JPH0491230A - Production of precursor - Google Patents

Production of precursor

Info

Publication number
JPH0491230A
JPH0491230A JP20833990A JP20833990A JPH0491230A JP H0491230 A JPH0491230 A JP H0491230A JP 20833990 A JP20833990 A JP 20833990A JP 20833990 A JP20833990 A JP 20833990A JP H0491230 A JPH0491230 A JP H0491230A
Authority
JP
Japan
Prior art keywords
precursor
spinning
acrylonitrile
coagulated yarn
pore radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20833990A
Other languages
Japanese (ja)
Inventor
Toshihiro Makishima
槙嶋 俊裕
Michiro Kawakami
川上 道郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP20833990A priority Critical patent/JPH0491230A/en
Publication of JPH0491230A publication Critical patent/JPH0491230A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a precursor having dense fibril-aggregate structure giving high-tenacity carbon fiber by specifying total pore volumes and pore radius of coagulated yarn derived from spinning of a specific acrylonitrile-based polymer and drawn yarn derived from drawing of said coagulated yarn. CONSTITUTION:A spinning dope composed of acrylonitrile-based polymer containing >=93wt.% acrylonitrile and having 1.5-3 intrinsic viscosity eta is spun and the resultant coagulated yarn is drawn in wet heat at 1-6 times draw ratio and >=8 times total draw ratio by simultaneously making total pore volume VG and maximum value of pore radius RG of the coagulated yarn, and total pore volume of VW and maximum value of pore radius RW to satisfy formula VG/VW>1, formula RG/RW>1, VG<1.2cm<3>/g and RG<300Angstrom to afford the aimed precursor having <=1 d size of single fiber. Besides, the spinning method is preferably dry jet-wet spinning method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は特に高強度炭素繊維の製造に好適な糸欠陥の少
々込緻密なフィブリル凝集構造を有するアクリル系前駆
体繊維束(プレカーサー)の製造方法に関するものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to the production of acrylic precursor fiber bundles (precursors) having a slightly dense fibril aggregate structure with yarn defects, which are particularly suitable for producing high-strength carbon fibers. It is about the method.

(従来の技術) アクリロニトリル系繊維をプレカーサーに使用して高強
度高弾性の炭素繊維を製造することが知られて以来、工
業的規模でのプレカーサーの製造方法やその焼成方法並
びに後処理技術に関する改良方法が多数提案されている
。特に炭素繊維を複合材料の補強材として使用する場合
には高度の引張り強さが要求され、これを満足する為に
は用いる原繊維の特性が更に重要な課題となっておシ、
その改良に関する技術についてもこれまで多数提案され
ている。
(Prior art) Since it was known that acrylonitrile fibers are used as precursors to produce high-strength, high-elastic carbon fibers, improvements have been made in methods for producing precursors on an industrial scale, in firing methods, and in post-processing techniques. Many methods have been proposed. In particular, when carbon fiber is used as a reinforcing material for composite materials, a high degree of tensile strength is required, and in order to satisfy this requirement, the characteristics of the raw fibers used are even more important.
A number of techniques have been proposed to improve this.

これまでの改良技術は大別して ■ 繊維の延伸条件を選定することKよシ繊維の配向度
を適切に設定する ■ 製糸工程でガイド等の傷によシ発生する欠陥を極力
抑える ■ 繊維の表面処理剤を規制する ■ ポリマー組成を規制する などの方法である。しかしながらプレカーサーを炭素*
m束へ転換する焼成工程では原料繊維が大巾な物理的、
化学的変化を受けることから焼成条件とそれに伴ない、
原料繊維として具備すべき条件との因果関係は未だ明ら
かでけ表く多くの未解決の問題を抱えている。
The improved techniques to date can be roughly divided into ■ Selecting the fiber drawing conditions Appropriately setting the degree of orientation of the fibers ■ Minimizing defects caused by scratches from guides, etc. during the spinning process ■ Fiber surfaces Regulation of processing agents ■ Methods such as regulating polymer composition. However, the precursor is carbon*
In the firing process to convert into m bundles, the raw material fibers undergo a wide physical
Due to chemical changes, the firing conditions and associated
There are still many unresolved problems regarding the causal relationship with the conditions that should be met as a raw material fiber.

