JPS61245303A - Acrylic yarn and production thereof - Google Patents

Acrylic yarn and production thereof

Info

Publication number
JPS61245303A
JPS61245303A JP8143785A JP8143785A JPS61245303A JP S61245303 A JPS61245303 A JP S61245303A JP 8143785 A JP8143785 A JP 8143785A JP 8143785 A JP8143785 A JP 8143785A JP S61245303 A JPS61245303 A JP S61245303A
Authority
JP
Japan
Prior art keywords
strength
weight
fibers
yarn
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8143785A
Other languages
Japanese (ja)
Inventor
Ken Yokoyama
横山 憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8143785A priority Critical patent/JPS61245303A/en
Publication of JPS61245303A publication Critical patent/JPS61245303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain acrylic yarn having high strength and high modulus of elasticity and improved high-temperature wet heat characteristics, by subjecting a solution of acrylic polymer to spinning. drawing, washing with water, drawing further in boiling water, etc., and followed by drying, drawing and heat treatment under specific conditions, respectively. CONSTITUTION:A solution of an acrylic polymer consisting of 90-100wt% acrylonitrile and 0-10wt% vinyl monomer [e.g., (meth)acrylic acid methyl, etc.] is used as a spinning stock solution and it is subjected to wet spinning, dry and wet spinning or dry spinning. Then, the yarn is drawn, washed with water, drawn in boiling water or in steam and dried until the drawn yarn has 5-60wt% water content. The yarn is then drawn at 1:1-1:3.0 draw ratio at 120-200 deg.C, further heat-treated at 180-300 deg.C under tension to give the aimed yarn having >=6g/d strength, >=80g/d initial modulus of elasticity and >=60% strength retention ratio and >=60% retention ratio of modulus of elasticity after wet treatment in an alkali aqueous solution at 9-13pH at 180 deg.C for 8hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高強力、高弾性率を有し、高温湿熱特性に優れ
たアクリル系繊維およびその製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an acrylic fiber having high strength, high modulus of elasticity, and excellent high-temperature, wet-heat characteristics, and a method for producing the same.

さらに詳しくは、本発明は、強度が697d以上で、初
期弾性率が80g’/d以上であり、かつPM(9〜1
3のアルカリ性水溶液中180℃で8時間の湿潤処理後
の強度および初期弾性率の保持率が60チ以上であるア
クリル系繊維およびそのような繊維を工業的に、安価に
製造する技術に関する。
More specifically, the present invention has a strength of 697 d or more, an initial elastic modulus of 80 g'/d or more, and a PM (9 to 1
The present invention relates to an acrylic fiber whose strength and initial elastic modulus retention rate after wet treatment at 180° C. for 8 hours in an alkaline aqueous solution of No. 3 is 60 degrees or more, and a technology for manufacturing such fiber industrially and at low cost.

〔従来の技術〕[Conventional technology]

従来、アクリル系繊維は、その特徴として柔軟な風合い
、嵩高性、鮮明な発色性等によシ、主に衣料、インテリ
ア、寝装、雑品分野への用途を展開して来た。しかしな
がら、アクリル系繊維の欠点として、他の合成繊維(ポ
リエステル、ナイロン、?リプロピレン、ビニロン等)
で見られる様な高弾性率、高強度等の物性を有しないこ
とから、これまで産業資材用途などの高弾性率、高強度
等の高性能を必要とする分野への用途展開が極めて困難
でありた。さらに、産業資材用途、例えば、工業用濾過
布等の分野において要求される繊維性能としては、強度
、弾性率のみならず耐薬品性、耐熱(乾熱、湿熱)性が
あシ、こうした点では上記合成繊維も使用を極端に制限
され、この分野にはアラミド系、カーゲンファイバー等
の非常に高価な素材を用いる必要が生じている。また、
土木建築資材分野においては、近年世界的なアスベスト
規制の波によシ、アスベスト代替素材としての安価なア
クリルやビニロン等の合成繊維がセメント補強材として
研究されるようになってきた。
Conventionally, acrylic fibers have been used mainly in the fields of clothing, interior decoration, bedding, and miscellaneous goods due to their characteristics such as soft texture, bulkiness, and vivid color development. However, as a disadvantage of acrylic fibers, other synthetic fibers (polyester, nylon, polypropylene, vinylon, etc.)
Because it does not have physical properties such as high modulus of elasticity and high strength as seen in There was. Furthermore, the fiber performance required in the field of industrial material applications, such as industrial filter cloth, is not only strength and elastic modulus, but also chemical resistance and heat resistance (dry heat, wet heat). The use of the above-mentioned synthetic fibers is extremely limited, and it is necessary to use very expensive materials such as aramid fibers and Kagen fibers in this field. Also,
In the field of civil engineering and construction materials, in recent years, due to the global wave of asbestos regulations, research has begun on cheap synthetic fibers such as acrylic and vinylon as substitute materials for asbestos as cement reinforcement materials.

しかし、セメント成形体の安定性を向上させる合理的な
手法としては、高圧蒸気による養生工程を経る場合が多
く、その時点においては補強用繊維はセメント水溶液が
示すアルカリ性と高圧蒸気による高温度、高湿度条件に
耐える必要が生じてくるのである。こうした条件下では
補強用繊維は一過布等の分野以上に使用範囲が制限され
、特にビニロンは110℃以上の湿熱処理条件ではその
使用が不可能となる。
However, a rational method for improving the stability of cement compacts is often to go through a curing process using high-pressure steam. It becomes necessary to withstand humidity conditions. Under these conditions, the range of use of reinforcing fibers is more limited than in the field of temporary fabrics, and vinylon in particular cannot be used under moist heat treatment conditions of 110° C. or higher.

