiber.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アクリロニトリル単位95重量%以上、ア
クリルアミド単位0.5重量%以上を構成成分とするア
クリル系重合体の溶剤溶液を湿式紡糸して、平均細孔半
径が140Å以下、空孔率が55%以下の凝固糸とした
後、これを沸水中にて延伸しながら洗浄して平均細孔半
径が110Å以下、空孔率が40%以下の水膨潤糸条と
なし、次いで該水膨潤糸条にシリコン系油剤処理、乾燥
緻密化処理を施すことを特徴とする炭素繊維用前駆体繊
維の製造方法。
Claim 1: A solvent solution of an acrylic polymer containing 95% by weight or more of acrylonitrile units and 0.5% by weight or more of acrylamide units is wet-spun, and the average pore radius is 140 Å or less and the porosity is After forming a coagulated thread of 55% or less, this is washed while being stretched in boiling water to form a water-swellable thread with an average pore radius of 110 Å or less and a porosity of 40% or less, and then the water-swellable thread is A method for producing a precursor fiber for carbon fibers, which comprises subjecting the fibers to a silicone oil treatment and a dry densification treatment.
JP03785891A 1991-02-08 1991-02-08 Method for producing carbon fiber precursor fiber Expired - Lifetime JP3223452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03785891A JP3223452B2 (en) 1991-02-08 1991-02-08 Method for producing carbon fiber precursor fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03785891A JP3223452B2 (en) 1991-02-08 1991-02-08 Method for producing carbon fiber precursor fiber

Publications (2)

Publication Number Publication Date
JPH04257313A true JPH04257313A (en) 1992-09-11
JP3223452B2 JP3223452B2 (en) 2001-10-29

Family

ID=12509248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03785891A Expired - Lifetime JP3223452B2 (en) 1991-02-08 1991-02-08 Method for producing carbon fiber precursor fiber

Country Status (1)

Country Link
JP (1) JP3223452B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010572A1 (en) * 1997-08-27 1999-03-04 Mitsubishi Rayon Co., Ltd. Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
JP2002146681A (en) * 2000-11-02 2002-05-22 Mitsubishi Rayon Co Ltd Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JP2015203166A (en) * 2014-04-14 2015-11-16 帝人株式会社 Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
CN106222801A (en) * 2016-07-22 2016-12-14 中国石油大学(北京) A kind of preparation method of carbon fibre precursor
CN106436276A (en) * 2016-08-19 2017-02-22 郑州大学 Reagent and method for enhancing mechanical performance of electrostatic spinning film
WO2018047692A1 (en) * 2016-09-12 2018-03-15 東レ株式会社 Coagulated yarn and manufacturing method thereof, carbon fiber precursor fiber, and method for manufacturing carbon fiber
JP2018508667A (en) * 2015-03-12 2018-03-29 サイテック インダストリーズ インコーポレイテッド Production of intermediate modulus carbon fiber
CN115142148A (en) * 2022-06-10 2022-10-04 东华大学 High-performance binary polyacrylonitrile-based carbon fiber precursor and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326451B1 (en) 1997-08-27 2001-12-04 Mitsubishi Rayon Co., Ltd. Acrylonitrile-based precursor fiber for the formation of carbon fiber, process for preparing same, and carbon formed from same
CN1105793C (en) * 1997-08-27 2003-04-16 三菱丽阳株式会社 Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
WO1999010572A1 (en) * 1997-08-27 1999-03-04 Mitsubishi Rayon Co., Ltd. Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
JP2002146681A (en) * 2000-11-02 2002-05-22 Mitsubishi Rayon Co Ltd Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JP2015203166A (en) * 2014-04-14 2015-11-16 帝人株式会社 Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP2018508667A (en) * 2015-03-12 2018-03-29 サイテック インダストリーズ インコーポレイテッド Production of intermediate modulus carbon fiber
US11479881B2 (en) 2015-03-12 2022-10-25 Cytec Industries Inc. Manufacture of intermediate modulus carbon fiber
JP2021004437A (en) * 2015-03-12 2021-01-14 サイテック インダストリーズ インコーポレイテッド Manufacture of intermediate modulus carbon fiber
CN106222801B (en) * 2016-07-22 2018-12-25 中国石油大学(北京) A kind of preparation method of carbon fibre precursor
CN106222801A (en) * 2016-07-22 2016-12-14 中国石油大学(北京) A kind of preparation method of carbon fibre precursor
CN106436276A (en) * 2016-08-19 2017-02-22 郑州大学 Reagent and method for enhancing mechanical performance of electrostatic spinning film
WO2018047692A1 (en) * 2016-09-12 2018-03-15 東レ株式会社 Coagulated yarn and manufacturing method thereof, carbon fiber precursor fiber, and method for manufacturing carbon fiber
CN115142148A (en) * 2022-06-10 2022-10-04 东华大学 High-performance binary polyacrylonitrile-based carbon fiber precursor and preparation method thereof
CN115142148B (en) * 2022-06-10 2023-03-21 东华大学 High-performance binary polyacrylonitrile-based carbon fiber precursor and preparation method thereof

Also Published As

Publication number Publication date
JP3223452B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
JP6664401B2 (en) Densification of polyacrylonitrile fiber
JP7225173B2 (en) Manufacture of intermediate modulus carbon fiber
JPH04257313A (en) Production of precursor fiber for carbon fiber
JP4023226B2 (en) Carbon fiber bundle processing method
JP2008163537A (en) Method for producing carbon fiber
US3089748A (en) Method of producing polyacrylonitrile filamentary material
JP2004183194A (en) Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same
KR102178877B1 (en) Method for preparing polyacrylonitrile based fiber
JPS5920004B2 (en) Carbon fiber manufacturing method
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
JPS6342910A (en) Production of acrylonitrile yarn bundle for manufacturing carbon yarn
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP3044896B2 (en) Pressurized steam drawing method of thick acrylic filament yarn
JPS5982421A (en) Production of carbon fiber
JP2006265768A (en) Coagulated thread for producing acrylic carbon fiber and precursor, method for producing the same and method for measuring amount of absorbed dyestuff
JPH01321913A (en) Acrylic precursor fiber for carbon fiber
JPS6156328B2 (en)
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber
JPH0457911A (en) Porous actylic yarn having excellent water retention and its production
JPH0280610A (en) Acrylonitrile-based coagulated yarn and production of carbon fiber therefrom
JPS5843482B2 (en) Acrylic Keigousei Senino Seizou Hohou
JPS61245303A (en) Acrylic yarn and production thereof
JPS63275716A (en) Production of high-tenacity carbon fiber
JPH04245911A (en) Production of acrylic fiber
WO2020028624A1 (en) Method for determining the degree of swelling of a polymer using near-ir

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10