本発明者らはこの様な現状に鑑み、原糸工程特に凝固か
ら延伸に到るプレカーサーの初期構造形成過程での微細
構造の変動と、かかる焼成条件における鵜Il鰭、特に
引張夛強度との相関性について鋭意検討した結果、プレ
カーサーとしての最4重要な特性を見出し本発明に到達
したものである。
In view of the current situation, the present inventors investigated the variation of the fine structure during the initial structure formation process of the precursor from coagulation to drawing, and the relationship between the cormorant Il fin, especially the tensile strength, under such firing conditions. As a result of intensive study on the correlation, we discovered the four most important characteristics of a precursor and arrived at the present invention.

尚、本発明が特定する細孔半径の極大値等は従来からア
クリル繊維の微細構造の薯認に用いられておシ、古くは
Quynn  らによってその研究が行われている−の
である( R,G、Quynn ;テextils  
Ryes、J、、33.21(1963))。
Furthermore, the maximum value of the pore radius specified by the present invention has been used to identify the microstructure of acrylic fibers, and research has been conducted in the past by Quinn et al. (R, G, Quinn ;
Ryes, J., 33.21 (1963)).

(発明が解決しようとする課題) 本発明の課題は、高健度炭素鐵錐製造に遺したプレカー
サーの製造方法を提供するととにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for manufacturing a precursor that is suitable for manufacturing high-strength carbon steel pyramids.

(課題を解決するための手段) 本発明の要旨は、アクリロニトリルを93重量参以上含
有し、極限粘度〔η〕がt5〜3.0のアクリロニトリ
ル系重合体からなる紡糸原液を紡糸して得られる凝固糸
を湿熱下1〜6倍、全延伸倍率8倍以上延伸して皐緻維
緻度1d以下の炭素繊維製造用プレカーサーを製造する
に際し、凝固糸の全細孔体積(VG)と細孔半径の極大
値(Ra)、延伸糸の全細孔体積(vv)と細孔半径の
極大値(XW)が次式を満足するプレカーサーの製造方
法にある。
(Means for Solving the Problem) The gist of the present invention is obtained by spinning a spinning dope made of an acrylonitrile polymer containing 93 or more parts by weight of acrylonitrile and having an intrinsic viscosity [η] of t5 to 3.0. When producing a precursor for producing carbon fibers with a fiber density of 1 d or less by stretching a coagulated thread under moist heat 1 to 6 times at a total stretching ratio of 8 times or more, the total pore volume (VG) and pores of the coagulated thread are determined. There is a method for manufacturing a precursor in which the maximum value of the radius (Ra), the total pore volume (vv) of the drawn yarn, and the maximum value of the pore radius (XW) satisfy the following formula.

vG(1,2m”/f、RG<30OA本発明が特定し
た特性を満足するプレカーす−を焼成して得られる炭素
繊維は、七の繊維物性、特にストランド強度の陶土が可
能とな如、ひいては航空、宇宙用途に好適な複合材料用
補強繊維を工業的に広く供給することが可能となる。
vG (1.2m"/f, RG<30OA) The carbon fiber obtained by firing the precursor which satisfies the characteristics specified by the present invention has seven fiber physical properties, especially strand strength, such as china clay. As a result, it becomes possible to industrially widely supply reinforcing fibers for composite materials suitable for aviation and space applications.

本発明においてはまず湿熱下1〜6倍の延伸条件中いか
なる範l!においても、VG/TV≦1゜RG/RW≦
1なる関係が成立する場合、これは延伸工程において微
細構造の変動、即ちミクロフィブリルの切断や統合をは
じめとする繊維微細組織の再編成がかなシ大きな規模で
行れていることを推測させる。
In the present invention, first, under moist heat and stretching conditions of 1 to 6 times, any range of stretching conditions is required. Also, VG/TV≦1゜RG/RW≦
If a relationship of 1 is established, it is inferred that microstructural changes, that is, reorganization of the fiber microstructure including cutting and integration of microfibrils, occur on a large scale during the drawing process.