また、アクリル系繊維については高強力化、高弾性率化
の提案が種々なされておシ、その製造法としては紡糸後
、湿式延伸を行ない、乾燥緻密化後加圧スチームや乾熱
条件下で再延伸する方法が採られている。特に、特開昭
58−120811号公報には湿式紡糸、延伸、水洗、
乾燥した後、少くとも105℃の加圧スチーム中で二次
延伸し、該延伸糸条を収縮緩和せしめることな(,15
0〜250℃の加熱雰囲気中で緊張下に熱固定し、引き
続いて該糸条を緊張下に保持して冷却することによシセ
メント補強用アクリル系繊維を得ることが開示されてい
るが、該繊維は80℃、30分間の温水処理によシその
初期弾性率は14211/dから909/dと急激に低
下し、その初期弾性率の保持率は63チしがなく、それ
以上の温度範囲では初期弾性率の低下や高温下のアルカ
リによる繊維劣化が生じる為、該繊維を用いた繊維補強
セメントの養生温度は室温から90℃以下と狭い範囲に
制限されていた。しかし、近年のセメント成形体の養生
法は製品の安定性、工程の合理性等の点から高温スチー
ム養生に主眼が置かれておシ、コンクリート補強用繊維
に対しても高温スチーム養生時でも強度、初期弾性率の
変化が少なく、さらに耐アルカリ性に優れた性能が要求
されるようになってきた。
In addition, various proposals have been made to increase the strength and modulus of acrylic fibers, and the manufacturing method is to perform wet stretching after spinning, dry densification, and then use pressurized steam or dry heat conditions. A method of re-stretching is used. In particular, JP-A-58-120811 discloses wet spinning, stretching, washing,
After drying, the drawn yarn is subjected to secondary stretching in pressurized steam at at least 105° C. without causing shrinkage relaxation (15
It has been disclosed that acrylic fibers for cement reinforcement can be obtained by heat-setting under tension in a heated atmosphere of 0 to 250°C, and subsequently cooling the yarn while keeping it under tension. When the fiber was treated with hot water at 80°C for 30 minutes, its initial elastic modulus rapidly decreased from 14211/d to 909/d, and the retention rate of the initial elastic modulus was 63° C. In this case, the curing temperature of fiber-reinforced cement using such fibers has been limited to a narrow range from room temperature to 90°C or less, because the initial elastic modulus decreases and fibers deteriorate due to alkali at high temperatures. However, in recent years, curing methods for cement compacts have focused mainly on high-temperature steam curing in terms of product stability and process rationality, and concrete reinforcing fibers also have strength even during high-temperature steam curing. , small changes in initial elastic modulus and excellent alkali resistance are now required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、本発明者が検討した結果、アクリル系繊
維は、該繊維を製造する際の延伸方法及びそれに引き続
き行なわれる構造固定方法によって、高温、多湿条件下
での処理後の該繊維の強度及び初期弾性率が大きく変化
し、繊維性能の安定性がないこと、さらには該繊維を構
成するアクリロニトリル共重合体の弁型、金成分の種類
及び割合によって耐アルカリ性が変化し、高温、多湿条
件下では溶解、膨潤あるいは劣化することなど多くの問
題点があることを見いだした。すなわち、高温、多湿条
件、特にセメント補強用繊維としては、アルカリ性水溶
液(pH9〜13)中で、180℃。
However, as a result of studies conducted by the present inventors, the strength and initial strength of acrylic fibers after processing under high temperature and high humidity conditions depend on the drawing method used to manufacture the fibers and the subsequent structural fixation method. The modulus of elasticity changes greatly, the fiber performance is unstable, and the alkali resistance changes depending on the valve type of the acrylonitrile copolymer that makes up the fiber, the type and proportion of the gold component, and under high temperature and high humidity conditions. It was discovered that there were many problems such as dissolution, swelling, and deterioration. That is, under high temperature and high humidity conditions, especially for cement reinforcing fibers, the temperature is 180°C in an alkaline aqueous solution (pH 9 to 13).

8時間程度の高温スチーム養生に際して、その強度及び
初期弾性率を高度に保持し、セメントへの補強効果を発
揮することのできるアクリル系繊維を開発するとともに
、該繊維の工業的な製造法を確立する必要があるのであ
り、本発明はこのような問題点を解決しようとするもの
である。
Developed acrylic fibers that maintain a high level of strength and initial elastic modulus during high-temperature steam curing for about 8 hours, and which can exert a reinforcing effect on cement, and established an industrial manufacturing method for the fibers. Therefore, the present invention aims to solve these problems.

従って、本発明の目的は、アクリル系繊維の弱点である
強度及び初期弾性率を向上させ、かつ、アルカリ性水溶
液中(pH9〜13)、180℃。
Therefore, the object of the present invention is to improve the strength and initial elastic modulus, which are the weak points of acrylic fibers, and to improve the strength and initial elastic modulus in an alkaline aqueous solution (pH 9 to 13) at 180°C.

8時間の処理後でも強度及び初期弾性率の保持率が60
%以上という高度に耐湿熱、耐アルカリ性を有するアク
リル系繊維を提供するとともに1該繊維を工業的に製造
する為の技術を開発し、提供することにある。
Retention rate of strength and initial elastic modulus is 60% even after 8 hours of treatment
The object of the present invention is to provide an acrylic fiber having a high degree of moisture heat resistance and alkali resistance of 1.0% or more, as well as to develop and provide a technology for industrially manufacturing the fiber.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は即ち次の構成からなる。 The present invention consists of the following configuration.