従ってこれは後に強度発現性を阻害する微小欠陥を内在
せしめる−のとなり得る。マクロレベルでみた場合、延
伸倍率を高度に高めることKよシ、上記欠陥は通常消失
し、表面上何ら危惧すべき問題点を含まないかにみえる
が、本欠陥点は潜在的に残っている0例えば炭素繊維の
破断部分を走査型電子顕微鏡を用いてよシ詳細に観察し
た場合、マクロレベルでは見出され得ない部分からも多
くの破断が発生していることが見出されることからも明
らかである。
Therefore, this may result in the inclusion of minute defects that later inhibit strength development. When viewed at a macro level, the above-mentioned defects usually disappear by increasing the drawing ratio to a high degree, and although on the surface it appears that there are no problems to be worried about, this defect point still remains latently. For example, when we closely observe fractured portions of carbon fiber using a scanning electron microscope, it is clear that many fractures occur in areas that cannot be detected at the macro level. be.

本発明に於いては、上記凝固糸の緻密性は著しく低−も
のであってはならない。即ち凝固糸のveが12 cm
”/ を以上であり、ま7’jRG力300ム以上の場
合、いかにvo/vv ) 1かつljG/ljW >
 1なる関係式を満足する延伸を施したとしても、プレ
カーサーとしての緻密化が不完全であり、これを焼成炭
素化して得られる炭素縁mは多くの構造欠陥を含むこと
Kなり本発明の目的は達成されない。
In the present invention, the density of the coagulated thread must not be extremely low. That is, the ve of the coagulated thread is 12 cm.
”/ is above, and if the RG force is 300 m or above, how is vo/vv) 1 and ljG/ljW >
Even if stretching is performed to satisfy the relational expression 1, the densification as a precursor is incomplete, and the carbon edge obtained by firing and carbonizing it contains many structural defects.The object of the present invention is therefore is not achieved.

次に重要となってくるのはポリマーの極限粘度〔η〕で
ある。一般に高性能炭素繊維、特に高強度タイプの炭素
繊維を得る為には、単糸デニール当たりの欠陥点をなる
べく少なくする為にプレカーサーの細繊度化が必要とな
ってくるか、この様なプレカーf−の細繊度化を達成し
得る為には8〜10倍以上の高倍率の延伸を施し得る分
子量、即ち15万以上の高分子量のポリマ−が要求され
る。従って本発明の意図する高強度炭素繊維用プレカー
サーの好ましいデニールとしては、aSa〜1(1,さ
らに好ましくは(17(1,以下の本のが要求され、か
つポリマーの極限粘度〔マ〕はt5以上さらに好ましく
は2〜3に設定すべきである。
The next important thing is the intrinsic viscosity [η] of the polymer. In general, in order to obtain high-performance carbon fibers, especially high-strength type carbon fibers, it is necessary to make the precursor finer in order to minimize the number of defects per single yarn denier, or to obtain such precursor f. In order to achieve the fineness of -, a polymer with a molecular weight of 150,000 or more is required, which can be stretched at a high magnification of 8 to 10 times or more. Therefore, the preferred denier of the high-strength carbon fiber precursor intended by the present invention is aSa~1(1, more preferably (17(1) or less, and the intrinsic viscosity of the polymer is t5 More preferably, it should be set to 2 to 3.

なお極限粘度〔η〕が3より大の高分子量ポリマーを使
用した場合、紡糸原液粘度上昇OI!念から必然的に固
形分濃度を下げなければならないが、これは結果として
’VGが1.2 cm”/を以上の緻密性の劣るポーラ
スな凝固糸を与えることとなシ好ましくない。また高分
子量化に伴なう高度な延伸処理を施さない限シ、得られ
る炭素繊維の性能の向上は期待できない。
Note that when a high molecular weight polymer with an intrinsic viscosity [η] of more than 3 is used, the viscosity of the spinning dope increases OI! Although it is necessary to lower the solid content concentration just in case, this is undesirable as it results in a porous coagulated thread with poor density with a VG of 1.2 cm/ or more. Unless the carbon fiber is subjected to advanced stretching treatment to increase its molecular weight, no improvement in the performance of the resulting carbon fiber can be expected.

以上述べた様な本発明で着目するプレカーサーの凝固並
びに延伸構造の状態を得る製法例を以下に説明する。
An example of a manufacturing method for obtaining the state of solidification and stretched structure of the precursor, which is the focus of the present invention as described above, will be described below.

ポリマーはアクリロニトリルを93重重量板上好ましく
は95重量参以上含有する重合体を用いるのが良い。ア
クリロニトリル以外の共重合成分としてはアクリル酸、
メタクリル酸、イタコン酸及びそれらの塩類やエステル
類あるいはアリルスルホン酸、メタリルスルホン酸及び
それらの塩類等の111またFi2種以上の混合物があ
げられる。
It is preferable to use a polymer containing acrylonitrile in an amount of 93% by weight or more, preferably 95% by weight or more. Copolymerization components other than acrylonitrile include acrylic acid,
Examples include methacrylic acid, itaconic acid and their salts and esters, allylsulfonic acid, methallylsulfonic acid and their salts, and mixtures of two or more Fi.

これらの重合体は例えば過硫酸アンモニウム/亜硫酸水
素アンモニウム岬のレドックス[[を用すて、従来から
知られている重合方法例えば水系懸濁重合やジメチルホ
ルムアミド中の溶液重合等により製造する。
These polymers are produced by conventionally known polymerization methods such as aqueous suspension polymerization and solution polymerization in dimethylformamide using, for example, ammonium persulfate/ammonium bisulfite redox.

紡糸原液は重合体の分子量によって決るが重合体濃度が
18重重量板上26重量噛未満のものを用いる。紡糸方
式は湿式、乾−湿式いずれの方法も採用可能であるが、
凝固糸の表層(スキン層)の緻密性を高くできる点から
乾−湿式紡糸法を採用することが望ましい。
The spinning dope is determined by the molecular weight of the polymer, but one with a polymer concentration of less than 26 mw on an 18 mw plate is used. The spinning method can be either wet or dry-wet, but
It is desirable to employ the dry-wet spinning method because it can increase the density of the surface layer (skin layer) of the coagulated yarn.

凝固浴組成はジメチルホルムアミドやジメチルアセトア
ミド等の有機溶剤と水との混合系あるいはロダン塩や硝
酸塩の如き水溶液を用いることができ、凝固浴温度は低
温特に15℃以下に保つことが好ましい。
The composition of the coagulation bath may be a mixture of water and an organic solvent such as dimethylformamide or dimethylacetamide, or an aqueous solution such as rhodan salt or nitrate, and the coagulation bath temperature is preferably kept at a low temperature, particularly below 15°C.

また上記方法でいかに緻帝な凝固糸を得九にして亀、そ
れに引き続く延伸工程でフィブリル凝集構造の大きな変
化(配列の乱れやミクロフィブリルの切断、統合に伴な
う細孔半径分布曲線の大きを変化)が生じる様な延伸を
施すと、炭素繊維の性能の向上は望め1にい。この様な
変化を極力抑えるには、湿熱下での延伸配分を2段以上
に設け、4〜6倍程度の延伸を多段階的に施すことが望
ましい。
It is also important to note how fine coagulated filaments can be obtained using the above method, and the subsequent drawing process causes large changes in the fibril aggregation structure (disordering, cutting of microfibrils, and the size of the pore radius distribution curve due to integration). The performance of carbon fiber can be expected to improve if it is stretched in such a way that a change in In order to suppress such changes as much as possible, it is desirable to provide two or more stages of stretching under moist heat, and to perform stretching approximately 4 to 6 times in multiple stages.

さらに原糸の配向性を高める点からこの様な湿熱下での
延伸の後に、乾熱下もしくは加圧スチーふ中でさらKt
5〜2倍程度延伸を行い、トータルでの延伸倍率を少な
くとも8倍以上好以下実施例により本発明を具体的に説
明する。
Furthermore, in order to improve the orientation of the raw yarn, after such stretching under moist heat, it is further stretched under dry heat or in a pressure steamer.
The present invention will be specifically explained with reference to Examples, in which stretching is carried out by about 5 to 2 times, and the total stretching ratio is at least 8 times or more.

物性値は以下の方法により測定した。Physical property values were measured by the following method.

イ、重合体の極限粘度〔η〕 重合体=11をα1Nのローダンソーダーを含ムシメチ
ルホルムアミド100mK溶解し、25℃で測定した。
B. Intrinsic viscosity of polymer [η] Polymer 11 was dissolved in 100 mK of methylformamide containing α1N rhodan soda and measured at 25°C.

口、炭素繊維のストランド強度、弾性率J工8  R−
7601に準じて、・エポキシ樹脂を含浸したストラン
ドから求めた。試畏200−1試料数10本で測定した
平均値である。
mouth, carbon fiber strand strength, elastic modulus J engineering 8 R-
7601: Determined from strands impregnated with epoxy resin. This is the average value measured using 10 samples of Test 200-1.