1.アクリロニトリル90〜100重量%と、アクリロ
ニトリルと共重合可能なビニル系モノマー0〜10重量
%とから成るアクリル系重合体繊維であって、強度が6
 g/d以上で、初期弾性率が80p/d以上であり、
かつ、PH9〜13のアルカリ性水溶液中180℃で8
時間の湿潤処理後の強度及び初期弾性率の保持率が60
チ以上であることを特徴とするアクリル系繊維。
1. An acrylic polymer fiber consisting of 90 to 100% by weight of acrylonitrile and 0 to 10% by weight of a vinyl monomer copolymerizable with acrylonitrile, and has a strength of 6.
g/d or more, the initial elastic modulus is 80 p/d or more,
and 8 at 180°C in an alkaline aqueous solution with a pH of 9 to 13.
Retention rate of strength and initial elastic modulus after humid treatment for 60 hours
An acrylic fiber characterized by having a resistance of more than 100%.

2、 アクリa二)ジル90〜100重量%と、アクリ
ロニトリルと共重合可能なビニル系モノマー0〜10重
量%とから成るアクリル系重合体溶液を紡糸原液として
用い、これを湿式、乾湿式あるいに乾式紡糸後、延伸、
水洗し、さらに沸水あるいは蒸気中で延伸を施し、次い
で該延伸糸の含水率が5〜60重量%になるまで乾燥処
理を施し、次に120℃〜200℃の温度で該第に1:
1.0〜1:3.0の延伸処理を施し、さらにiso℃
〜300℃の温度下に該第を緊張状態で熱処理すること
を特徴とするアクリル系繊維の製造法。
2. An acrylic polymer solution consisting of 90 to 100% by weight of acrylic a2) and 0 to 10% by weight of a vinyl monomer copolymerizable with acrylonitrile is used as a spinning stock solution, and this is used in wet, wet-dry or wet spinning. After dry spinning, stretching,
The drawn yarn is washed with water, further stretched in boiling water or steam, and then dried until the water content of the drawn yarn becomes 5 to 60% by weight.
1.0 to 1:3.0 stretching treatment and further iso℃
A method for producing acrylic fibers, which comprises heat-treating the fibers under tension at a temperature of ~300°C.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

まず、本発明Knるアクリル系繊維は繊維を形成する成
分の90〜100重責チがアクリロニトリルからな)、
そしてその10〜0重量%がアクリロニトリルと共重合
可能なビニル系モノマー、たとえば、アクリル酸メチル
、メタクリル酸メチル、メタクリロニトリル、アクリル
アミド、メタクリルアミド、N−メチルアクリルアミド
、N−エチルアクリルアミド、アクリル酸、メタクリル
酸、イタコン酸、アクリル酸ジメチルアミド、酢酸ビニ
ル、塩化ビニル、塩化ビニリデン、アリルアルコール、
メタクリルアルコール、アリルスルホン酸ソーダ、メタ
リルスルホン酸ソーダ等から構成されることが必要であ
る。
First, in the acrylic fiber of the present invention, 90 to 100% of the components forming the fiber are acrylonitrile),
10 to 0% by weight of the vinyl monomer copolymerizable with acrylonitrile, such as methyl acrylate, methyl methacrylate, methacrylonitrile, acrylamide, methacrylamide, N-methylacrylamide, N-ethylacrylamide, acrylic acid, Methacrylic acid, itaconic acid, acrylic acid dimethylamide, vinyl acetate, vinyl chloride, vinylidene chloride, allyl alcohol,
It is necessary to be composed of methacrylic alcohol, sodium allylsulfonate, sodium methallylsulfonate, etc.

すなわち、繊維を構成するアクリル系重合体組成は、繊
維の可紡性、延伸性、熱処理性等に関係すると共に、高
温湿熱性及び耐アルカリ性に大きく関係し、該アクリル
系重合体の重合組成が前記範囲外にあると、仮LK繊維
として優れた物性を有するものが得られたとしても、ア
ルカリ性水溶液(pH9〜13)中180℃、8時間の
湿潤処理下では、該繊維は溶解、膨潤あるいは樹脂化状
態となシ、該繊維物性が極端に低下したシ、あるいはも
はや繊維形態をとどめなくなってしまう。かかる点から
、共重合成分であるビニル系モノマーの共重合割合は共
重合成分の種類によって異なるが、製造時の可紡性、延
伸性及び熱処理性等の製糸性を満足する@シにおいて、
出来る@シ少ない方がよく、共重合成分の割合としては
10重量%以下、好ましくは5重量%以下の朝日にする
のがよい。
In other words, the composition of the acrylic polymer constituting the fiber is related to the spinnability, drawability, heat treatability, etc. of the fiber, as well as its high temperature, moist heat, and alkali resistance. If it is outside the above range, even if temporary LK fibers with excellent physical properties are obtained, the fibers will dissolve, swell, or swell under wet treatment at 180°C for 8 hours in an alkaline aqueous solution (pH 9 to 13). The fibers become resinized, the physical properties of the fibers are extremely reduced, or the fibers no longer retain their shape. From this point of view, the copolymerization ratio of the vinyl monomer as a copolymerization component varies depending on the type of copolymerization component, but in @shi that satisfies spinnability, stretchability, heat treatability, etc. during production,
It is better to have as little as possible, and the proportion of the copolymerized component is preferably 10% by weight or less, preferably 5% by weight or less in Asahi.

また、本発明の繊維は、その繊維物性として、強度が6
g/d以上かつ初期弾性率が80g/d以上で、これら
は可能な限シ高い方がよく、シかも7 A/ 力17性
水溶液(pH9〜13)中180℃、8時間での湿潤処
理後の該繊維の強度及び初期弾性率の保持率が60%以
上であることが必要である。
In addition, the fiber of the present invention has a strength of 6
g/d or more and the initial elastic modulus is 80 g/d or more, and these should be as high as possible, and it may be 7 A/d. It is necessary that the retention rate of the strength and initial elastic modulus of the fiber after this is 60% or more.

すなわち、産業資材分野、特に、アスベスト代替のセメ
ント補強用繊維として該繊維を使用する場合においては
、セメントスラリー中に該繊維を混合し、自然養生もし
くは90℃以下の湿熱養生をする場合と、120℃〜1
80℃、2.0〜10.0に9/、、”で8〜10時間
の高温スチーム養生を行なう場合があるが、特に高温ス
チーム養生に際しては該繊維の強度及び初期弾性率が初
期の60%以上に保持される必要があ夛、この高度に保
持された強度及び初期弾性率によってのみセメントに対
する補強効果が、従来見い出し得なかった程に、高く発
現し得るのである 本発明でいう繊維の強度及び初期弾性率の保持率とは、
処理前の繊維の強度及び初期弾性率を基準とし、処理後
の各々の値の変化状態を把握する1つの指標として下記
式にょシ算出した。
That is, in the field of industrial materials, especially when using the fibers as cement reinforcing fibers as an alternative to asbestos, there are cases where the fibers are mixed into cement slurry and cured naturally or with moist heat at 90°C or less; °C~1
High temperature steam curing may be carried out for 8 to 10 hours at 80°C and 2.0 to 10.0°C, but especially during high temperature steam curing, the strength and initial elastic modulus of the fibers may be lower than the initial 60°C. % or more, and only by maintaining this highly maintained strength and initial elastic modulus can a reinforcing effect on cement be exhibited to a degree that has not been previously found. What is the retention rate of strength and initial elastic modulus?
Based on the strength and initial elastic modulus of the fiber before treatment, the following formula was calculated as an index for grasping the state of change in each value after treatment.

また、ここでいう強度及び初期弾性率とはlo。In addition, the strength and initial elastic modulus referred to here are lo.

チの伸びに対する各々の値をチャートから求めた。Each value for the elongation of chi was determined from the chart.

このような、本発明の高強度、高弾性率を有し、高温湿
熱特性に優れたアクリル系繊維の製造法としては、一般
の衣料用繊維とは異なる高い強度及び初期弾性率を有す
る繊維としなければならないこと、さらにはアルカリ性
水溶液中での高温湿潤処理に対して高度に繊維物性を保
持しなければならないことから、さらにまたアクリロニ
トリル単独あるいは前述した特定の共重合組成を有する
アクリル系重合体を繊維形成性重合体として用いる必要
があることから、従来のアクリル系繊維の製造法を任意
に適用出来るものではない。
The method for producing the acrylic fiber of the present invention, which has high strength, high elastic modulus, and has excellent high-temperature and moist heat properties, uses fibers with high strength and initial elastic modulus that are different from general clothing fibers. Furthermore, since it is necessary to maintain the fiber properties to a high degree even when subjected to high-temperature and humid treatment in an alkaline aqueous solution, it is necessary to use acrylonitrile alone or an acrylic polymer having the above-mentioned specific copolymer composition. Since it needs to be used as a fiber-forming polymer, conventional methods for producing acrylic fibers cannot be applied arbitrarily.

すなわち、本発明のアクリル系繊維の製造法としては、
繊維を形成する成分の90〜100重量%がアクリロニ
トリルから、そして10〜0重量%がアクリロニトリル
と共重合可能な前記ビニル系モノマーからなるアク1ン
ル系重合体を硝酸、塩化亜鉛、ロダンソーダ、ジメチル
ホルムアミド(DMF )、ジメチルスルホキシド(D
MSO’) 、ジメチルアセトアミド(DMAC)など
の各種溶剤に溶解し、得られた紡糸原液を紡糸口金から
吐出し、凝固浴中に導いて固化させ、延伸、水洗後、さ
らに沸水あるいは蒸気中で凝固浴捲取速度を基準にして
6〜20倍、好ましくは8〜15倍の延伸処理を施した
後、該延伸糸の含水率が5〜60重量%になるまで乾燥
処理を施す方法が用いられる。そして、この乾燥処理に
際しては、特に制限するものではないが、好ましくは延
伸糸条が自由に収縮緩和してしまわない様に0.9〜1
.1倍程度の比率で緊張下に保持するのがよい。この際
、乾燥装置としては熱を非接触あるいは接触式で該延伸
糸条に与えるものであり、かつ含水率を5〜60重量%
、好ましくは10〜50重量%に調整しうるものであれ
ばよく、さらに乾燥装置の温度についても特に制限する
ものではない。しかし、工業的にかつ安定に乾燥処理を
施すには、熱風循環式熱ドラム型乾燥装置または加熱シ
リンダー型乾燥装置等を用い、100〜130℃程度の
温度で数秒間乾燥処理することが好ましい。次に、こう
して得られた5〜60重量%の含水率を有する糸条体の
表面温度を120〜200℃、好ましくは130〜18
0℃に加熱昇温させつつ咳糸に1:1.O〜1:3.0
の延伸処理を施すことによシ、繊維糸条体の延伸性を高
め、かつ高配向、高結晶化を生じさせることが出来る。
That is, the method for producing the acrylic fiber of the present invention is as follows:
An aqueous polymer in which 90 to 100% by weight of the fiber-forming components is acrylonitrile and 10 to 0% by weight is the vinyl monomer copolymerizable with acrylonitrile is mixed with nitric acid, zinc chloride, rhodan soda, and dimethylformamide. (DMF), dimethyl sulfoxide (D
MSO'), dimethylacetamide (DMAC), and other various solvents, and the resulting spinning stock solution is discharged from a spinneret, introduced into a coagulation bath, solidified, stretched, washed with water, and further coagulated in boiling water or steam. A method is used in which the drawn yarn is stretched 6 to 20 times, preferably 8 to 15 times, based on the bath winding speed, and then dried until the water content of the drawn yarn becomes 5 to 60% by weight. . Although there are no particular restrictions on this drying process, it is preferable that the drying process be performed at a drying temperature of 0.9 to 1.
.. It is best to hold it under tension at a ratio of about 1:1. At this time, the drying device is one that applies heat to the drawn yarn in a non-contact or contact manner, and the moisture content is 5 to 60% by weight.
, preferably 10 to 50% by weight, and there are no particular restrictions on the temperature of the drying device. However, in order to carry out the drying process industrially and stably, it is preferable to carry out the drying process for several seconds at a temperature of about 100 to 130° C. using a hot air circulation type hot drum type drying device, a heated cylinder type drying device, or the like. Next, the surface temperature of the filament having a water content of 5 to 60% by weight obtained in this way is set to 120 to 200°C, preferably 130 to 18°C.
Apply 1:1 to cough threads while heating to 0°C. O~1:3.0
By carrying out the drawing treatment, it is possible to improve the drawability of the fiber filament, and also to cause high orientation and high crystallization.