ハ、全細孔体積、細孔半径の極大値 凝固糸あるl/hFi延伸糸を室温下水洗して溶剤と水
との置換を充分に行った後、液体窒素中に浸漬して凍結
させ、その後本凍結糸を減圧下(約10″″” Tor
r\屑囲を一5℃〜−10℃のドライアイス−メタノー
ルバスにて冷却しながら72時間乾燥処理を施した約(
15Fを各試料とした。細孔体積微分曲線から求めた細
孔半径の極大値は、(1!ARLORRBム社製ポロシ
メーター200を使用して水銀圧入法によシ測定した−
のであシ、円筒換算細孔の細孔半径分布曲線の極大値を
示す−のである。
C. Maximum value of total pore volume and pore radius After washing the l/hFi drawn yarn with coagulated yarn with water at room temperature to sufficiently replace the solvent with water, it is immersed in liquid nitrogen and frozen. After that, the frozen thread was placed under reduced pressure (approximately 10"" Tor
The waste was dried for 72 hours while being cooled in a dry ice-methanol bath at -5°C to -10°C.
15F was used as each sample. The maximum value of the pore radius determined from the pore volume differential curve is (1! Measured by mercury intrusion method using a porosimeter 200 manufactured by ARLORRB).
This indicates the maximum value of the pore radius distribution curve of cylindrical pores.

水銀圧入法は、比較的ぬれ性の悪い水銀に所定の圧力(
Okll/ax” 〜2000 kg/ax” )を加
えていき、各圧力ごとKm錐内部へ浸透した水銀量を測
定するものであり、各圧力とその際に測定される細孔半
径との関係は以下の式によ抄定義される。
In the mercury intrusion method, mercury, which has relatively poor wettability, is subjected to a predetermined pressure (
The amount of mercury permeated into the Km cone is measured at each pressure.The relationship between each pressure and the pore radius measured at that time is It is briefly defined by the following formula.

水銀圧λ法 rr”P=−2treIcos# #:水銀の表面張力(480dyne/a*)r:細孔
半径 #:接触角(140°)r = 7.5 X 1
 0’ /p  (ム)上穴から外圧Pより細孔半径(
r)を求め、各圧力下での水銀圧入量より細孔体積を求
め、かつその累積値として全細孔体積を求めた。
Mercury pressure λ method rr”P=-2treIcos# #: Surface tension of mercury (480dyne/a*) r: Pore radius #: Contact angle (140°) r = 7.5 X 1
0' /p (mu) From the upper hole to the external pressure P, the pore radius (
r) was determined, the pore volume was determined from the amount of mercury intrusion under each pressure, and the total pore volume was determined as the cumulative value.

実施例1 水系懸濁重合法で調整したアクリロエト9498重量憾
、メタクリル酸2重量憾、極限粘度〔η〕2.2のアク
リル系重1合体をジメチルホルムアミドに溶解し、19
重量憾の原液を調整した。
Example 1 An acrylic polymer prepared by an aqueous suspension polymerization method, having 9498 parts by weight of acryloethyl alcohol, 2 parts by weight of methacrylic acid, and an intrinsic viscosity [η] of 2.2, was dissolved in dimethylformamide.
A concentrated stock solution was prepared.

この原液な孔径α15■、孔数1500の紡糸ノズルを
用いて一旦空気中に吐出させ、約5腸の空間を通過させ
た後、5℃に調整した774のジメチルホルムアミドの
水溶液から成る凝固浴に導き、凝固させた。この凝固糸
を空中に、てt3倍延伸した後、引続き60℃温水中で
2倍延伸、さらに潜水中で2倍の延伸を行った。
This undiluted solution was once discharged into the air using a spinning nozzle with a pore diameter of α15 mm and a number of holes of 1,500, and after passing through approximately 5 intestine spaces, it was placed in a coagulation bath consisting of an aqueous solution of 774 dimethylformamide adjusted to 5°C. Guided and coagulated. This coagulated thread was stretched 3 times t in the air, followed by 2 times stretching in 60° C. warm water, and further 2 times stretching while submerged.