すなわち、糸条体の含水率が60重量%よシ大きいと糸
条体内部に存在する水の蒸発作用に熱量が吸収され、糸
条体の表面温度は98℃程度までしか上昇せず、との段
階で糸条体に延伸処理を施しても、充分に延伸性が確保
されないとともに、該延伸倍率に対する繊維の結晶化度
や配向度が低くなシ、従来のアクリル系繊維に近い繊維
物性しか得られない。また、含水率が5重量%よシ小さ
いと、前述のアクリル系繊維に関する特許公報に見られ
るように延伸時の延伸応力が高くなシ、結晶化度や配向
度の高い繊維糸条が得られるが、延伸性にとぼしく、さ
らに延伸時の内部歪が繊維糸条内部に大きく残存する為
に製品を180℃以下で湿熱処理をすると内部歪が露呈
され、強度及び初期弾性率の保持率が60%を維持出来
ないのである。すなわち、含水率に対しての温度、延伸
性および繊維物性(特に結晶化度や配向度)をみてみる
と、含水率が10〜60重量%、好ましくは20〜50
重量%、延伸性が1:1.0〜1:3.0の範囲で、か
つ結晶化度や配向度がピーク値を示す領域があシ、この
領域では繊維内部の水は延伸時の延伸応力を減少させつ
つ、繊維の結晶化や配向化を最も良く高め、かつ延伸時
の内部歪が小さいことから、180℃という極めて高温
の湿熱処理を施しても繊維物性を高度に保持しうる繊維
となシ得るのである。
In other words, when the water content of the filament is greater than 60% by weight, the heat is absorbed by the evaporation of the water present inside the filament, and the surface temperature of the filament increases only to about 98°C. Even if the filament is stretched at this stage, sufficient stretchability cannot be ensured, and the degree of crystallinity and orientation of the fibers is low relative to the stretching ratio, and the physical properties of the fibers are only close to those of conventional acrylic fibers. I can't get it. Furthermore, when the water content is as low as 5% by weight, the stretching stress during stretching is high, and fiber yarns with high crystallinity and orientation can be obtained, as seen in the aforementioned patent publication regarding acrylic fibers. However, the drawability is poor, and the internal strain during drawing remains largely within the fiber yarn, so if the product is subjected to moist heat treatment at 180°C or lower, the internal strain will be exposed, and the retention rate of strength and initial elastic modulus will be 60. % cannot be maintained. That is, looking at the temperature, stretchability, and fiber physical properties (particularly the degree of crystallinity and orientation) with respect to the water content, the water content is 10 to 60% by weight, preferably 20 to 50% by weight.
There is a region where the weight% and stretchability are in the range of 1:1.0 to 1:3.0 and where the degree of crystallinity and degree of orientation show peak values. A fiber that best enhances fiber crystallization and orientation while reducing stress, and has low internal strain during stretching, so it retains its physical properties to a high degree even when subjected to moist heat treatment at an extremely high temperature of 180°C. That's what you get.

しかし、延伸倍率が1:1.Oよシ小さい場合は、糸条
体の熱収縮現象のみ起こシ、得られた繊維の強度及び初
期弾性率は低いものとなシ、好ましくない。また、延伸
倍率が1:3.Oよシ大きい場合は、延伸時の延伸応力
が非常に大きくなシすぎて、延伸切れを起こしたシ、す
るいは不均一な延伸状態が発生し、工業的に安定して操
業できる条件とは成シ得ないため、好ましくない。
However, the stretching ratio is 1:1. If it is smaller than O, only heat shrinkage of the filament will occur, and the strength and initial elastic modulus of the obtained fiber will be low, which is not preferable. Moreover, the stretching ratio is 1:3. If it is larger than O, the stretching stress during stretching will be too large, resulting in stretch breakage or non-uniform stretching conditions, which may cause conditions for stable industrial operation. is undesirable because it cannot be achieved.

また、5〜60重量−の含水率を有する糸条体の表面温
度を120〜200℃、好ましくは130〜180℃に
加熱昇温させる方法としては、特に制限するものではな
いが、シリンダーロール型加熱装置や接触式熱板型加熱
装置を用いる方法があムこれによシ効果的に糸条体温度
を上昇させることが出来、また同時に延伸することも容
易と々シ、工業的に好ましい方法である。また、ここで
の延伸比率は糸条体の延伸比率によシ異なるが、繊維の
全延伸比率が10〜30倍、好ましくは13〜25倍に
なる範囲に設定することがよく、5〜60重量%の含水
率を有する糸条体の延伸比率としては1:1.O〜1:
3.0の範囲に設定することによ)、本発明になる繊維
の性能を充分に発揮し得ることになるのである。
Further, the method of heating the surface temperature of the filament having a water content of 5 to 60% by weight to 120 to 200°C, preferably 130 to 180°C is not particularly limited, but cylinder roll type A method using a heating device or a contact hot plate type heating device is an industrially preferable method because it can effectively raise the temperature of the filament body, and it is also easy to draw at the same time. It is. Further, the drawing ratio here varies depending on the drawing ratio of the filament, but it is preferably set in a range where the total drawing ratio of the fiber is 10 to 30 times, preferably 13 to 25 times, and 5 to 60 times. The stretching ratio of the filament having a water content of % by weight is 1:1. O~1:
By setting it within the range of 3.0), the performance of the fiber of the present invention can be fully exhibited.

さらに、上記繊維糸条体をひきつづいて180〜300
℃の温度下、該第を緊張状態に保ちつつ熱処理すること
によシ、本発明になる繊維が得られるのである。すなわ
ち、上記繊維糸条体への熱処理方法として、該第の配向
度、結晶化度を高度に維持させつつ、延伸による内部歪
を取シ除くという意味において、該第を緊張状態で熱処
理する必要があるが、緊張状態の程度としては1:0.
9〜1:1.0が好ましく、この範囲であれば特に制限
するものではない。また、熱処理温度は180〜300
℃の範囲であれば−に制限はないが、処理時間としては
、例えば、180℃の温度条件下では5〜30秒の範囲
が好ましく、また300℃の温度条件下では1〜10秒
の範囲が好ましい。
Furthermore, the above-mentioned fiber thread body is continued to be 180 to 300
The fibers of the present invention can be obtained by heat-treating the fibers at a temperature of .degree. C. while keeping the fibers under tension. That is, as a heat treatment method for the above-mentioned fiber thread, it is necessary to heat-treat the fiber thread in a tension state in the sense of removing internal strain caused by stretching while maintaining a high degree of orientation and crystallinity of the fiber thread. However, the degree of tension is 1:0.
The ratio is preferably 9 to 1:1.0, and there is no particular restriction as long as it is within this range. In addition, the heat treatment temperature is 180 to 300
There is no limit to - as long as the temperature is within the range of °C, but the treatment time is preferably in the range of 5 to 30 seconds under a temperature condition of 180 °C, and in the range of 1 to 10 seconds under a temperature condition of 300 °C. is preferred.

すなわち、繊維の強度や初期弾性率を最終的に決定する
熱処理条件は熱処理温度と処理時間で一義的に決まるも
のである。繊維の高温スチーム処理時の強度及び初期弾
性率の保持率の程度を簡易に知る方法としては、該繊維
の製水収縮率測定があシ、本発明になる繊維は少なくと
も沸水中で24時間処理後の収縮率が3チ以下、好まし
くは1ts以下であることが必要である。ここでいう沸
水中の収縮率は、該繊維の高温湿潤特性を示す1つの尺
度であり、沸水収縮率が3チよシ大きいと180℃、8
時間の高温スチーム処理において該繊維の強度及び初期
弾性率の保持率が60%よシ低くなシ、補強用繊維とし
ての性能に信頼性がなく々るという経験的知見から採用
するものである。
That is, the heat treatment conditions that ultimately determine the strength and initial elastic modulus of the fiber are uniquely determined by the heat treatment temperature and treatment time. A simple method for determining the degree of retention of strength and initial elastic modulus during high-temperature steam treatment of fibers is to measure the shrinkage rate of the fibers in water.The fibers of the present invention are treated in boiling water for at least 24 hours. It is necessary that the subsequent shrinkage rate is 3 ts or less, preferably 1 ts or less. The shrinkage rate in boiling water is one measure of the high-temperature wet characteristics of the fiber, and if the boiling water shrinkage rate is 3 or more, the shrinkage rate in boiling water is 180℃, 8
This was adopted based on the empirical knowledge that if the retention rate of the strength and initial elastic modulus of the fiber is lower than 60% during high-temperature steam treatment, the performance as a reinforcing fiber is unreliable.

かくして得られる繊維は、前述したように一般衣料とは
異なった高い強度と初期弾性率を有し、しかも180℃
、8時間の高温湿潤処理後の該繊維の強度及び初期弾性
率の保持率が60%以上となシ、産業資材分野、特に高
温スチームと養生用セメント補強用繊維として使用する
ことが可能である。
As mentioned above, the fibers obtained in this way have high strength and initial elastic modulus different from those of general clothing, and they can be heated at 180°C.
If the retention rate of the strength and initial elastic modulus of the fiber after 8 hours of high temperature humid treatment is 60% or more, it can be used in the industrial material field, especially as fiber for reinforcing cement for high temperature steam and curing. .

〔実施例〕〔Example〕

以下、実施例によシ本発明を更に説明する。 The present invention will be further explained below with reference to Examples.

以下余白 実施例1 アクリロニトリル95重量%、メタクリロートリル5重
量%からなり、固有粘度〔η〕が1.82であるアクリ
ル系共重合体の70重量%硝酸溶液(ポリマー濃度14
.0重量%)を紡糸原液とし、孔数20000個、孔径
0.12■の紡糸口金を通し〜O℃、35重量%硝酸水
溶液中に5m/分の引取り速度で導入して湿式凝固させ
、引き続いて60℃、40重量%硝酸水溶液中で2倍に
延伸した後、水洗洗浄し、硝酸残分を除去した。続いて
熱水浴中で4倍延伸し、115℃の飽和蒸気圧下でさら
に1.5倍延伸し、凝固浴引取時からの延伸倍率が12
倍の延伸糸を得た。この際の延伸糸の含水率は118重
量係であった。この延伸糸を熱風循環式熱ドラム乾燥装
置で含水率が表1に示す値になる様に乾燥処理を施し、
次にシリンダーロール型加熱延伸装置を用いて該装置温
度を160℃に設定し、延伸比率を1:1.2〜1:2
.5に設定した。
Below is a blank space Example 1 A 70% by weight nitric acid solution (polymer concentration:
.. 0% by weight) was used as a spinning dope, and introduced into a 35% by weight nitric acid aqueous solution at ~0°C through a spinneret with 20,000 holes and a pore diameter of 0.12mm at a take-up speed of 5 m/min for wet coagulation. Subsequently, the film was stretched twice in a 40% by weight nitric acid aqueous solution at 60°C, and then washed with water to remove nitric acid residue. Subsequently, it was stretched 4 times in a hot water bath, and further stretched 1.5 times under saturated steam pressure at 115°C, so that the stretching ratio from the time of taking up the coagulation bath was 12.
A drawn yarn of twice the size was obtained. The water content of the drawn yarn at this time was 118% by weight. This drawn yarn was dried using a hot air circulation type heated drum dryer so that the moisture content became the value shown in Table 1.
Next, using a cylinder roll type heated stretching device, set the device temperature to 160°C, and set the stretching ratio to 1:1.2 to 1:2.
.. It was set to 5.