得られた浴延伸糸に乾燥糸重量に対しα3〜α7憾の付
着量となる様KM/リコン系の油剤を付与し、引続き1
50℃の加熱ローラで乾燥緻密化処理を行った後、さら
に180℃の加熱ロー2にて169倍の延伸を施し、全
延伸倍率を10倍とした。この際得られた凝固糸及び延
伸糸の細孔体積分布曲線を第1図に示す。
A KM/recon type oil agent was applied to the obtained bath-drawn yarn so that the coating amount was α3 to α7 based on the dry yarn weight, and then 1
After drying and densification treatment was carried out using a heating roller at 50° C., the film was further stretched 169 times using a heating roller 2 at 180° C., so that the total stretching ratio was 10 times. The pore volume distribution curves of the coagulated yarn and drawn yarn obtained at this time are shown in FIG.

得られた繊維は、単糸デニール(17(1,強度7、O
f/a、伸度94であった。このプレカーサーを220
〜260℃の範囲で40分間耐炎化処理した後、N、中
500〜1400℃までの昇温勾配を適用して炭素化処
理して炭素繊維を得た。
The obtained fiber had a single yarn denier (17 (1, strength 7, O
f/a and elongation of 94. This precursor is 220
After flame-retardant treatment in the range of ~260°C for 40 minutes, carbonization treatment was performed by applying a temperature increasing gradient from 500 to 1400°C in N to obtain carbon fibers.

この際得られたプレカーサーの細孔体積分布解析結果並
びKm素繊維物性を表1に示す。プレカーサーの微細構
造の変化を示す、V G /V11及びRG/RW I
dいずれ4重1以上とな)、フィブリル凝集構造の大き
な変化もなく良好な延伸が施されていることがわかる。
Table 1 shows the pore volume distribution analysis results and Km fiber physical properties of the precursor obtained at this time. V G /V11 and RG/RW I showing changes in precursor microstructure.
d), it can be seen that good stretching was performed without any major change in the fibril aggregation structure.

また炭素繊維物性もストランド強度で600ゆ/■2以
上、ストランド弾性率も3五2 t/■2と高い値を示
した。
In addition, the carbon fiber physical properties showed high values such as strand strength of 600 y/cm2 or more and strand elastic modulus of 352 t/cm2.

比較例1 実施例1と同様にして、但し空中延伸t3倍60℃温水
中2倍、加熱ロールt44倍、全延伸倍率を75倍に変
更してプレカーサーを製造し、続いて炭素化処理して炭
素繊維とした。結果を表1に示す、プレカーサーの微細
構造の変化の指標となるV G / V W 、 RG
 / RW  の値はいずれも実施例1と同一にもかか
わらず、全延伸倍率が75倍と低い場合、炭素繊維物性
の普しく劣るものとなった。
Comparative Example 1 A precursor was produced in the same manner as in Example 1, except that the air stretching t was 3 times higher than that in 60°C hot water, the heating roll t was 44 times, and the total stretching ratio was 75 times, followed by carbonization treatment. Made of carbon fiber. The results are shown in Table 1, and V G / V W and RG are indicators of changes in the fine structure of the precursor.
/RW values were all the same as in Example 1, but when the total stretching ratio was as low as 75 times, the physical properties of the carbon fiber were generally inferior.

比較例2 実施例1と同様にして、但し原液濃度を16重量憾に変
更してプレカーす−を製造し、続いて炭素化処理して炭
素繊維とした。結果を表1に示す。
Comparative Example 2 A precursor was produced in the same manner as in Example 1, except that the concentration of the stock solution was changed to 16% by weight, followed by carbonization treatment to obtain carbon fibers. The results are shown in Table 1.

原液濃度の低下に伴い、全細孔体積はt41tx”/ 
fと緻密性の劣るものとな夛且つストランド強度の低下
が認められた。
As the concentration of the stock solution decreases, the total pore volume becomes t41tx”/
It was observed that the strands had poor density and a decrease in strand strength.

比較例3 実施例1と同様にして、但しポリマーの極限粘度〔η〕
をt8とし、紡出時の最適粘度を適性化する為、原液濃
度を23重量IK変更してプレカーサーを製造し、続い
て炭素化して炭素繊維とした。結果を表1に示す。凝固
糸の緻密性の指標となるVGは(L 86 em”/ 
tと低い値を示すが、V G / Y W並びKRG/
RWの値は1と1kb、延伸中フィブリル凝集構造に大
きな変化を生じておシ、結果としてストランド強度の低
下をもたらす。この際得られた細孔体積分布曲線を第2
図に示す、実施例1の場合に比較して、延伸糸の微分曲
線の極大値は大きく右へ、即ち細孔半径の大きい方へy
7トしておシ、その累積値4実施例1の場合に比べてt
、 02 ex”/ fと高い値を示していることが分
る。
Comparative Example 3 Same as Example 1, except that the intrinsic viscosity of the polymer [η]
was set as t8, and in order to optimize the optimum viscosity during spinning, the concentration of the stock solution was changed by 23 weight IK to produce a precursor, which was then carbonized to obtain carbon fiber. The results are shown in Table 1. VG, which is an indicator of the density of coagulated thread, is (L 86 em”/
It shows a low value of t, but V G / Y W line KRG /
RW values of 1 and 1 kb cause a large change in the fibril aggregation structure during stretching, resulting in a decrease in strand strength. The pore volume distribution curve obtained at this time was
As shown in the figure, compared to the case of Example 1, the maximum value of the differential curve of the drawn yarn is largely shifted to the right, that is, toward the larger pore radius.
7, and the cumulative value is 4t compared to the case of Example 1.
, 02 ex”/f.

比較例4 実施例1と同様にして、但しダリマ−の極限粘度〔り〕
を五〇FC変更して、紡8時の最適粘度を適性化する為
、原液濃度を12重量参として紡糸原液を調整して、プ
レカーサーを製造し、続いて縦索化して廣素鐵錐とした
Comparative Example 4 Same as Example 1, except that the limiting viscosity of Dalimer was
In order to optimize the optimum viscosity during spinning by changing 50 FC, the spinning stock solution was adjusted to a stock solution concentration of 12% by weight, and a precursor was manufactured. did.

結果を表1に示す、凝固糸の緻密性の指標となるVGは
、t 5 S am”/ tと高い値を示し、いかにそ
の後の延伸工程Kkいて、VW、RWが低い値を示そう
とも、緻密性の低さは潜在的に残存しておシ、結果とし
てストランド強度の低下を4たらしていることがわかる
The results are shown in Table 1.VG, which is an index of the density of the coagulated thread, shows a high value of t5Sam''/t, and no matter how much the subsequent drawing process Kk is performed, VW and RW show low values. It can be seen that the low density remains potentially, resulting in a decrease in strand strength.

比較例5 実施例1と同様にして、但し延伸条件を空中延伸t5倍
、60℃温水中2倍、沸水中五88倍、延伸して全延伸
倍率10倍に変更してプレカーサーを製造した。湿熱下
の延伸が6倍を越えると巻きとシ時の毛羽糸切れが著し
く多く紡糸性の劣るものであった。結果を表1に示す。
Comparative Example 5 A precursor was produced in the same manner as in Example 1, except that the stretching conditions were changed to 5 times t in air, 2 times in hot water at 60°C, 588 times in boiling water, and a total stretching ratio of 10 times. When the stretching under moist heat exceeded 6 times, the fluffy yarn broke significantly during winding and sewing, resulting in poor spinnability. The results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られたプレカーサーの細孔半径と
細孔体積分布の解析図、第2図は比較例3で得られたブ
レカー号−〇細孔半径と細孔体積分布の解析図を各示す
Figure 1 is an analysis diagram of the pore radius and pore volume distribution of the precursor obtained in Example 1, and Figure 2 is an analysis of the pore radius and pore volume distribution of the breaker No. 0 obtained in Comparative Example 3. Each figure is shown below.

Claims (1)

【特許請求の範囲】 1、アクリロニトリルを93重量%以上含有し、極限粘
度〔η〕が1.5〜3.0のアクリロニトリル系重合体
からなる紡糸原液を紡糸して得られる凝固糸を湿熱下1
〜6倍、全延伸倍率8倍以上延伸して単繊維繊度1d以
下の炭素繊維製造用プレカーサーを製造するに際し、凝
固糸の全細孔体積(VG)と細孔半径の極大値(RG)
、延伸糸の全細孔体積(VW)と細孔半径の極大値(R
W)が次式を満足することを特徴とするプレカーサーの
製造方法 (VG)/(VW)>1、(RG)/(RW)>1VG
<102cm^2/g、RG<300Å2、紡糸原液の
重合体濃度が18重量%以上26重量%未満である請求
項1記載の製造方法。
[Scope of Claims] 1. A coagulated yarn obtained by spinning a spinning dope made of an acrylonitrile polymer containing 93% by weight or more of acrylonitrile and having an intrinsic viscosity [η] of 1.5 to 3.0 is processed under moist heat. 1
When producing carbon fiber precursors with a single fiber fineness of 1 d or less by stretching up to 6 times and a total stretching ratio of 8 times or more, the maximum value of the total pore volume (VG) and pore radius (RG) of the coagulated yarn
, the total pore volume (VW) and the maximum value of the pore radius (R
A method for manufacturing a precursor, characterized in that W) satisfies the following formula (VG)/(VW)>1, (RG)/(RW)>1VG
<102cm^2/g, RG<300Å2, and the manufacturing method according to claim 1, wherein the polymer concentration of the spinning dope is 18% by weight or more and less than 26% by weight.
JP20833990A 1990-08-06 1990-08-06 Production of precursor Pending JPH0491230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20833990A JPH0491230A (en) 1990-08-06 1990-08-06 Production of precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20833990A JPH0491230A (en) 1990-08-06 1990-08-06 Production of precursor