さらに、得られた繊維糸条に対して1:1.Oの緊張状
態を保ちつつ、240℃のシリンダーロール上で10秒
間熱処理を行なった。得られた繊維の物性を表IK示す
。さらに、表IK示された繊維を180℃で8時間、ア
ルカリ性水溶液(4ルトランドセメントp水pH12,
5)中で高温スチーム処理し、得られた繊維の物性を測
定し、その結果を第2表に示した。
Furthermore, the ratio of 1:1 to the obtained fiber yarn was increased. Heat treatment was performed on a cylinder roll at 240° C. for 10 seconds while maintaining the O tension state. Table IK shows the physical properties of the obtained fiber. Furthermore, the fibers shown in Table IK were heated at 180°C for 8 hours in an alkaline aqueous solution (4 Rutland cement p water pH 12,
5), and the physical properties of the obtained fibers were measured, and the results are shown in Table 2.

比較例1 実施例1で得られる延伸糸を含水率がOtsになるまで
乾燥緻密化処理し、シリンダーロール型加熱延伸装置で
160℃、1:1.5の延伸処理を施し、次いで実施例
1と同様の熱処理後、高温スチーム処理を行ない、繊維
を測定した。また、同熱処理系を沸水中、24時間処理
し、繊維の物性を測定した。結果を表12表2に示した
Comparative Example 1 The drawn yarn obtained in Example 1 was dried and densified until the water content reached Ots, and then stretched at 160° C. in a ratio of 1:1.5 using a cylinder roll heating stretching device. After the same heat treatment as above, high temperature steam treatment was performed and the fibers were measured. Further, the same heat treatment system was treated in boiling water for 24 hours, and the physical properties of the fibers were measured. The results are shown in Table 12 and Table 2.

比較例2 実施例1で得られる延伸糸の含水率を118重量%及び
80重量%とし、その他は比較例1と同様の方法で繊維
を処理し、得られた繊維物性を表1及び表2に示した。
Comparative Example 2 The water content of the drawn yarn obtained in Example 1 was set to 118% by weight and 80% by weight, and the fibers were otherwise treated in the same manner as in Comparative Example 1. The obtained fiber physical properties are shown in Tables 1 and 2. It was shown to.

実施例2 過硫酸アンモニウムと酸性亜硫酸ソーダを重合触媒とし
、水系懸濁重合法を用いて重合組成を表3に示すように
変化させたアクリロニトリル単独重合体及びアクリル系
共重合体を得た。この重合体を用いて実施例IK示した
実験番号1−2(表1)と同様の方法で繊維を得、得ら
れた繊維について各々実施例1で行なりた高温スチーム
処理を行ない、得られた繊維の物性を比較した。その結
果を表3に示した。
Example 2 Acrylonitrile homopolymers and acrylic copolymers whose polymerization compositions were changed as shown in Table 3 were obtained using an aqueous suspension polymerization method using ammonium persulfate and acidic sodium sulfite as polymerization catalysts. Using this polymer, fibers were obtained in the same manner as in Experiment No. 1-2 (Table 1) shown in Example IK, and each of the obtained fibers was subjected to the high temperature steam treatment as in Example 1. The physical properties of the fibers were compared. The results are shown in Table 3.

実施例3 95重量%のアクリロニトリルおよび5重量%のメタク
リロエトリルから成る固有粘度1.82の懸濁−沈殿重
合体の180011を8200f9のジメチルホルムア
ミド中に一20℃で懸濁し、120分間に80℃で攪拌
しながら溶解して均質な紡糸IIK液を調製した。この
原液を孔数300個、孔径0.10−の紡糸口金を通し
て55%のジメチルホルムアミドと45%の水とから成
り、かつ、40℃の温度を有する凝固浴中に5m/分の
引取速度で導入して湿式凝固させ、引き続いて60%の
ジメチルホルムアミドと40チの水とからなる温度90
℃の延伸浴中で35m/分に延伸し、さらに沸水中で4
5m/分に延伸した。得られた延伸糸の含水率は185
重量−であった。この延伸糸を実施例11C示したと同
様の乾燥方法で含水率を15%Kpl製し、実施例1の
実験番号1−2(表1)と同様に加熱延伸比率を1:2
.0とし、その後同様の熱処理を行なった。また、比較
として含水率を011、乾燥緻密化した後、加熱延伸比
率を1:2.Oとし、その後同様の熱処理を行なりた。
Example 3 180011, a suspension-precipitation polymer with an intrinsic viscosity of 1.82, consisting of 95% by weight acrylonitrile and 5% by weight methacryloethrile, was suspended in 8200f9 dimethylformamide at -20°C and A homogeneous spinning IIK solution was prepared by dissolving the mixture at °C with stirring. This stock solution was passed through a spinneret with 300 holes and a 0.10-pore diameter into a coagulation bath consisting of 55% dimethylformamide and 45% water and having a temperature of 40°C at a drawing speed of 5 m/min. introduced and wet coagulated, followed by a temperature 90% solution of 60% dimethylformamide and 40% water.
Stretched at 35 m/min in a drawing bath at ℃, and further stretched at 4 m/min in boiling water
It was stretched at 5 m/min. The moisture content of the obtained drawn yarn was 185
The weight was -. This drawn yarn was dried to a moisture content of 15% KPL using the same drying method as shown in Example 11C, and heated and stretched at a ratio of 1:2 in the same manner as in Experiment No. 1-2 (Table 1) of Example 1.
.. 0, and then the same heat treatment was performed. For comparison, the water content was 0.11%, and after drying and densification, the heating and stretching ratio was 1:2. After that, the same heat treatment was performed.