Publications (1)

Publication Number Publication Date
JPH0491230A true JPH0491230A (en) 1992-03-24

Family

ID=16554637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20833990A Pending JPH0491230A (en) 1990-08-06 1990-08-06 Production of precursor

Country Status (1)

Country Link
JP (1) JPH0491230A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143680A1 (en) 2009-06-10 2010-12-16 三菱レイヨン株式会社 Acrylonitrile swollen yarn for carbon fiber, precursor fiber bundle, flame-proof fiber bundle, carbon fiber bundle, and production methods thereof
JP2012122164A (en) * 2010-12-08 2012-06-28 Mitsubishi Rayon Co Ltd Carbon fiber excellent in exhibiting mechanical characteristics
JP2016128623A (en) * 2016-03-07 2016-07-14 三菱レイヨン株式会社 Carbon fiber excellent in mechanical property appearance
JP2016194191A (en) * 2016-08-23 2016-11-17 三菱レイヨン株式会社 Carbon fiber excellent in mechanical property appearance
JP2018184699A (en) * 2018-07-17 2018-11-22 三菱ケミカル株式会社 Carbon fiber exhibiting excellent mechanical characteristic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143680A1 (en) 2009-06-10 2010-12-16 三菱レイヨン株式会社 Acrylonitrile swollen yarn for carbon fiber, precursor fiber bundle, flame-proof fiber bundle, carbon fiber bundle, and production methods thereof
JP2012122164A (en) * 2010-12-08 2012-06-28 Mitsubishi Rayon Co Ltd Carbon fiber excellent in exhibiting mechanical characteristics
JP2016128623A (en) * 2016-03-07 2016-07-14 三菱レイヨン株式会社 Carbon fiber excellent in mechanical property appearance
JP2016194191A (en) * 2016-08-23 2016-11-17 三菱レイヨン株式会社 Carbon fiber excellent in mechanical property appearance
JP2018184699A (en) * 2018-07-17 2018-11-22 三菱ケミカル株式会社 Carbon fiber exhibiting excellent mechanical characteristic

Similar Documents

Publication Publication Date Title
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JPH02160912A (en) Improvements in manufacture of
JP2016040419A (en) Method for producing carbon fiber
US3841079A (en) Carbon filaments capable of substantial crack diversion during fracture
US3322611A (en) Porous fibers and processes of preparing same
US3867499A (en) Process for wet-spinning fibers derived from acrylic polymers
JPH0491230A (en) Production of precursor
JPH0345708A (en) Forming method for melt spinning acrylic fiber adapted for heat conversion to high strength carbon fiber
JP2002302828A (en) Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same
JP6145960B2 (en) Method for producing acrylonitrile polymer solution and method for producing carbon fiber precursor acrylonitrile fiber
JP2005113296A (en) Carbon yarn, acrylonitrile-based precursor yarn and method for producing the same
JP2021139062A (en) Production method of carbon fiber bundle
JP2002146681A (en) Method of producing carbon fiber and precursor thereof and method of applying finishing oil
KR102178877B1 (en) Method for preparing polyacrylonitrile based fiber
JPS6141326A (en) Preparation of precursor for carbon fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP2004183194A (en) Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same
US3846833A (en) Acrylic filaments which are particularly suited for thermal conversion to carbon filaments
US3657409A (en) Process for the production of acrylic filaments
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP6217342B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JPH028049B2 (en)
JP2012193468A (en) Carbon fiber precursor fiber and method of manufacturing the same