それぞれ得られた繊維を180℃で8時間、アルカリ性
水溶液(ポルトランドセメントF水−12,5)中で高
温スチーム処理し、得られた繊維の物性を測定した。そ
の結果を表4に示した。
The obtained fibers were subjected to high-temperature steam treatment in an alkaline aqueous solution (Portland Cement F water-12.5) at 180° C. for 8 hours, and the physical properties of the obtained fibers were measured. The results are shown in Table 4.

以下余白Below margin

Claims (1)

【特許請求の範囲】 1、アクリロニトリル90〜100重量%と、アクリロ
ニトリルと共重合可能なビニル系モノマー0〜10重量
%とから成るアクリル系重合体繊維であって強度が6g
/d以上で、初期弾性率が80g/d以上であり、かつ
pH9〜13のアルカリ性水溶液中180℃で8時間の
湿潤処理後の強度および初期弾性率の保持率が60%以
上であることを特徴とするアクリル系繊維。 2、アクリロニトリル90〜100重量%と、アクリロ
ニトリルと共重合可能なビニル系モノマ−0〜10重量
%とから成るアクリル系重合体溶液を紡糸原液として用
い、これを湿式、乾湿式あるいは乾式紡糸後、延伸、水
洗し、さらに沸水あるいは蒸気中で延伸を施し、次いで
該延伸糸の含水率が5〜60重量%になるまで乾燥処理
を施し、次に120℃〜200℃の温度で該糸に1:1
.0〜1:3.0の延伸処理を施し、さらに180℃〜
300℃の温度下に該糸を緊張状態で熱処理することを
特徴とするアクリル系繊維の製造法。
[Scope of Claims] 1. Acrylic polymer fiber consisting of 90 to 100% by weight of acrylonitrile and 0 to 10% by weight of a vinyl monomer copolymerizable with acrylonitrile and having a strength of 6 g.
/d or more, the initial elastic modulus is 80 g/d or more, and the retention rate of the strength and initial elastic modulus after wet treatment at 180 ° C. for 8 hours in an alkaline aqueous solution of pH 9 to 13 is 60% or more. Characteristic acrylic fiber. 2. An acrylic polymer solution consisting of 90 to 100% by weight of acrylonitrile and 0 to 10% by weight of a vinyl monomer copolymerizable with acrylonitrile is used as a spinning stock solution, and after wet, dry-wet or dry spinning, The drawn yarn is drawn, washed with water, further drawn in boiling water or steam, and then dried until the water content of the drawn yarn becomes 5 to 60% by weight. :1
.. 0 to 1:3.0 stretching treatment and further 180°C to
A method for producing acrylic fibers, which comprises heat-treating the yarn under tension at a temperature of 300°C.
JP8143785A 1985-04-18 1985-04-18 Acrylic yarn and production thereof Pending JPS61245303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8143785A JPS61245303A (en) 1985-04-18 1985-04-18 Acrylic yarn and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8143785A JPS61245303A (en) 1985-04-18 1985-04-18 Acrylic yarn and production thereof

Publications (1)

Publication Number Publication Date
JPS61245303A true JPS61245303A (en) 1986-10-31

Family

ID=13746370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8143785A Pending JPS61245303A (en) 1985-04-18 1985-04-18 Acrylic yarn and production thereof

Country Status (1)

Country Link
JP (1) JPS61245303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023577A (en) * 2017-06-08 2018-12-18 中国石油化工股份有限公司 Build the preparation method of reinforced polypropylene nitrile chopped strand

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023577A (en) * 2017-06-08 2018-12-18 中国石油化工股份有限公司 Build the preparation method of reinforced polypropylene nitrile chopped strand

Similar Documents

Publication Publication Date Title
JPS6127340B2 (en)
US5109092A (en) Filaments and fibers of acryling polymers which contain carboxyl groups and process for their production
JPH04257313A (en) Production of precursor fiber for carbon fiber
JPS61245303A (en) Acrylic yarn and production thereof
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
JP3044896B2 (en) Pressurized steam drawing method of thick acrylic filament yarn
US4237109A (en) Process for producing carbon fabric
JPH0491230A (en) Production of precursor
JP3756886B2 (en) High shrinkable acrylic fiber
JP2001055620A (en) Acrylic fiber suitable for production of nonwoven fabric
KR100627171B1 (en) Method for preparing high-tenacity polyvinyl alchol fiber and product manufactured thereby
JPS6018333B2 (en) Manufacturing method of heat-resistant acrylonitrile fiber
JPS60194110A (en) Heat-resistant acrylic fiber and its manufacture
JPS5843482B2 (en) Acrylic Keigousei Senino Seizou Hohou
JPH11200141A (en) Production of pilling-resistant acrylic fiber
JPH0280610A (en) Acrylonitrile-based coagulated yarn and production of carbon fiber therefrom
JPS6233328B2 (en)
JPS6081309A (en) Preparation of acrylic yarn having alkali resistance
JPH0441709A (en) Production of acrylic fiber having high water retention ratio
JP2004256315A (en) Vinylon fiber for cement reinforcement
JPS61119709A (en) Production of acrylic fiber having excellent fiber property
JPS61152813A (en) Heat-resistant acrylic fiber and production thereof
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JPS61215713A (en) Acrylic fiber of high strength and production thereof
JPS6156328B2 (en)